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Abstract.  We introduce a socially motivated extension of the voter model in 
which individual voters are also influenced by two opposing, fixed-opinion news 
sources. These sources forestall consensus and instead drive the population to 
a politically polarized state, with roughly half the population in each opinion 
state. Two types of social networks for the voters are studied: (a) the complete 
graph of N voters and, more realistically, (b) the two-clique graph with N voters 
in each clique. For the complete graph, many dynamical properties are soluble 
within an annealed-link approximation, in which a link between a news source 
and a voter is replaced by an average link density. In this approximation, we 
show that the average consensus time grows as Nα, with α = p�/(1− p). Here p  
is the probability that a voter consults a news source rather than a neighboring 
voter, and � is the link density between a news source and voters, so that α can 
be greater than 1. The polarization time, namely, the time to reach a politically 
polarized state from an initial strong majority state, is typically much less than 
the consensus time. For voters on the two-clique graph, either reducing the 
density of interclique links or enhancing the influence of news sources again 
promotes polarization.
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1.  Introduction

News sources play a pivotal role in influencing public opinion, and the manner by which 
they influence society is complex. Each of us is bombarded with often conflicting nar-
ratives that originate from news sources with dierent viewpoints. Some news sources 
are authoritative and others are trivial and/or wrong. In such a cacophonous environ
ment, how does public opinion change in time? Motivated by this basic question, we 
introduce a simple extension of the classic voter model (VM) [1–9] to investigate how 
opposing news sources influence the opinions of individuals.

The VM provides an idealized description of the opinion dynamics in a population that 
consists of N voters, each of which can be in one of two possible opinion states, denoted 
as  +  and  −. In the VM the opinion of each voter changes in an elemental update event 
as follows: a randomly selected voter adopts the opinion of a randomly selected neighbor. 
This updating is repeated until a finite population necessarily reaches consensus.

Two well-known and basic characteristics of the VM are: (a) the exit probability 
and (b) the consensus time. The exit probability is defined as the probability for the 
population to reach  +  consensus as a function of the initial fraction x of  +  voters. The 
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consensus time is defined as the average time for the population to reach consensus 
(either  +  or  −) as a function of N and x. The dependences of the exit probability and 
the consensus time on N and x have been fully characterized for a wide range of under-
lying networks [10–16].

While the VM is compelling because of its simplicity and natural applications, the 
model is much too naive to account for opinion formation of a real society. A wide vari-
ety of extensions of the VM have therefore been proposed that incorporate more real-
istic features of individual opinion changes. Some examples include: zealotry [17–19], 
where some voters never change opinion, adaptation [20–27], where the underlying net-
work connections change in response to opinion changes, vacillation [28], where a voter 
may consult multiple neighbors before changing opinion, latency [29], where a voter 
must ‘wait’ after an opinion change before changing again, heterogeneity [30], where 
each voter has a distinct rate to change opinion, and reputation [31], where a dynami-
cally changing individual reputation determines how likely a voter can influence the 
opinion of a neighbor. Some of these extensions are discussed in a recent review [32].

While much rich phenomenology has been uncovered by these studies, consensus 
is not the typical outcome for many decision-making processes. This basic fact has 
motivated additional extensions of the VM in which consensus can be forestalled as 
a natural outcome of the dynamics. Some examples include: stochastic noise [33–35], 
the influence of multiple neighbors [36], self confidence [37], partisanship [38, 39], and 
multiple opinion states [40–42].

Within the rubric of hindering consensus, a natural mechanism is the influence of 
external and competing news sources. In this work, we introduce a simple extension of 
the VM in which voters are influenced both by their neighbors and by two news sources 
with fixed and dierent opinions. A preliminary account of this model was presented 
in [66]. Related models with competing social influences have also been investigated 
in [43–45]. Each news source is connected to a specified subset of voters, which may 
be disjoint or overlapping. A news source can influence individual voters but the news 
sources are not influenced by public opinion. Our goal is to characterize when the 
population reaches consensus and when it is driven to a politically polarized state, with 
roughly half of the voters in each voting state, as a function of the persuasiveness of 
the news sources.

In section  2, we briefly outline the theoretical approaches that will be used to 
quantify the properties of our model. We will focus on the exit probability, the con-
sensus time, and the polarization time, namely, the time for the population to reach a 
politically polarized state of 50%  +  voters and 50%  −  voters when starting from a state 
with unequal densities of  +  and  −  voters. We then discuss the basic properties of the 
model when voters reside on a complete graph with two opposing news sources (section 
3). In section 4, we treat the model in the more realistic situation where voters reside 
on a two-clique graph with each news source linked to only one of the cliques. We give 
a brief summary In section 5.

2. Formalism

We first introduce the basic quantities that will be studied and also outline our theor
etical formalism; a close related approach was given in [46]. We denote by x the 
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fraction of voters with  +  opinion at any time t, and y  as the initial fraction of  +  voters 
at t  =  0. We define the exit probability E+ (y ) as the probability that a population of N 
voters reaches  +  consensus when the initial fraction of  +  voters is y . Correspondingly, 
E−(y) = 1− E+(y) is the probability for the population to reach  −  consensus from the 
same initial state. The consensus time Tcon(y) is defined as the average time for a popu-
lation of N voters to reach  +  or  −  unanimity when the initial fraction of  +  voters equals 

y . We are typically interested in the initial condition y = 1
2
; in this case, we write the 

consensus time as Tcon, with no argument.
In the presence of opposing news sources, there exists another characteristic and 

distinct time scale that we term the polarization time, Tpol(y). This quantity is defined 
as the average time for the population to reach the politically polarized state, with 
equal densities of  +  and  −  voters, when the initial fraction of  +  voters equals y , which 

we take as less than 1
2
 without loss of generality. The polarization time quantifies the 

eectiveness of the opposing news sources to promote their viewpoints and thereby 
forestall the consensus that would arise if individuals only interacted amongst their 
peers. A natural initial condition for the polarization time is y   =  0; that is, starting 
from  −  consensus. This state is not a fixed point of the stochastic dynamics because 
of the presence of the  +  news source that pulls the population away from  −  consensus 
whenever this state is reached. For this initial condition, we write the polarization time 
as Tpol, again with no argument.

The time evolution of opinions is controlled by the rates for x to change by ±
1
N

≡ ±δx in a single update event; these are defined as r±(x). In terms of these micro-
scopic rates, the probability P (x, t) δx that the fraction of  +  voters lies between x and 
x+ δx changes in time according to the master equation

∂P

∂t
= r+(x−δx)P (x−δx, t) + r−(x+δx)P (x+δx, t)−

[
r+(x)+r−(x)

]
P (x, t).

�

(1a)

Expanding this equation in a Taylor series to second order gives the Fokker–Planck 
equation

∂P

∂t
= − ∂

∂x
[V (x)P ] +

∂2

∂x2
[D(x)P ],� (1b)

where the drift velocity and diusion coecient are

V (x) =
[
r+(x)− r−(x)

]
δx,

D(x) =
[
r+(x) + r−(x)

]
(δx2/2),

� (2)

respectively. We can view the instantaneous opinion x as undergoing biased and posi-
tion-dependent diusion in the interval [0, 1] in the presence of the eective potential

φ(x) = −
∫ x V (x′)

D(x′)
dx′.� (3)

As we shall see, the nature of this potential determines the N dependence of the con-
sensus and polarization times.

To determine the exit probability, as well as the consensus and polarization times, 
we use the backward equation approach, a basic tool of first-passage processes [47–49]. 

https://doi.org/10.1088/1742-5468/ab6094
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This approach relies on the fact that the opinion state of the population ‘renews’ itself 
after each microscopic update event. In this framework, the exit probability satisfies 
the backward equation

E+(y) = εE+(y + δy) + (1− ε)E+(y − δy),� (4a)

where ε = r+(y)/[r+(y)+r−(y)] is the probability for y  to increase by δy = 1
N
 in a single 

update. This equation merely states that the exit probability starting from the state 
y  is a weighted average of the exit probabilities after one update step. Namely, with 
probability ε, y → y + δy, at which point the exit probability is E+(y + δy). Conversely, 
with probability 1− ε, y → y − δy, at which point the exit probability is E+(y − δy). 
Expanding (4a) in a Taylor series to second order gives

V (y)
∂E+

∂y
+D(y)

∂2E+

∂y2
= 0.� (4b)

To find the exit probability, we first rewrite equation (4b) as

∂

∂y

[
e−φ(y)∂E+

∂y

]
= 0.� (4c)

Integrating twice with respect to y  gives the general solution

E+(y) = C1

∫ y

exp[φ(y′)]dy′ + C2,� (5)

where C1 and C2 are constants of integration. Equation (5) is subject to the boundary 
conditions E+ (0)  =  0, E+ (1)  =  1; that is, when y   =  1, exit to the state y   =  1 occurs with 
probability 1, while when y   =  0, exit cannot occur. The formal solution is

E+(y) =

∫ y

0
exp[φ(y′)]dy′∫ 1

0
exp[φ(y′)]dy′

,� (6)

and normalization gives E−(y) = 1− E+(y).
By this same reasoning, the consensus and polarization times satisfy the backward 

equation [47–49],
T (y) = ε[T (y + δx) + dt] + (1− ε)[T (y − δy) + dt].� (7a)

Here dt = [r+(y) + r−(y)]−1 is the time for an elemental update from the state y . 
Expanding equation (7a) in a Taylor series to second order now gives

V (y)
∂T

∂y
+D(y)

∂2T

∂y2
= −1.� (7b)

Using the definition of eective potential given in equation  (3), we first rewrite  
equation (7b) as

∂

∂y

[
e−φ(y)∂T

∂y

]
= −e−φ(y)

D(y)
.� (7c)

https://doi.org/10.1088/1742-5468/ab6094
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Integrating equation (7c) twice with respect to y  we obtain the general solution

T (y) = −
∫ y

dy′
∫ y′

dy′′
exp[φ(y′)− φ(y′′)]

D(y′′)
+ C1

∫ y

exp[φ(y′)]dy′ + C2.� (8)

We find the constants C1 and C2 from the distinct boundary conditions for the con-
sensus and polarization times. For the consensus time, the boundary conditions are 
T (0) = T (1) = 0; that is, the consensus time starting from either consensus state is 

zero. For the polarization time, the appropriate boundary conditions are T (1
2
) = 0 and 

∂T
∂y

∣∣
y=0

= 0. That is, starting from the polarized state, the polarization time is zero, 

while the polarization time obeys the no flux condition if consensus is reached. Then 
latter boundary condition arises because the consensus state is not an attractor of 
the stochastic dynamics. If consensus happens to be reached, the two opposing fixed-
opinion news sources pull the population away from consensus.

The formal solutions for the consensus and polarization times are

Tcon(y) = E+(y)I(y, 1)− E−(y)I(0, y) ,

Tpol(y) = I(y, 1/2) ,
� (9)

where

I(a, b) =

∫ b

a

dy′
∫ y′

0

dy′′
exp[φ(y′)− φ(y′′)]

D(y′′)
.

In the absence of the news sources, the dynamics is simply that of the classic VM. 
When the voters reside on the complete graph, the transition rates are (appendix A.1)

r+(x) =
1

2
Nx(1− x), r−(x) =

1

2
Nx(1− x).� (10)

From these rates, equation (2) gives V (x) = 0 and D(x) = x(1− x)/2N , and the full 
dynamics is solvable [1–9]. Three basic results for the VM on the complete graph 
are: (i) E+ (y )  =  y  (which is also a consequence of magnetization conservation), (ii) 
Tcon(y) = −2N [y ln y + (1− y) ln(1− y)]; that is, the consensus time is linear in N, and 
(iii) because x = 0, 1 are natural absorbing boundaries, Tpol(y) is infinite. That is, when 

the initial fraction of  +  voters is y �= 1
2
, there is a finite probability to reach consen-

sus before the polarized state, which means that the polarization time is divergent. 
However, the polarization time is both finite and meaningful when the population is 
also influenced by two opposing news sources. We now determine how the presence of 
news sources alters the above three properties of the VM.

3. Voters on the complete graph

Suppose that N voters on the complete graph are additionally influenced by news 
sources with fixed  +  and  −  opinions (figure 1). These news sources have L+ and L− 
links to random voters, respectively, with 0 < L± � N , so that the corresponding link 
densities �± = L±/N  lie between 0 and 1. A basic parameter in our model is the 

https://doi.org/10.1088/1742-5468/ab6094
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propensity p, which quantifies the influence of a news source on a given voter. This 
propensity is implemented as follows: for a voter that is linked to one news source and 
N  −  1 other voters, the news source is picked with probability p /R and a neighbor-
ing voter is picked with probability (1− p)(N − 1)/R, where R = p+ (N − 1)(1− p) is 
the total rate of picking any interaction partner, either neighbor or news source. If a 
voter is connected to both news sources, then R = 2p+ (N − 1)(1− p). Once a voter 
has selected an interaction partner, the voter adopts the opinion of this partner. This 
update step is repeated ad infinitum.

The opinion evolution depends on the actual connection pattern between the news 
sources and voters, a situation that is analytically intractable. This leads us to apply a 
simplification that we term the annealed-link approximation. Here, we replace the true 
transition rates for each voter on a given fixed-link realization by the average trans
ition rate, in which a link to a news source occurs with probability proportional to the 
appropriate link density. We now apply this approximation to determine the three 
basic characteristics of the collective opinions, namely, E+ (y ), Tcon(y), and Tpol(y). We 
first first need the transition rates r+ (x) and r−(x) within the annealed-link approx
imation. By a somewhat tedious but straightforward calculation (see appendix A.2 for 
details), these rates are

r+(x) =
1

2
ANx(1− x) + B+(1− x),

r−(x) =
1

2
ANx(1− x) + B−x.

� (11)

The A terms account for the rate at which voters adopt the opinion of neighboring vot-
ers, while the B terms account for opinion changes due to the interaction of voters with 
news sources. As shown in appendix A.2, the amplitudes A and B± are

A =
(1−�+)(1−�−)

1−(1/N)
+

(1− p)(�+ + �− − 2�+�−)

(1− p) + (2p− 1)/N
+

(1− p)�+�−
(1− p) + (3p− 1)/N

,

� (12a)

B± =
p�±
2

[
1−�∓

(1−p)+(2p−1)/N
+

�∓
(1−p)+(3p−1)/N

]
.� (12b)

The three distinct terms in A account for voters that are not connected to any news 
source, connected to one news source, and connected to both news sources. Similarly, 

Figure 1.  The complete-graph system. Two opposing news sources (squares) 
influence voters (circles) on the complete graph. The news sources have L+ and 
L− links to individual voters.

https://doi.org/10.1088/1742-5468/ab6094
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the two terms for B± account for voters that are connected to one news source or to 
both news sources, respectively. While the coecients A and B± are complicated, they 
greatly simplify in the large-N limit, where

A → 1 B± → 1

2

p�±
(1− p)

.� (12c)

Substituting the transition rates (11) in equation  (2), the drift velocity and the 
diusion coecient are:

V (x) =
B+(1− x)− B−x

N
, D(x) = A

x(1− x)

2N
+

B+(1− x) + B−x

2N2
.� (13)

Using these quantities in the formalism of section 2, we can compute the exit prob-
ability, the consensus time, and the polarization time for dierent link densities �±. As 
a preliminary, we first study the influence of a single  +  news source on voter opinions 
and then turn to the influence of two opposing news sources.

3.1. Single news source

When there is only a single news source, the opinion state of the population is mono-
tonically driven to consensus that is aligned with the news source. We now determine 
its eectiveness in driving this consensus.

For a single news source, we set �− = 0 and �+ = � in equation (13), from which

V (x)

D(x)
=

α

x+ α/(2N)
,� (14)

where α ≡ 2B+/A, which approaches p�/(1− p) as N → ∞. The parameter α is fun-
damental, as it characterizes the eectiveness of the news source in influencing the 
population, both by its intrinsic persuasiveness and by the extent of its reach.

Using equations (14) in (3), the eective potential in which x diuses is

φ(x) = −α ln
(
x+

α

2N

)
.� (15)

This asymmetric potential biases individual opinions towards the  +  consensus state. 
We determine the exit probability by substituting the eective potential (15) into (6) 
and performing the integral to give

E+(y) =




(α + 2Ny)1−α − α1−α

(α + 2N)1−α − α1−α
α �= 1,

ln (2Ny + 1)

ln (2N + 1)
α = 1.

� (16)

By increasing α, the news source becomes more eective in biasing the opinions 

towards  +  consensus, as shown in figure 2. Here, we choose ( p, �) = (1
2
, 1) to achieve 

α = 1, and ( p, �) = (2
3
, 1) to achieve α = 2. Unless otherwise stated, we use these param

eter choices to generate systems with α = 1 and α = 2 in subsequent figures. The quali-
tative behavior in figure 2 is the same as exit probability of a biased random walk on 

https://doi.org/10.1088/1742-5468/ab6094
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a finite interval with bias to the right [49]. As expected, when the news source is very 
eective, the exit probability is nearly 1, even for y  close to 0.

To compute the consensus time, first note, from equation (14), that V/D is of order 
1, except when x is of order 1/N or smaller. Within this boundary layer near x  =  0, 
the second term in the denominator of V/D ensures that V/D remains finite even 
when x  =  0. We can simplify the algebra considerably by excluding this thin bound-
ary layer and correspondingly dropping this second term in the denominator of V/D. 
We checked numerically that this approximation has a vanishingly small eect on the 
consensus time for large N. We determine the range of the resulting slightly truncated 
interval [a, 1] by equating the two terms in the denominator of V/D to give a = α/(2N). 
In this truncated interval, we have

V (x) =
B+(1−x)

N
D(x) ≈ Ax(1−x)

2N
.� (17)

With these simplifications, the eective potential becomes φ(x) = −α ln x for x ∈ [a, 1].
We now substitute this eective potential, as well as the above form for D(x), into 

the first of equation (9). The resulting integral can be evaluated for certain simple val-
ues of α. For the cases α = 1 and α = 2, in particular, we obtain

Tcon(y) =





2N

[
ln(a/y)

ln a

π2

6
+

ln y

ln a
Li2(a)− Li2(y)

]
α = 1 ,

2N
(
1− 1

y

)
ln

(1− y)

(1− a)
α = 2 ,

� (18)

where Li2(y) is the dilogarithm function [50]. It is possible that analytical solutions also 
exist for other simple values of α, but the results given above mostly encompass the 
generic behavior for a single news source; namely, the consensus time scales linearly 

with N, except in the limit α → ∞. When the initial state is y = 1
2
, we have

Tcon =



2N ln 2 ≈ 1.386N α = 0(
ln2 2 + π2/6

)
N ≈ 2.125N α = 1

2N ln 2 ≈ 1.386N α = 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.25  0.5  0.75  1

E
+
(y

)

y

α=2
α=1
α=0

Figure 2.  Exit probability versus initial fraction of  +  opinion voters y  for N  =  128 
voters that are influenced by single news source with link density � = 1. The 
curves represent equation  (16) and the symbols represent simulations over 104 
realizations.
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The first line is the complete-graph VM result without news sources. Because the news 
source biases the population to  +  consensus, the maximum of Tcon(y) shifts gradually 
towards x  =  0, as shown in figure 3. Coincidentally, the consensus time starting from 

y = 1
2
 is the same for α = 0 and α = 2.

In the opposite limit of α → ∞, the consensus time scales as lnN . This limit is con-

veniently realized by choosing � = 1 and p → 1. Then equation (12) gives A ≈ 1
2
N(1− p) 

and B+ ≈ 1
2
N , so that α = 2B+/A ≈ 2/(1− p). When 1− p � 2

N
, A is vanishingly 

small, the forward rate r+(x) ≈ B+(1− x) and the backward rate r−(x) ≈ 0. Thus the 

fraction of  +  voters only increases with time until  +  consensus is reached. For the ini-

tial condition x = 1
2
, we determine the consensus time from

Tcon =

1− 1
N∑

x= 1
2

1

r+(x)
=

1− 1
N∑

x= 1
2

1

B+(1− x)
� 2 lnN .

3.2. Two opposing news sources

We now turn to our main focus of two opposing news sources. To determine the exit 
probability, as well as the consensus and polarization times, we again need to simplify 
the form of the drift velocity and the diusion coecient in equation (13). Again, the 
ratio V/D is of order 1, except when x is a distance of order 1/N from the boundar-
ies at 0 and 1. The algebra simplifies considerably when we ignore these boundary 
layers. Following the same procedure as in the previous subsection, the second term 
in the denominator of V/D can be neglected when x is in the range [a−, 1− a+], with 
a± = B∓/AN . In this truncated interval, we may write

V (x) =
[B+(1−x)− B−x]

N
D(x) ≈ Ax(1−x)

2N
.� (19)

Using this approximation for V (x) and D(x), the eective potential (3) becomes

φ(x) = − ln[xα+(1− x)α− ],� (20)
with α± = 2B±/A ≈ p�±/(1− p). Thus in the presence of opposing news sources, the 
density x undergoes diusive dynamics in the (generally) asymmetric logarithmic 
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Figure 3.  Consensus time versus the initial fraction of  +  opinion voters y  for 
N  =  128 voters with a single news source. The solid curves represent equation (18) 
and the symbols represent simulation results over 104 realizations.
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potential well (20). Because of this well, the consensus time can be much longer than in 
the case of no news sources, as we would naively expect. However, because the poten-
tial at the interval boundaries depends logarithmically on N, the consensus time grows 
only algebraically, rather than exponentially, with N.

3.2.1.  Symmetrically connected news sources.  For simplicity, first consider equally 
connected news sources and define the common link density as � ≡ �±. Now the param
eter that quantifies the eectiveness of the news sources is α = α± ≈ p�/(1− p), while 
the eective potential simplifies to φ(x) = −α ln [x(1− x)]. Moreover, the relevant range 
of x is a � x � 1− a, where a+ = a− ≡ a = α/(2N).

To obtain the exit probability, we substitute the symmetrized version of equa-
tions (19) into (6) and evaluate the integral to obtain

E+(y) =
1

2

[
1− Gα(y)

Gα(a)

]
,� (21)

where, for simple rational values of α, Gα can be determined analytically. The specific 
examples that we could compute are:

G 1
2
(y) = sin−1√y − π

4
G1(y) = ln

(
y−1 − 1

)

G 3
2
(y) =

√
y(1− y)−1 −

√
y−1(1− y)

G2(y) = y−1 − (1− y)−1 + ln
(
y−1 − 1

)2
.

By plotting these expressions, we find that the exit probability has an anti-sigmoidal 
shape for α > 0 (figure 4). This behavior reflects the opposing role of the two news 

sources. If the initial density of the system is y �= 1
2
, the news sources tend to drive 

the opinions to the politically polarized state of y = 1
2
 before consensus is reached. 

Consequently, the exit probability becomes nearly independent of the initial condition 
as the news sources become more eective, i.e. α � 1.

For the consensus time, we again substitute the symmetrized form of equation (19) 
into the first of equation (9) and evaluate the integral to give

Tcon(y) = N [Hα(a)−Hα(y)]� (22)
where, once again, Hα can be determined explicitly for certain rational values of α:

H 1
2
(y) = −4 sin−1√y sin−1

√
1− y,

H1(y) = − ln [y(1− y)] ,

H 3
2
(y) =

(2y − 1)√
4y(1− y)

[
sin−1√y − sin−1

√
1− y

]
,

H2(y) =
1

6

[
y−1(1− y)−1 − 2 ln [y(1− y)]

]
.

We can determine the N dependence of the consensus time from the large-N behav-
ior of the functions Hα(a) with a = α/(2N). The dominant contribution for large N 
arises from the term Hα(a) with a → 0:
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H 1
2
(a) ∼ a1/2

H1(a) ∼ − ln a

H 3
2
(a) ∼ a−1/2

H2(a) ∼ a−1.

Using a = α/2N and combining the above results with equation (22), we find

Tcon ∼



N 0 � α < 1,

N lnN α = 1,

Nα α > 1.
� (23)

Equation (23) is one of our major results.
Our simulation results are consistent with these predictions (figure 5). A striking 

feature of figure 5(a) is that the consensus time increases dramatically when α increases 
from 1 to 2. This behavior reflects the dierent N dependences of the consensus time 
for α < 1 and α � 1 in equation (23). Our estimates for the consensus time exponent 
for various combinations of p  and � are given in figure 5(c). We determine the exponent 
by extrapolating local slopes of lnTcon versus lnN  based least-squares fits of subsets 
of successive data points. For each p  and �, α is given by α = p�/(1− p). The sudden 
increase in the exponent value at the two distinct p  values corresponds to the transition 
at α = 1 predicted by (23).

There are two natural ways that the news sources are connected to voters: (i) ran-
dom connections, and (ii) disjoint connections. In the first case, a voter may be con-
nected to zero, one, or two news sources, while in the latter, a voter may be connected 
to either zero or one news source. For the same link densities between the news sources 
and voters, we found negligible dierences in our results for the exit probability and 
the consensus and polarization times. The simulation results presented here are for the 
case of random connections.

We can understand the N and α dependences of the consensus time in a sim-
ple way in terms of the eective potential (20). According Kramers’ theory [52], the 
time to reach the boundaries at a and at 1  −  a are proportional to exp[φ(a)] and to 
exp[φ(1− a)], respectively, while the potential at these two points scales as α lnN . 
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 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

E
+
(y

)

y

α=0
α=1
α=2

Figure 4.  Exit probability to  +  consensus versus y  for N  =  128 voters with 
opposing and symmetrically linked news sources. Equation (21) gives the curves 
and the symbols correspond to simulations over 104 realizations.
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Consequently Tcon ∼ Nα for α > 1. For α < 1, the eect of the logarithmic potential is 
subdominant with respect to fluctuations [53], and it is the latter drive the system to 
consensus, leading to Tcon ∼ N .

We now determine the polarization time. Substituting the symmetric forms of the 
drift and diusion coecients from equation (19) into the second of equation (9) and 
evaluating the integral, which can be done for certain simple values of α, we obtain:

Tpol(y) =





4N
(
π
4
− sin−1√y

) (
π
4
+ sin−1√y − 2 sin−1√a

)
α = 1

2
,

2N [a ln y + (1− a) ln(1− y) + ln 2] α = 1,
N(2y−1)√

y(1−y)

[
sin−1√a− sin−1√y − (1−2a)

√
a(1−a)

]
α = 3

2
,

1
3
N

{
2 + 2 ln[2(1−y)]− 1

1−y
− a2(3−2a)

[
1−2y
y(1−y)

+ 2 ln (1−y)
y

]}
α = 2.

� (24)

The main qualitative feature of Tpol(y) is that it is maximal for y → 0 and decreases 

to 0 as y → 1
2
. The N dependence of the maximal polarization time may be found by 

setting y = a = α/(2N) in equation (24) and keeping the dominant contribution. This 
gives:

Tpol �





1
4
π2N ≈ 2.467N α = 1

2
,

2 ln 2N ≈ 1.386N α = 1,

N α = 3
2
,

1
3
(1 + 2 ln 2)N ≈ 0.795N α = 2;

that is, the maximal value of the polarization time scales linearly with N.
However, the polarization time grows faster than linearly in N for suciently small 

α, corresponding to weak news sources. To understand the behavior in this limit, it 
is instructive to consider the extreme limit where each news source is connected to a 
single voter (figure 6). Suppose that the population starts in the  −  consensus state. At 
some point, an ‘informed’ voter (the one linked to the  +  news source) changes its opin-
ion from  −  to  +  by interacting with the news source. When this happens, this informed 
voter now disagrees with all its neighbors. From this excited state, subsequent opinion 
changes are primarily caused by disagreeing voters within the complete graph because 

Figure 5.  (a) Consensus time versus y . Equation (22) gives the curves and symbols 
represent simulations results for N  =  128 voters over 104 realizations. (b) Consensus 
time versus N. The curves again represent the predictions from equation (22). We 
fix � = 1 and use α = p/(1− p) to specify p  for a given α value. (c) Consensus time 
exponent versus p  for two � values. The symbols represent simulation results and 
the curves are predictions from equation (23).
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links between voters are numerous and there is only one link to the news source. Thus 
the voters undergo classic VM dynamics, as long as there is any disagreement.

Within this picture, we can reduce the dynamics to a three-state space (figure 7):  
the state |0〉, corresponding to  −  consensus (x  =  0), in which only the news source 

influences the voters, the final polarized state |F 〉 (x = 1
2
), and the excited state |1〉, in 

which one voter in the complete graph has the  +  opinion. As indicated in figure 6(b), 
the news source has a negligible influence on this excited state. After this reduction, it 
is straightforward to compute the time to reach the polarized state |F 〉 starting from 
the initial consensus state |0〉 by applying first-passage ideas [49]. Starting from |0〉, the 
state |1〉 is necessarily reached, so the transition probability from |0〉 to |1〉 equals 1. 

Similarly, E = 2
N

 is the probability to reach polarized state |F 〉 from |1〉 by VM dynam-
ics (that is, one  +  voter initially and N

2
  +  voters in the final state). This portion of the 

dynamics coincide with the VM because the news sources play no role.
We define T0 and T1 as the first-passage times to reach the polarized state from the 

initial states |0〉 and |1〉 respectively. These first-passage times satisfy

T0 = dt0 + T1,

T1 = Eτ + (1−E)(dt1 + T0),
� (25)

where, from equation (11),

dt0 = 1/[r+(0)+r−(0)] = 2/α,

dt1 = 1/
[
r+(

1

N
)+r−(

1

N
)
]
≈ 1,

are the transition times to leave the states |0〉 and |1〉, respectively, and τ = 2N(1− ln 2) 
is the conditional time to reach the final state |F 〉 from |1〉 by VM dynamics  
(appendix B). Solving equation (25) gives,

0
(a)

1
(b)

F
(c)

Figure 6.  The three states in the reduced state space of the complete-graph system 
with a single link from each news source: (a) the initial consensus state |0〉. Active 
and inactive links are shown in green and magenta. (b) The excited state |1〉, where 
the single voter linked to the  +  news source changes its opinion to  +  and now 
disagrees with all its N  −  1 neighbors, leading to many active links. (c) The final 
polarized state |F 〉; here the active links are not shown.

Figure 7.  The transition rates and transition times in the reduced system.
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Tpol ≡ T0 = τ +
dt0
E

+
(1− E)dt1

E
≈ N

(
5

2
− 2 ln 2

)
+

N

α
.� (26)

Thus the polarization time scales linearly with N, unless α → 0. This limit of α → 0 is 
achieved, for example, when a single link connects the news source to voters. In this 
case, α = p�/(1− p) = p/[N(1− p)], which gives Tpol ∼ N2(1− p)/p.

3.2.2. Asymmetrically connected news sources.  When the number of links from the 
two news sources dier, the density x now diuses in an asymmetric logarithmic poten-
tial. To achieve consensus, x has to surmount one of the potential barriers, either 
at a− or at 1  −  a+ , with respective barrier heights α+ lnN and α− lnN . Again from 
Kramers’ theory, the dominant contribution to the consensus time scales exponen-
tially in the lowest barrier height, as long as the barrier height grows at least as fast 
as lnN . Thus the consensus time scales as Nα, with consensus time exponent now 
given by α = min(α+,α−, 1). To test this hypothesis, we show the N dependence of 
Tcon from simulations in figure 8 for two combinations of unequal link densities. For 

(α+,α−) = (3
2
, 1
2
), the consensus time scales linearly with N, while for (α+,α−) = (3

2
, 2), 

the consensus time scales as N3/2, as we expect. In the simulations, we fix p = 2
3 and 

�+ = 3
4
 to give α+ = 3

2
, and then use �− = 1

4
 to give α− = 1

2
 and �− = 1 to give α− = 2.

Another basic characteristic of the collective opinion state is its distribution. The 
opposing nature of the two news sources drives the population to a steady state in the 
long-time limit. We obtain the steady-state opinion distribution, Pss(x) ≡ P (x, t → ∞), 
by setting ∂P/∂t = 0 in the Fokker–Planck equation (1b) and then solving. To have a 
well-posed problem, we need to specify the boundary conditions. The appropriate con-
ditions are reflection at x  =  a− and x  =  1  −  a+ because for all α > 0, the endpoints are 
not fixed points of the stochastic dynamics. Solving this Fokker–Planck equation and 

imposing normalization, 
∫ 1−a+
a−

Pss(x)dx = 1, we obtain

Pss(x) =
xα+−1(1− x)α−−1

B [1− a+;α+,α−]− B [a−;α+,α−]
,� (27)

where B(x; y, z) is the incomplete beta function [50].
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Figure 8.  The consensus time versus N for voters influenced by two news sources 
with unequal link densities. The data are from simulations over 104 realizations. 
The lines are guides for the eye.
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Figure 9.  Steady-state distribution of x for 128 voters. The curves are the 
predictions of equation (27) and symbols represent simulations.

In the symmetric case, �± = �, this distribution reduces to Pss(x) ∝ [x(1− x)]α−1, 
which undergoes a bimodal to unimodal transition as α passes through 1 (figure 9). 
In this figure, we fix � = 1 and use α = p�/(1− p) with appropriate values of p  to give 

α = 1
2
, 1, and 3

2
, and then evolve the system until the steady state is reached (typically 

for times greater than 106). When α < 1, the distribution has maxima at x = 0, 1. That 
is, for weak news sources, the population typically remains close to one of the two con-
sensus states. Conversely, for influential news sources (α > 1) the steady-state distribu-
tion has a maximum at x  =  1/2, corresponding to the politically polarized state. In the 
marginal case of α = 1, all possible opinion states are equally likely.

4. Voters on a two-clique graph

We now investigate the influence of two opposing news sources when the voters reside 
on a two-clique graph, with N voters in each clique (figure 10). The  +  news source 
connects to random voters on C+ via L+ links and the  −  news source connects to ran-
dom voters on C− via L− links. We write �± = L±/N  as the corresponding link densi-
ties. To simplify matters, we restrict ourselves to the case of equally connected news 
sources, �+ = �− ≡ �. However, the voter model on the two-clique graph with unequal-
size cliques was very recently investigated in [51], where a non-monotonic dependence 
of the consensus time on interclique density was found. In our symmetric two-clique 
graph, the voters on dierent cliques are connected by L0 = Nβ interclique links, with 
0 � β � 2. For L0 → N2, the two cliques together form a complete graph of 2N voters. 
We focus on the interesting (and realistic) case where the cliques are sparsely intercon-
nected (β → 0).

Let x1 and x2 denote the fraction of  +  opinion voters on clique C+ and C−, respec-
tively, at time t. We represent the state of the system by the clique densities (x1, x2). 
Let r±i (x1, x2) be the rates for xi to change by ±δx. Within the annealed-link approx
imation, these rates are (see appendix A.3 for details):
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r+1 (x1, x2) =
1
2
A [Nx1(1−x1) + �0(1−x1)x2] + B(1−x1)

r−1 (x1, x2) =
1
2
A [Nx1(1−x1) + �0 x1(1−x2)]

r+2 (x1, x2) =
1
2
A [Nx2(1−x2) + �0 x1(1−x2)]

r−2 (x1, x2) =
1
2
A [Nx2(1−x2) + �0(1−x1)x2] + Bx2

�

(28)

where �0 = L0/N = Nβ−1 is the number of voters in C+ that link to a voter in C− or 
vice versa, and the coecients A and B are

A =
�(1− p)N

(1− p)(N + �0 − 1) + p
+

(1− �)N

N + �0 − 1
,

B =
�pN

2[(1− p)(N + �0 − 1) + p]
.

� (29a)

Ignoring terms of order 1/N, these coecients reduce to

A ≈ N

N + �0
, B ≈ �p

2(1− p)
.� (29b)

Let P (x1, x2) δx
2 be the probability for the opinion state of the population to be 

within a range δx2 about (x1, x2). Expanding the underlying master equation  in a 
Taylor series to second order gives the two-variable Fokker–Planck equation

∂

∂t
P (x1, x2, t) =

2∑
i=1

{
− ∂

∂xi

[ViP ] +
∂2

∂x2
i

[DiP ]

}
,� (30)

where

Vi(x1, x2) = [r+i (x1, x2)− r−i (x1, x2)]δx,

Di(x1, x2) = [r+i (x1, x2) + r−i (x1, x2)](δx
2/2).

The coupling between x1 and x2 arises because a change in x1 alters V2 and D2, and vice 
versa for x2. Because of this complication, an analytical approach of the full dynamics 
appears to be challenging. However, [51] has made progress in this direction.

To make progress, it is helpful to first study the time evolution of the trajectories 
of x1 and x2 for sparsely connected cliques (figure 11(a)). The population spends a large 
fraction of the time in the neighborhood of the state (x1=1, x2=0), which we term the 
maximally polarized (MP) state. The population tends to remain close to the MP state 

Figure 10.  The two-clique system, with two opposing news sources (squares) and 
voters (circles). Each clique contains N voters, with L0 links between cliques C+ 
and C−.
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because: (i) the news sources tend to drive the clique opinions to this state, and (ii) the 
transition time to leave the MP state,

dt0 =
[
r+1 (1, 0) + r−1 (1, 0) + r+2 (1, 0) + r−2 (1, 0)

]−1
,

scales as N1−β, which becomes large as β → 0. These two properties are reflected in 
the steady-state opinion distribution in each clique (figure 11(b)). As shown in the 
figure, this distribution becomes more concentrated near x1  =  1 as either the number of 
interclique links is reduced or the interactions with news sources become stronger. (By 
symmetry, the opinion distribution on C− is concentrated near x2  =  0.)

In the limit of sparsely connected cliques, we may again reduce the state space to 
that in figure 12(a). Analogous to the construction given in figures 6 and 7, to deter-
mine the consensus time for the complete-graph system. First, note that the Nβ inter-
clique links are relevant only in the MP state. In all other opinion states, the dynamics 

is controlled by the 1
2
N(N − 1) � Nβ intraclique links. Thus we can view the system 

as being comprised of two isolated cliques, with one clique inactive (where all voters 
agree with the news source) and the other clique, where the voters are not in consensus, 
active.

Starting in the MP state, suppose that one voter in C+ changes opinion from  +  to  −  due 
to an interaction with a  −  voter in C−. The population is now in the excited state (
1− 1

N
, 0
)
 where the  −  voter in C+ diers with the rest of its N  −  1 neighbors. Because 

interclique links are sparse (β → 0) and the number of intraclique links between vot-
ers with diering opinions in C+ is of order N, the opinion dynamics is driven by the 
latter class of links. For the active clique C+ , there are two possible outcomes starting 

from the excited state 
(
1− 1

N
, 0
)
. Either C+ returns to  +  consensus (and the full system 

returns to the MP state) or C+ reaches  −  consensus. We again visualize the MP state 

(1, 0) as |0〉, the excited state 
(
1− 1

N
, 0
)
 as |1〉, and the  −  consensus state (0, 0) as the 

final state |F 〉 (figure 12(a)). With these reduced states, we obtain the consensus time 
by the same calculation as that given in the previous subsection to determine the polar-
ization time for the complete graph.
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Figure 11.  (a) Typical trajectories for x1 and x2 in the two-clique graph with 
N  =  128, β = 0.5, and α = 2 (� = 1 and p   =  2/3). (b) Distribution of fraction x1 
of  +  opinion voters on clique C+ of 128 voters on the two-clique graph, with � = 1.
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Starting from the state |0〉, the system moves to state |1〉 after a transition time 
dt0 = N1−β. The time to reach the final consensus state starting from |0〉 satisfies

T0 = dt0 + T1� (31a)
where T1 is the time to reach consensus from the initial state |1〉. Substituting the state 

|1〉 densities (x1, x2) =
(
1− 1

N
, 0
)
 into the rates (28), the transition time to leave state 

|1〉 is dt1 ≈ (1 + �0)
−1. Starting from |1〉, the probability for the active clique to reach 

the state |2〉 is E = 1− E+

(
1− 1

N

)
, with E+ (y ) given in equation (16). We also define 

the mean conditional time to reach |2〉 from |1〉 as τ . Then T1 satisfies

T1 = Eτ + (1− E)(dt1 + T0) .� (31b)
Solving these equations gives

T0 ≡ Tcon = τ +
dt0
E

+
(1− E)dt1

E
.� (32)

In the limit β → 0, τ  is subdominant (see appendix C) and dt1 � dt0, so that the third 
term is also subdominant. Thus keeping only the dominant term dt0/E, the consensus 
time has scaling behavior:

Tcon ∼



N2−β α < 1 ,

N2−β lnN α = 1 ,

N1+α−β α > 1 .
� (33)

The consensus time exponent increases as interclique links become more rare and 
also as the influence of news sources increases beyond α � 1 (figure 13(a)). The data in 

this figure corresponds to fixed β = 1
2
 and � = 1, and p  is varied to give the α values 

shown. Figure 13(b) shows the consensus time exponent as a function of p  for fixed �, 
as well as the comparison with our basic prediction equation (33). Our results for the 

(a)
0 1 F

(b)
Figure 12.  (a) The reduced states to determine the consensus time for the 
two-clique graph: (left) the initial maximally polarized state |0〉. (middle) 
The excited state |1〉, in which one voter in clique C  +  has changed opinion 
from  +  to  −. (right) The final consensus state |F 〉. (b) Reduced states of the 
two-clique graph to determine the polarization time: (left) the initial consensus 
state |0〉. (middle) The excited state |1〉, in which one voter in clique C  +  has 
changed opinion from  −  to  +. (right) The final maximally polarized state 
|F 〉. Active and inactive links are shown in green and magenta.
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consensus time are consistent with previous studies [51, 54] of the VM on the two-
clique graph.

For the polarization time, we again use a reduced state-space approach, analogous 
to that developed to derive equation (26) for the complete-graph system. For concrete-
ness and simplicity, we start the system in the  −  consensus state (0, 0) (figure 12(b)) and 
determine the time to reach the (1, 0) MP state in the interesting limit of weak news 
sources and weak intraclique connections. We now denote the (0, 0) consensus state as 

|0〉, the excited state 
(

1
N
, 0
)
, where a single voter in clique C+ has changed opinion, as 

|1〉, and the MP state as |F 〉, respectively (figure 7). In state |0〉, the opinion change that 
leads to state |1〉 is caused only by the link between a voter and the  +  news source. In 
|1〉, subsequent opinion changes occur by classic VM dynamics because interclique links 
significantly outnumber all other links and the eect of the latter can be ignored.

Referring to figure 12(b), let dt0 and dt1 denote the transition times out of the states 
|0〉 and |1〉 respectively. These transition times are the inverse of the sum of the rates 
out of these states. To obtain dt0 we substitute (x1, x2) = (0, 0) into the rates (28) and 
obtain, after straightforward steps, dt0 = 2(1− p)/p�. Similarly for dt1, we substitute 

(x1, x2) =
(

1
N
, 0
)
 into (28) and ultimately obtain dt1 ≈ 1 for large N and � → 0. Let E 

denote the exit probability to reach |F 〉 starting from |1〉 without reaching |0〉; thus 
1  −  E is the probability to reach |0〉 without reaching |F 〉. Because the opinions evolve 

according to the classic VM dynamics when the system is in state |1〉, E = 1− 1
N
 and 

the conditional time to reach |2〉 from |1〉 is τ = 2N , (appendix C). Let T0 and T1 be the 
first-passage times to |F 〉 starting from the initial states |0〉 and |1〉. These first-passage 
times again satisfy equation (25) whose solution now is

Tpol = τ +
dt0
E

+
(1− E)dt1

E
≈ 3N +

2N

α
.� (34)

The main message from this result is that as soon as the news sources connect to a 
non-vanishing fraction of the population, the polarization time is of order N, and is 
generally much smaller that the consensus time when α is large.
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Figure 13.  (a) Consensus time versus N for voters on a two-clique graph. The solid 
lines give dt0/E from equation (32) and the symbols represent simulations over 103 
realizations. (b) Consensus time exponent as a function of p . The symbols are the 
simulation results and the curves are the predictions of equation (33).
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5. Summary

We introduced an opinion dynamics model where individuals that change their opin-
ions by VM dynamics are also influenced by two fixed and opposing news sources. Our 
model is motivated by the current polarized political state in Europe and the US [55–61],  
as well as by the recent emergence of biased news sources that promulgate fixed politi-
cal viewpoints [62–64]. Our interest was to investigate the consequences of political 
polarization, which seem to be largely influenced by these types of news sources. In 
the VM framework, the two news sources are zealots that never change their opinion, 
but which influence the opinions of individual voters. Voters, on the other hand, may 
consult either news sources or neighboring voters to update their opinion state. The 
strength of the news sources is quantified by a single parameter α, which encapsulates 
their degree of connection to the population and the relative likelihood that a voter 
consults a news source rather than a fellow voter. We developed a general framework 
to understand the rich dynamics of this model.

Our modeling relies on using highly idealized social networks. The two examples 
that we studied were the complete graph of N voters and, more realistically, the two-
clique graph with N voters in each clique. The primary reason for this extreme level of 
idealization is to formulate analytically tractable models. In the complete graph, the 
news sources connect either to disjoint or to random voters; both subcases gave virtu-
ally identical results. In the two-clique graph, each news source connects to voters in 
disjoint cliques. With this modeling perspective, we can understand many properties of 
the opinion dynamics analytically. The analytical approach also allows us to develop 
insights that would be extremely dicult to reach through numerical simulations of our 
model on realistic social networks.

We studied basic characteristics of the collective opinion state including: the exit 
probability, the consensus time, and the polarization time. Generally, the consensus 
time increases while the polarization time decreases as the news sources becomes more 
influential. This behavior can be understood in terms of a diusion-like picture for the 
opinion evolution. For the complete graph, the fraction x of  +  voters can be viewed as 
an eective particle that undergoes convection-diusion in the interval [0, 1] in the pres-
ence of an eective potential. Reaching consensus corresponds to the eective particle 
surmounting the potential barriers near x  =  0 or x  =  1, while reaching the polarized 
state corresponds to the eective particle being pushed to the minimum of the poten-
tial. This potential picture explains why the consensus time is much longer than the 
polarization time. This disparity was also reflected in the steady-state opinion distribu-
tion, which undergoes a transition from a bimodal to a unimodal state as the influence 
of news sources is increased.

The existence of an eective potential implies that the magnetization, namely, 
the dierence in the fraction of  +  and  −  voters, is not conserved by the dynamics. In 
previous studies of variants of the VM with non-conserved magnetization, the consen-
sus time was found to grow faster than any power law in N (see, e.g. [28, 29, 31]). In 
contrast, in this work the eective potential at the boundaries scales logarithmically 
in N, which leads to a power-law dependence of the consensus time on N, with a non-
universal exponent.
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We also found that voters on a two-clique graph are driven to a maximally polar-
ized state in which voters on two dierent cliques independently reach unanimity 
but in opposite opinion states. The driving mechanism towards this state becomes 
stronger either when the number of interclique links is reduced or when the influence 
of news sources is increased. Weakly interconnected societies are very common around 
us because of social segregation, geopolitics (e.g. countries, states, etc), and cultural 
dierences (language, religion, etc). All of these factors contribute to political polariza-
tion, and our modeling seems to capture an essence of this phenomenology. It would be 
worthwhile to allow the network itself to evolve to mimic the feature that societies are 
currently tending to increased fractionation.
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Appendix A. Transition rates

To determine the transition rates r±(x), we need: (a) the elemental time step δt for a 
single update, and (b) the probabilities q±(x) for x to change by ±δx in an update. In 
terms of these quantities, the rates r±(x) are

r+(x) =
q+(x)

δt
, r−(x) =

q−(x)

δt
.� (A.1)

The probability for x to not change in an update is 1− [r+(x) + r−(x)]δt =  
1− q+(x)− q−(x).

A.1. Voter on a complete graph

We first determine the rates for the VM on a complete graph of N voters, where the 
elemental time step is δt = 2/N . To find the probabilities, q±(x), first consider q+ (x). 
For x to increase, a  −  voter has to be selected that then adopts the opinion of a 
neighboring  +  voter. The probability to pick a  −  voter is N−/N = (N −N+)/N , where 
N+   =  Nx is the number of  +  voters. The selected  −  voter has N  −  1 neighbors, of which 
N+ have opinion  +. The probability for the  −  voter to pick a  +  neighbor is N+ /(N  −  1). 
Therefore the probability for x to increase by δx is,

q+(x) =
N −N+

N

N+

N − 1
=

x(1− x)

1− 1/N
= q−(x).� (A.2)

The last equality follows from the  +− symmetry of the VM.
Substituting q±(x) and δt = 2/N  into equation (A.1), the rates r±(x) are

r±(x) =
Nx(1− x)

2(1− 1/N)
≈ Nx(1− x)

2
,� (A.3)

as quoted in equation (10).
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A.2. Voters on a complete graph influenced by two news sources

Now consider voters on a complete graph that are additionally influenced by two 
news sources (section 3). The system consists of N  +  2 agents: N voters and two news 
sources, so that the elemental time step is δt = 2/(N + 2). We now determine the prob-
ability q+ (x) for a voter to adopt the opinion of a neighboring  +  voter. The probability 
to pick a  −  voter out of N  +  2 individuals is (N  −  N+ )/(N  +  2). The  −  voter has N  −  1 
neighboring voters, but this voter may or may not be connected to the news sources. 
To find the probability that the selected  −  voter changes its opinion, we have to con-
sider four possibilities:

	 (a)	� The  −  voter is not connected to any news source (figure A1(a)): the probability 
for this configuration is (1− �+)(1− �−). The  −  voter then adopts opinion from a 
neighboring  +  voter with probability N+ /(N  −  1). The contribution to q+ (x) from 
this configuration is

q1 = (1− �+)(1− �−)
N+

N − 1
.� (A.4a)

	 (b)	� The  −  voter is connected only to the  +  news source (figure A1(b)), with prob-
ability �+(1− �−). The  −  voter adopts the opinion of a neighboring  +  voter with 
probability (1  −  p )N+ /R or adopts the opinion of the  +  news source with prob-
ability p /R, where R = p+ (N − 1)(1− p). Thus the second contribution to q+ (x)

q2 = �+(1− �−)
(1− p)N+ + p

p+ (N − 1)(1− p)
.� (A.4b)

	 (c)	� The  −  voter is connected only to the  −  news source (figure A1(c)), with prob-
ability (1− �+)�−. The probability for the  −  voter to adopt the opinion of a 
neighboring  +  voter is (1  −  p )N+ /R, where R = p+ (N − 1)(1− p). Thus the 
third contribution to q+ (x) is,

q3 = (1− �+)�−
(1− p)N+

p+ (N − 1)(1− p)
.� (A.4c)

	 (d)	� The  −  voter is connected to both the news sources (figure A1(d)) with probability 
�+�−. The  −  voter thus adopts the opinion of a neighboring  +  voter with prob-

Figure A1.  Possibilities for a  −  voter (circle) to be connected to the news sources 
(squares). (a) The  −  voter is connected to N  −  1 neighboring voters, with N+ 
having  +  opinion, but not to any news source. (b) The  −  voter is connected to 
a  +  news source, (c) connected to the  −  news source, and (d) connected to both 
the news sources.
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ability (1  −  p )N+ /R or adopts the opinion of the  +  news source with probability 
p /R, where R = 2p+ (N − 1)(1− p). Thus the fourth contribution q+ (x) is

q4 = �+�−
(1− p)N+ + p

2p+ (N − 1)(1− p)
.� (A.4d)

We now write q+(x) = N−(q1 + q2 + q3 + q4)/(N + 2) and use N− = N −N+ , 
N+   =  Nx, to obtain, after some rearrangement of terms

q+(x) =
1

N + 2
[ANx(1− x) + 2B+(1− x)] ,� (A.5a)

where A and B+ are defined in equation (12). Using  +− symmetry, we can also write

q−(x) =
1

N + 2
[ANx(1− x) + 2B−x] .� (A.5b)

In equation  (A.5a), the first term inside the bracket accounts for voters that adopt 
the opinion of a neighboring voter and the second term accounts for voters that adopt 
the opinion of a news source. Now using δt = 2/(N + 2) and equation  (A.5a) in the 
definition of r±(x) = q±(x)/δt, we obtain the rates given in equation (11).

A.3. Voters on the two-clique graph influenced by two news sources

In the two-clique graph, each clique contains N voters, with a  +  news source that 
influences voters on C+ and a  −  news source that influences voters on C−. The entire 
system thus consists of 2(N + 1) agents and the elemental time step is δt = 1/(N + 1).

Let x1 and x2 be the instantaneous fraction of  +  voters on C+ and C− respectively. 
In an elemental time step, define q±1 (x1, x2) as the probabilities for x1 to change by ±δx; 
similarly, q±2 (x1, x2) is the probability for x2 to change by ±δx. We first evaluate the 
probability for x1 to increase by δx. For this to occur, a  −  voter in C+ must be selected 
which adopts the opinion of a  +  neighbor. The probability to pick a  −  voter in C+ out 
of 2(N + 1) total agents is N−

1 /[2(N + 1)] where N−
1 = N −N+

1  and N+
1 = Nx1 is the 

number of  +  voters on C+ . The configurations that contribute to the probability for 
the  −  voter to change its opinion are:

	 (a)	� The selected  −  voter is not connected to the  +  news source (with probability 
(1− �)). This voter has N + �0 − 1 neighboring voters, including N  −  1 in the 
same clique and �0 in the other clique. The  −  voter therefore adopts opinion from 
a neighboring  +  voter in C+ with probability N+

1 /(N + �0 − 1) or from a  +  voter 
in C− with probability N+

2 �0/[N(N + �0 − 1)], where N+
2 = Nx2 is the number 

of  +  voters on C−. Thus the first contribution to q+1 (x1, x2) is

q1 = (1− �)
N+

1 + �0(N
+
2 /N)

N + �0 − 1
.� (A.6a)

	 (b)	� The selected  −  voter is connected to the  +  news source (with probability �). 
This  −  voter has N + �0 neighbors, including N + �0 − 1 voters and the news 
source. The  −  voter adopts the opinion of a neighboring  +  voter in C+ with 
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probability (1− p)N+
1 /R or the opinion of a neighboring  +  voter in C− with 

probability (1− p)�0N
+
2 /(NR), where R = p+ (N + �0 − 1)(1− p). The  −  voter 

may also adopt opinion from the  +  news source with probability p /R. Thus the 
second contribution to q+1 (x1, x2) is,

q2 = �
(1− p)[N+

1 + �0(N
+
2 /N)] + p

p+ (N + �0 − 1)(1− p)
.� (A.6b)

We can now write q+1 (x1, x2) = (N −N+
1 )(q1 + q2)/[2(N + 1)]. Using N+

i = Nxi and 
after some rearrangement of terms, we obtain

q+1 (x1, x2) =
A

(N + 1)

[
Nx1(1− x1)

2
+

�0(1− x1)x2

2

]
+

B

N + 1
(1− x1),� (A.7a)

where A and B are defined in equation (29). In equation (A.7a), the term in the square 
bracket accounts for voters that adopt the opinion of a neighboring voter. Inside the 
square bracket, the first term accounts for intraclique opinion adoption and the sec-
ond term accounts for interclique opinion adoption. The last term in equation (A.7a) 
accounts for voters that adopt the opinion from the  +  news source.

Similarly, we now evaluate the probability for x1 to decrease by δx. For this to 
occur, a  +  voter in C+ has to adopt the opinion of a  −  neighbor. Because the  −  news 
source influences voters only in C−, a  +  voter in C+ can change opinion by either adopt-
ing the opinion from a neighboring  −  voter in either C+ or C−. Following the steps that 
led to equation (A.7a), we find

q−1 (x1, x2) =
A

N + 1

[
Nx1(1− x1)

2
+

�0x1(1− x2)

2

]
.� (A.7b)

We use symmetry to find the probability for x2 to change by ±δx. Their explicit forms 
are,

q+2 (x1, x2) =
A

N + 1

[
Nx2(1− x2)

2
+

�0x1(1− x2)

2

]
,� (A.8a)

q−2 (x1, x2) =
A

N + 1

[
Nx2(1− x2)

2
+

�0(1− x1)x2

2

]
+

B

N + 1
x2.� (A.8b)

We use q±i (x1, x2) in equations (A.7a) and (A.8a), and the time step δt = 1/(N + 1) 
to determine the opinion change rates. Similar to equation (A.1), we define the rate for 
xi to change by ±δx as r±i (x1, x2) = q±i (x1, x2)/δt. Using this definition, together with 
the probabilities q±i (x1, x2) and the time step δt, we obtain equation (28).

Appendix B. Polarization time in the complete graph

To compute the polarization time for the complete graph, equation (26), we need the 
quantity τ  in this equation. In turn, τ  is just the conditional polarization time in the 
VM. When the initial fraction of  +  voters is y , with 0  <  y   <  1/2, we first define the 

conditional polarization probability to reach x = 1
2
 without hitting x  =  0 as E 1

2
(y). 

https://doi.org/10.1088/1742-5468/ab6094


Polarization and consensus by opposing external sources

26https://doi.org/10.1088/1742-5468/ab6094

J. S
tat. M

ech. (2020) 013402

Similarly, the conditional time to reach the polarized state x = 1
2
 without hitting x  =  0 

is T 1
2
(y).

The conditional probability satisfies the backward equation  (21) subject to the 

boundary conditions E 1
2
(0) = 0 and E 1

2
(1
2
) = 1. Substituting the drift velocity V (x) = 0 

and diusion coecient D(x) = x(1− x)/2N of the VM into equation  (21), we 

obtain E 1
2
(y) = 2y. Similarly, the product T (y) ≡ T 1

2
(y)E 1

2
(y), satisfies the backward 

equation [49],
T (y) = εT (y + δy) + (1− ε)T (y − δy) + E 1

2
(y)dt.� (B.1)

Here ε is the probability for y  to increase by δy and the transition time to leave the 
state y  is dt, as given in section 2. Expanding equation (B.1) in a Taylor series to sec-
ond order in δy = 1/N  gives

V (y)
∂T (y)

∂y
+D(y)

∂2T (y)

∂y2
= −E 1

2
(y).� (B.2)

Solving equation (B.2) subject to the boundary conditions T (0) = T (1
2
) = 0 gives

T 1
2
(y) = T (y)/E 1

2
(y) = −2N

[
1− y

y
ln(1− y) + ln 2

]
.� (B.3)

For the initial condition y = 1
N
, we have τ = T 1

2

(
1
N

)
≈ 2N(1− ln 2) and E 1

2

(
1
N

)
= 2

N
. 

These results give the polarization time in equation (26).

Appendix C. Characteristic times on the two-clique graph

C.1. Consensus time

To compute the consensus time for the two-clique graph, equation (32), we need the 

quantity τ ≡ T−
(
1− 1

N

)
 in this equation. Here T−(y ) is the conditional time for a popu-

lation on the complete graph that is additionally influenced by a single  +  news source 
to first reach  −  consensus, without previously reaching  +  consensus, when the initial 
fraction of  +  voters is y  (and vice versa for T+ (y )). Following the same steps that led 
in equation (B.2), the product E±(y)T±(y) satisfies

V (y)
∂(E±(y)T±(y))

∂y
+D(y)

∂2(E±(y)T±(y))

∂y2
= −E±(y),� (C.1)

subject to the boundary conditions E±(0)T±(0) = E±(1)T±(1) = 0. For the complete 
graph with a single news source, V (x) and D(x) are given by equation (17), from which 
we obtain

T−(y) =





−2N [Li2(y)− Li2(a)] + 4N
[
Li3(y)−Li3(1)

ln y
+ Li3(1)−Li3(a)

ln a

]
α = 1,

−2N
[

y
1−y

ln y − ln a
N−1

]
α = 2.

� (C.2)
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where a = α/2N , and L2(y ) and L3(y ) are the dilogarithm and trilogarithm functions 
respectively [50, 65].
For the initial condition y = 1− 1

N
, τ ≈ (π2/3)N  for α = 1 and τ ≈ 2N for α = 2. Thus 

τ  grows linearly with N for both α values and is subdominant in equation (32). To show 
that τ  is subdominant for large α, we will make use of the identity

Tcon(y) = E−(y)T−(y) + E+(y)T+(y).� (C.3)

We first find a heuristic upper bound for Tcon(1− 1
N
) and then use this to find an upper 

bound on τ . Since the clique is influenced by a single news source, the eective potential 

(15) monotonically drives the opinion state x towards 1. From equation (18), Tcon(1− 1
N
) 

is a decreasing function of α and is of the order of 1 when α = 2. We argue that this 
decrease continues for larger α. Indeed, for a uniformly biased random walk on the 
interval [0, 1] that starts near x  =  1, it is known that the time to reach the boundary at 

x  =  1 decreases as the bias increases [49]. Using the hypothesis that Tcon(1− 1
N
) contin-

ues to decrease as α increases in (C.3), we can write E−(1− 1
N
)T−(1− 1

N
) � O(1). Now 

using the exit probability equation (16), we obtain τ � O(Nα) for α > 2. Consequently, 
τ  makes a subdominant contribution to the consensus time in equation (32) for large α.

C.2. Polarization time

To compute the polarization time for the two-clique graph, equation (34), we again need 

the quantity τ  in this equation. Here τ  coincides with conditional time T+

(
1
N

)
 in the VM 

on the complete graph with no news source. For this VM, V (x) = 0, D(x) = x(1− x)/2N , 
and the exit probability is E+ (y )  =  y . Using these in equation (C.1) now gives

T+(y) = −2N
(1− y)

y
ln(1− y),� (C.4)

so that τ ≡ T+

(
1
N

)
≈ 2N .
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