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Abstract. We combine the processes of resetting and first passage, resulting in
first-passage resetting , where the resetting of a random walk to a fixed position
is triggered by the first-passage event of the walk itself. In an infinite domain,
first-passage resetting of isotropic diffusion is non-stationary, and the number
of resetting events grows with time according to

√
t. We analytically calculate

the resulting spatial probability distribution of the particle, and also obtain the
distribution by geometric-path decomposition. In a finite interval, we define an
optimization problem that is controlled by first-passage resetting; this scenario
is motivated by reliability theory. The goal is to operate a system close to its
maximum capacity without experiencing too many breakdowns. However, when
a breakdown occurs the system is reset to its minimal operating point. We define
and optimize an objective function that maximizes reward for being close to the
maximum level of operation and imposes a penalty for each breakdown. We also
investigate extensions of this basic model, firstly to include a delay after each
reset, and also to two dimensions. Finally, we study the growth dynamics of a
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domain in which the domain boundary recedes by a specified amount whenever
the diffusing particle reaches the boundary, after which a resetting event occurs.
We determine the growth rate of the domain for a semi-infinite line and a finite
interval and find a wide range of behaviors that depend on how much recession
occurs when the particle hits the boundary.

Keywords: diffusion, stochastic processes, fluctuation phenomena
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1. Introduction

Random walks are ubiquitous in phenomena across a wide range of fields, such as physics,
chemistry, finance and social sciences [1–4]. In addition to the applications of the ran-
dom walk, many useful extensions of the basic model have been developed (see, e.g.
[5–8]). Almost a decade ago, the notion of resetting a random walk was introduced
[9–11]. The basic idea of resetting is simplicity itself: at a given rate, a random walk
is reset to its starting point. The rich phenomenology induced by this extension of the
random walk has sparked much interest (see, e.g. [9–19]). In the context of search strate-
gies, where the walker is searching for a target at a fixed location, resetting changes
the average search time from infinite (when the domain is infinite) to finite [20–23].
Moreover, an optimal resetting rate exists, which minimizes the search time. A very
different, but also fruitful concept in the theory of random walks is the notion of a
first-passage process [2, 24–26]. Of particular importance is first-passage probability,
which is defined as the probability that a walker reaches a specified location for the
first time. This notion has many applications in situations where a particular event
happens when a threshold is first reached. One such example is a limit order for a
stock. When the price of a stock, whose evolution is often modeled as a geometric ran-
dom walk, first reaches a limit price, this event triggers the sale or the purchase of the
stock.

In this work, we combine these disparate notions of first passage and resetting into
first-passage resetting , in which a particle is reset whenever it reaches a specified thresh-
old. Contrary to standard resetting, the time at which first-passage resetting occurs
is defined by the motion of the diffusing particle itself, rather than being imposed
externally [9–11]. Feller showed that such a process is well defined mathematically and
provided existence and uniqueness theorems [27], while similar ideas were pursued in
[28]. First-passage resetting was initially treated in the physics literature for the situa-
tion in which two Brownian particles are biased toward each other, and they are reset
to their initial positions when they encounter each other [29].

In our work, we first focus on the related situation of a diffusing particle on a semi-
infinite line x � L that is reset to the origin whenever the particle hits a boundary
x = L (figure 1). The model studied in [29] corresponds to a drift toward the bound-
ary in our semi-infinite geometry; this setting leads to a stationary state. In contrast,
the absence of drift in our model leads to a variety of new phenomena. In particu-
lar, the probability distribution for the position of the particle is non-stationary. We
also construct two simple path decompositions for first-passage resetting, in which
the trajectory of the resetting particle is mapped onto a free-diffusion process. This
approach provides useful geometrical insights, as well as simple ways to derive the aver-
age number of reset events and the spatial probability distribution with essentially no
calculation.

We then treat first-passage resetting at a finite interval, which has a natural applica-
tion to reliability theory. Here, the particle is restricted to the interval [0,L] where
x = L is again the boundary where resetting occurs, and the particle is immedi-
ately reinjected at x = 0 when it reaches x = L. We may view this mechanism as
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Figure 1. Schematic illustration of first-passage resetting for diffusion on a semi-
infinite line x � L. Each time the particle reaches the threshold L, it is reset to the
origin. The times of the resetting events are denoted by t1, t2, . . . .

characterizing the performance of a driven mechanical system [30–33], with the coordi-
nates x = 0 and x = L indicating poor and maximal performances, respectively. While
one ideally wants to operate the system close to its maximum performance level (x = L),
there is a risk of overuse, leading to breakdowns whenever x = L is reached. Subse-
quently, the system has to be repaired and then restarted from x = 0. This dynamic
corresponds to resetting that is induced by a first passage to the boundary x = L. We
will find the optimal bias velocity that optimizes the performance of the system. We
will also investigate additional features of this first-passage resetting, such as a random
maintenance delay at each breakdown and resetting in higher dimensions. A preliminary
account of some of these results was given in [34].

Finally, we investigate a very different aspect of first-passage resetting, where the
domain boundary at which resetting occurs moves by a specified amount each time the
diffusing particle reaches this boundary. Many features of this moving-boundary problem
can be readily calculated because of the renewal structure of the theory. For both the
semi-infinite and finite-interval geometries, we find a variety of scaling behaviors for the
motion of the resetting boundary. These behaviors depend on the initial geometry and
by how much the boundary moves at each resetting event.

2. First-passage resetting in semi-infinite geometry

In the standard resetting process, reset events occur at a fixed rate r and are uncor-
related with the position of the diffusing particle. In contrast, first-passage resetting
directly couples the times at which resetting occurs and the particle position. For first-
passage resetting in a semi-infinite line geometry, the particle starts at x(0) = 0 and
freely diffuses in the range x � L (with L > 0). Each time L is reached, the particle is
instantaneously reset to the origin (figure 1). We are interested in two basic characteris-
tics of the particle’s motion: the spatial probability distribution of the particle and the
time dependence of the number of reset events. To compute these quantities, we rely on
the renewal structure of the process, which allows us to first compute the probability
for n reset events in a direct way. With this result, as well as the propagator for free
diffusion in the presence of an absorbing boundary, we can readily obtain the spatial
distribution of the particle and the average number of resets in a given time.
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2.1. The nth reset probability distribution

We define Fn(L, t) as the probability that the particle resets for the nth time at time t.
When n = 1, this quantity is the standard first-passage probability for a freely diffusing
particle that starts at the origin, to first reach L [25, 26]:

F1(L, t) ≡ F (L, t) =
L√

4πDt3
e−L2/4Dt.

For the particle to reset for the nth time at a time t with n > 1, the particle must reset
for the (n− 1)th time at some earlier time t′ < t, and reset again at time t. Because the
process is renewed at each reset, Fn(L, t) is formally given by the renewal equation

Fn(L, t) =

∫ t

0

dt′ Fn−1(L, t
′)F1(L, t− t′), n > 1. (1a)

The convolution structure of equation (1a) lends itself to a Laplace transform analysis.
The corresponding equation in the Laplace domain is simply:

F̃ n(L, s) = F̃ n−1(L, s)F̃ 1(L, s) = F̃ 1(L, s)
n, (1b)

where quantities with tildes denote Laplace transforms. Using the Laplace transform of
the first-passage probability:

F̃ 1(L, s) =

∫ ∞

0

dt F1(L, t) e
−s t = e

√
sL2/D ≡ e−�,

where we define the scaled coordinate � ≡
√

s/DL henceforth, then equation (1b)
becomes

F̃ n(L, s) = e−n�.

Notice that F̃ n(L, s) has the same form as F̃ 1(L, s) with L→ nL. That is, the time
required for a diffusing particle to reset n times at a fixed boundary x = L is the same
as the time taken for a freely diffusing particle to first reach x = nL.

In hindsight, this equivalence between the first-passage probability of reaching
x = nL and the nth-passage probability of reaching x = L with resetting at x = L is
self-evident. As indicated in figure 2 for the case n = 3, a first-passage path from zero to
3L is composed of a first-passage path from zero to L, followed by a first-passage path
from L to 2L, and finally a first-passage path from 2L to 3L. Resetting causes each of
these three segments to (re)start from the origin. Thus, the point x = L is first reached
for the third time after resetting has taken place by these displaced paths.

2.2. Spatial-probability distribution

We now compute the probability distribution of the diffusing particle at time t, P (x, t),
on the semi-infinite line x � L under the influence of first-passage resetting. This distri-
bution can be obtained in several ways. Here, we make use of the path transformation
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Figure 2. Relation between a first-passage path to x = 3L and a third-passage path
to x = L, with resetting each time x = L is reached. The green and blue paths in
(b) have merely been shifted vertically downward by L and 2L compared to (a),
respectively.

discussed above for the derivation of the nth passage probability (see figure 2). (A cal-
culational approach based on Laplace transforms that relies on the renewal structure of
the process is given in appendix A.) When the walker is at position x ∈ [0,L] at time
t and has experienced exactly n resets, this is equivalent to a free particle being at a
position x+ nL without having reached level (n+ 1)L. As a result, the corresponding
probability is that of a free particle with a position x(t) = x+ nL and a running maxi-
mum position M(t) < (n+ 1)L; the latter is defined by M(t) = maxt′�tx(t

′). The joint
distribution of the position and the maximum, x(t) = x and M(t) = m, is given by

Π(x,m, t) =
2m− x√
4πD3t3

e−(2m−x)2/4Dt. (2)

This formula was established by Lévy [35, 36] and it can be derived using the reflection
property of Brownian motion. From this joint probability, we find that

P (x, t) =
∑
n�0

Prob (M(t) < (n+ 1)L andx(t) = x+ nL)

=
∑
n�0

∫ (n+1)L

x+nL

dmΠ(x+ nL,m, t)

=
1√
4πDt

∑
n�0

[
e−(x+nL)2/4Dt − e−[x−(n+2)L]2/4Dt

]
, 0 < x � L. (3)

While this expression is exact, it is not in a convenient form for its long-term behavior
to be determined. However, the long-term limit of P (x, t) can be simply obtained by
expanding its Laplace transform (see [34]) for small s,

P̃ (x, s) 	 1√
Ds

L− x

L
0 � x � L, s→ 0, (4a)

https://doi.org/10.1088/1742-5468/abcd33 6
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from which the inverse Laplace transform is

P (x, t) 	 1√
πDt

L− x

L
0 � x � L, t→∞. (4b)

The linear x dependence arises from the balance between the diffusive flux that exits at
the reset point x = L and this same flux being re-injected at x = 0.

For x < 0, the integral in the second line of (3) ranges from nL to (n+ 1)L rather
than from x+ nL. This leads to

P (x, t) =
1√
4πDt

∑
n�0

[
e−(x−nL)2/4Dt − e−[x−(n+2)L]2/4Dt

]
=

1√
4πDt

[
e−x2/4Dt + e−(x−L)2/4Dt

]
, x < 0. (5)

Thus, the probability distribution is merely the sum of two Gaussians. In the long-term
limit and for |x|/

√
4Dt 
 1, the factor L in the second term becomes irrelevant and the

distribution reduces to that of diffusion on the half line in the presence of a reflecting
boundary.

An appealing way to obtain the probability distribution (5) is by a path decomposi-
tion construction. Consider the original resetting problem and partition all trajectories
into those that undergo either an odd or an even number of resets. In the former case,
we invert the segments before each odd-numbered resetting about the origin and then
translate each such segment by a distance +L (blue arrows in figures 3(a) and (c)). As
shown in this portion of the figure, the resulting trajectory is simply a Brownian path
that starts at x = L and propagates freely to its final position x. For a path that consists
of an even number of resetting events, we perform this same inversion and translation
on the segments after each odd-numbered resetting (green arrows in figures 3(b) and
(d)). The resulting trajectory is now a Brownian path that starts at the origin and
propagates freely to its final position x. It is worth emphasizing that this decomposition
applies for any symmetric and continuous stochastic process (provided it is homogeneous
and stationary).

2.3. Average number of resets

To find the average number of resets that occur up to time t, we first compute the
probability that n resets have occurred during this time. By relying on the path trans-
formation shown in figure 2, we find that the probability for exactly n resets to have
occurred by time t equals the probability for a freely diffusing particle to have a running
maximum M(t) greater than nL but less than (n+ 1)L, that is:

P (N(t) = n) = Prob (nL � M(t) < (n+ 1)L) . (6)

https://doi.org/10.1088/1742-5468/abcd33 7

https://doi.org/10.1088/1742-5468/abcd33


J.S
tat.

M
ech.

(2021)
013203

Optimization and growth in first-passage resetting

Figure 3. Schematic space-time trajectory of diffusion with first-passage resetting
on a semi-infinite line. (a) A path with an odd number of resets is equivalent to (c) a
freely diffusing path that starts at x(t = 0) = L. (b) A path with an even number of
resets is equivalent to (d) a freely diffusing path that starts from x(t = 0) = 0. This
equivalence underlies the spatial probability distribution for x < 0 in equation (5).

The distribution of M(t) is known [36–38] and may be readily rederived
from (2),

P (M(t) = m) =
1√
πDt

e−m2/4Dt,

from which it follows that

P (N(t)=n) = erf

(
(n+ 1)L√

4Dt

)
− erf

(
nL√
4Dt

)
, (7)

where erf is the Gauss error function.
We can compute the average number of reset events, N (t) ≡ 〈N(t)〉, from (7), but

it is quicker to reuse the mapping with the running maximum of free diffusion. Indeed,
writing M(t) for the average maximum position of a freely diffusing particle up to time
t, one has

N (t)L � M(t) < [N (t) + 1] L. (8)

Since M(t) =
√
4Dt/π, we find that the long-term behavior of N (t) is given by

N (t) 	
√
4Dt/πL2. (9)

The resetting process is non-stationary, as the number of reset events grows according
to

√
t.

https://doi.org/10.1088/1742-5468/abcd33 8
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2.4. Biased diffusion

The case where the diffusing particle is biased toward the resetting boundary is equiv-
alent to the model studied by Falcao and Evans [29]. Here we briefly discuss the
complementary situation in which the particle is biased away from the resetting bound-
ary, with a drift velocity v < 0. In the absence of resetting, a particle that starts at the
origin eventually reaches x = L with a probability H = e−Pe, and escapes to x = −∞
with a probability 1−H [24, 25], where Pe ≡ vL/2D is the Péclet number (the dimen-
sionless bias velocity). When resetting can occur, H now becomes the probability that a
resetting event actually happens. Consequently, the probability that the particle resets
exactly n times is given by Rn = Hn(1−H). The average number of resetting events
before ultimate escape is therefore

N (t) =
∑
n

nRn =
H

1−H
=

1

ePe − 1
. (10)

In the limit of v → 0, the number of resetting events diverges as N (t) 	 2D/(vL).
The time between resetting events is known to be L/v [25, 39]. Thus after typically
1/(ePe − 1) resetting events, each of which requires a time of L/v, the particle escapes
to −∞.

We can also compute the spatial probability distribution of the particle when it
undergoes biased diffusion with a bias velocity of magnitude v. Again, we make use of
the path transformation shown in figure 2. For a Brownian particle with drift v, the
analog of equation (2) is [35]

Π(x,m, t) =
2m− x√
4πD3t3

e−(2m−x)2/4Dt ePe (x/L−Pe Dt/L2), (11)

which leads to

P (x, t) =
1√
4πDt

∑
n�0

[
e−(x+nL)2/4Dt − e−[x−(n+2)L]2/4Dt

]
ePe (x/L+n−Pe Dt/L2), 0 < x � L

(12a)

and

P (x, t) =
1√
4πDt

∑
n�0

[
e−(x−nL)2/4Dt − e−[x−(n+2)L]2/4Dt

]
ePe (x/L+n−Pe Dt/L2), x < 0.

(12b)

In contrast to the driftless case, there is no simplification for the probability distribution
when x < 0. In particular, the path transformation of figure 3 requires symmetry and
thus does not hold in the presence of drift.
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3. Optimization in first-passage resetting

3.1. The finite interval

We now introduce an optimization problem that arises due to first-passage resetting.
We envisage a mechanical system whose operating coordinate x(t) lies in the range
[0,L]. Increasing the value of x corresponds to increasing its operational performance,
and it is desirable to run the system as close as possible to its maximum capacity,
L. However, the system breaks down whenever x reaches L, after which repairs have
to be made before the system can then restart its operation from x = 0. While the
dynamics of the operating coordinate are typically complicated and dependent on mul-
tiple parameters, we view the coordinate x as undergoing a drift-diffusion process for
the sake of parsimonious modeling. For the system to be close to x = L, the drift
should be positive. On the other hand, breakdowns of the system are to be avoided
because a cost is incurred by each breakdown. This suggests that the drift velocity
should be negative. The goal is to determine the optimal operation that maximizes the
performance of the system as a function of the cost for each breakdown and the drift
velocity. Although the analogy between first-passage resetting and a mechanical system
is naive, this formulation allows us to determine the optimal operation in a concrete
way.

The basic control parameter is the magnitude of the drift velocity. If the velocity
is large and negative, the system is under-exploited because it operates far from its
maximum capacity. Conversely, if the velocity is large and positive, the system breaks
down often. We seek the optimal operation by maximizing an objective function, F ,
that rewards high performance and penalizes breakdowns. A natural choice for F is

F = lim
T→∞

1

T

[
1

L

∫ T

0

x(t) dt− CN (T )

]
, (13)

where T is the total operational time, N (T ) is the average number of breakdowns within
a time T , where T is much longer than the mean breakdown time, and C is the cost
of each breakdown. As defined, this objective function rewards operation close to the
maximum point L and penalizes breakdowns.

We now determine this objective function when the operating coordinate x(t) evolves
according to drift-diffusion, with the additional constraint that x(t) is reset to zero when-
ever x reaches L. Mathematically, we need to solve the convection–diffusion equation
with the following additional conditions: (i) a δ-function source at the origin whose mag-
nitude is determined by the outgoing flux j(x) = −D∂xc+ vc at x = L, (ii) a reflecting
boundary condition at x = 0, and (iii) the initial condition x(t = 0) = 0. That is, we
want to solve

∂tc+ v∂xc = D∂xxc+ δ(x)(−D∂xc+ vc)|x=L, (14a)

https://doi.org/10.1088/1742-5468/abcd33 10

https://doi.org/10.1088/1742-5468/abcd33


J.S
tat.

M
ech.

(2021)
013203

Optimization and growth in first-passage resetting

subject to ⎧⎪⎪⎨⎪⎪⎩
(D∂xc− vc) |x=0 = δ(t)

c(L, t) = 0

c(x, 0) = 0

.

Here, c ≡ c(x, t) is the probability density for the operating coordinate, the subscripts
denote partial differentiation, D is the diffusion coefficient, and v is the drift velocity.
Notice that the reflecting boundary condition at x = 0 holds except at the start of
the process, to account for the unit input of flux at t = 0. This construction allows
one to take the initial condition to be c(x, t = 0) = 0, which greatly simplifies all the
calculations. Effectively, this flux initial condition corresponds to starting the system
with the particle at x = 0. As in section 2, we first solve the free theory, where the
delta-function term in (14a) is absent, and then use renewal equations to solve the full
problem. In the free case, equation (14a) becomes, in the Laplace domain:

sc̃0 + v∂xc̃0 = D∂xxc̃0, (14b)

and is subject to the boundary conditions{
(D∂xc̃0 − vc̃0) |x=0 = 1,

c̃0(L, s) = 0,

where the subscript 0 denotes the concentration without flux re-injection. The solution
to (14b) is standard and the result is (see appendix B for details):

c̃0(x, s) =
2 eP sinh [w(L− x)]

W , (15a)

where P ≡ vx/2D, w =
√
v2 + 4Ds/2D and W = 2Dw cosh(Lw) + v sinh(Lw). In

terms of c̃0, the Laplace transform of the first-passage probability to x = L is

F̃ 1(L, s) = (−D∂xc̃0 + vc̃0) |x=L =
2Dw ePe

W , (15b)

where again Pe = vL/2D is the Péclet number. With re-injection of the outgoing flux,
the concentration obeys the renewal equations. In the Laplace domain and using c̃0
above from the free theory, we obtain

c̃(x, s) =
c̃0(x, s)

1− F1(L, s)
=

2 eP sinh[w(L− x)]

W − 2Dw ePe
, (16)

into which we substitute the results from equation (15) to obtain the final result.
Contrary to the semi-infinite case, a stationary distribution is attained on the finite

interval. To determine this steady state, we use the duality between the limits s→ 0 in
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Figure 4. The stationary distribution of the first-passage resetting process in the
interval [0, 1] for different Péclet numbers.

the Laplace domain and t→∞ in the time domain. With this approach, the coefficient
of the term proportional to 1/s in c̃(x, s) gives the steady-state concentration, css, in the
time domain:

css(x) 	
1

L
× 1 − e−2(Pe−P )

1 − Pe−1 e−Pe sinh (Pe)
, (17)

from which the normalized first moment in the steady state is

〈x〉
L

=
1

L

∫ L

0

x c(x) dx =

(
2Pe2 − 2Pe + 1

)
e2Pe − 1

2Pe [(2Pe− 1) e2Pe + 1]
. (18)

Representative plots of the stationary-state concentrations for different Péclet numbers
are given in figure 4. As one might anticipate, the density profile is concentrated near
x = 0 for negative drift velocities, while for positive drift there is a constant cycling of
outgoing flux that is reinjected at x = 0, which leads to a nearly constant density profile.

The average number of reset events N satisfies the renewal equation (A.7a), and

substituting in F̃ 1 from (15b), we obtain

Ñ (s) =
2Dw ePe

s [W − 2Dw ePe]
. (19a)

We now extract the long-term behavior for the average number of times that x = L is

reached by taking the limit s→ 0 of Ñ (s) to give

N (T ) 	 4Pe2

2Pe− 1 + e−2Pe

T

L2/D
. (19b)

Substituting these expressions for 〈x〉/L andN into (13) immediately gives the objective
function, and representative plots are shown in figure 5(a). For a given breakdown cost,
there is an optimal drift velocity or an optimal Péclet number. The higher this cost,
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Figure 5. The objective function versus Péclet number Pe for different normalized
cost values C ′ ≡ C/(L2/D) for: (a) no delay upon resetting, and (b) a dimensionless
delay time of τ = 0.1 at each resetting. The optimal operating point is indicated
on each curve.

the smaller the optimal bias and the value of F . Moreover, the optimal bias is not
necessarily negative. Indeed, if the cost of a breakdown is relatively small, then it is
advantageous to operate the system close to its limit, L, and absorb the (small) cost of
many breakdowns. On the contrary, if the cost of a breakdown is high, it is better to
run the system at a low level and with a negative bias to avoid breakdowns.

3.2. Time delay for repair

When a mechanical system breaks down, there is usually some downtime during which
repairs are made before the system can be restarted. This type of downtime can be
naturally incorporated into our model by including a random delay time after each
resetting event. Thus, when the particle reaches x = L and is returned to x = 0, we
posit that the particle waits at the origin for a random time τ that is drawn from
the exponential distribution σ−1 e−τ/σ before the particle starts moving again. We now
determine the role of this delay on the optimal operation of the system.

The governing renewal equations can be readily extended to incorporate this delay.
This delay mechanism can also be viewed as so-called ‘sticky’ Brownian motion [40–42]
that is then combined with first-passage resetting. When we include this delay, the
renewal equation for the probability distribution becomes:

P (x, t) = G(x,L, t) +

∫ t

0

dt′F1(t
′)

[
δ0(x)e

−(t−t′)/σ +

∫ t−t′

0

dτ

σ
e−τ/σP (x, t−t′−τ)

]
.

(20a)

This equation encapsulates the two possibilities for the subsequent behavior of the par-
ticle when it first reaches x = L at time t′. Either the particle remains at x = 0 for
the remaining time t− t′ or the particle waits for a time τ < t− t′ and then the pro-
cess starts anew from (x, t) = (0, t′ + τ) for the remaining time t− t′ − τ . In a similar
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fashion, the renewal equation for the average number of resetting events is

N (t) =

∫ t

0

dt′F1(t
′)

{
e−(t−t′)/σ +

∫ t−t′

0

dτ

σ
e−τ/σ [1 +N (t− t′ − τ)]

}
. (20b)

Equation (20b) accounts for the particle first hitting L at a time t′ and either waiting
at the origin for the entire remaining time t− t′ or waiting there for a time τ < t− t′

and then renewing the process for the remaining time. For this latter possibility, there
will be, on average, 1 +N (t− t′ − τ) resetting events.

Solving equation (20) in the Laplacian domain yields:

P̃ (x, s) =
δ(x)σF̃ 1(s) + G̃(x, s)(1 + σs)

1− F1(s) + σs
,

Ñ (s) =
F̃ 1(s)(σ + 1/s)

1 + sσ − F̃ 1(s)
. (21a)

We now use the results from section 3.1 for the optimization problem in the interval with
no delay. Namely, we substitute the first-passage probability F̃ 1(s) from equation (15b)

into equation (21a) and the probability distribution in equation (15a) for G̃(x, s) to
obtain

P̃ (x, s) =
δ(x)σ2Dw + 2 sinh(w(L− x))(1 + σs)

W e−Pe(1 + σs)− 2Dw
,

Ñ (s) =
2Dw(σ + 1/s)

W e−Pe(1 + sσ)− 2Dw
. (21b)

From the Laplace transform of the spatial probability density, we compute its
stationary distribution by taking the s→ 0 limit and obtain

P (x) 	 ePe Pe (2τ PeL δ0(x) + 1)− Pe eP

ePe
(
τ Pe2 + Pe− 1

)
+ 1

1

L
, (22a)

where τ = Dσ/L2 is the dimensionless delay time. From this distribution, the average
position of the particle is

〈x〉
L

=
[(Pe− 2)Pe + 2] ePe − 2

2
[
Pe(τ Pe2 + Pe− 1)ePe + Pe

] . (22b)

Similarly, the average number of resetting events, or equivalently, the average number
of breakdowns in the long-term limit is

N =
Pe2

Pe− 1 + τ Pe2 + e−Pe

T

L2/D
. (23)
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These two results, when substituted into equation (13), give an objective function F ,
whose qualitative features are similar to the case of no delay (figure 5(b)). This behav-
ior is what we might anticipate, since delay may be viewed as an additional form of
cost.

The primary difference, compared to the no-delay case, is that the optimal Péclet
number and the corresponding optimal objective function F both decrease as the
delay time is increased (figure 5). Indeed, delay reduces the number of resetting
events/breakdowns, but also induces the coordinate to remain closer to the origin. In
the limit where the delay is extremely long, the optimal Péclet number will be small.
Moreover, this optimal value will be nearly independent of the cost per breakdown, as
the particle will almost never hit the resetting boundary.

3.3. Two dimensions

It is natural to extend the optimization problem of the interval to higher-dimensional
domains. Here, we treat the case where the domain is an annulus of outer radius L, inner
radius a < L, and the diffusing particle is reset to r = a whenever the outer domain
boundary is reached. By analogy with the one-dimensional problem, the particle also
experiences a drift velocity v(r) = v0/r. As we shall see, the choice of a potential flow
field is convenient because the velocity can be combined with the centrifugal term in the
Laplacian, which simplifies the form of the solution. A finite inner radius is needed to
eliminate the infinite-velocity singularity that would occur if the inner radius was zero.

By close analogy with the finite-interval system, equation (14a), the equation of
motion for the particle is

∂tc+
v

r
∂rc = D

(
∂rrc+

1

r
∂rc

)
+ δa(r) [2πr(−D∂rc+ vc)] |r=L. (24)

Here, the flux term has a factor 2πr due to an integration over all angles. In this
geometry, the probability density of finding a particle at a radius r is 2πrc(r, t).
We now introduce the dimensionless variables x = r/L, x0 = a/L, the Fourier number
Fo = Dt/L2, and Pe = v0/D

7 to transform equation (24) into

∂Foc(x, Fo) = ∂xxc(x, Fo) +
1− Pe

x
∂xc(x, Fo) + δx0(x) [2πx(−∂xc+Pe c)] |x=1,

(25)

and the appropriate boundary conditions for this equation are⎧⎪⎪⎨⎪⎪⎩
[Pe c(x, Fo)− x∂xc(x, Fo)] |x=x0

= δ(Fo)/(2π)

c(1, Fo) = 0

c(x, 0) = 0.

7 Note that v0 is measured in units of velocity times length, so this definition of the Péclet number is dimensionally correct.
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Figure 6. The objective function versus the Péclet number Pe for different
normalized cost values C ′ ≡ C/(L2/D) in two dimensions.

By performing similar calculations to those performed for the one-dimensional case,
we find the following expression for the steady-state probability density in the time
domain (see appendix C for details):

2πx c(x) 	 2(Pe + 2)x
(
xPe − 1

)
Pe
(
x2
0 − 1
)
− 2x2

0

(
xPe
0 − 1

) . (26)

From this expression, the average radial displacement is

〈x〉 =
∫ 1

x0

x 2π x c(x) dx =
2(Pe + 2)

[
Pe
(
x3
0 − 1
)
− 3x3

0

(
xPe
0 − 1

)]
3(Pe + 3)

[
Pe
(
x2
0 − 1
)
− 2x2

0

(
xPe
0 − 1

)] . (27)

The average number of reset events N satisfies a renewal equation and using F̃ 1 from
equation (C.5) we find

Ñ (s) =
1

s

1

W − 1
, (28a)

where

W = x
1+Pe/2
0

√
s
[
KPe/2

(√
s
)
I1+Pe/2

(√
sx0

)
+ IPe/2

(√
s
)
K1+Pe/2

(√
sx0

)]
,

and Iν(x) and Kν(x) are modified Bessel functions of the first and second kind, respec-
tively. We now extract the long-term behavior for the average number of times that

x = L is reached by taking the limit s→ 0 of Ñ (s). We find

N (t) 	 2Pe(Pe + 2)

Pe + 2x2
0

(
xPe
0 − 1

)
− Pex2

0

Fo. (28b)

From equations (27) and (28b), we immediately obtain the objective function; repre-
sentative results are given in figure 6. Overall, the two-dimensional system has the same
qualitative behavior as that of one dimension. In the limit x0 → 0, the average particle
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position 〈x〉 and the average number of resetting events N take an even simpler form
than that for one dimension:

〈x〉 	 2(Pe + 2)

3(Pe + 3)
Θ(Pe + 2), (29)

N (T ) 	 2(2 + Pe)Θ(Pe + 2) Fo, (30)

where Θ(x) is the Heaviside step function. The step function arises because of the curious
feature that when Pe < −2, the flow field Pe/r at the origin is so strong that the particle
remains trapped there forever.

4. Domain growth by first-passage resetting

We now turn to a different aspect of first-passage resetting—the growth of a domain
as a result of a diffusing particle that reaches the resetting boundary and causes the
boundary to recede by a specified amount at each resetting event. Moving bound-
aries typically arise at the interface between two thermodynamic phases that undergo
a first-order phase transition [43, 44]. In this case, the interface moves continuously
as the stable phase grows into the unstable phase. A simple example is water freez-
ing at the interface between water and air, when the air temperature is held below
0◦C. A layer of ice grows on top of the water as heat is transported away from
the ice-water interface. In this type of system, the temperature field evolves by dif-
fusion and the movement of the interface is determined by the heat flow at the
interface.

In contrast, for a growth process that is induced by first-passage resetting, a single
diffusing particle is discontinuously reset to a distant location when the boundary is
reached. Concomitantly, the motion of the interface is intermittent and discontinuous
when the interface recedes by a finite distance upon being reached. A related behavior
also occurs in the absence of resetting: returning to the situation depicted in figure 2(a),
a boundary that is initially at L moves to 2L when it is hit, and then to 3L, etc. This
interface position clearly moves discontinuously, following

√
4Dt/π.

In the next paragraphs, we study interface motion and its related properties in the
presence of first-passage resetting, when the domain of interest is either a semi-infinite
line or a finite interval. We find a variety of growth laws that depend on how far the
boundary recedes at each resetting event.

4.1. Expanding semi-infinite geometry

Suppose that the diffusing particle starts at the origin and diffuses in the range [−∞,Ln],
with Ln > 0. Each time the particle reaches Ln, the particle is reset to the origin and the
interface moves forward by a specified amount δLn so that Ln+1 = Ln + δLn. Since the
resetting events occur at separated discrete times, it is convenient to index the position
of the interface by n, the number of resetting events. We consider two natural cases:
additive and multiplicative interface growth.
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4.1.1. Additive growth: Ln = Ln−1 + L. In this case, the right boundary starts at L and
then moves to 2L at the first reset event, then to 3L, etc. We make use of the simple
relation between diffusion with resetting and free diffusion, as shown in figure 2. By this
equivalence, the probability for n reset events to occur in the time range [0, t] equals the
probability that free diffusion travels further than Ln = n(n+ 1)L/2 but no further than
Ln+1 = (n+ 1)(n+ 2)L/2 in [0, t]; that is, the maximum of the freely diffusing particle
is located in the range [Ln,Ln+1]. So, rewriting M(t) for the average of the maximum
M(t), one has

∑
n�0

Ln P (N(t) = n) �
∑
n�0

∫ Ln+1

Ln

dmmP (M(t) = m) �
∑
n�0

Ln+1 P (N(t) = n) ,

that is ∑
n�0

Ln P (N(t) = n) � M(t) �
∑
n�0

Ln+1 P (N(t) = n) . (31)

This leads to

L

2

[〈
N 2
〉
+ 〈N〉

]
� M(t) � L

2

[〈
N 2
〉
+ 3 〈N〉+ 2

]
, (32)

where we write N for N(t) to simplify the notation, from which it follows that

〈
N 2
〉
	 4

√
Dt

πL2
or
√

〈N 2〉 	 2

[
Dt

πL2

] 1
4

. (33)

Note that we do not directly obtain the average number of reset events N (t) ≡ 〈N〉
from (33), but only that it scales as t1/4. However, we can derive N (t) by exploiting the
renewal structure of the problem in the Laplacian domain (see appendix D) and find

N (t) 	
√

π

2

1

Γ(5/4)
×
(
t

τ

)1/4

, (34)

where τ = L2/D is the diffusion time.
The t1/4 scaling can be compared with the t1/2 scaling that occurs when the bound-

ary is moving through first-passage dynamics but without resetting. When resetting
occurs, the number of encounters with the boundary is reduced because after each
reset, the boundary is further away. As one might expect, this boundary recession leads
to anomalously slow interface growth.

4.1.2. Multiplicative growth: Ln = αLn−1, α > 1. The approach given above can be
applied to multiplicative interface recession. That is, upon the first resetting, the initial
boundary at x = L moves to x = αL. At the next resetting, the boundary moves from
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x = αL to x = α2L, etc. For this recession rule, equation (31) remains valid, with
Ln = αnL. Thus, we have∑

n�0

αnLP (N(t) = n) � M(t) �
∑
n�0

αn+1LP (N(t) = n) , (35)

from which〈
αN
〉
L � M(t) �

〈
αN+1

〉
L. (36)

These inequalities suggest that N (t) scales as ln (t/τ)/2 lnα. From the exact Laplace
transform approach (see appendix D), we also find the same prefactor in the scaling of
N (t) with t. Thus, we conclude that

N (t) 	 ln(t/τ)/2 ln α. (37)

After n resets, the boundary is located at αnL. We also checked numerically that the
distribution of N(t) is concentrated sufficiently tightly around its average value N (t),
so that 〈αN〉 ∼ α〈N〉 = αN . As a result, the average position of the boundary at time t
scales according to

αN (t) L 	
√
t/τ L. (38)

Therefore, the boundary moves according to t1/2, which is faster than in the additive
case, where the boundary moved according to t1/4. Despite the smaller number of reset
events, each of these events moves the boundary far enough for the overall motion to be
almost as fast as in the case of first-passage growth without resetting, with the difference
only being a factor of two.

4.2. Expanding interval

We now study the case where a diffusing particle is confined to a finite and growing
interval [0,Ln], with a reflecting boundary condition at x = 0. Each time the particle
reaches the right boundary at x = Ln, the particle is instantaneously reset to x = 0, while
the position of the boundary recedes by a specified amount. We want to understand how
the interval grows with time and related statistical properties of this process. We first
give the formal result for an arbitrary dependence of Ln on n and then specialize this
result to the additive case where Ln = nL.

Again, we start with the analog of equation (D.1b) for the finite domain, namely,
the Laplace transform of the probability that a reset occurs for the nth time at t:

R̃n(s) = R̃n−1(s) sech
(√

s/DLn

)
=

n∏
m=1

sech
(√

s/DLm

)
. (39)

Here sech
(√

s/DLn

)
is the Laplace transform of the first-passage probability to the

right boundary of the finite interval [0,Ln] [25]. Similarly, the average number of resetting
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events obeys the renewal equation

N (t) = 0×Q(L, t) +

∞∑
n=1

n

∫ t

0

dt′ Q(Ln+1, t− t′)Rn(t
′), (40a)

where Q(L, t) is now the survival probability of a diffusing particle in the finite inter-
val [0,Ln], with reflection at x = 0 and absorption at x = Ln. In the Laplace domain,
equation (40a) becomes

Ñ (s) =
∞∑
n=0

nQ̃(Ln+1, s)R̃n(s). (40b)

Substituting Q̃(Ln, s) = [1− F̃ (Ln, s)]/s and equation (D.1b) into the above equation
gives

Ñ (s) =

∞∑
n=0

n

s

[
1− sech

(√
s/DLn+1

)] n∏
m=1

sech
(√

s/DLm

)
=

∞∑
n=0

n

s

[
R̃n(s)− R̃n+1(s)

]
=

1

s

∞∑
n=1

R̃n(s)

=
1

s

∞∑
n=1

n∏
m=1

sech
(√

s/DLm

)
(41)

To extract the asymptotic behavior of N (t), we now focus on the additive case where
Ln = nL; that is, the boundary recedes by a fixed distance L after each resetting event.
Using the dimensionless coordinate � =

√
sL2/D, equation (41) now gives

Ñ (s) =
1

s

∞∑
n=1

n∏
m=1

sech
(√

s/D mL
)
=

1

s

∞∑
n=1

n∏
m=1

sech(m�)

≈ 1

s

∞∑
n=1

exp

{∫ n

0

dm ln [sech(m�)]

}

≈ 1

s

∞∑
n=1

exp

{
−1

�

[
−1

2
�2n2 − 1

2
Li2
(
−e2�n

)
− �n ln 2− π2

24

]}

≈ 1

s�

∫ ∞

0

du exp

{
−1

�

[
−1

2
u2 − 1

2
Li2
(
−e2u
)
− u ln 2− π2

24

]}
.

where Li2(x) is the polylogarithm function of order 2. This integral can now be computed
in the small s limit using the saddle-point approximation (see appendix E) and the final
result is:

Ñ (s) ≈ 1

s�

∫ ∞

0

du exp

(
−u3

6

)
≈ Γ

(
4

3

)
1

s

(
6

�2

)1/3

+ o

(
1

s4/3

)
. (42)
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The Laplace inversion of the above expression gives the average number of resetting
events up to time t in the t→∞ limit:

N (t) 	
(
6t

τ

)1/3

+ o
(
t1/3
)
. (43)

This result implies that the length of the interval also grows according to t1/3. To
determine the standard deviation (see below), we also need the next correction of the
asymptotic behavior. Numerically, we find that N 	 (6t/τ)1/3 + C1 where C1 = −0.8.

The t1/3 dependence of N (t) can be understood in a simple way. The mean time for a
particle, which starts at x = 0, to reach the boundary at x = Ln is L

2
n/2D = (nL)2/2D ≡

n2τ/2 [25]. If the particle is immediately reset to the origin each time the boundary is

reached, then the time required for N reset events is
∑Nn2τ/2 	 N 3τ/6. This gives

N 	 (6t/τ)1/3.
The second moment of the probability distribution for the number of encounters is:

〈Ñ 2(s)〉 =
∞∑
n=0

n2

s

[
R̃n(s)− R̃n+1(s)

]
=

∞∑
n=1

2n− 1

s
R̃n(s) (44)

By following similar steps to those used to compute N , we obtain the following result
for fixed values of n and small values of s:

〈Ñ 2(s)〉 ≈ 1

s�

∫ ∞

0

du

(
2u

�
− 1

)
× exp

{
−1

�

[
−1

2
u2 − 1

2
Li2
(
−e2u
)
− u ln 2− π2

24

]}
.

This integral can now be computed in the small-s limit using the saddle-point
approximation:

〈Ñ 2(s)〉 ≈ 1

s�

∫ ∞

0

du

(
2u

�
− 1

)
exp

(
−� u3

6

)

≈ Γ

(
5

3

)
1

s

(
6

�2

)2/3

+ o

(
1

s5/3

)
. (45)

Performing a Laplace inversion of the above expression gives:

〈N 2(t)〉 	
(
6 t

τ

)2/3

+ o
(
t2/3
)
. (46)

Numerically, we find that the next correction is C2(6t/τ)
1/3 with C2 ≈ −1.47. Hence,

the standard deviation grows as
√

〈N 2(t)〉 − 〈N(t)〉2 ≈
√
C2 − 2C1 (6 t/τ)

1/6.
Numerical simulations of this growth process (figure 7) show that the distribution

of N(t) is highly localized around its average value and rapidly decreases as one moves
away from the maximum. While we do not know how to compute the full distribution
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Figure 7. Numerical simulation results for P (N = n, t) for the expanding interval.
The initial interval length L = 1 and the length grows by one after each resetting
event. The distribution is shown at t = 109 for 1000 walkers. The diffusion constant
was set to Δx2/(2Δt) = 5× 10−3.

analytically, we can determine the tails of the distribution by a simple extremal argument
[45, 46]. For notational simplicity, we take L = 1 and D = 1. From the time dependence
of the average value of N (t) (equation (43)), we posit that the natural scaling variable
is z ≡ n/N (t) 	 n/t1/3. We further assume that the distribution can be expressed in the
scaling form P (N = n, t) ∝ f(z) that decays as a stretched exponential for both z →∞
and z → 0. That is, f(z) = exp(−za), where a > 0, for z →∞ and f(z) = exp(−zb),
where b < 0, for z → 0.

Consider now an extreme event in which the particle always moves toward the reset-
ting boundary up until time t. This event occurs with a probability 2−t ∼ e−t. For this
directed motion, the particle requires one time step to reach the boundary for the first
time, two time steps to reach it for the second time, three time steps for the third time,
etc. This leads to a total number, n, of encounters with the boundary that is deter-
mined by

∑n
k=1 k = t. Hence, n 	

√
2t. In terms of our scaling function, the probability

of reaching the boundary
√
2t times occurs with a probability of e−ta/6 . Equating this

with e−t gives a = 6.
For the small-z tail, we focus on the situation where the boundary is encountered

as little as possible. This extremal event is achieved by a random walk that alternately
and deterministically moves one step left, then one step right, etc. In this case, the
boundary is encountered once and only once. Again, this event occurs with a probability
of 2−t 	 e−t. On the other hand, this event of a single boundary encounter corresponds to

the scaling variable z = 1/t1/3 → 0, and thus occurs with a probability of e−t−b/3
. Equating

these two asymptotic forms of the distribution gives b = −3. In summary, we find the
following asymptotics:

P (N = n, t) 	
{
e−(n/N (t))6 n→∞,

e−(n/N (t))−3

n→ 0.
. (47)

Because the exponent values in the scaling forms are fairly large, it does not seem
possible to verify these asymptotic behaviors numerically.
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5. Summary and discussion

We presented the concept of first-passage resetting, in which a random walk is reset
to its starting point whenever it reaches a specified location. This situation contrasts
with constant-rate resetting, in which a random walk is reset to its starting point at
a fixed rate. In the case of a semi-infinite line [−∞,L], with L > 0, the particle dif-
fuses freely and is reset to the origin whenever it reaches L. The resulting probability
distribution has dramatically different behaviors, depending on whether 0 < x < L or
x < 0. In the former case, the distribution has a simple linear profile that arises from
the balance between the flux leaving at the reset point and the flux being reinjected
at x = 0. In the latter case, the probability distribution reduces to free diffusion in the
presence of a reflecting boundary. We derived this result analytically and also via a path
decomposition that is reminiscent of the image method.

In the finite-interval geometry, we defined an optimization problem that describes, in
a schematic way, aspects of the repeated breakdown of a driven mechanical system. The
operational domain of the system is a finite interval; this interval could be interpreted as
the RPM range of an engine. The resetting boundary corresponds the system reaching
its operating limit or maximum RPMs, after which a breakdown occurs and the system
has to be restarted from scratch. The control parameter is the bias velocity (not to
be confused with the RPM of the engine), which may either drive the system toward
breakdown or toward minimal-level operation. We showed that an optimal bias velocity
exists, which optimizes the performance of the system. This optimum balances the gain
by operating close to x = L while minimizing the number of breakdowns. A similar
physical picture arises if breakdown is accompanied by a random delay before restarting
the system or by extension to a two-dimensional geometry.

We also studied a variety of domain-growth phenomena that are driven by first-
passage dynamics with resetting. When each resetting event moves the boundary by a
fixed amount, the boundary recedes according to t1/4 and as t1/3 for the semi-infinite
geometry and the finite interval, respectively. In the semi-infinite geometry, if the bound-
ary position grows by a factor α > 1 with each resetting event, then the interface moves
much more quickly, at t1/2. The case where the boundary moves by a fixed amount at
each resetting is actually a version of the internal diffusion-limited aggregation problem,
for which there is extensive literature that has focused on the geometrical properties of
growing domains (see, e.g. [47–50]). We instead focused on the rich dynamic aspects of
the model and we suggest, based on the correspondence with internal diffusion-limited
aggregation, that it will be worthwhile to treat our first-passage resetting in a finite
two-dimensional domain.

There are a variety of extensions of the optimization problem that may be worth
exploring. First, the control strategy could be finer than a simple uniformly biased
velocity [51]. More realistically, one could also associate a cost with a strategy that
becomes more expensive as the control mechanism becomes more sophisticated. For
instance, it would be natural to turn on a bias velocity away from the breakdown
point when the system is very close to breakdown. It would also be useful to identify
the optimal region over which the particle experiences a bias (both toward and away
from the breakdown point). In addition to a more refined control strategy, other simple
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geometries may be worth studying. One such example is a one-dimensional interval with
a first-passage resetting mechanism at each end of the interval that has a different cost
for reaching each end. First-passage resetting in a bounded planar geometry with a
cost function that depends on the angle at which the boundary is hit might be another
geometry that would be worth studying.

Given the rich behavior exhibited by first-passage resetting, it should also be worth-
while to investigate extensions of the basic model, as well as applications. An example
of the former is the Fleming–Viot branching process, in which there are N + 1 particles
and when one of them resets, it resets to one of the positions of the remaining N parti-
cles [52–56]. More generally, first-passage resetting in the presence of multiple diffusing
particles could lead to new phenomenology. On another note, applications also exist in
cash flow management: cash levels in a large firm are sometimes modeled as a diffusion
process in which one wishes to have cash fully invested in profitable ventures, while
at the same time keeping enough cash available so as to avoid being indebted [57, 58].
These types of problem seem to be ripe for further exploration.
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Appendix A. Laplace transform approach in semi-infinite geometry

A.1. Spatial probability distributions

The probability distribution P (x, t) of a diffusing particle at time t on a semi-infinite
line x � L, can be obtained in several ways. In the main text, we presented a path-
transformation approach and here, we detail the Laplace transform approach (see also
[34]). We first partition the trajectory according to the number of reset events up to time
t. Between consecutive resets, the particle undergoes free diffusion with an absorbing
boundary at x = L. This part of the motion is described by the free propagator

G(x,L, t) =
[
e−x2/4Dt − e−(x−2L)2/4Dt

]
/
√
4πDt, (A.1)

which can be computed, for example, by the image method [24, 25]. Summing over all
reset events, the spatial probability is determined by

P (x, t) = G(x,L, t) +
∑
n�1

∫ t

0

dt′ Fn(L, t
′)G(x,L, t−t′). (A.2a)
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Equation (A.2a) states that for the particle to be at x at time t, it either: (i) must never
hit L, in which case its probability distribution is just G(x,L, t), or (ii), the particle first
hits L for the nth time at t′ < t, after which the particle restarts at the origin and then
propagates to x in the remaining time t− t′ without hitting L again. The equivalent
way of writing equation (A.2a) in a renewal fashion is:

P (x, t) = G(x,L, t) +

∫ t

0

dt′ F1(L, t
′)P (x, t− t′). (A.2b)

The first term accounts for the particle never reaching x = L, while the second term
accounts for the particle reaching x = L at a time t′, after which the process starts anew
from x(t′) = 0 for the remaining time t− t′. Note that this is a renewal equation in the
sense that the second term contains the full propagator P (x, t− t′) and not the free
propagator G(x, t− t′), thereby accounting for any number of resetting events in the
time interval [t′, t].

To solve for P (x, t) we again treat the problem in the Laplace domain. While we can
find the solution from the Laplace transform of equation (A.2a), the solution is simpler
and more direct from the Laplace transform of (A.2b):

P̃ (y, s) = G̃(y, �, s) + F̃ 1(�, s)P̃ (y, s), (A.3a)

with

G̃(y, �, s) =
[
e−|y| − e−|y−2�|] /√4Ds

i.e. the Laplace transform of G(x,L, t), where we have introduced the scaled coordinates

y ≡ x
√

s/D and � ≡ L
√
s/D. Solving for P̃ (y, s) yields:

P̃ (y, s) =
G̃(y, �, s)

1− F̃ 1(�, s)
=

1√
4Ds

[
e−|y| − e−|y−2�|]

1− e−�
. (A.3b)

To invert this Laplace transform, we separately consider the cases 0 � y � � and y < 0.
In the former, we expand the denominator in a Taylor series to give

P̃ (y, s) =
1√
4Ds

[
e−y − e−(2�−y)

] ∑
n�0

e−n�

=
1√
4Ds

∑
n�0

[
e−(y+n�) − e−[(n+2)�−y]

]
, 0 < y � �, (A.4a)

from which

P (x, t) =
1√
4πDt

∑
n�0

[
e−(x+nL)2/4Dt − e−[x−(n+2)L]2/4Dt

]
, 0 < x � L. (A.4b)
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In the case of y < 0, P̃ (y, s) in equation (A.3b) is factorizable:

P̃ (y, s) =
1√
4Ds

[
ey − ey−2�

1− e−�

]
=

1√
4Ds

[
ey + e(y−�)

]
, (A.5a)

and this latter form can readily be inverted to give:

P (x, t) =
1√
4πDt

[
e−x2/4Dt + e−(x−L)2/4Dt

]
x < 0. (A.5b)

A.2. Average number of resets

The average number of resets that occur up to time t may also be derived using the
Laplace transform approach. The probability for n resets to occur by time t equals the
probability of having at least n resets, minus the probability of having at least n+ 1
resets:

P (N(t)=n) = P (N(t)�n)− P (N(t)�n+ 1) ,

=

∫ t

0

dt′ Fn(L, t
′) −
∫ t

0

dt′ Fn+1(L, t
′). (A.6a)

Using our earlier result that Fn(L, t) = F 1(nL, t), we have

P (N(t)=n) = erf

(
(n+ 1)L√

4Dt

)
− erf

(
nL√
4Dt

)
, (A.6b)

where erf is the Gauss error function.
We can compute the average number of reset events, N (t) ≡ 〈N(t)〉, from (7), but

it is quicker to use a renewal equation approach. Here we can write

N (t) =

∫ t

0

dt′ F1(L, t− t′) [1 +N (t′)] . (A.7a)

Equation (A.7a) states that to have N reset events up to time t, N − 1 reset events
must have occurred at some earlier time t′ < t, and then one more reset event occurs
exactly at time t. Taking the Laplace transform of (A.7a) gives

Ñ (s) =
F̃ 1(L, s)

s (1− F̃ 1(L, s))
=

e−�

s(1− e−�)
, (A.7b)

where again � = L
√
s/D. We extract the long-time behavior of the average number of

reset events by taking the s→ 0 limit and then performing Laplace inversion on this
limiting expression. We thus find

N (t) 	
√
4Dt/πL2. (A.8)
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Appendix B. Solution to the convection–diffusion equation

The general solution to equation (14b) is

c̃0(x, s) = eP (A ewx +B e−wx) , (B.1)

where P = vx/2D, w =
√
v2 + 4Ds/2D, and A,B are integration constants. To deter-

mine A and B, we apply the boundary conditions that accompany equation (B.1) to
give the linear system⎧⎨⎩v(A+B)− 1

2
v(A+B)− ADw +BDw = 1,

evL/(2D)
(
A eLw +B e−Lw

)
= 0,

(B.2)

whose solution is

⎧⎪⎪⎨⎪⎪⎩
A = − 2

2Dw e2Lw + 2Dw + v e2Lw − v
= − e−Lw

2Dw cosh(Lw) + v sinh(Lw)
,

B =
2 e2Lw

2Dw e2Lw + 2Dw + v e2Lw − v
=

eLw

2Dw cosh(Lw) + v sinh(Lw)
.

(B.3)

We define W ≡ 2Dw cosh(Lw) + v sinh(Lw), from which A = −e−Lw/W and B =
eLw/W. Substituting these constants back into the general solution equation (B.1) leads
to equation (15a).

Appendix C. First-passage resetting in the annular geometry

For the convection–diffusion equation in two dimensions with a radial drift v/r; that
is, equation (25) without the delta-function term, the general solution in the Laplace
domain is [59]

c̃0(x, s) = xPe/2
[
A IPe/2(

√
sx) +BKPe/2(

√
sx)
]
, (C.1)

where A and B are integration constants, and Iν(x) and Kν(x) are modified Bessel
functions of the first and second kind, respectively. The subscript 0 refers to the con-
centration without flux re-injection. Imposing the boundary conditions that accompany
equation (25) leads to a linear system to solve for A and B:{

AIPe/2
(√

s
)
+BKPe/2

(√
s
)
= 0,

√
sx

1+Pe/2
0

(
BK1+Pe/2

(√
sx0

)
− AI1+Pe/2

(√
sx
))

= 1/(2π).
(C.2)
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whose solution is:⎧⎪⎪⎪⎨⎪⎪⎪⎩
A = − x

−(1+Pe/2)
0 KPe/2 (

√
s)

2π
√
s
(
KPe/2 (

√
s) I1+Pe/2 (

√
sx0) + IPe/2 (

√
s)K1+Pe/2 (

√
sx0)
) ,

B =
x
−(1+Pe/2)
0 IPe/2 (

√
s)

2π
√
s
(
KPe/2 (

√
s) I1+Pe/2 (

√
sx0) + IPe/2 (

√
s)K1+Pe/2 (

√
sx0)
) .

(C.3)

We now define W ≡ x
1+Pe/2
0

√
s
[
KPe/2 (

√
s) I1+Pe/2 (

√
sx0) + IPe/2 (

√
s)K1+Pe/2 (

√
sx0)
]
. In

terms of this function, we have A = KPe/2 (
√
s) /(2πW) and B = IPe/2 (

√
s) /(2πW).

Substituting these constants back into equation (C.1) yields:

c̃0(x, s) =
xPe/2

[
IPe/2 (

√
s)KPe/2 (

√
sx)−KPe/2 (

√
s) IPe/2 (

√
sx)
]

2πW , (C.4)

The first-passage probability is obtained by computing the outlet flux at x = 1 from the
concentration in equation (C.4):

F̃ 1(s) = 2π (−x∂xc̃0(x, s) + Pe c̃0(x, s)) |x=1

= 2π (−∂xc̃0(x, s)) |x=1

=

√
sIPe/2 (

√
s)K1−Pe/2 (

√
s) +

√
sI1−Pe/2 (

√
s)KPe/2 (

√
s)

W =
1

W , (C.5)

where we used the absorbing boundary condition to obtain the second line.
On the other hand, the survival probability, Q(t), is defined as the integral of

2πx c̃0(x, t) over the interval [x0, 1]. Alternatively, it can be computed as the proba-

bility of not having hit the absorbing boundary before time t: Q(t) = 1−
∫ t
0
dt′F1(t

′),

which in the Laplace domain translates to Q̃(s) = (1− F̃ 1(s))/s. Using equation (C.5),
we obtain:

Q̃(s) =
1

s

(
1− 1

W

)
. (C.6)

When there is re-injection of the outgoing flux, the concentration obeys the renewal
equation below. In the Laplace domain and using the form for c̃0 obtained above, we
find:

c̃(x, s) =
c̃0(x, s)

1− F̃ 1(s)
=

xPe/2
[
IPe/2 (

√
s)KPe/2 (

√
sx)−KPe/2 (

√
s) IPe/2 (

√
sx)
]

2π (W − 1)
.

(C.7)

In the s→ 0 limit, we find that:

xPe/2[IPe/2
(√

s
)
KPe/2

(√
sx
)
−KPe/2

(√
s
)
IPe/2
(√

sx
)
] 	 1− xPe

Pe
,

W − 1 	 Pe− Pex2
0 + 2x2

0 (−1 + xPe
0 )

2Pe (2 + Pe)
s.

(C.8)
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Substituting these asymptotic expressions into equation (C.7), the coefficient of the
term proportional to 1/s in c̃(x, s) gives the steady-state probability density in the time
domain that is quoted in equation (26).

Appendix D. Expanding semi-infinite geometry: Laplace transforms

Here, using Laplace transforms, we derive the properties for domain growth in the
semi-infinite geometry that were obtained in the main text using a path transformation.
Suppose that the diffusing particle starts at the origin and diffuses in the range [−∞,Ln],
with Ln > 0. Each time the particle reaches Ln, the particle is reset to the origin and the
interface moves forward by a specified amount δLn so that Ln+1 = Ln + δLn. Since the
resetting events occur at separate discrete times, it is convenient to index the position
of the interface by n, the number of resetting events. We consider two natural cases:
additive and multiplicative interface growth.

D.1. Additive growth: Ln = Ln−1 + L

In this case, the right boundary starts at L and then moves to 2L at the first reset event,
then to 3L, etc. The probability that the nth reset occurs at time t, Rn(t), is given by
the renewal equation

Rn(t) =

∫ t

0

dt′Rn−1(t− t′)F (Ln=nL, t′), (D.1a)

where F (L1, t) is the standard first-passage probability of reaching L1 when the particle
starts from the origin. In the Laplacian domain, equation (D.1a) becomes

R̃n(s) = R̃n−1(s) e
−n� = e−n(n+1)�/2, (D.1b)

with � ≡
√

sL2/D.
By a similar consideration, the average number of resetting events is

N (t) = 0×Q(L,T ) +
∞∑
n=1

n

∫ t

0

dt′ Q ((n+1)L, t− t′) Rn(t
′), (D.2a)

which, in the Laplace domain, becomes

Ñ (s) =
∞∑
n=0

n Q̃ ((n+ 1)L, s) R̃n(s). (D.2b)

Here Q(L, t) = 1−
∫ T
0
dtF (L, t) is the survival probability for a diffusing particle that

starts at the origin to fail to reach an absorbing boundary at L within time T .

In the Laplace domain, this relation becomes Q̃(nL, s) = [1− F̃ (nL, s)]/s. We now

substitute this expression for Q̃ and the above expression for R̃n(s) into (D.2b), and
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then convert the sum to an integral to give

Ñ (s) ≈
∫ ∞

0

dn
n

s

[
1− e−(n+1)�

]
e−n(n+1)�/2

=
e−�

4 s �

{√
2π� e9 �/8

[
2 + erf(

√
�/8)− 3 erf(3

√
�/8)
]
+ 4 e� − 4

}
→ 1

s

√
π

2 �
s→ 0. (D.3a)

Taking the Laplace inverse of this expression, the average number of reset events
asymptotically scales as

N (t) 	
√

π

2

1

Γ(5/4)
×
(
t

τ

)1/4

, (D.3b)

where τ = L2/D is the diffusion time.

D.2. Multiplicative growth: Ln = αLn−1,α > 1

The approach given above can be applied to multiplicative interface recession. That is,
upon the first resetting, the initial boundary at x = L moves to x = αL. In the next
resetting, the boundary moves from x = αL to x = α2L, etc. For this recession rule, the
probability of the nth reset event occurring at time at t, Rn(t), is

Rn(t) =

∫ t

0

dt′Rn−1(t− t′)F (αn−1L, t′), (D.4a)

which, in the Laplace domain, becomes

R̃n(s) = R̃n−1(s) e
−
√

s/D αn−1L ≡ R̃n−1(s)e
−� αn−1

= e−� (1−αn)/(1−α). (D.4b)

The average number of reset events before time t is

N (t) = 0×Q(L,T ) +
∞∑
n=1

n

∫ t

0

dt′ Q(αnL, t− t′)Rn(t
′), (D.5a)

which becomes, in the Laplace domain,

Ñ (s) =

∞∑
n=0

n Q̃(αnL, s) R̃n(s). (D.5b)

Substituting Q̃(αnL, s) = [1− F̃ (αnL, s)]/s and (D.4b) into the above equation, we
obtain
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Ñ (s) =
∞∑
n=0

n

s

(
1− e−�αn)

e−� (1−αn)/(1−α)

≈
∫ ∞

0

dn
n

s

(
1− e−�αn)

e−� (1−αn)/(1−α)

=
1

s
e−�/(1−α)

∫ ∞

0

dnn (1− e−� αn

) e� α
n/(1−α). (D.6)

To evaluate the above integral, we make the variable change z = uαn−1, from which
n = ln(zα/u)/lnα and dn = dz/(z lnα). The above integral now becomes:

Ñ (s) =
1

s

e−�/(1−α)

(ln α)2

∫ ∞

�/α

dz
ln(z α/u)

z
(1− e−α z) eα z/(1−α),

For s→ 0, we compute the above integral by first splitting it into two terms, using
ln(zα/u) = ln z + ln(α/u). The contribution from the first term is finite, while the second
one diverges. Dropping the finite term, we obtain

Ñ (s) 	 ln(α/u)

s

e−�/(1−α)

(ln α)2

∫ ∞

�/α

dz
1− e−αz

z
eαz/(1−α) 	 − ln(sτ)

2s ln α
, s→ 0.

(D.7)

Note that we introduce the factor τ inside the logarithm, so that this term is manifestly
dimensionless. Thus, in the long-term limit, the average number of resetting events scales
as

N (t) 	 ln(t/τ)

2 ln α
. (D.8)

Appendix E. Expanding interval: saddle point approximation

We want to compute the following integral in the small � limit:

I(�) =

∫ ∞

0

du exp

[
−1

�
f(u)

]
, (E.1)

where f(u) = −1
2
u2 − 1

2
Li2 (−e2u)− u log(2)− π2

24
. Because the negative exponential

rapidly decreases as �→ 0, the main contribution will occur when f(u) is at a minimum.
This function has a global minimum located at u = 0 and can be locally approximated
by f(u) 	 u3/6. Substituting this into equation (E.1), we recover equation (42).
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