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1 Introduction

Emerging infectious diseases are a threat to biodiversity and fungal pathogens have
caused rapid declines in amphibian populations around the globe [18]. Gray et
al. [6] identify Batrachochytrium salamandrivorans (Bsal) as an emerging fungal
pathogen that caused rapid die-offs of naive salamanders in Europe and predicts
North America will soon experience similar devastation if no policy actions are
taken and the pathogen emerges. Due to the fact that Bsal is such a recently
emerging pathogen, we currently lack epidemiological data on how it may spread
temporally and spatially across North America. Recent efforts have focused on
building mathematical models to gain insight on pathogen spread and identify
control strategies. Using Bsal as a case study, [8] employ Spatial Distribution
Models to highlight the difficulty in validating model predictions when available
data is limited, as well as the importance of appropriate model selection. Schmidt et
al. [23] present a compartmental population model incorporating direct transmission
and spatial diffusion that identified preventing emergence as the best strategy.

In order to better understand Bsal pathogen dynamics, we develop Susceptible-
Infected-Recovered-Susceptible (SIRS) type disease models for a population of
Eastern Newt adults. This particular species is widely distributed across eastern
North America and has been shown to be highly susceptible to Bsal [17, 21]. In
some cases, Bsal can lead to death in susceptible species within 2 to 3 weeks
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Fig. 1 Multiple transmission pathways

after exposure, but it has also been observed that some individuals can recover
and clear the infection [17]. Compared to the duration of infection, adult Eastern
Newts have a long lifespan potentially persisting >10 years [21, 22]. Unlike
previous models [23], here we incorporate two routes of pathogen transmission:
direct transmission via contact between infected and susceptible individuals and
environmental transmission via shed zoospores in the water (Fig. 1). Bsal produces
two types of zoospores that lead to environmental transmission, motile zoospores
with flagellum and encysted zoospores with cell walls. Motile zoospores actively
swim towards hosts, whereas encysted zoospores typically float on the surface [24].

We first present a base model that divides the host into four subpopulations
depending on disease status (susceptible, latently infected, infectious, and recov-
ered) as well as tracks the environmental loads of the two zoospores types. Epidemic
compartmental models are commonly used to characterize the epidemiology of
host—pathogen systems by providing means of estimating the invasion potential of
a pathogen and surviving host population [9]. SIRS type models commonly assume
that the duration of host infectiousness follows an exponential distribution [9],
however, the duration of host infectiousness has been shown to be realistically closer
related to a gamma-distributed [12, 25]. Following [25], we expand our base SIRS
model to a full model that includes multiple stages of infection, each exponentially
distributed so that the sum of the sequence of these independent exponentially
distributed random variables approaches a gamma-distribution.

Since Bsal has not invaded North America yet, several parameter estimates
remain unknown for eastern newts. For our simulations, we used a combination
of Bsal data from eastern newts and European fire salamanders (Salamandra
salamandra). We also used estimates of zoospore shedding from a closely related
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chytrid species (B. dendrobatidis). We used sensitivity analyses to identify the
most parameters driving transmission. In addition, by investigating the invasion
probability (i.e., the basic reproduction number) we found that direct transmission is
likely to be the dominant driver of pathogen dynamics for low density populations,
whereas environmental transmission will dominate in high density populations.

2 Model Development

2.1 Base Model Development

We begin with a base model of ordinary differential equations where individuals
are divided into four subpopulations, susceptible S(¢), latently infected but not
infectious L(¢), infectious I (¢), and Recovered R(¢). Total population is denoted
as N(t) = S(t) + L(t) + I(t) + R(¢). These state variables represent the density
of individuals in an aquatic environment (e.g., pond), with units of number of
individual per volume. Infected individuals shed two types of Bsal zoospores, Z,, ()
and Z,(¢) into the environment. These state variables have units of zoospore per
volume. The schematic of the base model is shown in Fig. 2 and the equations take
the following form:
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Fig. 2 Structure of the base model (1). The model tracks individuals divided into four subpopu-
lations, susceptible S(#), latently infected L(¢), infectious /(¢), and recovered R(?), as well as the
zoospores in the environment Z,, (t) and Z,(¢). The different routes of transmission are depicted
using different colors, Direct transmission route is green, environmental transmission from Z, is in
blue, and from Z,, is in red. Solids lines depict the movement of individuals between compartments
and dashed lines show the role of environmental zoospores
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as
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Susceptible individuals can become latently infected after contact with an
infected individual following direct transmission rate given by function g (7). Here,
we consider both frequency-dependent and density-dependent direct transmission
rates:

1 A
g =py and g(I) = B, 2

where B is the frequency-dependent direct transmission rate and ,é = % is
the density-dependent direct transmission rate. Susceptible individuals can also
become infected after contact with environmental zoospores by the environmental
transmission functions pcy, f (Zy, km) and pce f (Ze, k) Where ¢, and c, are the
contact rate coefficients between individuals and environmental zoospores of type
m and e, respectively, p is the percentage of these spores that successfully encyst,
and

Z;
Z.’ ) — ; ] — ,e. 3
f(lKl)_Zj-‘rKi I1=m,e 3)
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Here, «, and k. are the Bsal ID50s (the doses of each zoospore type needed to
infect 50% of a population). Latently infected individuals L(#) have an incubation
duration of 1/e, after which they become infectious I (¢). Infectious individuals have
a disease induced mortality rate of § and recover at rate y. Once recovered, we
assume that an individual becomes susceptible again at the loss of immunity rate
n. Infectious individuals shed zoospore type Z,, at rate w,, and zoospore type Z,
at rate w,. These environmental zoospores naturally degrade at rates &,, and &,
respectively.

2.1.1 Basic Analysis of the Base Model
We assume that the initial solution of system (1) are non-negative, i.e.,
(5(0), L(0), 1(0), R(0), Zn(0), Z.(0)) = (0,0, 0,0,0). “

The model is of the form X’ = F(X), X (fp) = Xo where Xg € R" and F : R" —
R” is C!. Thus by the theorem 4.1 in [1] the solution exists and is unique.

The following lemmas show that the Base Model (1) with the assumed initial
conditions (4) is biologically meaningful, as solutions are positive and bounded.
The proofs are in Appendix 1.

Lemma 2.1 The solutions (S(t), L(t), I(t), R(t), Z,,(t), Z.(t)) of system (1) are
nonnegative for all t > 0 with the nonnegative initial conditions (4) in (Rg‘ )5 .

Lemma 2.2 Let
S = {6 L LR € (RY) 10= S0 + L)+ 10+ RW) = NO)

and

Yz = {(Zm’ Z,) € (RBL)2 10 < Zn(t) + Zo(t) < M}

%‘m +E€

Define
Y= EH X Zz.

IfZ(0) < W;ﬂ”—w, then the region X is bounded for the model (1).

2.2 Full Model Development

Infectious individuals in the base model (1) recover at constant rate . However,
the probability of recovering from the infection should increase as an individual
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progresses through the disease. Here, we update the base model so the probability
of recovery increases the longer the individual resides in the infected compartment.
Following [25], we divide the infection compartment into n subcompartments,
where the rate of recovery to advance through each subcompartment is ny. Here,
the full model breaks up the infectious stage into a sequence of n subcompartments,
each exponentially distributed with mean 1/(ny). The number of infectious stages
influences the distribution for the overall duration of the infectious period ranging
from and exponential distribution when n = 1 to resembling gamma distributions
when n > 1 [10]. This technique also allows for incorporating different parameters
for transmission and zoospore shedding rates throughout the infectious period. The

full model takes the following form:

ds -
— ==Y gU)S —plemf(Zm,kn) +cef (Ze,k)S+ nR
dt — ——
= waterborne loss of
direct transmission immunity
transmission
L SN 41 S+ p(nf T k) + e f Zer ) L
—_— = i c , K, C K - €
dt . 8\ P(Cm ms Km e es Ke
i=1 waterborne latent becomes
infectious
direct transmission
transmission
dhL
— = eL — 51 — nyl
d t —— —— ——
latent becomes disease induced infection
infectious mortality advances
dlp
— = nyl — 81 — nyl
dt —— —— N
infection disease induced infection
advances mortality advances
dl,
o, = nyl,—1 - 8l - nyly,
dt ———’ —~— —
infection disease induced infection
advances mortality advances
dR
— = nyl, — nR
dt — —~—
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(59)
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dz ‘
e
= Y wuli - £ Ze, : (Sh)
dt — S——
= Bsal degradation
shed for zoospores e

zZoospores €

where we incorporate multiple stages of infection (/;) with varying direct trans-
mission rates (f;) and varying zoospores shedding rates (wpi, we;) fori =1, ...,n
stages of infection. Similar to the base model, direct transmission is either frequency
dependent or density dependent, where the ith stage direct transmission function
follows:

Bi ]IV—' for frequency-dependent transmission

glli) = (6)

,B,-;—g = ,3,- I; for density-dependent transmission.

The number of infectious stages, n, can play an important role in the model
predictions; however, this also depends on the parameterization of By, ..., By,
Wels «ves Wens aNd Wy 1, ..., Wyy. In order to compare how varying n influences the
predictions, we normalized these parameters between the different cases while
assuming that the transmission and zoospores shedding rates tend to increase as
time post exposure increases. Here we use the following for setting the parameter
values:

2i 2i d 2i
_ Wei = Webase—————, and Wy = Ombase —————
n(n+ 1) ei ebaien(n T mi mbasen(n T
)

fori =1,2,..n,s0that Y /| Bi = Boases 21— Wei = Webases aNd Y 1 Wi =

Wmbase -

ﬁi = ,Bbase

2.3 Parameterization

While adequately parameterizing models remains a major challenge in epidemic
and ecology modeling, parameter sensitivity analyses help shed light on the relative
importance of the parameters. This requires baseline values, as well as ranges for the
parameter space. For our simulations, we used values from the eastern newt (when
available), European fire salamander, and some results from the related chytrid
fungus, B. dendrobatidis. Given the high transmission rates that have been reported
[24], we assume a baseline direct transmission rate of Bpyse = 2 per day. Martel et
al. [16] observed that infected salamanders died within 1 week after showing severe
symptoms, therefore we set the disease induced mortality rate to § = 0.14 per day.
Martel et al. [17] investigated the susceptibility of 34 amphibian species to Bsal and
found in many species infection resulted in mortality of all infected animals and
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other infected species had the possibility of recovery. Here, we allow the possibility
of recovery and investigate a range of recovery rates y € (0.05 — 0.9) per day
with a waning immunity at rate n € (0.05, 1) per day. Stegen et al. [24] observed
encysted zoospores persisted in the environmental for 1 month and were more
resistant to predation that motile zoospores. Therefore, we assumed the baseline
zoospore degradation rates of §, = 0.03 per day and &,, = 0.05 per day. Zoospore
shedding rates are unknown for Bsal in eastern newts, however, shedding rates have
been measured for a similar fungal pathogen, Batrachochytrium dendrobatidis (Bd)
in frogs [14]. Using these measured ranges of Bd zoospore shedding rate averaged
across the frog species, we assumed w,pqse € (8.6 — 345) thousand zoospores per
day. Additionally, we assumed that wpas. is half the value of @, p4se. In SOme cases,
parameter values are unknown, for example, contact rate coefficients with each type
of environmental zoospores (c;, and c,) and the percentage of contacted spores that
successfully encyst (p). A summary of parameters and their assumed values is given
in Table 1. Given the uncertainty of several parameters for the eastern newt systems,
we focus our analyses on parameter sensitivity.

3 Full Model Analysis

Analysis of the above models includes parameter sensitivity analyses, numerical
simulations, and calculation of the basic reproductive number. These results assume
frequency-dependent transmission functions (Eqgs.2 and 6), however, density-
dependent led to similar qualitative predictions and figures are not shown.

3.1 Parameter Sensitivity Analysis

Here, we use Latin hypercube sampling (LHS), developed by McKay et al. [19]
with the statistical partial rank correlation coefficient (PRCC) technique in order to
perform a sensitivity analysis of the parameter space of the full model (5). The
LHS/PRCC sensitivity analysis method globally explores the multi-dimensional
parameter space. LHS is a stratified Monte Carlo sampling without replacement
technique that gives unbiased estimates of modeling output measures subject to
combinations of varying parameters. The PRCC can be used to classify how
the output measures are influences by changes in a specific parameter value,
while linearly discounting the effects of the other parameters [15]. The PRCC
is appropriate since each parameter has a monotonic relationship with the output
measures, details given in the Appendix 3. Here, a positive PRCC has a positive
relationship with the output measure, whereas a negative PRCC value has an
inverse relationship with the output measure. Larger PRCC values do not necessarily
indicate more important parameters, however, we used a z test on transformed PRCC
values to rank model parameters in terms of relative sensitivity [15]. The number of
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Table 1

Model parameters

201

Parameter

Unit

Base value

Range

Source

IBbase

Base direct
transmission
rate

1/day

2

(0.1,3)

(24

Cm

Environmental
contact rate
coefficient
with Z,,

1/day

0.02

(0.01, 0.05)

Assumed

Ce

Environmental
contact rate
coefficient
with Z,

1/day

0.01

(0.005, 0.03)

Assumed

Loss of
immunity rate

1/day

0.1

(0.05, 1)

[13, 171°

1/€

Latency
period

Days

10

(7,14)

[13, 17]°

Disease
induced
mortality rate

1/day

0.14

(0.01,0.5)

[13, 16, 17]°

Bsal recovery
rate

1/day

0.1

(0.05,0.9)

[13, 17]°

Number of
infected
stages

NA

Assumed

% of
contacted
spores that
encyst

0.75

0.5, 1)

Assumed

Wmbase

Base
shedding rate
of Z,,

1000Zoospores
day.individual

176

(8.6-345)

[14]°

Webase

Base
shedding rate
of Z,

1000Zoospores
day.individual

88

4.3-172)

1
Assumed webase = 3 Wmbase

&m

Degradation
rate of Z,,

1/day

0.05

0.02,2)

[24])*

&

Degradation
rate of Z,

1/day

0.03

0.01, 1)

(24]*

Km

ID-50

Zoospore
Vol

245K

(240K-250K)

MIJG, unpublished data®

Ke

ID-50

Zoospore
Vol

145K

(140K-150K)

Assumed k., < Kk

4Values from Salamandra salamandra data
YValues from Notophthalmus viridescens data
“Values obtained from Bd (Batrachochytrium dendrobatidis) data
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model simulations (or runs = R) need to be times greater than the number of
uncertain parameters k, i.e., R > %k [2, 5]. Our parameter space consist of 26
parameters and we choose 5, 000 runs for our simulations. We used two output
measures to classify the sensitivity of the parameters which has the monotone
relation with our input variables;

1. The size of the Newt population after 150 days,
2. The maximum load of environmental zoospores at any time of the simulation 150
days.

The choice of using 150 days for the length of the simulations was to ensure
the environmental zoospores concentrations achieved their maximum during the
simulations. This duration also is within the expected duration to observe population
collapse due to Bsal invasion in highly susceptible species [24]. The PRCC values
for the Newt population density are shown in Fig. 3 and the PRCC values for the
maximum zoospore load are shown in Fig. 4.

Figure 3 illustrates the most sensitive parameters affecting the size of the newt
population. The Newt population increased significantly for increases in recovery
rate y. The Newt population decreased for increases in the direct transmission rates
(Bi), the loss of immunity (), the rate an infected individual becomes infectious (e,
inverse of the incubation period), as well as the disease induced mortality rate (3).

PRCC values of Newt Population

0.8/
0.6 -
0.4

0.2

___L__L___-—

ulllll-.-—“ - .
-0.2
0.4/

'{1 '(;2 ﬁ ﬂ 'H P c c m Ne €4 "'”mf“mi"m:{"rrd"ms“‘ei“’az“’aa“’u”es‘fm Ee

PRCC

Fig. 3 Partial rank correlation coefficient (PRCC) values for each parameter in the Latin hyper-
cube sampling (LHS) using the surviving Newt population density after 150 days as the output
measure. Values marked ns are non-significant (P > 0.05)
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PRCC values of maximum zoospores concentration
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Fig. 4 Partial rank correlation coefficient (PRCC) values for each parameter in the Latin hyper-
cube sampling (LHS) using maximum environmental zoospore load after 150 days as the output
measure. Values marked ns are non-significant (P > 0.05)

For the maximum environmental zoospore load (Fig. 4), the zoospores concen-
tration increased significantly for shorter incubation periods 1/e (i.e., larger the
rate at which an infected individual becomes infectious, € ) and high zoospore
shedding rates (w,; and w,; fori = 1, ..., 5). The zoospore concentration decreased
significantly with larger disease induced mortality and recovery rates (§, y) as well
as higher rates of environmental zoospore degradation (£, and &,).

3.2 Numerical Simulations

We varied the recovery rate (y) to study the effect on the total Newt population,
the final epidemic size, and the total maximum zoospores concentrations. The final
epidemic size was calculated as the total number of cases over the duration of the
simulation (150 days). As y increased, a larger portion of the population survived
the outbreak (Fig.5a) and total maximum zoospores concentration decreased
(Fig. 6). While an increase in y increased survival of the population (Fig. 5a) it also
increased the final epidemic size (Fig. 5b).
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Fig. 5 (a) Eastern newt population and (b) endemic size for varying the recovery rate, y and all
other parameters are set to the baseline values from Table 1
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Varying the incubation period (1/¢€), the model predicted that the newt population
decreased only slightly for shorter period, however, the total maximum zoospores
concentration increased substantially (Figs. 7 and 8).

We also investigated the influence of disease induced mortality rates (§). While
increases in § decreased the newt population and the epidemic size (Fig.9), it also
caused a decrease in the zoospore concentration (Fig. 10).

Variations in the degradation rates of zoopores (&, &,) did not substantially
affect the newt population size (Fig. 11), however, it did play an important role in
environmental zoospore loads (Fig. 12).
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Eastern Newt Population
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Fig. 7 (a) Eastern newt population and (b) epidemic size for varying the latency period, 1/€ and
all other parameter are set to the baseline values from Table 1

Fig. 8 Total maximum «108

Zoospores concentration L /e =13
varying the latency period, — R = 10
1/€ and all other parameters 10| . - = 1/e=07

are set to the baseline values
from Table 1

Zoospores Concentration

0 50 100 150
time (days)

Figure 13 showed how varying the number of infectious stages n influenced
model predictions. For smaller n the outbreak occurred earlier as the peak number
of infected cases occurred sooner and was higher in magnitude (Fig.13a, b).
Additionally, for higher n the maximum zoospore concentration was delayed and
was lower in magnitude (Fig. 13c).
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Fig. 9 (a) Eastern newt population and (b) epidemic size for varying the disease induced mortality
rate § and all other parameter are set to the baseline values from Table 1
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Fig. 11 (a) Eastern newt population and (b) epidemic size for varying the degradation rates of
zoopores (&, &) and all other parameter are set to the baseline values from Table 1
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Fig. 12 Total maximum
Zoospores concentration
varying the degradation rates
of zoopores (&, &) and all
other parameters are set to the
baseline values from Table 1
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Fig. 13 (a) Eastern newt population (b) total infected eastern newt population, and (c) zoospores
concentration for varying number of infectious stages, n using equation (7) for B;, wei, and wy,;
with all other parameters set to the baseline values in Table 1
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3.3 Basic Reproductive Number

The basic reproduction number Ry is the expected number of secondary infections
in a completely susceptible population produced by a single infectious individual
during its infectious period [3]. To derive the basic reduction number, Rq of Bsal,
we use the next-generation matrix approach for the system (5) following [4]. The
analytic expression of the basic reproduction number R is as follows and the details
are shown in the Appendix 2.

fraction survives

to the i"” stage tgur'e}thiortl in "
: €1 stage [ — —
. — T8 penSo ) omi(yn) @+ yn)"
Ro = Z,B‘ yn 1 n i=1
=\ +yn §+yn (8 + ¥ 1) "5k

. environmental for zoospores m
direct

n
pceSo Y wei(ym)' ' (8 +yn)"

i=1
s 8
* @+ yn)Eere ®

environmental for zoospores e

where Sp is the initial number of susceptible individuals. All transmission pathways
contribute to the analytical expression of R which is a measure of potential
outbreak. The expression in Eq.(8) describes the relative contribution of each
pathway. We investigate the relative contributions of each pathway to R in order to
identify the dominant pathway.

The dominant pathway depends on the population size (Table 2, Fig. 14). Direct
transmission is the dominant pathway for small populations sizes (population
size <5). As the population size increases (population size >5), environmental
transmission for Z, becomes the dominant pathway, while the environmental
pathway for Z, remains subordinate. As populations sized continue to increase (>7)
then the directed transmission pathway becomes subordinate.

Table 2 Numerical values of R using parameter values from Table 1

So=1 [So=5 So=7 |Sy=30
Total Ro 1.15 2.35 2.95 9.84
Direct contact transmission proportion of Ry 0.74 0.36 0.29 0.09
Environmental transmission proportion of Rg (Z,,) | 0.16 0.39 0.43 0.55
Environmental transmission proportion of R (Z,) | 0.10 0.25 0.28 0.36
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Fig. 14 Proportion of R for 1 [
each transmission pathway Direct
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4 Discussion

Infection disease models offer a powerful tool to better understand and predict
epidemics in human and ecological systems. Bsal is an emerging infectious
pathogen with potentially devastating biodiversity crisis in North America [26].
To better understand the dynamics, we developed and analyzed the first model of
the highly virulent emerging pathogen Bsal on a host population of Eastern Newts
that incorporates multiple transmission pathways with multiple stages of infection.
The model predicts significant declines in host population shown in Fig. 5. These
predictions are qualitatively consistent with empirical data captured by Stegen et al.
[24], which show a collapse of 90% of a population of salamander introduced to
Bsal within 6 months.

While varying key parameters can slow down population declines, the pathogen
will persist as the basic reproduction number is always greater than one (Table 2).
While previous models have concluded that mitigation during outbreaks is likely
to fail and control efforts should focus on preventing disease emergence [23],
once Bsal is established in an area, slowing the spread may help prevent nearby
populations from being exposed.

Model predictions are sensitive to the number of infectious stages incorporated
in the model structure (Fig. 13). Fitting the model to empirical data can help better
parameterize the number of stages. For example, [20] fit a similar model to empirical
data of Ranavirus cases in wood frogs Peace et al. [20].



210 M. R. Islam et al.

The analytical expression of the basic reproductive number R given in Eq. (8)
was used to identify the dominant transmission pathway. Our model and parameter
set predicts that direct transmission is the dominant pathway for small population
densities, however, environmental transmission is the dominant pathway for large
population densities. These results can help guide intervention strategies. For
example, in small density scenarios where direct transmission is the dominant
pathway, we suggest intervention strategies focus efforts on reducing the contact rate
between individuals. This can be done by increasing habitat complexity among them
such as aquatic plants. For larger population densities, the model suggests that more
efficient diseased control strategies would be to reduce environmental transmission.
Here, the parameters that have the largest influence the maximum environmental
zoospores concentrations (high PRCC values in Fig.4) should be the main focus
of intervention strategies. For example, the degradation rate of the zoospores in the
environment have large influence on epidemic dynamics, which suggests the use of
intervention strategies to increase &,, and &, such as increasing UV penetration or
number of zooplankton in the water [24] might reduce zoospore persistence.

The developed models consider a homogeneous population of Eastern Newts,
however, disease dynamics for each individual is like to depend on their life
stage (larvae, juvenile, adult). A future iteration of the model should consider a
heterogeneous population and include stage structure of the host population. While
our parameter sensitivity analysis highlights the important role that recovery rates
can have, many species may have very low or zero probabilities of recovering from
Bsal [17]. Given the hyper-susceptibility of eastern newts and fire salamanders to
Bsal chytridiomycosis [17], it is possible that our simulations represent plausible
scenarios in North America if Bsal in introduced. It is also possible that seasonal
variations can influence disease and population dynamics, hence future iterations of
the model should consider how temperature influences host contact rates, zoospore
persistence, and importance of transmission pathways.

Appendix 1: Proofs of Base Model Lemmas

Proof of Lemma 2.1:

Proof We have

) R>0

S| _ ks

dt la(S) "

dL

S| =8 S+ penf (Znskin) + ef (Zeske))S > 0
t la(L)

dl

>0

JE— =€
dt la(l)
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dR

—— =yl >0
dt la(R) 4
dZz
s =wnl >0
dt la(Zy)
dz,
‘ =w.l >0,
dt la(Z.)

where a(x) = {x(t) = Oand S,L,I,R,Zy,Z, € C(R+,R3')} and x €
{S,L.I,R, Z,, Z.}. Therefore, due to the Lemma (2) in [7], any solutions
(S@), L), I(t), R(t), Z;y(t), Zc(t)) of system (1) are nonnegative for all + > 0
with the nonnegative initial conditions (4) in (Rg )5 .

Proof of Lemma 2.2:

Proof We can divide our system (1) into two parts: the host population, N'(t) =
S'(t) + L' (¢t) + I'(¢t) + R’ (¢) and the zoospores population, Z(¢) = Z,,(t) + Z.(¢).
Adding the first four equations of system (1) yields

N@O)=S®O+L@O)+1I't)+R () =-81<0

which is a decreasing function of time. Therefore, N () < N(0) and adding the last
two equations of system (1) yields

Z/(t) = Z,,(t) + Z,(t) = (0m + @) (t) = Em +E)Z(1)

< (0m + @e)N() — (5 +8e) Z(2).
A standard comparison theorem in [11] can be used to show that

2(t) < Z(O)e—nten  @n TOINO (e

(Em + &)
(wom + we)N(0) (wm + we)N(0) —(EmtEt
= Z0) — ———— mrselt,
g o Tt

Therefore, if Z(0) < % then Z(t) < % Thus the region X is
bounded.
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Appendix 2: Basic Reproduction Number

The Jacobian matrix J of the system (5) is obtained from linearizing the system.
Model (5) has a disease-free equilibria at Xg = (Sp, ..., 0,0), where Sy is the
initial population of susceptible individuals. Evaluating the Jacobian matrix at Xg
yields

_pmSo __ pceSo

00 —Bi  —pr ... —Pui  —pu g —Luh s
0—¢ A Br o Bt By O Lz 26
0 € —ny—294 0 .. 0 0 0 0 0
00 ny —ny-—96... 0 0 0 0 0
= 00 0 ny ... 0 0 0 0 0
00 0 0 co.—ny — 6 0 0 0 0
00 0 0 ... ny —ny—620 0 0
00 0 0 0 ny -—-n 0 0
00 Wm1 Wm2 ... Om(n—1) Wmn 0 —&n 0
00 Wel We2 ... We(n—1) Wen 0 0 —&,.

Near the Xy, for small perturbations z = (L, 1, »,..., I, R, Z,,, Z,) the
linearized infected subsystem of (5) evolves according to the following system of
equations:

dz

— =Mz,

dt

where
— B R N
€ —ny —9§ 0 . 0 0 0 0 0
0 ny —ny—=5... 0 0 0 0 0
0 0 ny ... 0 0 0 0 0
M= 0 0 0 co.—ny —§ 0 0 0 0

0 0 0 . ny —ny —4§ 0 0 0
0 0 0O ... 0 ny —n 0 0
0 W1 Dm2 ... Om(n-1) Wmn 0 =& O
0 Wel We2 coe We(n—1) Wen 0 0 —é&.
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We decompose the matrix M into transmission (T) and transition (X) matrices,

respectively, obtaining

dz T4y
i (T+ %)z,
where
0 B1 Bo ... Bt fin 0 £ 2550
000... 0 00 O 0
000... 0 00 O 0
000... 0 00 O 0
T=]1000... 0 00 0 0
000... 0 00 O 0
000... 0 00 O 0
000... 0 00 O 0
000... 0 00 O 0
and
—€ 0 0 0 0 0 0 0
€ —ny —3§ 0 0 0 0 0 O
0 ny —ny—2¢§ 0 0 0O 0 O
0 0 ny . 0 0 0 0 O
X=10 0 0 .—ny —§ 0 0 0 0
0 0 0 ny -—-ny—-460 0 O
0 0 0 0 ny -—-n 0 0
0 W1 Wm?2 - Wm(n-1) Wmn 0 -¢ 0
0 Wel We2 - We(n—1) Wen 0 0 —&.
The next-generation matrix with large domain is K = —TX~!. Since T has rank

1, the NGM K also has rank 1. Therefore, only the first row of K contains non-zero
entries. Consequently, the spectral radius of K is the first entry on the diagonal, i.e.,
K(,1 which is equivalent to R, and it is the same for both frequency and density-

dependent direct transmission. Therefore,
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n
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environmental for zoospores e

where Sy is the initial number of susceptible individuals.

Appendix 3: Monotonicity Test

Each subplot of the following Figs. 15 and 16 shows the monotonic relation
between the model parameters with the output variable Eastern Newt population and
maximum Zoospores concentrations, respectively, which is a required condition for
the PRCC-LHS test.

005 0005 001 0015 002 0025 003
00 i i

A

Fig. 15 Monotonicity plot of the model parameters vs. the output measure eastern newt population
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Fig. 16 Monotonicity plot of the model parameters vs. the output measure total maximum
zoospores concentration
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