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Abstract 12 

Anoxic and iron-rich (ferruginous) conditions prevailed in the ocean under the low-oxygen 13 

atmosphere that occurred through most of the Archean Eon. While euxinic conditions (i.e. 14 

anoxic and hydrogen sulfide-rich waters) became more common in the Proterozoic, ferruginous 15 

conditions persisted in deep waters. Ferruginous ocean regions would have been a major 16 

biosphere and Earth surface reservoir through which elements passed through as part of their 17 

global biogeochemical cycles. Understanding key biological events, such as the rise of oxygen in 18 

the atmosphere, or even the transitions from ferruginous to euxinic or oxic conditions, requires 19 

understanding the biogeochemical processes occurring within ferruginous oceans, and their 20 

indicators in the rock record. Important analogs for transitions between ferruginous and oxic or 21 
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euxinic conditions are paleoferruginous lakes; their sediments commonly host siderite and Ca-22 

carbonates, which are important Precambrian records of the carbon cycling. Lakes that were 23 

ferruginous in the past, or euxinic lakes with cryptic iron cycling may also help understand 24 

transitions between ferruginous and euxinic conditions in shallow and mid-depth oceanic 25 

waters during the Proterozoic. Modern ferruginous meromictic lakes, which host diverse 26 

anaerobic microbial communities, are increasingly utilized as biogeochemical analogues for 27 

ancient ferruginous oceans. Such lakes are believed to be rare, but regional and geological 28 

factors indicate they may be more common than previously thought. While physical mixing 29 

processes in lakes and oceans are notably different, many chemical and biological processes are 30 

similar. The diversity of sizes, stratifications, and water chemistries in ferruginous lakes thus can 31 

be leveraged to explore biogeochemical controls in a range of marine systems: near-shore, off-32 

shore, silled basins, or those dominated by terrestrial or hydrothermal element sources. 33 

Ferruginous systems, both extant and extinct, lacustrine and marine, host a continuum of 34 

biogeochemical processes that highlight the important role of iron in the evolution of Earth’s 35 

surface environment.  36 
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Highlights 42 

• Precambrian marine sediments indicate frequent ferruginous conditions with euxinic 43 

intervals 44 

• Siderite from ferruginous lakes informs formation pathways in ferruginous oceans 45 

• Ferruginous meromictic lakes are an expected feature of postglacial landscapes 46 

• Ferruginous lakes can be biogeochemical analogues of ferruginous oceans 47 

1. Introduction  48 

The paucity of iron in the modern ocean (average 540 pmol kg-1) belies that abundant 49 

dissolved iron was once a persistent feature of the oceans. The deposition of massive amounts 50 

of iron from the ocean in iron formations (IF)—marine chemical precipitates with more than 15 51 

wt % iron—throughout the Archean (4.0 to 2.5 billion years ago; Ga) and in the 52 

Paleoproterozoic (2.5-1.6 Ga), and again in the Neoproterozoic (1.0 Ga to 541 million years ago; 53 

Ma), speaks to long periods characterized by iron-rich (i.e. ferruginous) oceans (Bekker et al., 54 

2010; Konhauser et al., 2017).  The continual discovery of additional mid-Proterozoic, 55 

Neoproterozoic, and even Phanerozoic IF signals that ferruginous conditions prevailed 56 

throughout key intervals of Earth’s history (e,g. Canfield et al., 2018; Z.-Q. Li et al., 2018). 57 

Additionally, the application of paleoredox proxies (i.e. iron speciation and trace element 58 

enrichments and isotopic compositions) for clastic and carbonate marine sediments (Raiswell et 59 

al., 2018; Robbins et al., 2016; Tostevin and Mills, 2020; Wasylenki, 2012) has resulted in an 60 

emerging picture that anoxic and iron-rich (i.e. “ferruginous”) conditions in the deep ocean 61 

were spatially extensive and temporally pervasive, and continued through periods of Earth’s 62 

history not typified by IF deposition (e.g. Canfield et al., 2008; Clarkson et al., 2016; Johnson 63 
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and Molnar, 2019; Johnston et al., 2010; März et al., 2008; Planavsky et al., 2011; Poulton et al., 64 

2015; Poulton and Canfield, 2011). However, the very low concentrations of iron in the current 65 

ocean point to fundamentally different redox conditions in the modern (oxic) as compared to 66 

past (anoxic) oceans. The lack of ferruginous conditions in the modern oceans thus poses a 67 

challenge to scientists who endeavor to piece together the workings of the biogeochemistry of 68 

past ferruginous oceans. 69 

The fundamental shift in redox state of the ocean from ferruginous to oxic resulted from 70 

the behavior of iron in response to increasing concentrations of oxygen (O) and sulfur (S) 71 

through time. The maintenance of iron in solution is thermodynamically favored either at acidic 72 

pH or under anoxic conditions, where both oxidized (Fe3+; ferric) and reduced (Fe2+; ferrous) 73 

iron are orders of magnitude more soluble than ferric iron at circumneutral pH or in the 74 

presence of oxygen, respectively. Ocean pH was likely circumneutral (i.e. 6-8) throughout 75 

Earth’s history (Krissansen-Totton et al., 2018), indicating that the primary mechanism for 76 

maintenance of iron in ferruginous oceans was through pervasive anoxia. This also implies that 77 

ferrous iron was the predominant form of dissolved iron in water. Even under anoxic 78 

conditions, iron will precipitate when the solubilities of iron-bearing minerals that form with 79 

anions such as oxide (O2-), hydroxide (OH-), carbonate (CO3
2-), phosphate (PO4

3-), mono- or 80 

disulfide (S2- or S-), or silicate (SiO4
4-) are exceeded. Precipitation of amorphous phases such as 81 

ferrihydrite [Fe(OH)3], and minerals such as magnetite (Fe3O4), siderite (FeCO3), vivianite 82 

(FePO4), or greenalite [(Fe2+,Fe3+)2-3Si2O5OH4] from solutions exceeding the saturation of these 83 

minerals, are thought to have resulted in the deposition of IF (Derry, 2015; Kaufman et al., 84 

1990; Konhauser et al., 2017; Tosca et al., 2016). Pyrite (FeS2) is thought to buffer dissolved iron 85 
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in organic-rich clastic sediments (Canfield, 1989). The record of these minerals, or products of 86 

their diagenetic transformation, leave an imprint in the geological record of the spatial and 87 

temporal extent of ferruginous conditions in the waters from which they precipitated.  88 

The most enigmatic and volumetrically significant ferruginous sediments are Superior-89 

type IF, which were precipitated from seawater along laterally extensive passive margins 90 

(reviewed in Bekker et al., 2010; Konhauser et al., 2017). The deposition of IF has often been 91 

linked to the appearance of oxygen in the atmosphere and in the oceans, which was 92 

hypothesized to have oxidized dissolved ferrous iron, decreasing its solubility and precipitating 93 

it as Fe3+ (oxyhydr)oxide minerals (Cloud  Jr., 1968). A more nuanced understanding of ocean 94 

oxygenation envisions this occurring at a redox interface between a ferruginous deep ocean 95 

and oxygen-bearing surface waters (e.g. Konhauser et al., 2017). Alternately, or simultaneously, 96 

the disappearance of dissolved iron from the ocean has been linked to the increase of sulfate 97 

(SO4
2-) in the oceans, causing Fe2+ to precipitate with hydrogen sulfide (H2S), produced after 98 

microbial sulfate reduction, and ultimately buried as pyrite (Canfield, 1998). These 99 

interpretations are based upon the nature of the marine sediments we are left to interpret, but 100 

their interpretation necessitates an understanding of how iron behaves under varying redox 101 

conditions, in the presence of different chemical species, in response to biological activity, and 102 

during subsequent diagenesis or metamorphism. The basis for interpretation can be built 103 

through reductive experiments, or through observation of the sediments themselves, but 104 

investigation of the underlying phenomena in a complex natural setting with analogy to the 105 

original chemical environment can help to fill the gaps left between the reductionist and 106 

observational approaches. 107 
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As the modern oceans are predominantly oxic, they are not well-suited to help scientists 108 

understand the microbial, biogeochemical, and mineralogical processes that would have been 109 

occurring in ferruginous oceans. Exceptions include oxygen minimum zones (OMZ; Scholz, 110 

2018) or anoxic basins, such as the Cariaco Basin or Black Sea. However, the high levels of 111 

sulfate (28 mM in average ocean water) commonly tip these systems toward euxinic conditions 112 

(anoxic and containing free H2S) when oxygen becomes depleted. Marine sulfate 113 

concentrations may have been as low as 2.5 μM, or as high as ~200 μM in the Archean Eon 114 

(Crowe et al., 2014b; Habicht et al., 2002). While sulfate concentrations likely increased into the 115 

Proterozoic Eon, estimates vary from as low as 100 μM (Fakhraee et al., 2019) to as high as 1.5-116 

4.5 mM (Kah et al., 2004). Considering estimates for dissolved iron concentrations in 117 

ferruginous oceans (sec. 2) and that abundant organic carbon (C) needed to drive sulfate 118 

reduction would have occurred near-shore, euxinic conditions likely developed only locally 119 

during the Archean and Proterozoic Eons (Johnston et al., 2010; Li et al., 2010; Poulton et al., 120 

2010).  121 

Modern lakes with vertical zonation in the availability of terminal electron acceptors for 122 

mineralization of organic matter and their reduced products (e.g. O2/H2O, NO3
-/NO2

-, Fe3+/Fe2+, 123 

Mn3+/4+/Mn2+, SO4
2-/H2S, CO2/CH4) have been long invoked as useful sites for investigating 124 

conditions under which past marine sediments that record anoxia or anoxic intervals might 125 

have been deposited (Degens and Stoffers, 1976). In order to use lakes as analogues, it is 126 

important to recognize the limitations of the analogy by understanding the similarities and 127 

differences in physical, chemical, and biological aspects of both systems. Redox stratification 128 

can occur in the water column of both lakes and oceans, driven in part by common biological 129 
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processes, but the physical processes that govern mixing and ultimately control where and how 130 

stratification occurs are distinct in lakes and ocean. Lakes generally mix as a result of wind 131 

action and seasonally variable temperature structures. Ocean circulation is ultimately driven by 132 

strong salinity and temperature shifts occurring in surface waters at discrete points on the 133 

globe, as a result of complex interactions between Earth’s rotation and atmospheric circulation. 134 

The oceans are large, and the impact of terrestrial runoff for the supply of non-135 

conservative, redox-active elements such as iron is localized to near shore settings (Boyle et al., 136 

1977; Hawkings et al., 2014), whereas atmospheric and seafloor processes can dominate the 137 

iron inputs to the open ocean (Mahowald et al., 2005; Tagliabue et al., 2010). Most lakes in the 138 

world are <0.1 km2 (Verpoorter et al., 2014), and so have more direct interaction with 139 

terrestrially derived iron supplied in dissolved or particulate form from runoff, from 140 

atmospheric deposition, or from groundwater (Dean et al., 2006; Urban et al., 1987). Partly for 141 

this reason, iron is more abundant in freshwaters than in oceans, yet its residence time is 142 

generally much shorter (Klein, 1975). Lakes generally have much lower sulfate concentrations 143 

than oceans (Klein, 1975) due to the shorter water residence time and behavior of sulfate as a 144 

conservative ion under oxic conditions. Thus, many lakes have a sulfate concentration more 145 

similar to the ranges inferred for past oceans (Crowe et al., 2014b; Fakhraee et al., 2019; 146 

Habicht et al., 2002; Kah et al., 2004). These differences notwithstanding, in the absence of 147 

ferruginous oceans today, ferruginous lakes have enormous value for testing hypotheses about 148 

how biogeochemical cycles functioned in ancient ferruginous oceans. Oceans are chemically 149 

and biologically variable in both time and space and investigating freshwaters that encompass a 150 
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range of biogeochemical conditions can be useful for interpreting process that happened in the 151 

variable settings recorded by the sedimentary record through Earth’s history. 152 

Ferruginous meromictic lakes (i.e. those with permanently anoxic and iron-rich bottom 153 

waters), have a long history as interesting but esoteric limnological footnotes (Kjensmo, 1967; 154 

Smith  Jr., 1940; Yoshimura, 1936), probably in part due to their perceived rarity. Iron-rich 155 

varved sediments from ferruginous meromictic lakes, or those that have been ferruginous in 156 

the past, have long been recognized for their paleoclimate utility, particularly in the Holocene 157 

(Dean et al., 1984). However, with the expanding study of a range of ferruginous sediments 158 

beyond IF and beyond the Precambrian in the last one to two decades (Canfield et al., 2008; 159 

Poulton et al., 2015, 2004a), and an emerging interest in testing hypothesis regarding 160 

biogeochemical hypotheses in ferruginous lakes (Busigny et al., 2014; Crowe et al., 2008a; 161 

Walter et al., 2014), a detailed discussion of the utility and limitations of the analogy is 162 

warranted. Part of this process involves addressing where these lakes are, how common they 163 

are, and why they are there. Through this analysis we can also better understand the full story 164 

of iron’s importance to life on Earth, and how ferruginous conditions continue to play a role in 165 

modern global biogeochemical cycles.  166 

In this contribution, the literature that documents evidence for the extent and nature of 167 

past ferruginous oceans is reviewed (sec. 2). Mineral archives and their proxy implications are 168 

then discussed, as well as evidence for biological activity and biogeochemical cycles occurring 169 

within ferruginous oceans (sec. 3). Evidence for the interpretation of paleoferruginous 170 

conditions in lakes based on sedimentary minerals and geochemistry is presented, and their 171 

utility to interpreting the sedimentary record of ferruginous oceans is highlighted (sec. 4). The 172 
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characteristics of modern ferruginous meromictic lakes are then introduced, with a case study 173 

on conditions associated with their occurrence (sec. 5). Then, current research on 174 

biogeochemical processes occurring in ferruginous meromictic lakes is reviewed (sec. 6). 175 

 176 

Defining ferruginous 177 

The presence of ferruginous conditions in circumneutral pH lakes and oceans is 178 

intimately tied to the absence of oxygen in water, as well as the supply of iron and prominence 179 

of Fe3+ (oxyhdr)oxide minerals as terminal electron acceptors for microbial respiration. In the 180 

aquatic sciences, many terms are applied to distinguish waters that are in equilibrium with 181 

oxygen in the modern atmosphere (saturated), those where oxygen is low (e.g. hypoxic: less 182 

than about 50 μM, which limit the activity of many higher organisms), those with trace amounts 183 

of oxygen (suboxic: less than 4.5 μM), or those where oxygen is absent (anoxic). However, the 184 

range of actual oxygen concentrations that correspond to these terms is ill-defined, and 185 

instruments able to measure truly trace levels of oxygen (e.g. nM) are not in widespread use.  186 

Redox zones are determined by the most abundant redox-active species, which in turn 187 

reflect the dominant electron accepting processes supporting microbial organic carbon 188 

oxidation (e.g. CH2Oà CO2 + H2O + 4H+ + 4e-), and follow the general sequence: oxic (O2 + 4H+ + 189 

4e- à H2O), nitrogenous (2NO3
- + 4e- + 4H+ à 2NO2

- + 2H2O), manganous (2MnO2 + 4H+ + 4e- à 190 

2Mn2+ + 2H2O), ferruginous (4Fe3+ + 4e- à 4Fe2+), sulfidic or euxinic (0.5SO4
2- + 4H+ + 4e- à 191 

0.5H2S + 2H2O), and methanic (CO2 + 4H+ + 4e-  à CH4) (Canfield and Thamdrup, 2009; Tostevin 192 

and Poulton, 2019). The order of this sequence reflects the thermodynamics, specifically a 193 

decreasing amount of free energy available to microbes by coupling each electron accepting 194 
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reaction to organic carbon oxidation (Froelich et al., 1979). This thermodynamic ordering can 195 

vary depending on the environmental activity of species in the redox couple, pH, and 196 

temperature. Kinetics can also control which process predominates. Sulfidic is often used 197 

synonymously with euxinic, although some authors distinguish these terms further, using 198 

sulfidic within sediments and euxinic when referring to free sulfide in the water column.  199 

The use of the term ferruginous in reference to the anoxic and Fe2+-bearing conditions 200 

of lakes, oceans, and their sedimentary porewaters appears in the GeoRef database only since 201 

2008 (Canfield et al., 2008). The term has historically been applied to rocks and minerals 202 

containing visibly oxidized iron in the geological literature. The earliest entry (1656) in the 203 

Oxford English dictionary notes the Latin origins of the word, referred to “of the colour of rusty 204 

iron”. Entries in the GeoRef database that contain the word “ferruginous” begin to accumulate 205 

in the late 1800s, as ferruginous came into fashion as a geological term relating to the presence 206 

of iron or iron staining (e.g. rust) in rocks. There has been a shift, however, in its application to 207 

aqueous systems, both freshwater and marine, which have the capacity to maintain and 208 

transport a reservoir of dissolved, generally ferrous, iron. This shift seems to have started in 209 

2008, as there are no earlier occurrences of the phrases “ferruginous conditions”, “ferruginous 210 

ocean”, “ferruginous water”, or “ferruginous lake” before this date. The Oxford English 211 

Dictionary lists numerous examples of its usage dating from the 1600s relating to rusty, iron-212 

bearing water or springs, in addition to its fairly common usage to the names of plants and 213 

animals, but also rarely minerals (1847: ferruginous opal). Ferruginous, therefore, seems to 214 

relate to anything that has a rusty color, or contains iron. From this historical analysis the usage 215 

of the word in relation to water predates its usage in relation to minerals or rocks, supporting 216 
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its recent application to the ferruginous redox zone found in the water column of some lakes 217 

and within past oceans, but its reference to ferrous iron seems more recent. 218 

 219 

2. Ferruginous oceans 220 

Iron Formations evidence ferruginous conditions 221 

Banded iron formations (BIF) have the longest history of study of the marine sediments 222 

used in interpreting the redox geochemistry of the Precambrian ocean, particularly in the 223 

Archean, Paleoproterozoic and Neoproterozoic (Bekker et al., 2010; for reviews see Klein, 2005; 224 

Konhauser et al., 2017). The “banded” here refers to visibly laminated chemical sediments, 225 

often alternating between iron- or silica-rich, whereas IF is a more general term for chemically 226 

precipitated (i.e. non-detrital) sediments with >15-20 wt % iron (James, 1954; Klein, 2005), 227 

regardless of the presence of laminations. The most extensive IF deposition occurred from 2.7 228 

to 2.4 Ga, with a spike again at 1.9 to 1.8 Ga (Figure 1; Bekker et al., 2010). However, when bias 229 

is removed by scaling iron content with crustal preservation, a recent analysis suggested that IF 230 

deposition likely persisted at near constant rate from 3.8 to 1.8 Ga (Johnson and Molnar, 2019).  231 

Fewer IF have been identified in the mid-Proterozoic, which in combination with 232 

increasing oceanic sulfate through the Proterozoic have been taken as indicating a shift from 233 

ferruginous to sulfidic deep ocean redox chemistry during this interval (Canfield, 1998). Higher 234 

sulfate concentrations, microbial sulfate reduction, and pyrite formation has been proposed to 235 

have titrated iron from seawater (Canfield, 1998; Poulton et al., 2010, 2004a; Rouxel et al., 236 

2005). Yet recent work has described a small 1.4 Ga IF from northern China with comparable 237 

iron content to many Archean and Paleoproterozoic IF (Canfield et al., 2018). The ~1.3 Ga 238 
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Jingtieshan BIF was recently described from central China (Yang et al., 2015). A 1.0-0.8 Ga iron 239 

ore deposit in South China was recently argued to have been deposited as IF based on Fe 240 

isotopes, and potentially formed in a similar tectonic setting and same basin to other IF of the 241 

same age previously described in Canada (Sun et al., 2018). The youngest IF was recently 242 

identified in Western China at 527 Ma (Z.-Q. Li et al., 2018). These findings support the 243 

conclusion from many studies, reviewed below, that deep water ferruginous conditions 244 

persisted despite rising sulfate levels in the Proterozoic. 245 

Interpreting the relationship between sedimentary iron enrichments and the redox 246 

conditions of an overlying water column requires nuance, especially considering that iron 247 

enrichments can also be generated during later fluid alteration, or during high-grade 248 

metamorphism (Morris, 2012). The deposition of chemically precipitated IF is evidence for the 249 

presence of iron at saturation with numerous iron-bearing minerals in the oceans throughout 250 

key Precambrian intervals. The equilibrium conditions indicated by some of these minerals, or 251 

their interpreted precursors have been used to estimate the Fe2+ concentrations of ferruginous 252 

seawater (Table 1). These minerals or their mineral precursors generally fall into three 253 

categories: carbonates, (oxyhydr)oxides, and silicates. Considering the equilibrium of multiple 254 

Fe2+-bearing minerals and the iron supply needed to deposit IF, early estimates for Fe2+ in 255 

Archean-aged ocean basins ranged from 10-100 μM (Eugster and Chou, 1973), 380 µM (Ewers, 256 

1980), 100 µM (Ewers, 1983), and 1800 to 7000 µM (Mel’nik, 1973). Estimates from the 257 

solubility of Fe2+ in equilibrium with siderite (FeCO3) yielded values of 10-120 μM (Canfield, 258 

2005; Holland, 2007). Newer experimental constraints on the precipitation and saturation of 259 

greenalite (an Fe2+-bearing silicate), and slow kinetics of siderite precipitation yielded higher 260 
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equilibrium Fe2+ concentrations, ~100-1,600 μmolal (Jiang and Tosca, 2019; Tosca et al., 2016). 261 

Estimates based on equilibrium with green rust, a mixed Fe2+-Fe3+ salt, are 1-10 μM Fe2+ in the 262 

deep ocean to <1 nM in the surface ocean (Halevy et al., 2017). Estimates based on equilibrium 263 

with iron mineral precipitation and iron-binding ligands indicate Fe2+ was >50 μM Fe2+ during 264 

major Archean and Proterozoic BIF deposition and >4 nM during deposition of Ediacaran and 265 

Phanerozoic marine red beds (MRB; Song et al., 2017).  266 
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Table 1. Estimated Precambrian ocean iron concentrations. 

Timeframe Proxy Iron Depth and/or setting Reference 

Precambrian greenalite, siderite, 
Fe(OH)2 equilibrium 

10-100 μM banded iron formations Eugster and Chou, 
1973 

Precambrian Fe(OH)3 and siderite 
equilibrium 

100 μM banded iron formations Ewers, 1983 

Precambrian Fe(OH)3 and siderite 
equilibrium; mass 
accumulation 
estimates 

380 μM banded iron formations Ewers 1980 

Precambrian siderite, iron 
hydroxide, iron 
sulfide equilibrium 
at pH 6 

1800-7000 
μM 

banded iron formations Mel'nik, 1973 

Archean and 
early 
Proterozoic 

siderite equilibrium 10-120 μM deep ocean; banded 
iron formations 

Canfield 2005; 
Holland 2007 

Precambrian greenalite 
equilibrium; siderite 
kinetics 

~100-1,600 
μmolal 

deep ocean; iron 
formations 

Jiang and Tosca, 
2019; Tosca et al., 
2016 

Precambrian green rust 
equilibrium 

1-10 μM deep ocean; iron 
formations 

Halevy et al., 2017 

Precambrian green rust 
equilibrium 

<1 nM surface ocean; iron 
formations 

Halevy et al., 2017 

Archean and 
Proterozoic 

iron-binding ligand 
equilibrium 

>50 μM deep ocean; banded 
iron formations 

Song et al., 2017 

Ediacaran and 
Phanerozoic  

iron-binding ligand 
equilibrium 

>4 nM deep ocean; marine 
red beds 

Song et al., 2017 

late Archean Fe2+ inhibition of 
calcite 

>20 μM shallow shelf; 
carbonate platform 

Sumner and 
Grotzinger, 1996 

late Archean Fe2+ inhibition of 
calcite 

<80 μM shelf and slope; 
carbonate platform 

Sumner, 1997 

late Archean iron isotope 
distillation 

30-310 μM shallow shelf; 
carbonate platform 

Eroglu et al., 2018 

late Archean iron isotope 
distillation 

61-928 μM shelf and slope; 
carbonate platform 

Eroglu et al., 2018 

 267 

While the persistence of IF implied a large marine reservoir of iron, the source(s) of iron 268 

confounded researchers for decades (Holland, 1973). The contention came from the 269 

observation that a terrestrial supply of iron, in the dissolved load of rivers, was insufficient to 270 
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account for the concentration of iron that should be at saturation with IF minerals or their 271 

precursors. To sustain an iron reservoir given reasonable constraints on mass deposition rates 272 

for iron from some major IF, weathering rates and river discharge would have needed to be 273 

absurdly high, or an unrealistic amount of volcanism would have been required (Holland, 1973). 274 

The discovery of hydrothermal vents on the ocean floor in the 1970s provided a source of iron 275 

from the oceans themselves, via alteration of seafloor crust by circulating ocean water, 276 

solubilizing iron and emitting it at vents. In an anoxic ocean, this soluble iron source would be 277 

buffered locally by mineral formation, but the remainder could be transported along bottom 278 

currents and via upwelling to sites of precipitation (Holland, 1984). With higher mantle heat 279 

flows on early Earth, combined with μM concentrations of sulfate in the Archean (Crowe et al., 280 

2014b), the flux of iron to the ocean from hydrothermal alteration of the seafloor was likely 281 

also elevated above modern fluxes (Isley, 1995; Kump and Seyfried Jr, 2005). It has also been 282 

suggested that some of the most aerially extensive IF are co-eval with evidence for enhanced 283 

mantle-driven volcanism (Barley et al., 1997; Isley and Abbott, 1999; Rasmussen et al., 2012), 284 

further evidence for the importance of the hydrothermal iron source. It is generally agreed that 285 

hydrothermalism is the predominant iron source to IF, which in many cases is supported by rare 286 

earth element (REE) patterns, where a positive europium (Eu) anomaly indicates a high-287 

temperature hydrothermal source (Bau and Moeller, 1993). A continental source of iron is also 288 

discussed for some IF (Alexander et al., 2008; Li et al., 2015; Raiswell, 2006), but the significance 289 

of a continental source likely depended on the amount of emergent land (Flament et al., 2008), 290 

and the oxygenation of terrestrial near surface environments and resulting iron mobility 291 

(Babechuk et al., 2019). 292 
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The sedimentology of Superior-type IF and associated sediments deposited during the 293 

Archean and Paleoproterozoic provide ample evidence for a gradient in dissolved iron 294 

concentrations, with higher iron concentrations in the deep ocean and lower concentrations in 295 

shallower waters. This is typified by deepwater IF, where sedimentary iron concentrations 296 

exceed 15 wt % and fine-grained clastics such as shales and mudstones deposited along the 297 

slope have total iron to aluminum ratios (FeT/Al) exceeding one (Raiswell et al., 2011), implying 298 

authigenic precipitation of iron-bearing minerals contributed additional iron above that present 299 

in detrital grains derived from continental crust (Taylor and McLennan, 1985). Precambrian 300 

carbonates, deposited at shallower depths than IF, sometimes contain wt % enrichments of iron 301 

(Eroglu et al., 2018; Sumner, 1997). These can be significant compared to Phanerozoic 302 

carbonates (i.e. Veizer et al., 1989), but generally imply less iron in shallow waters as compared 303 

to those in deeper waters. These general trends in sedimentary iron concentrations from 304 

shallow to deep are typically explained by a deep, anoxic basin supplying dissolved iron sourced 305 

from hydrothermal alteration of ocean crust (Beukes and Klein, 1992). Most models call for 306 

oxidation and/or precipitation of iron as upwelling water masses moved toward the surface 307 

ocean, although the proposed oxidation mechanisms vary (Posth et al., 2013b). Importantly, 308 

the interpretation of a gradient of iron concentrations with depth is observed in the 309 

stratigraphy of many other late Archean and Proterozoic IF-depositing basins varying in time 310 

and place, including the Transvaal basin preserved in South Africa (Beukes and Klein, 1992; 311 

Czaja et al., 2012), the Hammersley Basin in western Australia (Kaufman et al., 1990), and the 312 

Paleoproterozoic Animike Basin of North America (Simonson, 1985). 313 
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Additional constraints on paleoredox conditions of the shallow ocean in connection with 314 

IF-depositing basins have been estimated by the iron content and isotopic composition of 315 

carbonates. For instance, textures such as herringbone carbonate and the lack of micrite in the 316 

2.521 Ga Gamohaan Formation were inferred to reflect the presence of an inhibitor to calcite 317 

formation in seawater, in this case Fe2+ (Sumner and Grotzinger, 1996). Inhibitors such as Fe2+ 318 

or Mn2+ act by slowing precipitation kinetics, or nucleation dynamics. The textural evidence for 319 

seafloor calcite in the Gamohaan Formation and correlative Frisco Formation, and deeper water 320 

siderite formation, has further been used to suggest that shallow waters may have had 20 μM 321 

or more Fe2+, while deeper waters in equilibrium with siderite had up to 80 μM (Sumner, 1997). 322 

Invoking siderite as a seawater precipitate is, however, often incompatible with its light ẟ13C 323 

values, which can signal diagenetic formation (sec. 3). Further geochemical work on the ~2.58 324 

to 2.50 Ga Campbellrand-Malmani carbonate platform, including the Gamohaan Formation, 325 

focused on iron concentrations and isotopic compositions within carbonates deposited across a 326 

range of water depths. Iron concentrations and isotope compositions showed depth-dependent 327 

trends, which were modelled with a Rayleigh distillation equation to yield estimates of 61-928 328 

μM Fe2+ in water overlying the slope, to 30-310 μM on the shelf itself (Eroglu et al., 2018), 329 

ranges that overlap with the calcite-siderite saturation and textural estimates (Table 1; Sumner, 330 

1997).  331 

From the summary in Table 1, it is clear that estimates of ferrous iron  concentrations 332 

vary widely, both in space and time, and also depend upon the approach and assumptions. An 333 

underlying implication here is the non-conservative behavior of iron in aqueous systems – it 334 

plays the role of a nutrient and scavenged (i.e. mineral forming) element simultaneously – and 335 
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has temporally variable inputs. Although the residence time of iron in seawater was likely 336 

higher (a few hundred thousand to a few million years) under predominantly anoxic and low 337 

sulfate oceans than it is today (Johnson et al., 2003; Thibon et al., 2019), it would still be 338 

reacting to local and global changes in oxygen and pH, as well as the concentrations of other 339 

ions (i.e. carbonate, silicate) necessary to precipitate iron-bearing minerals. Dissolved Iron 340 

concentrations vary widely in the modern ocean, both vertically through the water column, as 341 

well as between different regions. These variations stem from local or regional sources, as well 342 

as water column cycling and sedimentary sinks. The range of estimates of iron concentrations 343 

for ferruginous oceans may indicate that sources, sinks, and processes for iron in the oceans 344 

varied in time and space, and there is no a priori reason to assume that iron concentrations 345 

would have been static. Each estimate should only be applied to the specific depositional 346 

system from which it was constrained. 347 

 348 

 349 
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 350 
Figure 1. A. Summary of redox conditions within the Precambrian oceans. B. Individual 351 

Precambrian iron formations, as gigatons (Gt), plotted from data compiled by Bekker et al. 352 

(2010) and updated with Mid-Proterozoic data (Canfield et al., 2018; Sun et al., 2018). C. 353 

Proterozoic iron speciation data, plotted from data compiled by Guilbaud et al. (2015) with 354 

additional data from more recent studies (supplementary information). Horizontal lines denote 355 

thresholds of FePY/FeHR for ferruginous (<0.6) and euxinic (>0.8). Contours in B and C are kernel 356 

density estimations, essentially smoothed, 2D histograms. 357 

 358 

Paleoredox proxies in the Proterozoic and beyond 359 

Iron Formations and associated sediments imply ferruginous conditions by virtue of 360 

being iron-rich chemical precipitates. Many carbonates and clastic marine sediments also 361 

contain iron enrichments above that which is added from detrital minerals. Several iron 362 

speciation techniques that quantify iron in minerals or phases with different reactivity toward 363 
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sulfide can be used to indicate the paleoredox conditions of anoxic, euxinic, or ferruginous. 364 

These techniques include FeT/Al (Lyons et al., 2003), highly reactive iron to total iron (FeHR/FeT), 365 

pyritized iron to total iron (FePY/FeT) (Poulton et al., 2004b), and degree of pyritization or 366 

sulfidization (DOP or DOS), which are the ratios of sulfidized iron (FePY and/or acid-volatile 367 

sulfide-associated iron, FeAVS) to the sum of pyritized/sulfidized iron and hydrochloric acid-368 

extractable iron (Berner, 1970; Boesen and Postma, 1988). Highly reactive iron combines 369 

sufide-reactive iron extracted from carbonates, oxides, magnetite and pyrite, while a boiling 370 

hydrochloric acid extraction also extracts some iron that does not react with sulfide. Total iron 371 

includes all reactive iron phases and silicate-bound iron. Best practices for these techniques and 372 

analysis of results have recently been summarized by Raiswell et al. (2018).  373 

When FeT/Al  exceeds 0.66, anoxic conditions are indicated (Clarkson et al., 2014; 374 

Raiswell et al., 2018), although others advocate for a higher threshold (Cole et al., 2017). 375 

Anoxic conditions are indicated by elevated FeHR/FeT. Highly reactive iron minerals may 376 

precipitate from the water column after transport under ferruginous conditions, leading to 377 

enrichments over the detrital iron input in deposited sediments (Poulton et al. 2004a; Poulton 378 

and Canfield 2011; Raiswell and Canfield 2012). Anoxic conditions tend to have FeHR/FeT ratios 379 

>0.38, whereas FeHR/FeT <0.22 commonly indicates oxic conditions, and FeHR/FeT between 0.22 380 

and 0.38 are considered equivocal. When accompanied by enrichments in FeHR/FeT (i.e. >0.38), 381 

elevated Fepy/FeHR ratios of 0.6 to 0.8 (horizontal lines in Figure 1c) or above commonly suggest 382 

euxinic conditions, although particular care is required for samples in the range of 0.6-0.8 383 

(Raiswell et al., 2018). Ferruginous conditions commonly have Fepy/FeHR ratios <0.6 (Benkovitz 384 

et al., 2020; Poulton and Canfield, 2011). More recently, it has been demonstrated that the iron 385 
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extraction scheme can also be applied to carbonate-rich sediments when iron exceeds 0.5 wt %, 386 

providing there is no evidence for additional iron supply through deep burial dolomitization 387 

(Clarkson et al., 2014).  388 

Trace element systematics should be used in concert with iron speciation to provide more 389 

robust insight into local redox conditions instead of relying on iron speciation alone (cf. Raiswell 390 

et al., 2018). The principle of sedimentary trace element enrichments as paleoredox indicator is 391 

that trace metals often show a redox-dependent behavior, which causes their fractionation 392 

and/or accumulation in sediments under oxic vs. anoxic and ferruginous vs. euxinic conditions 393 

(see reviews by Tribovillard et al. 2006; Piper and Calvert 2009; Huang et al. 2015; Robbins et al. 394 

2016). Molybdenum (Mo) enrichments can occur under oxic conditions due to reaction with 395 

iron and manganese (oxyhydr)oxides, but scavenging by sulfide produces much greater 396 

enrichments (Scott et al., 2008). Molybdenum enrichments are therefore a proxy for euxinic 397 

conditions (Doyle et al., 2018; Scott and Lyons, 2012), although sustained and widespread 398 

euxinic conditions can draw down the oceanic reservoir of Mo, resulting in muted enrichments 399 

(Algeo, 2004). Uranium enrichments indicate anoxic conditions, but do not distinguish between 400 

ferruginous and euxinic conditions (Algeo and Tribovillard, 2009; Partin et al., 2013).  Chromium 401 

(Cr) is scavenged to anoxic but not sulfidic sediments, but the reservoir of Cr can also been 402 

drawn down with extended and/or widespread anoxia, muting enrichments (Reinhard et al., 403 

2013). Rhenium (Re) is preferentially buried under anoxic condition relative to oxic, has less of 404 

an interfering detrital component than Cr or U, and may not be sensitive to sulfide (Kendall et 405 

al., 2010; Sheen et al., 2018). Zinc (Zn) is preferentially buried under sulfidic conditions (Robbins 406 

et al., 2013; Scott et al., 2012), while enhanced cobalt (Co) burial is associated with a larger Co 407 
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reservoir under ferruginous conditions (Swanner et al., 2014). Importantly, thresholding 408 

enrichments across units with varying mineral or sedimentary phases can lead to spurious 409 

results (Algeo and Liu, 2020). 410 

Trace element isotope ratios are also employed paleoredox proxies, as fractionations 411 

can occur upon phase changes, and chemical and biological transformations of oxidation state 412 

and speciation, and have been reviewed independently (Anbar and Rouxel, 2007; Wasylenki, 413 

2012). Positive δ97/95Mo occur when Mo has been scavenged to sediments under euxinic 414 

conditions, while negative values are more indicative of oxic conditions (Arnold et al., 2004). 415 

Mass balance models can help to constrain the extent of euxinia (Gordon et al., 2009; Kendall 416 

et al., 2011). Positive iron isotope (i.e δ56/54Fe) sedimentary values have been interpreted to 417 

indicate euxinic conditions and a pyrite sink, while negative values can indicate either localized 418 

microbial iron reduction or partial oxidation processes within ferruginous waters  (Eroglu et al., 419 

2018; Johnson et al., 2008b; Rouxel et al., 2005). Positive values in Selenium (Se) isotope ratios 420 

(i.e. δ82/78Se), can indicate anoxic and ferruginous conditions (Kipp et al., 2017; Wen et al., 421 

2014). Elevated U isotope ratios (δ238/235U) can distinguish oxic conditions from anoxic and 422 

euxinic conditions, which are less positive (Andersen et al., 2014; Lau et al., 2019).  423 

The deposition of IF indicates widespread ferruginous conditions in the Archean and 424 

Paleoproterozoic (Figure 1). This inference is also supported by the record of enhanced Co in IF, 425 

shales, and sulfides from this time (Swanner et al., 2014). The redox landscape begins to change 426 

by about 2.0 Ga when coupled Mo, U, and Fe isotopes indicate the appearance of euxinic 427 

conditions during the Shunga event (Asael et al., 2013). In the ~1.8 Ga Animike Basin of North 428 

America, a transition from oceans that deposited IF to ferruginous deep waters overlain by 429 
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euxinic mid-depth and oxic shallow waters in shales is indicated by iron speciation (Poulton et 430 

al., 2010, 2004a). This transition was also observed in a shift from IF to black shales deposited 431 

under euxinic conditions, which have positive Mo isotope values consistent with  euxinia 432 

(Kendall et al., 2011).  433 

Iron speciation measurements of clastic sediments deposited in the middle Proterozoic 434 

(~1.8-1.0 Ga) have led to a picture of widespread (in space and time) ferruginous conditions in 435 

the deep ocean (Figure 1; Guilbaud et al., 2015; Planavsky et al., 2011; Poulton et al., 2010; 436 

Poulton and Canfield, 2011; Sperling et al., 2015). A narrow range of Zn enrichments in shales 437 

during the entire Precambrian, and Re abundances during the mid-Proterozoic also support the 438 

inference of widespread ferruginous conditions with limited euxinia (Scott et al., 2012; Sheen et 439 

al., 2018). Combinations of Mo and Cr shale records and mass balance models indicate 440 

widespread anoxic conditions in the mid-Proterozoic, and although euxinia expanded after 441 

about 1.8 Ga, the areal extent was under 10% of the seafloor (Reinhard et al., 2013; Scott and 442 

Lyons, 2012). This view of limited euxinia is supported for the mid-Proterozoic by the U isotope 443 

record (Gilleaudeau et al., 2019). Despite this broad inference of widespread ferruginous 444 

conditions, studies of individual formations throughout the middle Proterozoic reflect a wide 445 

range in the redox structure of the oceans (Figure 1). This could reflect spatial and temporal 446 

variation, basinal vs. global conditions, the range of processes invoked in the interpretation of 447 

data, or perhaps the fidelity of the redox proxies to post-depositional processes.  448 

There are numerous studies that point to more nuance in Proterozoic paleoredox. 449 

Molybdenum isotopes are used to infer episodic deep-water oxic conditions and manganese 450 

oxide formation in ~1.8 Ga sediments from the Animikie Basin depositing on the margin of 451 
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North America (Planavsky et al., 2018). This seems to be an exceptional case, as most other 452 

middle Proterozoic sites lack evidence for full water column oxidation and instead lie 453 

somewhere on a spectrum of ferruginous to euxinic with varying evidence for oxygen in 454 

overlying waters. Degree of pyritization and S isotopes of 1.7 and 1.6 Ga sediments from the 455 

MacArthur Basin of Western Australia indicate euxinic conditions, with sulfate concentrations 456 

estimated at 0.5 to 2.4 mM (Shen et al., 2002). There is evidence from iron speciation and rare 457 

earth element (REE) abundance patterns for intervals of enhanced shallow water oxygenation 458 

overlying ferruginous deep water at ~1.56 Ga (Zhang et al., 2018). Iron speciation of clastic 459 

sediments deposited at 1.4 Ga in the Roper Basin of Western Australia indicate a euxinic water 460 

column with overlying oxic water, despite sulfur isotopic evidence for low, perhaps sub-mM 461 

sulfate concentrations (Shen et al., 2003), an interpretation largely supported by DOP, FeT/Al, 462 

and Re, U, Mo, and vanadium (V) abundances (Kendall et al., 2009). At 1.4 Ga, shales deposited 463 

below wave-base in the Arlan Basin in Volgo-Ural region of Russia lack iron enrichments 464 

indicative of ferruginous conditions, and contained biomarker evidence potentially consistent 465 

with an oxic water column (Sperling et al., 2014). The low total organic carbon content (<0.2 %) 466 

of these sediments was interpreted to indicate oligotrophic conditions that allowed for deep 467 

oxygen penetration. From broadly age-correlative samples elsewhere in the Volgo-Ural region, 468 

iron speciation indicated deeper-water anoxic and ferruginous conditions, with overlying oxic 469 

conditions limited to only very shallow water (Doyle et al., 2018). The sediments studied by 470 

Doyle et al. (2018) likely were deposited in greater water depths with greater connection to the 471 

open ocean than those studied by Sperling et al. (2015). Similar-aged sediments from China 472 

were suggested to record a Mesoproterozoic OMZ, with overlying and underlying oxic waters 473 
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(Zhang et al., 2016). However, other workers interpret the V and biomarker data used to infer 474 

an OMZ in that study as rather consistent with anoxia (Planavsky et al., 2016).  475 

A compilation of iron speciation measurements in late Middle Proterozoic to early 476 

Neoproterozoic (~1000 Ma to 742 Ma) fine-grained clastic sediments suggest widespread 477 

ferruginous conditions in shallow mid-depths of the oceans (Figure 1; Guilbaud et al., 2015). 478 

The authors interpreted this data to reflect a shift away from euxinic conditions detected in 479 

similar settings in the Middle Proterozoic (1.8 to 1.0 Ga). A 1.1 Ga, the intercratonic Taoudeni 480 

Basin, Morocco, records evidence for a shallow chemocline between oxic and euxinic 481 

conditions, but with episodic mid-depth and deeper water ferruginous conditions, based on 482 

iron speciation, C and S isotopes, and trace element (Fe, Al, Mo, V, Mn) enrichments within 483 

clastic sediments (Beghin et al., 2017; Gilleaudeau and Kah, 2015). Such epeiric seas were 484 

becoming increasingly common in the Middle Proterozoic but are distinct environments from 485 

those included in global compilations (e.g. Figure 1). The 742-800 Ma Neoproterozoic Chuar 486 

Group in Arizona records iron enrichments that signify ferruginous conditions (Johnston et al., 487 

2010). The later Neoproterozoic (<742 Ma) was also characterized by anoxic and ferruginous 488 

conditions along continental shelves and in deeper basins, based on the abundance of highly-489 

reactive iron minerals (Canfield et al., 2008). In both of these latter studies, ferruginous 490 

conditions were implicated below the mixed layer, with limited detection of euxinic conditions. 491 

Another Neoproterozoic example of predominantly ferruginous conditions is from 835-630 Ma 492 

sediments from Svalbard, evidence by both iron speciation, FeT/Al, and trace elements (Mo, U, 493 

V; Kunzmann et al., 2015). A 650 Ma carbonate reef in South Australia records iron and 494 

manganese enrichments, interpreted as evidence for ferruginous conditions in shallow and 495 
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deep reefal water (Hood and Wallace, 2014). The Edicaran-age Duoshontuo Formation (635-496 

551 Ma) in South China records persistent ferruginous deepwater conditions below euxinic 497 

shelf waters through both iron speciation and sulfur isotope datasets (Li et al., 2010). Late 498 

Neoproterozoic (550-541 Ma) carbonates from Namibia document the presence of low oxygen, 499 

Mn2+-bearing (manganiferous) waters below oxygenated surface waters, and above deeper 500 

ferruginous waters, based on REE patterns and trace element abundances (Tostevin et al., 501 

2016; Wood et al., 2015). 502 

Anoxic conditions seem to persist, at least locally, into the Phanerozoic Eon as indicated 503 

by redox-sensitive trace element abundance patterns, as well as iron speciation (Partin et al., 504 

2013; Reinhard et al., 2013; Tostevin and Mills, 2020), and a continuation of ferruginous 505 

conditions has been advocated (Canfield et al., 2008; Poulton and Canfield, 2011; Sperling et al., 506 

2015). Iron speciation measurements indicate ferruginous conditions in the early Cambrian and 507 

at the Permian-Triassic boundary (Clarkson et al., 2016; Goldberg et al., 2007). Phanerozoic 508 

MRB, with elevated concentrations of bulk iron, are thought to form from episodic incursions of 509 

a deep ferruginous water mass into oxic waters (Song et al., 2017). Importantly, these indicate 510 

lower dissolved iron concentrations than are inferred for the Precambrian (Table 1). The 511 

recently described early Cambrian-aged IF also records evidence for ferruginous conditions in 512 

deep waters (Z.-Q. Li et al., 2018), but notably δ82/78Se, Se abundances and iron speciation also 513 

indicate ferruginous conditions in several shale and carbonate sections during the Ediacaran to 514 

Cambrian transition (Wen et al., 2014). In several studies, the occurrence of ferruginous 515 

conditions has been linked to ocean anoxic events (OAE; Clarkson et al., 2016; März et al., 2008; 516 

Poulton et al., 2015; Song et al., 2017). As OAEs recur throughout the Phanerozoic, and are 517 
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often linked to major mass extinctions (Wignall and Twitchett, 1996), additional multi-proxy 518 

documentation of oceanic redox conditions will shed light on the timing of the ultimate demise 519 

of ferruginous conditions from the oceans. For the Phanerozoic, such studies will have 520 

important implications for the capacity of ferruginous conditions to exist as marine sulfate 521 

levels rose (Canfield and Farquhar, 2009).  522 

 523 

3. The biogeochemistry of ferruginous oceans 524 

Primary minerals and their formation and deposition pathways 525 

Much work has focused on determining the original iron minerals precipitated out of 526 

ferruginous oceans and deposited to IF, but particular emphasis will be given here to Superior 527 

type IF deposited from the Neoarchean (about 3.8 Ga) to the Paleoproterozoic (about 1.8 Ga), 528 

as they are the most extensive, diverse, and best studied examples of sediments deposited in 529 

ferruginous oceans (Figure 1; Bekker et al., 2014). Many early studies of IF noted that ferrous, 530 

ferric, and mixed-valence iron minerals are present, with an oft-cited average oxidation state 531 

compiled from some Superior-type IF of Fe2.4+ (Klein, 2005; Klein and Beukes, 1992). More 532 

recent microanalysis documents the dominance of Fe2+ in well-preserved IF, but also show 533 

intriguing observations of Fe3+ within typically ferrous minerals (Johnson et al., 2018).  534 

Revisiting some of the well-studied IF with newer analytical tools will yield precise mineralogy, 535 

elemental stoichiometry and oxidation state, as well as resolve primary from secondary 536 

minerals from different IF as well as different water depths within IF. Such careful studies, 537 

combined with experimental and computational approaches to constrain mineral formation 538 
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conditions, are already leading to a clearer picture of the diversity of conditions and primary 539 

minerals that gave rise to Precambrian IF. 540 

Models of IF genesis often invoke the need for an oxidation mechanism due to the 541 

presence of mixed valent or ferric iron minerals in IF. Most of these mechanisms center around 542 

biological pathways, although not exclusively. These include: 1) oxidation of Fe2+ by molecular 543 

oxygen (O2) produced by organisms such as the earliest evolved oxygenic phototrophic bacteria 544 

(the Cyanobacteria; Cloud  Jr., 1968), 2) direct oxidation of Fe2+ by anoxygenic photosynthetic 545 

bacteria in the absence of oxygen (Kappler et al., 2005; Konhauser et al., 2002; Widdel et al., 546 

1993), or 3) direct chemical oxidation of Fe2+ by UV light (Cairns-Smith, 1978). The specifics of 547 

each mechanism, and arguments for or against, and evidence of, have been extensively 548 

reviewed (Koehler et al., 2010; Konhauser et al., 2017; Posth et al., 2013b). 549 

Iron formations comprise several mineralogical facies, or lithofacies, where a primary 550 

control on IF lithofacies was likely water depth along shelf-to-basin transitions on passive 551 

margins (Beukes and Gutzmer, 2008; Beukes and Klein, 1992). These facies include oxide, 552 

silicate, and carbonate  (James, 1954). A previously defined sulfide facies is now excluded as a 553 

true IF, as these are likely either carbonaceous shales or volcanogenic massive sulfide (VMS)-554 

related deposits (Bekker et al., 2010). The exact mineralogy of the facies is dependent on 555 

metamorphic grade, but the lowest metamorphic grade IF generally encompass magnetite and 556 

hematite from oxide-facies IF, chert, greenalite, and stilpnomelane from silicate-facies IF, and 557 

siderite, ankerite, and ferroan dolomite from carbonate-facies IF (Klein, 2005). 558 

Fine-grained hematite has been observed in some IF and interpreted as primary, for 559 

instance in the 2.5 Ga Dales Gorge member of the Brockman Iron Formation (Ayres, 1972; 560 
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Morris, 1993), and the Mara Mamba Iron Formation (Ahn and Buseck, 1990). Iron formations 561 

depositing in the Animikie Basin at around 1.8 Ga in North America have been argued to have 562 

minor occurrences of primary hematite (James, 1954). A primary water column precipitate of 563 

Fe3+, such as a colloidal Fe3+ (oxyhdr)oxide (Ahn and Buseck, 1990) has been widely discussed. 564 

Such poorly crystalline phases are generally what is detected in cultures of anoxygenic 565 

photosynthetic bacteria (Kappler and Newman, 2004; Swanner et al., 2015c) and Cyanobacteria 566 

producing oxygen in the presence of Fe2+ (Swanner et al., 2017). Hematite is not detected in 567 

such studies, and water chemistry controls aging of primary precipitates to more crystalline 568 

phases, such as goethite or lepidocrocite (Wu et al., 2014). Such poorly-crystalline precipitates 569 

would have likely dehydrated and crystallized to hematite under diagenetic conditions (Posth et 570 

al., 2013a). A secondary origin of Fe3+, particularly the mineral hematite, has been argued for 571 

some hematite within the 2.5 Ga Dales Gorge member of the Brockman Iron Formation based 572 

on mineral replacement textures (Rasmussen et al., 2014). However, if post-depositional 573 

oxidation is invoked, which it often is for hematite and magnetite ore (Taylor et al., 2001), it 574 

requires a plausible oxidative mechanism consistent with regional geological events (Robbins et 575 

al., 2019). 576 

In contrast to some evidence supporting primary hematite, magnetite is generally 577 

considered to have formed during diagenesis (Klein, 2005; Posth et al., 2013a). Magnetite 578 

formation is generally ascribed to microbial reduction of Fe3+ (oxyhydr)oxides coupled to 579 

organic carbon oxidation (Johnson et al., 2008a, 2005; Konhauser et al., 2005), which reconciles 580 

the low organic carbon content (usually a few hundred ppm) of many IF. Magnetite also forms 581 

experimentally during abiotic reaction of Fe3+ (oxyhydr)oxides and organic carbon at 582 
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temperatures of 170°C and pressures of 1.2 kbar (Halama et al., 2016; Posth et al., 2013a), 583 

approximating low-grade metamorphic conditions. A green rust precursor has also been 584 

proposed as part of an early formation pathway for magnetite in some IF (Halevy et al., 2017; Li 585 

et al., 2017). Rasmussen and Muhling (2018) also argue that much IF magnetite is the product 586 

of thermal decomposition of siderite.  587 

A primary iron silicate precipitate has been suggested by many authors. Textural 588 

evidence supports the primary nature of iron silicates in several IF of the Hammersley and 589 

Transvaal Basins, formed either within the water column or sediments (Rasmussen et al., 2017, 590 

2015, 2013). Diffraction-based analysis and mapping of iron within nanoscale greenalite and 591 

stilpnomelane inclusions within chert layers of 2.5 Ga BIF from Western Australia and South 592 

Africa also provide evidence for the primary nature of iron silicates (Johnson et al., 2018). 593 

Experimental work documents that greenalite is a likely product of Fe2+-silicate gels, with 594 

formation favored under alkaline (i.e. pH 7.7-8.3) and likely deep-water conditions (Tosca et al., 595 

2016). Iron-bearing phyllosilicates can also be produced upon aging of green rust precipitated in 596 

the presence of silica (Halevy et al., 2017).  597 

Siderite (FeCO3), ankerite [Ca(Fe,Mg,Mn)(CO3)2] and ferroan dolomite are the 598 

predominate mineral phases in carbonate-facies IF, but are also common in oxide facies (James, 599 

1954). Iron-bearing Ca-Mg carbonates are present in IF of lowest to highest metamorphic 600 

grades (Klein, 2005). There has been much discussion of whether these phases precipitated 601 

directly from seawater or formed later during sedimentary diagenesis or even metamorphism. 602 

If siderite is a primary seawater precipitate, it would be a proxy for the chemical composition of 603 

the ocean (Rosing et al., 2010), as carbonate exchanges with atmospheric CO2 equilibrating in 604 
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the surface ocean and alkalinity generated during weathering. However, numerous lines of 605 

evidence, discussed below, suggest siderite did not form in equilibrium with seawater (Dauphas 606 

and Kasting, 2011; Gäb et al., 2017; Reinhard and Planavsky, 2011).  607 

The δ13C of siderite in IF is usually depleted from the assumed value of dissolved 608 

inorganic carbon (DIC; including dissolved CO2, H2CO3, HCO3
- and CO3

2-) in seawater (δ13C ≅ 0 609 

‰; Figure 2; Supplementary Information). This led to the early suggestion that oceans were 610 

stratified with respect to DIC and δ13C-DIC, with increasing DIC concentrations and 611 

progressively lighter δ13C-DIC with depth. This hypothesis was based on the observation of 612 

deep-water siderite with δ13C-DIC of about -5 ‰, and shallower limestones and dolomites with 613 

δ13C-DIC closer to -1 ‰ (Beukes et al., 1990; Beukes and Klein, 1990; Carrigan and Cameron, 614 

1991; Kaufman et al., 1990; Winter and Knauth, 1992). Other authors have interpreted a δ13C-615 

carbonate isotopic gradient within IF to invoke a stronger biological pump than the modern 616 

ocean, which seems unlikely if primary productivity was lower in the Archean ocean compared 617 

to modern (Fischer et al., 2009). The depleted δ13C-DIC (i.e. <-5 ‰) common in siderite data 618 

compiled here (Figure 2; Supplementary Information) is generally ascribed to diagenetic 619 

formation in sediments, via organic carbon oxidation coupled to microbial Fe3+ (oxyhydr)oxide 620 

reduction (Heimann et al., 2010; Johnson et al., 2013; Perry et al., 1973), but higher 621 

temperature abiotic reactions with organic carbon are also feasible (Köhler et al., 2013). During 622 

diagenetic formation, the depleted δ18O composition of Fe3+ (oxyhydr)oxides can be transferred 623 

to the carbonate (see discussion below). The iron isotopic composition can also inform the 624 

formation pathway, with positive δ56Fe values inherited from diagenetically reduced Fe3+ 625 

(oxyhydr)oxides, while negative δ56Fe values may reflect the isotopic composition of iron in 626 
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seawater, partial reduction of Fe3+ (oxyhydr)oxides (Heimann et al., 2010; Johnson et al., 627 

2008b), or a hydrothermal Fe source of δ56Fe	≅ 0 ‰ (Jiang and Tosca, 2019). Strontium (Sr) 628 

isotopes have been proposed as a way to parse the primary vs. diagenetic origins of 629 

Precambrian carbonates, with uniform 87Sr/86Sr representing seawater in Ca-Mg carbonates of 630 

late Archean age, while non-uniform and more radiogenic (i.e. higher) 87Sr/86Sr in IF siderite and 631 

ankerite interpreted as incorporation of Sr from clays during diagenetic formation (Johnson et 632 

al., 2013).  633 

Original studies of light δ 13C-DIC in siderite IF pointed to precipitation from mantle-634 

derived carbon in hydrothermally-influenced seawater, consistent with other geochemical 635 

signatures in those carbonates, e.g. REE, patterns and low organic carbon (Beukes et al., 1990; 636 

Beukes and Klein, 1990; Kaufman et al., 1990). Precipitation of siderite from such fluids is 637 

possible based on work in experimental (Jiang and Tosca, 2019) and natural systems (Bahrig, 638 

1988). The presumed average value of mantle δ 13C-DIC measured from hydrothermal vents of -639 

6.5 ‰ (Shanks  III, 2001) is nearly identical to both the extent of δ 13C-DIC stratification 640 

observed in the redox-stratified Black Sea (-5 to –7‰) (Deuser, 1970; Fry et al., 1991), and the 641 

average δ 13C depletion of siderite samples in our database (-6.23 ‰; Figure 2; Supplementary 642 

Information). Given that the scale of the Black Sea basin may be similar to that of major 643 

Superior type IF basins (Ohmoto et al., 2006), extending the analogy of the observed Black Sea 644 

δ 13C-DIC stratification to the Superior IF basin scale is feasible. Hence, a wider range of primary 645 

marine δ13C signatures may be reflected in ancient ferruginous environments (Jiang and Tosca, 646 

2019; Wittkop et al., 2020b).And while a diagenetic interpretation of siderite δ 13C depletion is 647 

clearly feasible in many cases (see Konhauser et al. (2017) for the conventional diagenetic 648 
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interpretation of these signatures), recent work also demonstrates that a more nuanced view 649 

of δ 13C signatures in Archean siderites is consistent with a link between photoferrotrophy, 650 

methane cycling, and the paucity of organic carbon observed in IFs (Thompson et al., 2019). 651 

 652 

 653 
 654 
Figure 2. Cross plots from a database Precambrian Fe- and Mn-carbonate δ13C and δ18O 655 

(Supplementary Information), including siderites (Sid), rhodochrosites (Rhod), and Mn-enriched 656 

dolomites (D), ankerites (A), and kutnohorite (K). A. The range of processes potentially recorded 657 

in Fe- and Mn-carbonate isotope records. The box shows a range of potentially stratified 658 

seawater siderite values based on d18O equilibrium siderite (Sid) and seawater at 25° to 40° C 659 
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and -1 ‰ to -4 ‰, representing a range from an ice-free ocean value (Muehlenbachs, 1998) to 660 

an upper limit on estimates of a more depleted ancient marine δ18O reservoir (e.g. Galili et al., 661 

2019) using the fractionation factor of Zhang et al. (2001), and the presumed δ13C value of 662 

mantle input (Shanks  III, 2001; horizontal dashed line). A relatively small fractionation factor 663 

between C in siderite and HCO3
- at ~25° C (~+0.5 ‰) is not considered (Jimenez-Lopez and 664 

Romanek, 2004). The paired diagonal lines show the δ13C and δ18O evolution of diagenetic 665 

siderite generated from dissimilatory iron reduction (DIR) assuming a range of ratios (horizontal 666 

ticks in diagonal lines) of marine DIC (0‰ by convention) and organic carbon (OC, -30‰), 667 

replotted from Heimann et al. (2010) who adopted a higher-temperature siderite 18O 668 

fractionation factor from Carrothers et al. (1988). The gray diagonal box shows the DIR 669 

relationships detailed from Heimann et al. (2010) shifted to adopt a mantle δ13C-DIC input of -670 

6.5‰. In contrast, methane oxidation potentially shifts d13C-DIC lower without significantly 671 

impacting δ18O. Metamorphism or interaction with warm diagenetic fluids influenced by 672 

meteoric waters lowers δ18O (Jaffrés et al., 2007). Siderite samples that were not corrected for 673 

the acid-digestion fractionation factor (⍺CO2-siderite) will be shifted ~+2 ‰. The impact of 674 

incomplete acid reaction on siderite samples is potentially complex (Fernandez et al., 2016). B. 675 

All samples relative to the fields discussed in A. Closed symbols have a confirmed analytical 676 

method; open symbols show samples where analytical method could not be fully verified. C. All 677 

siderite samples in the database (n = 571). A handful of samples plot within a reasonable range 678 

for hydrothermally influenced or stratified seawater. A greater proportion of samples show 679 

diagenetic 18O alteration but 13C compositions within a range predicted for hydrothermally 680 

influenced or stratified seawater. While the majority of the samples plotting within the 681 
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methane oxidation zone have unconfirmed analytical methods (predominantly from the 682 

Mesoproterozoic Xiamaling iron formation; Canfield et al., 2018), a subset of samples from a 683 

recently described Neoproterozoic siderite occurrence plot in this space as well (Hiatt et al., 684 

2020). D. All Mn-carbonate samples, including rhodochrosites, and Mn-enriched dolomites, 685 

ankerites, and kutnohorite [see Heimann et al. (2010) for discussion of Fe-ankerites]. There is 686 

less agreement regarding analytical methods for Mn-carbonates, but a range of δ18O for 687 

rhodochrosite based on fractionation factors of Kim et al. (2009) is shown using the same 688 

constraints on seawater composition as A. Most samples appear to plot in a diagenetic field, 689 

but a handful of samples (principally from the Cryogenian Datangpo Formation; Yu et al., 2016) 690 

plot in a space consistent with an origin from stratified seawater or methane oxidation. 691 

 692 

There are isolated examples of extremely light δ13C in siderite, for instance as light as -693 

28 ‰ (Canfield et al., 2018), which could alternatively be produced if DIC is sourced either from 694 

methane oxidation or direct remineralization of organic carbon, although a methane source 695 

was not evaluated for that study. Isotopically light δ13C of siderite can also implicate 696 

metamorphism, which can be parsed when paired with oxygen isotopes (Carrigan and 697 

Cameron, 1991; Kaufman et al., 1990; Li et al., 2013), as carbonates from metamorphosed IFs 698 

typically plot with extremely low δ18O (Yang et al., 2015). But such alteration generally 699 

produces lighter δ18O without altering δ13C, assuming a rock-buffered diagenetic environment 700 

(Jaffrés et al., 2007; Knauth and Kennedy, 2009), though new approaches utilizing Ca- and Mg-701 

isotopes have shown significant promise in evaluating such assumptions in Ca-carbonates (e.g. 702 

Ahm et al., 2019). The δ13C and δ18O signatures of hydrothermal fluids have divergent 703 
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pathways, producing for instance negative δ13C and positive δ18O (Shanks III et al., 1995), 704 

creating the potential for a unique signature of a hydrothermally influenced siderite. However, 705 

many ancient siderites instead display a co-varying isotopic depletion in both δ13C and δ18O 706 

(Figure 2), which may be linked to diagenetic reduction of Fe3+ (oxyhydr)oxides (Heimann et al., 707 

2010). Despite this, a handful of siderite samples plot within a range potentially consistent with 708 

equilibrium with seawater that is either influenced by a hydrothermal input, or otherwise 709 

stratified with respect to DIC composition (Figure 2).   710 

Included in the updated siderite isotope database (Figure 2) are manganese carbonate 711 

samples (Supplementary Information), as environments favorable to producing ferruginous 712 

sediments may also overlap with those that generate Mn-enriched sediments (Bekker et al., 713 

2014; Maynard, 2010; Roy, 2006; Wittkop et al., 2020b). The δ13C and δ18O of these Mn-714 

enriched carbonates display many similarities with siderites, including a majority of samples 715 

likely representing diagenetic environments (Figure 2). But as with siderite samples, some Mn -716 

carbonates also plot within a range of δ13C and δ18O that reflect a potential origin from 717 

stratified seawater, and likewise warrant additional detailed study.  718 

Although the record is intermittent, the δ13C and δ18O of siderites and Mn-enriched 719 

carbonates do display some interpretable temporal trends. The δ13C of these samples generally 720 

plots below the values of co-eval Ca-carbonates (Figure 3), though a subset of samples—721 

particularly those from the ~1.85 Ga Animikie Basin of North America—overlap with the values 722 

observed from Ca-carbonates (Carrigan and Cameron, 1991; Winter and Knauth, 1992). A large 723 

population of Transvaal Basin samples from South Africa also overlap with δ13C values that are 724 

within a range between presumed surface seawater and mantle input. As with Ca-carbonates, 725 
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the δ18O of Fe- and Mn-carbonates becomes generally lighter with increasing age, although the 726 

origin of this trend in Ca-carbonates is subject to much debate. A diagenetic influence on 727 

siderite δ18O may explain this observation (Heimann et al., 2010; further discussion below), as 728 

most siderite samples—particularly those older than the Animikie Group—plot below the lower 729 

limit for permissible seawater δ18O (Figure 3).  730 

 731 

 732 
 733 

Figure 3. Database of Precambrian Fe- and Mn-carbonate δ13C and δ18O (Supplementary 734 

Information), including siderites (Sid), rhodochrosites (Rhod), and Mn-enriched dolomites (D), 735 

ankerites (A), and kunohorite (K). A. Plot of sample carbonate d13CVPDB versus age (sample 736 

geochronology updated following Bekker et al. (2014), where possible. Closed symbols are 737 
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samples where an analysis method is confirmed; open symbols indicate samples where the 738 

analysis method could not be fully validated. Light-gray dashed line of smoothed values from 739 

Ca-carbonates (dolostones and limestones; Shields and Veizer, 2002) is shown for reference. 740 

The darker, straight dashed line is the presumed d13C value of mantle input (Shanks  III, 2001). 741 

Sample groups from major IF basins are highlighted. Note that, regardless of analytical method, 742 

a large population of samples fall within a range of δ13C that lies between Ca-carbonate values 743 

and mantle input. B. Plot of sample Fe- and Mn-carbonate δ18O VSMOW versus age as in A. 744 

Horizontal lines show d18O equilibrium values between Fe/Mn-carbonates and a range of 745 

seawater compositions. The top solid line shows δ18O equilibrium between siderite (Sid) and 746 

seawater at 20° C and -1 ‰ (an ice-free ocean value; Muehlenbachs, 1998) using the 747 

fractionation factor of Zhang et al. (2001); the red solid line below shows the equilibrium value 748 

of rhodochrosite (Rhod) under the same conditions using the fractionation factor of Kim et al. 749 

(2009). Utilizing these same fractionation factors, the black dashed line marks δ18O equilibrium 750 

between siderite and seawater at 40° C and -4 ‰, representing an upper limit on estimates of a 751 

more depleted ancient marine δ18O reservoir (e.g. Galili et al., 2019); the red dashed line below 752 

represents rhodochrosite δ18O equilibrium under these same conditions. An inset shows the 753 

trend of Ca-carbonate δ18O over the same time interval, with calcite (Cal) in open circles and 754 

dolomite (Dol) in closed circles (data from Shields and Veizer, 2002). Fewer samples plot within 755 

a range of reasonable seawater values, though there is considerable disagreement regarding 756 

interpretation of past seawater δ18O. While Fe- and Mn-carbonates follow the same general 757 

trend of decreasing δ18O with increasing age, the impact of analytical method potentially 758 
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manifests more prominently in δ18O records, with an up to 2 ‰ increase in samples without 759 

phosphoric acid fractionation correction (Rosenbaum and Sheppard, 1986). 760 

 761 

Siderite is virtually unknown in Neoproterozoic iron formations (Cox et al., 2013), which 762 

differ with earlier Precambrian (particularly Superior-type) IFs in other important aspects 763 

including deposition in predominantly rift basin environments and a lack of silica-enriched 764 

phases (Bekker et al., 2014). But Hiatt et al. (2020) recently documented siderite varves from 765 

the Cryogenian (Neoproterozoic, ~635 Ma) Jacadigo Basin of Brazil. A small δ13C dataset 766 

presents relatively high δ18O values for Precambrian siderites (Figure 2), which may reflect a 767 

direct influence of seawater, or an initial genesis in cold water followed by later diagenetic 768 

lowering of δ18O.  769 

There remain considerable challenges in the interpretation of δ13C and especially δ18O 770 

of siderite. Perhaps chief among these is the persistent debate and uncertainty regarding the 771 

δ18O of seawater (Galili et al., 2019; e.g. Jaffrés et al., 2007; Johnson and Wing, 2020). 772 

Furthermore, IF siderite frequently co-occurs with chert, and it has long been recognized that 773 

quartz and carbonate δ18O can equilibrate during diagenesis (Becker and Clayton, 1976), though 774 

equilibrium between chert-siderite δ18O in the Gunflint Formation has also been interpreted as 775 

evidence of precipitation from a common water mass (Winter and Knauth, 1992). Siderite 776 

stable isotope analysis also requires an extended reaction time (up to 48 h), correction for 18O-777 

phosphoric acid fractionation (Rosenbaum and Sheppard, 1986), and careful assessment of 778 

potential impact of organic carbon contamination in sample processing (Lebeau et al., 2014; 779 

Oehlerich et al., 2013). Unfortunately, many recent studies did not fully document if these 780 
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methods were followed in their studies. While the 18O correction for siderite acid digestion is a 781 

relatively straightforward ~2‰ depletion, the impact of partial reaction on both δ13C and δ18O 782 

is a potentially greater unknown. It is imperative that future work on siderite δ13C and δ18O 783 

hews more closely to established methods to reduce these uncertainties, consistent with 784 

broader community efforts to improve quality control in proxy studies (Planavsky et al., 2020). 785 

Recent validation of a new open-vessel method for siderite digestion will significantly aid in 786 

these efforts (Fernandez et al., 2016). 787 

In situ isotopic analysis offers a potential to re-evaluate the relationship discussed 788 

above, which is entirely based on analysis of bulk samples using IRMS techniques. In particular, 789 

the associations between carbonate textures and isotopic signatures described in earlier 790 

literature (Carrigan and Cameron, 1991; Winter and Knauth, 1992) suggest that some well-791 

preserved samples may have the potential to archive the composition of the earliest diagenetic 792 

fluids impacting the sediments, if not seawater itself. The potential for isotopic fractionation 793 

between siderite and precursor phases such as chukanovite (Jiang and Tosca, 2019) or green 794 

rust (Halevy et al., 2017; Vuillemin et al., 2019b) also has yet to be addressed by experiments.  795 

Other arguments against direct precipitation of siderite from the water column come 796 

from experiments. Jiang and Tosca (2019) argue that as supersaturation is required to form iron 797 

carbonates, the pCO2 values may be possible only where DIC-rich hydrothermal fluids are 798 

emitted (i.e. Bahrig, 1988). Such a suggestion has been made for BIF-associated siderites in the 799 

Mesoproterozoic Jingtieshan BIF (Yang et al., 2018). Jiang and Tosca (2019) also argue that 800 

direct siderite precipitation from seawater is in competition with iron silicate precipitation. 801 

Direct precipitation from a water column is also difficult to reconcile with the slower kinetics of 802 
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siderite precipitation and higher saturation states required as compared to calcite (Jiang and 803 

Tosca, 2020; Jimenez-Lopez and Romanek, 2004). However, most of these scenarios assume a 804 

homogenous precipitation of siderite at supersaturation, which may be unrealistic in a natural 805 

setting. Siderite nucleation on a pre-existing surface, perhaps on the seafloor (e.g. 806 

heterogeneous precipitation; Jiang and Tosca, 2019) might lower the thermodynamic barriers 807 

to direct precipitation, but such scenarios have yet to be fully explored in experiments, though 808 

a recent study including calcite-siderite transformation demonstrates the promise of this 809 

approach (Lin et al., 2020). It is also important to note that while experimental data clearly 810 

demonstrate slow growth rates for inorganic siderite, they also show that in contrast to 811 

dolomite (e.g. Land, 1998), low temperature siderite precipitation is feasible on scales that are 812 

geologically reasonable, for example, an extended period (weeks to months) of crystal growth 813 

in an undisturbed seafloor environment with chemically favorable conditions. Another 814 

consideration is that iron carbonate precipitated experimentally under conditions that simulate 815 

past oceans is generally ferrous hydroxy carbonate, not siderite (Gäb et al., 2017). Additional 816 

laboratory experiments replicating such environments – including various nucleation centers 817 

and communities of microbes – may help clarify these relationships. 818 

Siderite can also be produced from thermal reduction of Fe3+ (oxyhydr)oxides with 819 

organic carbon under low-grade metamorphic temperatures of 170°C and pressures of 1.2 kbar 820 

(Köhler et al., 2013; Posth et al., 2013a). This process did not go to completion when microbial 821 

biomass and biominerals were used (Halama et al., 2016), suggesting that the reactivity of 822 

organic carbon and/or of Fe3+ (oxyhydr)oxides precursors is important to its preservation. It has 823 

also been suggested based on similar experiments that siderite texture is related to the iron to 824 
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organic carbon ratio, with higher ratios favoring the development of spheroidal to 825 

rhombohedral siderite, and lower ratios favoring massive siderite (Köhler et al., 2013).  826 

Iron isotopes recorded by the iron minerals under discussion have been suggested to 827 

track the redox state of the ocean through time, by recording trends in seawater δ56Fe through 828 

time. One of the most abundant iron-bearing minerals forming in diverse sediments through 829 

time is pyrite (FeS2). The δ56Fe composition of pyrites shifted from predominantly negative prior 830 

to 2.3 Ga, to mostly <-0.5 ‰ and predominantly positive afterward (Busigny et al., 2014; Rouxel 831 

et al., 2005). Negative δ56Fe has been interpreted to reflect partial oxidation of dissolved iron in 832 

an anoxic ocean, with heavy iron preferentially going into Fe3+ (oxyhydr)oxides (preserved as 833 

magnetite, hematite), while residual light aqueous Fe2+ was precipitated as pyrite (Eroglu et al., 834 

2018; Rouxel et al., 2005). Subsequent diagenetic reduction of Fe3+ (oxyhydr)oxides has also 835 

been proposed as a source of negative δ56Fe, as microbes preferentially reduce light iron from 836 

Fe3+ (oxyhydr)oxides (Heimann et al., 2010; Johnson et al., 2008b). This mechanism requires 837 

partial reduction in order to record negative δ56Fe in sedimentary minerals, and that 90 % of all 838 

sedimentary iron was recycled by Fe3+ reduction to produce negative δ56Fe in the seawater 839 

reservoir.  840 

 841 

Key biogeochemical processes in ferruginous oceans 842 

The persistence of ferruginous conditions in the ocean throughout the Precambrian 843 

necessitates an understanding of how life, specifically microbial life, interacted with iron. 844 

Fundamental to this is determining the amount of oxygen in the environment, as it controls 845 

whether the microbial community was aerobic or anaerobic. Geochemical inferences from the 846 
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rock record presently suggest that oxygen in the atmosphere passed a threshold of 10-5 present 847 

atmospheric level (PAL; currently about 20 %) at 2.33 Ga (Luo et al., 2016). Proterozoic 848 

estimates range from 0.1 to 1 % PAL (Cole et al., 2016;  Planavsky et al., 2014b), up to 10 % PAL 849 

(Crockford et al., 2018; Zhang et al., 2016), while still others have estimated oxygen contents 850 

much closer to modern (Blamey et al., 2016; Large et al., 2019; Steadman et al., 2020).  851 

Numerous studies document at least low amounts of oxygen in the surface ocean beginning in 852 

the Archean (Anbar et al., 2007; Czaja et al., 2012; Kendall et al., 2010; Planavsky et al., 2014a) 853 

and throughout the Proterozoic (sec. 2). This topic has also been reviewed recently (Catling and 854 

Zahnle, 2020; Lyons et al., 2014). 855 

A major question in understanding the redox evolution of Earth’s ocean and atmosphere 856 

through time is in determining how oxygen built up in the atmospheric reservoir despite the 857 

existence of oxygen sinks (Kasting, 2013). Considerations include 1) how productive the 858 

biosphere was; and 2) the efficiency of carbon burial and preservation. Primary productivity, 859 

when carried out by oxygenic photosynthetic organisms, offers a primary control on oxygen 860 

production, and in turn an oxidant for Fe2+, H2, sulfur, and CH4 that kept the oceans and 861 

atmosphere reducing. However, burial of organic carbon isolates a photosynthetically produced 862 

reductant from oxidation by oxygen, which over time allows for the reservoir of atmospheric 863 

oxygen to build up. Both of these are necessary components to the oxidation of the oceans and 864 

atmosphere through time, and ultimately, the disappearance of ferruginous oceans. 865 

Global productivity is widely assumed to have been lower in the Proterozoic oceans 866 

(Anbar and Knoll, 2002). A coupled atmospheric-ecosystem modeling study indicated 40x lower 867 

marine primary productivity in the Archean as compared to modern oceans, when considering 868 
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a biosphere unable to perform oxygenic photosynthesis (Kharecha et al., 2005). However, direct 869 

evidence in the form of either the gross amount primary productivity (GPP) by the early 870 

biosphere is difficult to discern, as sediments record indicators of net productivity (NPP) after 871 

water column and diagenetic processing. Triple oxygen isotope measurements of terrestrial 872 

evaporitic sulfate deposits have been employed as a proxy for GPP, as they directly sample the 873 

ratio of stratospheric to tropospheric oxygen produced by oxygenic photosynthesis (Crockford 874 

et al., 2018). These results indicate that GPP was likely lower in the Proterozoic, between 6-41 875 

% of modern pre-anthropogenic levels.  876 

Innovations in evolution notwithstanding, how might have the chemical conditions 877 

within ferruginous oceans have regulated primary productivity to these lower levels? Johnston 878 

et al. (2009) suggested that the predominance of anoxygenic photosynthesis in the Proterozoic 879 

ocean decoupled organic carbon production from oxygen production. Importantly, this model 880 

relies on hydrogen sulfide as a readily available electron donor in the photic zone throughout 881 

the Proterozoic oceans. Although many studies document euxinic conditions in the water 882 

column (Sperling et al., 2014), these tend to be spatially limited, sometimes in restricted 883 

settings, with the deeper ocean and open ocean settings still dominated by ferruginous 884 

conditions (Doyle et al., 2018). Ferruginous conditions may have persisted in much of the 885 

oceans, despite a buildup of sulfate that could have fueled development of water column 886 

euxinia. Organic carbon burial may have also been insufficient to drive complete sulfate 887 

reduction in many ocean regions (Johnston et al., 2010). Primary productivity in predominately 888 

ferruginous oceans could have also relied on Fe2+-dependent anoxygenic photosynthesis 889 
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(“photoferrotrophy”), which produces organic carbon in a molar ratio of 1:4 to iron oxidized, 890 

according to the stoichiometry below: 891 

HCO3
- + 4Fe2+ + 10H2O + light (hν) = CH2O + 4Fe(OH)3 + 7H+     (eq. 1) 892 

This limited amount of organic carbon production, tied to the availability of iron, could have 893 

placed an upper limit on primary production (Konhauser et al., 2005). For instance Canfield 894 

(2005) estimated rates of primary production by photoferrotrophs in such a scenario that were 895 

7-22 x lower than modern marine primary production. Phosphate (P) limitation in the 896 

Precambrian (discussed below) may have also favored photoferrotrophs, as a greater Fe:P ratio 897 

is required by photoferrotrophs as compared to cyanobacteria, which do not require as much 898 

iron (Jones et al., 2015). 899 

Further controls on primary productivity in light of evidence for oxygenic photosynthesis 900 

well before the GOE often center around the role of nutrient limitation, particularly nitrogen 901 

(N) and phosphorus (P). One idea is that ammonium (NH4
+) in the oceans would not have been 902 

consumed by oxygen-dependent ammonium oxidation and/or subsequent denitrification prior 903 

to the appearance of oxygen in the marine system (Fennel et al., 2005). Such a pathway 904 

accounts for fixed nitrogen loss in deoxygenated regions of the modern oceans, which limit 905 

subsequent primary productivity (Codispoti and Christensen, 1985). The anaerobic ammonium 906 

oxidation (anammox) process, whereby ammonium is oxidized by bacteria using nitrite (NO2
-) 907 

as an electron donor, is also responsible for fixed nitrogen loss in OMZ regions of the ocean 908 

today (Dalsgaard et al., 2012), but importantly still requires an oxidant (nitrite) formed through 909 

oxygen-requiring nitrification. Oxygenic photosynthesis could have therefore produced a 910 
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negative feedback on nitrogen availability, as oxygen’s appearance spurred the development of 911 

an aerobic cycle that led to marine fixed nitrogen loss.  912 

Negative δ15N in organic carbon from anoxic Archean environments has been 913 

interpreted as reflecting incomplete uptake of non-limiting ammonium (Yang et al., 2019), 914 

suggestive that nitrogen may not have always been a limiting nutrient for primary productivity. 915 

Phylogenetic inferences point to a mid-Proterozoic acquisition of genes encoding for the N2-916 

fixing nitrogenase enzyme (Boyd et al., 2011), which would have allowed fixed nitrogen 917 

production. Yet near zero δ15N from 3.2 Ga rocks are difficult to explain by abiotic processes, 918 

indicating that biological N2 fixation could be a much older process (Stüeken et al., 2015). 919 

Similar findings support active N2 fixation in ~2.9 Ga Pongola Supergroup (Ossa Ossa et al., 920 

2019). Others have used similar isotopic arguments to advocate for the appearance of N2 921 

fixation during the GOE (Luo et al., 2018). This may be copacetic with rising availability of Mo in 922 

Proterozoic oceans due to enhanced oxidative weathering (Scott et al., 2008). Molybdenum is 923 

required for efficient nitrogenase activity in Cyanobacteria (Glass et al., 2009; Zerkle et al., 924 

2006). Negative δ15N in 1.88 Ga sediments from the Animikie basin point to active N2 fixation, 925 

and non-limiting fixed nitrogen to fuel primary productivity associated with the development of 926 

euxinic mid-depth waters, which can scavenge Mo to sediments, but apparently did not exhaust 927 

the Mo supply for N2 fixation in the Animikie basin (Godfrey et al., 2013). 928 

Phosphate availability has been put forward as a regulator of early marine primary 929 

productivity. Scavenging of phosphate through adsorption on variably charged Fe3+ 930 

(oxyhdr)oxides was suggested as a mechanism for phosphate limitation given evidence for 931 

deposition of mixed-valent iron minerals to IF (Bjerrum and Canfield, 2002). Subsequent work 932 
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cast doubt on this scenario given that dissolved silica higher before the Phanerozoic origin of 933 

silicifying organisms. Silica co-precipitation with Fe3+ (oxyhydr)oxides limits the amount of 934 

phosphate adsorption to Fe3+ (oxyhdr)oxides (Konhauser et al., 2007). Experimentally 935 

determined adsorption constants measured in the presence of silica were used to determine 936 

the Archean seawater phosphate recorded by IF, estimated at 5.25 ± 2.63 μM (Konhauser et al., 937 

2007). Subsequent experiments in a more realistic seawater matrix revised these estimates 938 

downward, to between 0.04 to 0.13 μM (Jones et al., 2015). The significance of Fe3+ 939 

(oxyhdr)oxides phosphate scavenging pathway likely depends on the extent to which Fe3+ 940 

(oxyhdr)oxides in IF are primary (sec. 2). 941 

A temporal record of marine phosphate concentrations has been assembled via 942 

phosphorus abundances in IF (Planavsky et al., 2010) and in shales (Reinhard et al., 2016). Both 943 

records indicate increasing phosphate burial beginning in the Neoproterozoic, echoing the 944 

consensus of phosphate-limited primary productivity through the Archean and much of the 945 

Proterozoic. Phosphate limitation in the mid-Proterozoic has been argued to have throttled the 946 

rise of atmospheric oxygen at this time (Derry, 2015). The Proterozoic marine phosphate 947 

reservoir is proposed to have been buffered by precipitation the mineral vivianite 948 

(Fe3(PO4)2·8H2O or an Fe3+-phosphate (Derry, 2015; Reinhard et al., 2016), but green rust has 949 

also been suggested (Halevy et al., 2017). This model predicts that vivianite or other phosphate-950 

bearing phases should be deposited in sediments from that time, although the ultimate 951 

preservation potential of such minerals is not clear. Vivianite is not often reported in 952 

Precambrian marine sediments, but does form in recent marine sediments below the sulfate-953 

methane transition zone (Liu et al., 2018), and at sites of high organic carbon deposition 954 
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(Dijkstra et al., 2016). It has also been detected in some ferruginous and euxinic lake sediments 955 

(Cosmidis et al., 2014; Vuillemin et al., 2019a; Xiong et al., 2019). 956 

More intense ultraviolet (UV) radiation in the upper 30 m of the ocean has been 957 

discussed as having inhibited primary productivity in the Archean, due to a lack of ozone 958 

(Cockell, 2000). Radiation exposure has been proposed to have been mitigated by mineral 959 

sunscreens, notably Fe3+ (oxyhdr)oxides and/or silica (Bishop et al., 2006). Gauger et al. (2015) 960 

noted that photoferrotrophs have the advantage of producing their own iron-based mineral 961 

sunscreen in the course of anoxygenic photosynthesis. However, Fe3+(oxyhdr)oxides-silica co-962 

precipitates did not seem to confer much protection on cyanobacteria, suggesting they might 963 

have been more susceptible to the higher UV exposure on early Earth (Mloszewska et al., 964 

2018). Yet another source of toxicity to cyanobacteria could be Fe2+ itself. Reactive oxygen 965 

species (ROS) likely mediate toxicity if Fe2+ is fluxing into a zone of oxygen production, such as 966 

when ferruginous deep water upwelled to deposit IF (Swanner et al., 2015a). 967 

The δ13C of marine carbonates provides some constraint on changes in the global 968 

carbon cycle through time. The δ13Ccarb records marine δ13CDIC with <1‰ offset (Zeebe and 969 

Wolf-Gladrow, 2001). The fractionation factor (Δc) is the difference between δ13Ccarb and δ13Corg 970 

during carbon fixation. Changes in the fraction of organic carbon (forg) removed from Earth’s 971 

surface environment may reflect changes in the total amount of primary productivity, oxygen 972 

produced, and overall productivity of the biosphere via the following mass balance (Havig et al., 973 

2017): 974 

 δ13Ccarb = δ13Cmantle + forg(Δc)        (eq. 2) 975 
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A decrease in Δc between in the δ13Ccarb and δ13Corg in marine sedimentary records throughout 976 

the Proterozoic has been taken as an indication of increasing carbon burial through time, with 977 

this interpreted as a cause of the rise of oxygen through time (Des Marais et al., 1992). 978 

Examination of such a mass balance and the δ13Ccarb and δ13Corg records have also been used to 979 

argue for shifts from dominantly chemical to biochemical carbonate precipitation in the 980 

Proterozoic (Bartley and Kah, 2004). Elaboration of this mass balance into models that 981 

incorporate feedbacks from weathering, volcanism and atmospheric processes inform where 982 

these additional feedbacks exert influence (Kump and Arthur, 1999). More nuanced approaches 983 

also consider that variations in these isotopic records can be caused by dominance of different 984 

microbial metabolisms (e.g. Havig et al., 2017). For instance, elevated δ13Ccarb have also been 985 

interpreted as evidence for active methanogenesis (Hayes and Waldbauer, 2006). 986 

Methane likely contributed to carbon cycling in ancient ferruginous environments, but 987 

the proportion of the carbon cycle conducted via methane is subject to debate. Complicating 988 

the matter is the fact that there is no direct proxy for the presence of methane on early Earth 989 

because dissolved or gaseous methane escapes the location where it forms. However, methane 990 

is unique among carbon compounds in having extremely light δ13C. When biologically formed, 991 

methane is often 40 ‰ or more lighter than the starting carbon substrate (Whiticar, 1999). 992 

Therefore, many studies invoke methane cycling in depositional environments where 1) δ13C of 993 

organic carbon is extremely isotopically depleted (e.g. biomass from organisms who consumed 994 

methane); or 2) where extremely light δ13CDIC was generated by oxidation of methane, which 995 

was then incorporated into carbonate minerals.  996 
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Genomic data and isotopic records are consistent with methanogens representing an 997 

early appearing microbial lineage (Schopf et al., 2018; Ueno et al., 2006; Wolfe and Fournier, 998 

2018). The role of methane as an important greenhouse gas in the Precambrian atmosphere is 999 

widely discussed (Catling and Claire, 2005; Claire et al., 2006; Feulner, 2012). Methanogenesis 1000 

has been interpreted to be a major pathway for degradation of organic carbon produced by 1001 

primary productivity within anoxic oceans (Canfield et al., 2006; Goldblatt et al., 2006; Kharecha 1002 

et al., 2005; Ozaki et al., 2018; Pavlov et al., 2003), although others have suggested a more 1003 

muted role (Laakso and Schrag, 2019).  1004 

Hayes (1994) highlighted a global negative excursion of kerogen δ13C to its lowest values 1005 

in the geologic record (-60 ‰) and attributed it to methanotrophy, microbial oxidation of 1006 

methane. Aerobic methanotrophy at an oxycline has also been invoked to explain depleted δ13C 1007 

in organic carbon near the GOE (Bekker and Kaufman, 2007). Hinrichs (2002) noted that such a 1008 

signal could be consistent with either aerobic or anaerobic methanotrophy. Following from this 1009 

was the suggestion that the early methane cycle may have been regulated primarily by 1010 

anaerobic oxidation of methane (AOM) coupled to sulfate (Stüeken et al., 2017), potentially 1011 

representing a major CH4 sink over geologic time (Olson et al., 2013). Others have also invoked 1012 

AOM utilizing alternative electron acceptors, such as Fe3+ (oxyhydr)oxides (Lepot et al., 2019). 1013 

Methanotrophy seems to have been common in the Neoarchean, particularly within closed-1014 

basin environments (Flannery et al., 2016). Others have argued against a vigorous methane 1015 

cycle to explain depleted δ13C in kerogen. Slotznick and Fischer (2016) suggested on the basis of 1016 

carbonate δ13C and a geochemical model, that acetogenesis using the acetyl-CoA metabolisms 1017 

could have been responsible for the Archean kerogen excursion. This model permits the genesis 1018 
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of δ13C-depleted kerogens without necessitating precursor photosynthetic biomass (e.g. Lepot 1019 

et al., 2019) or methanotrophy.  1020 

Finally, a highly localized influence of methanogenesis and methanotrophy on marine 1021 

DIC and carbonate δ13C, such as within a redox-stratified basin, has been postulated as late as 1022 

the Ediacaran (Ader et al., 2009). It has also been argued that carbonate carbon signatures of 1023 

methanotrophy would have been muted by higher DIC concentrations, particularly in the 1024 

Archean (Slotznick and Fischer, 2016). Although these examples demonstrate that there is 1025 

much interest in exploring the methane cycle of early Earth, few studies can explicitly link the 1026 

putative influence of methane to redox proxies. Thus, an opportunity exists to explore signals of 1027 

methanogenesis in ancient environments. 1028 

Direct fossil evidence of bacteria, particularly those involved in iron cycling in 1029 

ferruginous settings is rare from early Precambrian rocks. Evidence for Fe2+-oxidizing bacteria 1030 

has been put forward based on microfossils reminiscent of modern, aerobic Fe2+-oxidizing 1031 

bacteria such as Gallionella sp. who make organic twisted stalks that become coated with iron 1032 

minerals (Chan et al., 2004), or Leptothrix sp. who make long, mineralized organic sheaths 1033 

(Kunoh et al., 2017). Similar “Gunflint” microfossils have been found worldwide in ca. 1.8 Ga 1034 

iron formations and carbonates (Barghoorn and Tyler, 1965; Cloud, 1965; Papineau et al., 2017; 1035 

Planavsky et al., 2009; Wilson et al., 2010). The temporal restriction of these microfossils has 1036 

been suggested to arise from a limited period of time for an interface between deep 1037 

ferruginous and shallow oxic oceans (Knoll, 2003). With our increased understanding that a 1038 

ferruginous to oxic interface existed in the oceans through much of the Precambrian (sec. 2), 1039 

temporally-limited chemical conditions are unlikely to explain the limited occurrence of 1040 
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Gunflint-type microfossils. The bias is unlikely to be preservational, as experimental work 1041 

suggests some organic and iron-mineralized structures from Fe2+-oxidizing bacteria can be 1042 

preserved up to 250°C and 140 MPa (Picard et al., 2015). Furthermore, documentation of 1043 

intracellular iron minerals by some thick-walled taxa has led to the suggestion that at least 1044 

some of these Gunflint-style microorganisms may rather be cyanobacteria, as intracellular 1045 

mineralization is unlikely for aerobic Fe2+-oxidizing bacteria (Lepot et al., 2017). 1046 

Nitrifying organisms and denitrifying organisms likely originated after the introduction 1047 

of oxygen into the environment, which was needed to fuel an aerobic nitrogen cycle, as 1048 

discussed above. Evidence for oxidative nitrogen cycling by the time of the GOE comes from the 1049 

heavier δ15N in organic carbon by this time, produced when the lighter δ15N in ammonium are 1050 

preferentially nitrified and lost from the ocean as N2, enriching the nitrogen source for biomass 1051 

(Beaumont and Robert, 1999; Kipp et al., 2018; Luo et al., 2018; Zerkle et al., 2017). An increase 1052 

in the δ15N composition of kerogen in late Archean shales deposited from ferruginous water 1053 

has therefore been interpreted for the onset of oxidative nitrogen cycling due in overlying 1054 

waters (Godfrey and Falkowski, 2009). Busigny et al. (2013) suggested that elevated δ15N in 1055 

shales and BIF from the Hamersley Basin, encompassing anoxic oceans to redox-stratified 1056 

oceans with oxygen in surface waters, could also involve uptake of ammonium and a 1057 

completely anaerobic nitrogen cycle. In the mid-Proterozoic, aerobic nitrogen cycling in 1058 

shallower water above a deeper ferruginous ocean may have led to nitrogen loss that favored 1059 

N2-fixing Cyanobacteria over other eukaryotes (Stüeken, 2013). Another consequence of the 1060 

onset of aerobic nitrogen cycling, especially in stratified ferruginous oceans, is that abiotic 1061 

reaction of nitrite, an intermediate in denitrification, with Fe2+ could have produced the 1062 
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greenhouse gas nitrous oxide (N2O), which could have been part of the solution of the 1063 

Proterozoic Faint Young Sun paradox (Stanton et al., 2018). 1064 

 1065 

4. Past ferruginous lakes 1066 

Although much recent literature addressed biogeochemical processes occurring in 1067 

ancient ferruginous oceans (sec. 3), or on modern processes occurring in lakes that are 1068 

presently ferruginous and meromictic (sec. 6), opportunity also exists to investigate the 1069 

sediment records of past ferruginous lakes. These “paleoferruginous” lakes can either be no 1070 

longer ferruginous, or no longer extant lake systems. Sediment records of paleoferruginous 1071 

lakes as old as the Mesoproterozoic have been identified (Cumming et al., 2013; Slotznick et al., 1072 

2018). However, variability in the pH of lacustrine systems (Stüeken et al., 2019) as well as high 1073 

rates of clastic sedimentation (Lyons and Severmann, 2006) may be complicating factors in 1074 

interpreting the redox records of ancient lakes.  1075 

 Younger lacustrine sediments offer the opportunity to clarify the relationships between 1076 

redox proxies and environmental conditions. Recent work on long sediment records from Lake 1077 

Towuti, Indonesia, has provided insights into the relationships between porewater chemistry, 1078 

microbial activity, and diagenetic iron mineral genesis (Vuillemin et al., 2019b, 2019a, 2018). 1079 

Although water monitoring data are limited, modern Lake Towuti appears to maintain redox 1080 

stratification but with relatively low and seasonally-variable concentrations of dissolved Fe 1081 

(max. ~2.5 µM; Costa et al., 2015). The ferruginous nature of the Lake Towuti sediment record 1082 

appears to reflect allochthonous iron inputs from lateritic soils and ultramafic rocks of its 1083 

watershed (Costa et al., 2015; Hasberg et al., 2019). Such a system provides a further 1084 
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opportunity to assess the relationships between ultramafic rock weathering and lacustrine 1085 

depositional processes and make Lake Towuti particularly valuable to studies of lacustrine 1086 

deposition on Mars (e.g. Goudge et al., 2017). 1087 

 Other examples of paleoferruginous lake records are known primarily through 1088 

paleoclimate investigations, but they are generally less well-known from a geobiological and 1089 

geochemical context. Paleoferruginous lakes are particularly valuable in that they archive 1090 

geochemical records of transitions from ferruginous to euxinic or oxic conditions (e.g. Felder 1091 

and Gaupp, 2006)—mirroring changes experienced in Earth’s ancient oceans (sec. 2)—but with 1092 

minimal imprint of deep burial diagenesis or metamorphism. In the paragraphs that follow we 1093 

will highlight the potential for additional work in paleoferruginous lakes using two examples. 1094 

These include a small temperate lake which was ferruginous as recently as several hundred 1095 

years ago, and a large tropical lake, which appears to have cycled in and out of ferruginous 1096 

conditions repeatedly over the past ~140 Kyr. Otter Lake is a Pleistocene kettle lake located in 1097 

southeast Michigan, USA, from which a Holocene sediment core containing sequences of Fe- 1098 

and Mn-carbonate varves has been previously described (Wittkop et al., 2014). However, Otter 1099 

Lake’s surface sediments are not particularly iron-rich, and the lake does not appear to be 1100 

ferruginous (or meromictic) today. Lake Malawi is a large tropical (12°S, 34.5°E) meromictic 1101 

freshwater lake in the tectonically active Great Rift Valley of Africa (Katsev et al., 2017). A 1102 

drilling campaign in 2005 recovered over 500 meters of core from two sites in Lake Malawi 1103 

(Scholz et al., 2011a). In modern Lake Malawi water column sulfate levels are low (~15 µM), 1104 

dissolved hydrogen sulfide is present at mid-water depths at low µM concentrations, and 1105 

dissolved iron is a significant component of surface sediment porewaters (J. Li et al., 2018).  1106 
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 1107 

Geochemical and mineralogical records of Fe-deposition in paleoferruginous lakes 1108 

The application of iron speciation measurements (sec. 2) to lakes has not always yielded 1109 

results that are consistent with the redox characteristics of the overlying water column (Rico 1110 

and Sheldon, 2019; Slotznick et al., 2018; Stüeken et al., 2019). Using data from Lake Malawi 1111 

and Otter Lake, we will argue that the presence of siderite in sediments enriched in bulk iron 1112 

can be used as a reliable indicator of the presence of paleoferruginous conditions. Furthermore, 1113 

bulk iron enrichment and the presence of siderite can be evaluated without the application of 1114 

specialized techniques. As siderite is present in both Otter Lake and Lake Malawi sediments 1115 

(Scholz et al., 2011b; Wittkop et al., 2014), the following discussion will explore these 1116 

occurrences of siderite in the context of what is presently known about the sediment records of 1117 

iron deposition in these lakes.  1118 

Otter Lake sediments are generally iron-rich and contain up to 20 wt% Fe-carbonates in 1119 

discrete intervals within the late Holocene (<6 ka) sediments (Wittkop et al., 2014). Carbonates 1120 

in Otter Lake sediments occur in mm-scale laminae, which radiocarbon dates and lamination 1121 

counts confirm to be varves, seasonally deposited each year. The sediments are also enriched in 1122 

organic carbon (up to 70 %). The carbonates are manganoan siderites as confirmed by 1123 

quantitative X-ray diffraction (XRD) with sediment abundance of up to 19 % by weight, and 1124 

appear to have precipitated in oxygen isotopic equilibrium with modern lake water with 1125 

modified DIC (Wittkop et al., 2014). Clumped O-isotope analysis confirmed that the siderite 1126 

precipitated in a cold environment on the lake floor or within sediments (van Dijk et al., 2019).  1127 
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X-ray fluorescence (XRF) data (Figure 4) demonstrates that the sediments of Otter Lake are 1128 

enriched in bulk iron (up to 60 % Fe2O3 on a carbon-free basis, or about 20 % Fe2O3 of bulk, 1129 

where Fe2O3 is the total Fe measured by XRF), with siderite deposition occurring largely during 1130 

intervals of high Fe2O3:SO3. Manganese enrichments in Otter Lake sediments are also strongly—1131 

but not exclusively—linked to carbonate deposition. Perhaps most intriguingly, Otter Lake 1132 

continued to deposit iron-enriched sediments for nearly 1,000 years after major siderite 1133 

deposition ceased. Although the iron mineralogy of this section of the record could not be 1134 

determined by XRD, a more sensitive analysis of Fe-mineralogy in the  Otter Lake record may 1135 

provide additional insights into the processes which drove a transition from ferruginous to  the 1136 

fully oxic conditions observed today, and whether or not the sediments record an intermediate 1137 

phase of euxinic conditions. Although these questions will need to be addressed in future work, 1138 

the existing evidence highlights the potential for future paleoredox work on the Otter Lake 1139 
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record. 1140 

 1141 

Figure 4. Geochemistry and mineralogy of the Otter Lake sediment core. A. Plots of siderite 1142 

abundance (replotted from Wittkop et al., 2014), bulk sediment Fe2O3 (carbon-free basis, total 1143 

Fe expressed as Fe2O3), MnO (carbon-free basis), and the ratio of Fe2O3 to SO3 .Ferruginous 1144 

conditions (grey bars) are indicated by enhanced siderite accumulation and high values of bulk 1145 

sediment Fe2O3. Variables plotted versus sediment age in thousands of calendar years before 1146 

present (kcal yr BP) using the age model from Wittkop et al., (2014). The speciation samples 1147 

refer to samples in Figure 9. B. Cross plots of Otter Lake sample XRF showing relationships 1148 

between Fe2O3 and MnO, and Fe2O3 and SO3. 1149 

 1150 
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Lake Malawi also contains iron-enriched sediments and carbonates hosted in a starkly 1151 

contrasting geological and hydroclimate environment. The long sediment cores from Lake 1152 

Malawi were initially obtained to generate a high-resolution record of late Pleistocene tropical 1153 

climate extending to 140,000 years before present (Brown, 2011; Johnson et al., 2011; Lane et 1154 

al., 2013; Scholz et al., 2011a). Lake Malawi sediments range in lithology from finely laminated, 1155 

organic rich (up to 8 % total organic carbon; TOC) muds to massive carbonate-rich muds and 1156 

sands (Scholz et al., 2011a). Generally, laminated muds are thought to reflect lake highstands 1157 

while massive carbonate rich intervals are thought to reflect lowstands associated with intense 1158 

drought conditions. Scholz et al. (2011b) noted that siderite occurs in both nodular and 1159 

laminated contexts in the Lake Malawi 1C core and is most notable in sediments aged 117-124 1160 

ka; they interpret the lack of calcite and presence of siderite to suggest a stratified water 1161 

column capable of dissolving calcite.  1162 

Previously collected XRF core scans (method described by Brown, 2011) coupled with 1163 

new XRD-XRF analysis of selected Lake Malawi samples provides a window into the 1164 

paleoferruginous conditions recorded in the Lake Malawi cores (Figure 5). Intervals of 1165 

enhanced iron deposition in Lake Malawi are inferred by semi-quantitative XRF scans of Fe/Ti 1166 

(Figure 5), which demonstrate episodic spikes above a modal value of 52.3 for the combined 1167 

long Lake Malawi record in the 1B and 1C cores (Scholz et al., 2011a). Figure 5 also shows XRD 1168 

spectra from two samples in Fe/Ti enriched zones in Lake Malawi core 1C, which confirm the 1169 

presence of siderite, as well as quantitative XRF data demonstrating that these sediments are 1170 

iron-enriched (Fe2O3 up to 41.8 wt. % on a carbon-free basis). Vivianite has also been detected 1171 

(Scholz et al., 2011a). Cross plots of individual sample quantitative XRF demonstrate that iron 1172 
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and Mn deposition are closely linked in Lake Malawi, and that the most iron-enriched Lake 1173 

Malawi samples correspond to high sediment Fe2O3:SO3. 1174 

 1175 
Figure 5. Geochemistry and mineralogy from the Lake Malawi drill cores collected in 2005 1176 

(Scholz et al., 2011a). A. Plot of core 1B and 1C XRF core scan Fe/Ti ratio, showing multiple 1177 

cycles of excess Fe/Ti likely representing ferruginous conditions. B. Sediment XRD scans from 1178 

samples in two separate intervals of excess Fe/Ti showing a dominance of siderite (S) relative to 1179 

siliciclastics such as quartz (Q) or clay minerals (Cl.). Quantitative XRF from the same samples 1180 

demonstrates Fe2O3-enriched sediments up to 42 % on a carbon-free basis (with sediment Fe 1181 
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expressed as Fe2O3T). C. Cross plots of individual sample XRF data showing strongly linked cycles 1182 

of Fe2O3 and MnO deposition, and an antithetical relationship between sediment Fe2O3 and SO3 1183 

deposition. 1184 

 1185 

Lake Malawi sediments appear to represent a particularly rich archive of dynamic redox 1186 

cycling directly influenced by environmental changes. Mega-droughts are evident in the Malawi 1187 

record, which influenced chemical cycling in the lake through changes in lake level, altering the 1188 

carbonate compensation depth and the availability and transport of weathered materials from 1189 

the watershed (Brown, 2011). Therefore, iron minerals in the Lake Malawi cores may represent 1190 

a range of sources including detrital siderite from older continental sequences, diagenetic 1191 

minerals precipitated during phases of organic-rich deposition, and water-column or lake floor 1192 

precipitates formed through carbonate cycling in stratified waters.  1193 

 1194 

Lacustrine siderite petrography, microanalysis, and speciation  1195 

The presence of siderite in both Otter Lake and Lake Malawi offers an opportunity to 1196 

compare differences and similarities in the examples that may provide insight into the 1197 

occurrence of siderite in the rock record. Electron probe microanalysis (EPMA) maps of varved 1198 

carbonate sediments from Otter Lake display a consistent manganoan component, together 1199 

with trace amounts of calcium (Ca). These maps demonstrate that Ca, when present, is found in 1200 

the crystal core, and is overgrown by a Mn-enriched zone, and that both are embedded in an 1201 

Fe-enriched rim (Figure 6). Iron is most strongly concentrated in carbonate crystals, with lower 1202 

concentrations within the amorphous sediment matrix; in contrast, Mn is concentrated more 1203 
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strictly within carbonate crystals. Diffraction patterns from EPMA-analyzed intervals are most 1204 

consistent with a phase in rhodochrosite-siderite solid solution, rather than kutnohorite 1205 

(Wittkop et al., 2014). 1206 

 1207 

 1208 
 1209 

Figure 6. Electron probe microanalysis (EPMA) maps of Otter Lake carbonate crystals. A. 1210 

Secondary electron image. B. Relative Ca concentration. C. Relative Mn concentration. D. 1211 

Relative Fe concentration. Note the enrichment of Ca and Mn in carbonate crystal cores, versus 1212 

Fe-enrichment in carbonate crystal rims as well as diffuse concentrations in the sediment 1213 

matrix. 1214 
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 1215 

The Fe-Mn carbonates in Lake Malawi cores occur in structureless sediments and display 1216 

textures such as radiating sprays of larger, twinned crystals, which cross-cut original 1217 

horizontality (Figure 7; Figure 8). In contrast, the Otter Lake carbonates are smaller, more 1218 

spherical, and show evidence of polarization crosses (Figure 8). Spherical structures and 1219 

polarization crosses have also been linked to late diagenetic Fe-carbonates (Köhler et al., 2013), 1220 

but their presence in Otter Lake sediments suggests they may be polygenetic. Although their 1221 

morphologies differ, both the Otter Lake and Lake Malawi examples exhibit Mn concentration 1222 

in their crystal cores, although Fe also appears to be strongly concentrated in the Lake Malawi 1223 

carbonate crystal cores, and Ca appears to be more evenly distributed in Lake Malawi 1224 

examples.  1225 

 1226 
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 1227 
Figure 7. Electron probe microanalysis (EPMA) maps of Lake Malawi carbonate crystals. A. 1228 

Secondary electron image. B. Relative Ca concentration. C. Relative Mn concentration. D. 1229 

Relative Fe concentration. Note the strong concentration of Mn in carbonate crystal cores 1230 

similar to the OL example. However, in contrast to the Otter Lake example, Ca is more evenly 1231 

distributed in the crystals. Additionally, iron is also enriched in Lake Malawi crystal cores in 1232 

comparison to Otter Lake but is present in low abundance in the sediment matrix in both lakes.   1233 

   1234 

Microprobe spot analyses from Lake Malawi and Otter Lake carbonates normalized to 1235 

Ca-Mn-Fe show that Lake Malawi samples analyzed from two different locations in the core 1236 

separated by approximately 15 m of sediments range from 40-80 % Mn-carbonate (Figure 9). 1237 
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The relative consistency of the Lake Malawi carbonate compositions may indicate a more stable 1238 

diagenetic environment. In contrast, Otter Lake crystals analyzed from two intervals of core 1239 

separated by about 2 meters of sediment range from 10-95 % Mn. The wider range of 1240 

composition in the Otter Lake samples is consistent with fluctuating conditions in a lake water 1241 

column, where ratios of elements may change seasonally or through long-term basin evolution 1242 

(sec. 5), though the wide range of Fe concentrations could also derive from the EPMA beam 1243 

measuring more Fe-enriched rims versus Fe-poor crystal cores in some cases (Figures 6 & 7).  1244 

 1245 

 1246 
Figure 8. Polished petrographic thin section images of lacustrine iron carbonates. Left, Lake 1247 

Malawi sample displaying cross cutting fabric relative to plane of deposition (parallel to long 1248 

axis of image) and larger elongate crystals. Right, photomicrograph of Otter Lake carbonates 1249 

showing smaller, more spherical crystal forms, and the presence of polarization crosses.  1250 

 1251 
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 1252 
 1253 
Figure 9. Normalized composition of Lake Malawi (closed diamonds) and Otter Lake (open 1254 

diamonds) carbonates compiled from microprobe analysis. One Otter Lake sample plots in the 1255 

Lake Malawi field. Note the greater variability in Otter Lake carbonates relative to Lake Malawi. 1256 

 1257 

Further differences in the Lake Malawi and Otter Lake siderite occurrences can be observed in 1258 

bulk iron speciation. Samples were extracted from a modified protocol based on the method of 1259 

Poulton and Canfield (2005). Concentrations of both Fe and Mn were analyzed in the extracted 1260 
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solutions owing to the significant abundance of Mn in both systems. Sulfur species were not 1261 

extracted. The concentration of Fe and Mn in speciation data (Figure 10) suggest carbonates 1262 

comprise up to ~12 % of sediments by weight. This is similar to quantitative XRD abundance 1263 

reported from Otter Lake, although quantifying siderite is not straightforward (Ordoñez et al., 1264 

2019; Wittkop et al., 2014). Both lakes’ sediments show that reservoirs of highly reactive iron 1265 

persist in sediments, but only Lake Malawi samples showed a significant component of 1266 

magnetite. Lake Malawi magnetite was in a molar ratio of approximately 1.5:1 relative to iron-1267 

carbonates, consistent with diagenetic co-precipitation of carbonate and magnetite (Heimann 1268 

et al., 2010).  This suggests that much of the of the iron reservoir in Otter Lake remained in a 1269 

highly reactive but reduced form that was not available for diagenetic reduction, possibly as a 1270 

green rust phase. As iron speciation analysis was performed in oxic conditions, identification of 1271 

such a metastable phase was not possible.  1272 

 1273 

 1274 
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 1275 

Figure 10. Iron and manganese speciation from selected Lake Malawi and Otter Lake samples. 1276 

A. Total extracted Fe and Mn as weight percentage of dry sediment, versus Fe and Mn 1277 

extracted from the carbonate fraction, also expressed as weight percentage of dry sediment. 1278 

Note the similar trend of increasing total Fe and Mn with increasing carbonate in both systems. 1279 

B. Total extracted Fe and Mn versus magnetite associated Fe and Mn, expressed as in A. Note 1280 

that Lake Malawi samples exhibit significantly higher proportion of sediments as magnetite 1281 

relative to Otter Lake. This is potentially representative of diagenetic co-precipitation of Fe-1282 

carbonate and magnetite (e.g. Heimann et al., 2010), or an enhanced aeolian flux of detrital 1283 

magnetite to Lake Malawi. 1284 
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 1285 

Although Otter Lake and Lake Malawi are vastly different freshwater systems in terms of 1286 

size and regional geology, the siderite occurrences have noteworthy similarities and key 1287 

differences. Water-column dissolution of calcite below the calcite compensation depth appears 1288 

to be a factor in both cases, as Otter Lake retains calcite in littoral sediments, and Lake Malawi 1289 

contains calcite-rich intervals associated with mega-droughts. Significant lake level changes are 1290 

also common to both systems, as each display geochemical changes associated with variable 1291 

clastic influx tied to lake level variability (Brown, 2011; Wittkop et al., 2014). Finally, the 1292 

similarity between Lake Malawi and Lake Towuti siderites appears to clarify aspects of a 1293 

diagenetic pathway for siderite precipitation (cf. Vuillemin et al., 2019b). Initial precipitation 1294 

forms Mn-enriched siderite, while later growth leads to increasingly rhombohedral forms with 1295 

increased Ca substitution (Vuillemin et al., 2019b). The presence of Ca in siderite crystals and 1296 

not the sediment matrix (and apparent slight enrichment in crystal rims) in Lake Malawi 1297 

supports the hypothesis that Ca is incorporated passively from porewater during late crystal 1298 

growth. The co-occurrence with magnetite in Lake Malawi and Lake Towuti could be ascribed to 1299 

diagenetic co-precipitation (Heimann et al., 2010), a precursor authigenic phase (Vuillemin et 1300 

al., 2019b), or perhaps detrital influx. While other pathways for Fe-carbonate genesis in the 1301 

Malawi example may be entertained (for instance, Fe-carbonate replacement of a pre-existing 1302 

spindle-shaped gypsum crystals), the similarities between Towuiti and Malawi carbonate 1303 

morphologies are more likely driven by processes universal to iron diagenesis in organic-rich 1304 

sediments. 1305 
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The fine-grained siderites in the Otter Lake are more difficult to ascribe to the diagenetic 1306 

mechanisms proposed from tropical lakes. Instead, finely laminated examples more closely 1307 

resemble well-preserved micro-banded siderites from ancient iron formations (Carrigan and 1308 

Cameron, 1991; Morris, 1993). These textural differences, combined with a lower proportion of 1309 

co-eval magnetite, and apparent nucleation on Ca-carbonates rather than passive incorporation 1310 

from porewater, are consistent with potential initial precipitation from the sediment water 1311 

interface, potentially nucleating on Ca-carbonates (e.g. Wittkop et al., 2020b), followed by 1312 

subsequent growth in porewaters that may have remained in oxygen isotopic equilibrium with 1313 

waters above the sediments, but reflecting enhanced iron and DIC concentrations.  1314 

Although the concentration of Fe in Otter Lake carbonate crystal rims could also be 1315 

taken as evidence pointing to a strictly diagenetic pathway for siderite precipitation, this would 1316 

not preclude the presence of a ferruginous water mass. Rather, the presence of Fe-enriched 1317 

carbonate rims may simply reflect the slower precipitation kinetics of siderite (see discussion in 1318 

sec. 3), which would require more time for crystal growth relative to other carbonates, and 1319 

which would be expected to continue in ferruginous environments where porewater redox 1320 

conditions would be similar to an overlying ferruginous water mass. Recent detection of Fe-1321 

carbonate phases in the water column of ferruginous Lake Matano (Bauer et al., 2020) indicates 1322 

the possibility that primary water column processes play a role in the genesis of some Fe-1323 

carbonates. Our initial analysis of the Otter Lake and Lake Malawi sediments, combined with 1324 

recent insights regarding diagenetic mineral growth from Lake Towuti (Vuillemin et al., 2019b, 1325 

2019a), suggest that exploring the geochemical and mineralogical records of paleoferruginous 1326 

lakes is promising avenue for future research. 1327 
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We are aware of several additional examples of paleoferruginous lakes in the literature. 1328 

Ferruginous laminated sediments are found in Elk Lake, Minnesota and it is thought the deep 1329 

basin of this lake was likely meromictic in the past (Megard et al., 1993). Siderite varves from 1330 

Meerfelder Maar in Germany also point to a past ferruginous meromictic interval (Brauer et al., 1331 

2008). Vivianite-rich laminated sediments indicate ferruginous conditions during the 1332 

Pleistocene in Devils Lake, Wisconsin, these indicators disappear 11,000 years after the onset of 1333 

lake sedimentation (Williams et al., 2015). An Eocene-aged lake on the Seward peninsula 1334 

records siderite varves that disappear as the lake filled in (Dickinson, 1988), interpreted to 1335 

reflect a past ferruginous meromictic lake.  1336 

 1337 

5. Ferruginous meromictic lakes 1338 

 Meromictic lakes are permanently stratified into a mixolimnion (i.e. upper mixed layer) 1339 

and a monimolimnion, which has higher density waters that are resistant to mixing with the 1340 

mixolimnion. In the temperate zone, seasonal stratification of lakes is common due to solar 1341 

heating of the mixolimnion and cooler denser water below the photic zone. This thermal 1342 

stratification is disrupted in the fall when the mixolimnion cools (or warms in spring) - wind-1343 

driven upwelling then disrupts the density gradient and allows mixing. In meromictic lakes, the 1344 

monimolimnion remains permanently denser because of dissolved substances or persistent 1345 

temperature gradients, which stabilize the water column from mixing. The specific factors 1346 

stabilizing tropical meromictic lakes are discussed extensively elsewhere (Katsev et al., 2017; 1347 

Lewis Jr., 1996).  Importantly for the current discussion, dissolved iron can also increase water 1348 
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density and stabilize a lake against mixing, or the maintenance of dissolved iron can simply be 1349 

promoted by other physical or chemical factors that cause the water column to stratify. 1350 

The size and shape of the lake are critical in determining whether it becomes 1351 

meromictic. Lakes that are relatively deep in comparison to their surface area mix less 1352 

efficiently (Gorham and Boyce, 1989). A lake’s relative depth (Zr) is calculated from its maximum 1353 

depth (Zm) and its surface area (A0): 1354 

 	𝑍! =
"#∗%!∗√'

()"
,  or in percent: 	𝑍! =

%!∗	++.-
()"

     (eq. 3) 1355 

Lakes with Zr > 4 % are physically resistant to mixing, and more likely to be seasonally or 1356 

permanently stratified (Walker and Likens, 1975; Wetzel, 2001).  1357 

Another critical factor is fetch, or the distance across which wind can move (Gorham 1358 

and Boyce, 1989; Lewis Jr., 1996), and the depth of mixing generally increases with fetch 1359 

(Mazumder and Taylor, 1994). Several studies propose additional empirical relationships 1360 

between morphometric attributes of a lake in combination with additional factors such as wind 1361 

stress and internal waves (Gorham and Boyce, 1989; Kirillin and Shatwell, 2016). 1362 

Numerous authors have sought to define different types of meromixis based on 1363 

probable causal agents (Boehrer and Schultze, 2008; Hall and Northcote, 2012; Schultze et al., 1364 

2017; Stewart et al., 2009; Walker and Likens, 1975). Four categories are acknowledged in 1365 

recent literature: Type I) Ectogenic refers to dense, saline waters increasing density 1366 

stratification, usually from active or relict seawater input; Type II) Crenogenic meromixis 1367 

develops when saline water infiltrates the lake through springs or seeps within the basin; Type 1368 

III) Biogenic meromixis is induced by biological pumping of ions into bottom waters through 1369 

dissolving (bio)minerals or decomposition of settling organic carbon; and Type IV) Cryogenic 1370 
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affects mainly Arctic lakes and develops when salts are frozen out, and dense salty water 1371 

descends to the bottom of the lake. Another recently recognized type of ectogenic meromixis is 1372 

termed “cultural” (Koretsky et al., 2012; Sibert et al., 2015), and affects lakes in urban areas in 1373 

temperate regions when road deicing salts applied in the watershed increase bottom water 1374 

density (Novotny et al., 2008). Biogenic meromixis can also result from anthropogenic 1375 

eutrophication or changes in land use that affect the productivity of a lake (Culver, 1977; 1376 

Hongve, 1980). Finally, thermogenic meromixis is maintained by temperature gradients, with 1377 

weak salinity gradients developing as a consequence (Katsev et al., 2017) 1378 

The occurrence of “iron-meromixis” has been identified by some authors when a high 1379 

concentration of dissolved iron in bottom waters stabilizes a meromictic water column against 1380 

mixing (Boehrer et al., 2017, 2009; Campbell and Torgersen, 1980; Hongve, 2002; Kjensmo, 1381 

1967). Ferruginous meromictic lakes are sometimes stabilized by other solutes such as 1382 

bicarbonate (Rodrigo et al., 2001), or even sodium and chloride ions from de-icing salts 1383 

(Lambrecht et al., 2018; Sibert et al., 2015). Therefore, we will use the term ferruginous 1384 

meromictic to describe lakes that are both ferruginous and meromictic, without implying that 1385 

iron has a relationship to the stability of the water column. Yoshimura (1936) suggested a 5 mg 1386 

L-1 (~90 μM) threshold for his “siderotrophic” lakes. However, “ferruginous”, implies the 1387 

presence of dissolved ferrous iron, reflecting the dominance of Fe3+ as a terminal electron 1388 

accepting process vs. others  (i.e. oxygen, nitrate, sulfate; Canfield and Thamdrup, 2009), or an 1389 

external supply of iron that outpaces its removal, regardless of concentration (sec. 1).  1390 

Meromictic lakes are thought to be rare, with just several hundred documented 1391 

worldwide (Anderson et al., 1985; Stewart et al., 1965, 2009; Walker and Likens, 1975; 1392 
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Yoshimura, 1937). Table 2 is a compilation of natural basins (i.e. no mining pits) that comprise 1393 

circumneutral (i.e. pH 6-8) ferruginous meromictic lakes and which have previously been 1394 

reported in the literature. Ferruginous lakes comprise just a fraction of meromictic lakes 1395 

worldwide. However, dissolved iron is not often measured or reported for meromictic lakes, 1396 

and so ferruginous meromixis could be more widespread even among the known meromictic 1397 

lakes. Several lakes have been excluded from this list. For instance, ferruginous Nordbytjernet 1398 

in Norway was originally described as meromictic (Hongve, 1974), but has since experienced 1399 

mixing due to hydrological changes (Hongve, 1999). Lake Glubok in Russia may be becoming 1400 

meromictic due to eutrophication, and contains up to 180 μM iron in bottom water 1401 

(Shaporenko and Shil’krot, 2006). 1402 

 1403 
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Table 2. Known Ferruginous Meromictic lakes worldwide. 

Lake Location Max. 
diss. Fe 

Ao (m2) Zm (m) Zr (%) Reference 

*Skratjern Norway 877 µM 8,600 12.5 11.9 Hongve 1980 

*Canyon Lake MI, USA 1,594 µM 10,000 22.5 19.9 Smith 1940; 
Lambrecht et al., 2018 

*Paul Lake MI, USA 120 µM 12,000 12.2 9.9 Taillefert et al., 2002 

Lake La Cruz Spain 1,000 µM 14,500 24 17.7 Rodrigo et al., 2001 

*Ljøgodttjern Norway 1,480 µM 23,400 16.3 9.4 Hongve 1980 

*Vilbergtjern Norway 98 µM 24,000 17 9.7 Hongve 1980 

*Bakketjern Norway 296 µM 24,100 14.8 8.4 Hongve 1980 

Hall Lake WA, USA 750 µM 31,100 16.2 8.1 Balisteri et al., 1994 

*Skjennungen Norway 625 µM 34,000 17.8 8.6 Kjensmo 1967 

*Brownie Lake MN, USA 1,605 µM 50,000 14 5.5 Swain 1984; 
Lambrecht et al., 2018 

*Valkiajärvi Finland 6,758 µM 78,500 25 7.9 Meriläinen 1970 

*Lake 120 Canada 4,200 µM 93,000 19 5.5 Campbell & Torgersen 
1980 

Kuznechikha Russia 3,850 µM 93,000 20 5.8 Gorlenko et al., 1980 

*Woods Lake MI, USA 360 µM 107,000 13 3.5 Sibert et al., 2015 

*Lake of the 
Clouds 

MN, USA 11,070 
µM 

120,000 31 7.9 Anthony 1977 

*Store 
Aaklungen 

Norway 6,071 µM 132,000 32.5 7.9 Kjensmo 1967 

*Lake Svetloe Russia 240 µM 146,000 39 9.0 Savvichev et al., 2017; 
Kokryatskaya et al., 
2017 

Oha Lampi Russia 1,780 µM 154,000 16 3.6 Dubinina & Derygina 
1969 

Lake Pavin France 1,184 µM 440,000 92 12.3 Michard et al., 1994 

Lake Nyos Cameroon 4,410 µM 1,580,000 210 14.8 Teutsch et al., 2009 

Sikaribetuko Japan 1,550 µM 3,450,000 99.5 4.7 Yoshimura 1936 

Kabuno Bay of 
Lake Kivu 

Dem. Rep. 
of Congo 

1,200 µM 4,800,000 120 4.9 Lliros et al., 2015 

Lake Monoun Cameroon 5,180 µM 609,000 96 10.9 Sigurdsson et al., 1987 

Lake Matano Indonesia 140 µM 164,000,000 590 4.1 Crowe et al., 2008 

*indicates lakes of glacial origin 
 1404 
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Aside from a few studies, the source of iron to ferruginous meromictic lakes has not 1405 

been extensively addressed in the literature. Some studies of ferruginous lakes suggested 1406 

dissolved iron is sourced from the lake sediments themselves (Nürnberg and Dillon, 1993). This 1407 

idea of an internal cycle of iron is attractive and not invalid – under anoxic and non-sulfidic 1408 

conditions Fe3+ (oxyhydr)oxides will be reductively dissolved by the activity of Fe3+-reducing 1409 

microorganisms in the presence of a supply of sedimentary organic carbon. However, iron is a 1410 

non-conservative element that is permanently removed to sediments through precipitation and 1411 

deposition of iron-bearing minerals, such as iron phosphates (e.g. vivianite; Cosmidis et al., 1412 

2014; Vuillemin et al., 2019a), iron carbonates (e.g. siderite; Vuillemin et al., 2019b; Wittkop et 1413 

al., 2014), Fe3+ or mixed-valent (oxyhydr)oxides (Bauer et al., 2020; Crowe et al., 2008b), or 1414 

mixed valent green rusts (Zegeye et al., 2012). This implies that iron must be resupplied from an 1415 

external source other than the sediments to maintain a reservoir of iron in the lake (cf. Davison, 1416 

1993).  1417 

Iron budgets for several ferruginous meromictic lakes have been created. In Lake Pavin, 1418 

France, the supply of iron via sublacustrine springs into the mixolimnion derived from volcanism 1419 

is required to achieve mass balance with iron removal to sediments, although there has been 1420 

no direct determination of iron fluxes from this source (Aeschbach-Hertig et al., 2002; Assayag 1421 

et al., 2008; Michard et al., 1994). Weathering and erosion of tropical soils with abundant Fe3+ 1422 

(oxyhydr)oxides provides iron to Lake Matano (Crowe et al., 2008b), as a hydrothermal source 1423 

of iron could not be identified (Crowe et al., 2011). An iron budget from Lake 120 in Canada 1424 

does not specify the source of iron but notes that external iron inputs are required. Surface 1425 
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water was thought to recharge at the chemocline depth after transiting through an adjacent 1426 

bog  (Campbell and Torgersen, 1980).  1427 

Additional ferruginous meromictic lakes have some constraint on the likely iron source. 1428 

Ferruginous Kabuno Bay of meromictic Lake Kivu likely sources its iron through sub-lacustrine 1429 

springs derived from volcanism (Ross et al., 2015), similar to Lake Pavin. Iron-bearing surface 1430 

waters likely supply Lake Nordbytjernet, but sublacustrine iron concretions also indicate 1431 

discharge of iron-bearing groundwaters (Hongve, 1974). Others also invoke reducing 1432 

groundwater in supplying iron, despite the lack of direct data (Kjensmo, 1967; Yoshimura, 1433 

1931). In iron budgets of temperate but non-meromictic lakes, atmospheric deposition, stream 1434 

input from organic carbon-rich soils, and recycling from sediments were noted, with recycling 1435 

thought to be the largest source (Nürnberg and Dillon, 1993). However, groundwater sources 1436 

were not quantified, and if this unaccounted-for source is significant, mass balance approaches 1437 

could overestimate the inputs from sedimentary recycling. 1438 

 1439 

Identification of ferruginous meromictic lakes 1440 

Considering the utility of ferruginous meromictic lakes for understanding past 1441 

ferruginous oceans (sec. 4 and sec. 6), it would be useful to find more. To do this, it would be 1442 

helpful to establish criteria to screen for likely meromixis from commonly available data. We 1443 

propose a strategy to identify possibly meromictic temperate lakes based on morphometry and 1444 

susceptibility to mixing. Morphometric data, such as maximum or average depth and surface 1445 

area, are commonly available from local, regional, or national agencies. Identifying whether 1446 

these lakes are ferruginous requires more detailed regional chemical or geological information, 1447 
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but we present a case study on what types of regional characteristics might be useful. We 1448 

specifically focus on temperate lakes of likely glacial origin (as opposed to karstic, volcanic, 1449 

etc.), as this describes more than half of the ferruginous meromictic lakes in Table 2. 1450 

Figure 11 shows a compilation of the area A0 and the relative depth Zr for some 1451 

temperate meromictic and non-meromictic lakes. Only temperate lakes mentioned in Table 2 1452 

are included, tropical or volcanic ferruginous meromictic lakes (Lakes Sikaribetuko, Matano, 1453 

Monoun and Nyos, and Kabuno Bay of Lake Kivu), are excluded. The compilation includes 1454 

meromictic lakes (including some ferruginous) from Massachusetts, Maine, Minnesota, 1455 

Michigan, New York, Wisconsin, Ontario and Quebec, and Finland (Anderson et al., 1985; 1456 

Stewart et al., 2009), and meromictic and non-meromictic lakes from Norway (Hongve, 2002, 1457 

1977). Non-meromictic lakes from temperate areas of North America of likely glacial origin 1458 

were compiled from several sources (Dupuis et al., 2019; Molot et al., 1992; Myrbo, 2008; 1459 

Myrbo and Shapley, 2006; Orihel et al., 2015; Schiff et al., 2017; Striegl and Michmerhuizen, 1460 

1998). Data are provided in Supplementary Information. 1461 

Surface area is related to fetch, and prior studies have indicated that lakes with small 1462 

surface areas are less likely to mix (Mazumder and Taylor, 1994). Another study documented a 1463 

maximum length of 250 m for meromictic lakes (Salonen et al., 1983). In a Norwegian study 1464 

(Hongve, 2002), meromixis was only observed in lakes with a A0 < 0.3 km2. For temperate lakes, 1465 

a A0 of less than 0.5 km2 seems to be a natural cutoff as all temperate meromictic lakes shown 1466 

in Figure 11 have a A0 < 0.5 km2. 1467 

 1468 
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 1469 

Figure 11. Histograms of temperate meromictic and not meromictic lakes based on the 1470 

morphometric parameters A. relative depth (Zr) and B. surface area (A0). C. A scatter plot of the 1471 

data, where dashed lines denote A0 of 0.5 km2 and Zr of 4 %. 1472 

 1473 

There is a considerable range in the Zr of meromictic lakes (Figure 11), and a number of 1474 

non-meromictic lakes have a Zr > 4 %, a threshold noted to limit mixing (Wetzel, 2001). While a 1475 

Zr > 4 % may physically limit mixing, a salinity gradient is also necessary to stabilize meromixis 1476 

(Hongve, 2002; Salonen et al., 1983). For lakes that have a sufficiently small surface areas and a 1477 

Zr just below 4 %, enhanced salinity may be a large enough factor for meromixis. For instance, 1478 

Woods Lake in Michigan, USA (Zr of 3.5 %) has become meromictic as a result of road salt use 1479 

(Sibert et al., 2015). Lakes with a Zr ≤ 4 % can also have weak salinity gradients that might be 1480 

vulnerable to occasional mixing. This scenario was observed in ferruginous Lake Nordbytjernet, 1481 

originally reported as meromictic, and which has a Zr of 3.8 % and A0 just under 0.3 km2 1482 

(Hongve, 2002, 1999). Other authors have suggested that a criteria of Zr > 8 % could define 1483 
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meromixis (Salonen et al., 1983). A higher Zr may be necessary for meromixis in regions where 1484 

waters are likely to be more dilute, whereas lakes that are heavily influenced by anthropogenic 1485 

contaminants, such as road salt, may become meromictic at Zr ≤ 4 %. 1486 

Several natural processes could produce a basin with Zr ≥ 4 %, which - as described 1487 

above - might poise a lake to develop meromixis. Lake basins carved in karstic terrain can be 1488 

quite deep relative to their surface area, and many meromictic lakes are known from karstic 1489 

regions (Alcocer, 2017; Ciglenečki et al., 2017), including ferruginous La Cruz in Spain (Camacho 1490 

et al., 2017a). Morphometry resulting in high Zr and meromixis is sometimes attributed to 1491 

faulting in exposed bedrock that has been weathered or further carved by glacial ice or 1492 

outwash. This is likely the case with Store Aaklungen (Kjensmo, 1967) and Canyon Lake 1493 

(Lambrecht et al., 2018).  1494 

There is a strong bias in the literature toward identification of meromictic lakes in 1495 

Europe and North America, which has been attributed to a higher concentration of limnological 1496 

studies in those areas (Zadereev et al., 2017). Another major factor in the sheer number of 1497 

lakes in northern temperate regions is the commonality of glacial origins. Numerous meromictic 1498 

lakes in Norway, for instance, are sheltered kettle lakes in thick glacial deposits (Hongve, 1980). 1499 

Thousands of kettle lakes were also formed in North America at the edges of retreating glaciers 1500 

by ice blocks buried in sediments that were covered by glacial outwash. Kettle lakes tend to be 1501 

small and less than 50 m deep, and can have a rounded shape (Wetzel, 2001), dimensions 1502 

conducive to the elevated Zr values that characterize many temperate in meromictic lakes 1503 

(Figure 11).  1504 

 1505 
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If this broad relationship between glacial origins and meromixis scales, the 1506 

morphometric attributes of the millions of temperate kettle lakes worldwide may poise some 1507 

fraction of these lakes toward meromixis. If true, this hypothesis might also be useful to predict 1508 

areas where more meromictic lakes can be found. For instance, a deglaciated and lake-rich 1509 

region of Northeast Poland contains numerous lakes with laminated sediments, often with A0 < 1510 

0.3 km2 and high Zr (Tylmann et al., 2013).  1511 

While there are more elaborate methods to determine whether lakes may be prone to 1512 

meromixis, the approach proposed here has the advantage of utilizing two metrics (A0 and Zm) 1513 

that are commonly reported in the literature or in government databases. We used Minnesota 1514 

as a case study for identifying additional lakes that may be meromictic using the Zr and A0 1515 

criteria set out above. Minnesota has 11,842 lakes greater than 10 acres (0.04 km2). The Zr 1516 

values of 1,986 Minnesota lakes are available from the Minnesota Department of Natural 1517 

Resources (DNR; Supplementary Information). Of these, 33 have A0 < 0.5 km2 and Zr > 4 % and 1518 

are natural lakes (as opposed to mining pits or other artificial basins; Table 3). Bathymetric data 1519 

is only available for a relatively small portion of the many lakes in Minnesota. However, if our 1520 

dataset is representative, Minnesota lakes have physical features conducive to meromixis at a 1521 

rate of 1.7 %, which equates to 197 lakes in the entire state. In comparison, a similar analysis 1522 

done in Finland just 0.36 % of lakes smaller than 0.3 km2 were suspected to be meromictic 1523 

using a much higher threshold for meromixis of Zr ≥ 10 % (Hakala, 2004). Yet the one example 1524 

of a ferruginous meromictic lake in Finland, Valkiajärvi, has a Zr of 7.9 % (Meriläinen, 1970), 1525 

suggesting such a stringent Zr threshold may be unwarranted. 1526 
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Table 3. Minnesota lakes (of 1,986) with morphometric attributes conducive to 
meromixis.  
Lake County Ao (m2) Zm (m) Zr (%) 
Adams Itasca 48441 14.3 5.8 

Ahsub Lake 244151 23.8 4.3 

Alice Itasca 164363 18.3 4.0 

Bear Lake 73936 21.0 6.8 

Benfield Carlton 104559 24.7 6.8 

Benjamin Benjamin 134113 38.9 9.4 

Brownie Hennepin 44086 14.7 6.2 

Church Carver 64790 16.5 5.7 

Crappie Hubbard 93729 22.2 6.4 

Crooked Itasca 420387 33.5 4.6 

Cub St. Louis 30129 11.9 6.1 

Deep Clearwater 176625 23.1 4.9 

Fadden Wright 81467 14.6 4.5 

George Stearns 34597 9.6 4.6 

Hazel Cass 59643 11.5 4.2 

Hidden Hennepin 30906 8.5 4.3 

Little Bass Itasca 104381 25.7 7.1 

Little Cedar Wright 146318 17.9 4.2 

Little Elbow St. Louis 21610 9.9 6.0 

Little Thunder (East Bay) Cass 1044384 17.3 4.4 

Minnie Stearns 107395 16.8 4.5 

Morgan Wadena 93053 17.5 5.1 

North Dakota 38558 9.8 4.4 

North Little Long Hennepin 211501 23.2 4.5 

Peavey Hennepin 36940 16.5 7.6 

Pleasant Pleasant 89063 20.8 6.2 

South Berthiaume Wright 79565 22.2 7.0 

South Little Long Hennepin 69586 13.1 4.4 

St. Joe Carver 79116 15.8 5.0 

Unnamed (Cassidy) Wright 61132 11.2 4.0 

Unnamed (Hidden) Wright 31966 9.4 4.7 

Unnamed (Nickel) Itasca 57490 12.1 4.5 
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Wabasso Ramsey 173286 22.2 4.7 

Table 4 shows lakes previously literature reports of meromictic lakes in Minnesota 1527 

(Anderson et al., 1985; Stewart et al., 2009). Of these, Brownie Lake is the only lake also 1528 

identified as meromictic in Table 3. What is notable from comparison of Table 3 and Table 4 is 1529 

that a number of potentially meromictic lakes occur in Hubbard and Clearwater Counties. Parts 1530 

of these counties are encompassed in Itasca State Park. The lakes within the park are generally 1531 

in morainic depressions with forested ridges rising 30 m above (Baker and Brook, 1971), 1532 

conducive to physiography and wind sheltering favoring meromixis.  1533 

 1534 

Table 4. Minnesota lakes reported to be meromictic. 
 

Lake County Ao (m2) Zm 
(m) 

Zr (%) Reference 

Tin Cup Clearwater 65000 6.7 2.33 Stewart et al., 2009 

Ozawindib (Squaw) Clearwater 610000 24 2.72 Baker and Brezonik, 1971 

Josephine Hubbard 30000 10.3 5.27 Baker & Brook, 1971 

Lower LaSalle Hubbard 980000 60 5.37 Baker & Brook, 1971 

Swain's Pond Lake 4000 4.5 6.31 Anthony 1977 

Deming  Hubbard 50000 17 6.74 Baker & Brook, 1971 

Budd Clearwater 20000 10.8 6.77 Baker & Brook, 1971 

Spring Ramsay 12000 8.5 6.88 Stewart et al., 2009 

Arco  Hubbard 14000 10.2 7.64 Baker & Brook, 1971 

Elk  Clearwater 100000 30 8.41 Anderson et al., 1985 

Rivalry  Lake 17000 17.5 11.89 Anthony 1977 

 1535 

Looking only at the morphometric data of the Minnesota lakes, it is impossible to know 1536 

whether these potentially meromictic lakes are also ferruginous. The presence of iron in 1537 

meromictic lakes requires a sustained external source, as detailed above. In ferruginous 1538 

meromictic lakes where the iron source has been identified, it is often some type of 1539 
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groundwater or sublacustrine spring, with a clear exception being the tropical soil erosion that 1540 

supplies iron oxides to Lake Matano. A role for groundwater may not be surprising, given that 1541 

anoxic conditions are generally required for iron to be extensively mobile in circumneutral 1542 

water (sec. 2). Aquifers and aquitards can have very limited exchange with the atmospheric 1543 

oxygen. Where sufficient organic carbon is present, perhaps particularly in unconsolidated 1544 

sediments such as glacial till, groundwater can accumulate Fe2+ due to the reduction of ferric 1545 

iron minerals (Barnes et al., 2011). 1546 

Numerous ferruginous meromictic lakes reported in the literature were noted for their 1547 

occurrence in or adjacent to moraines or other glacial drift (Campbell and Torgersen, 1980; 1548 

Hongve, 1980; Kjensmo, 1967; Lambrecht et al., 2018). Similarly, other ferruginous meromictic 1549 

lakes formed in areas of known Late Quaternary glaciations (Demidov et al., 2004; Ojala and 1550 

Saarnisto, 1999). Lake of the Clouds in northeastern Minnesota (Table 3), conversely, is formed 1551 

in iron-rich bedrock carved by glacial erosion (Anthony, 1977), a setting thought to give rise to 1552 

millions of ferruginous lakes in boreal regions (Schiff et al., 2017).  1553 

Minnesota, the area of our case study, exhibits a surficial geology of predominantly 1554 

glacial drift and glacial landforms, a legacy from multiple glacial advances during the late 1555 

Quaternary. The area also has regions with iron-rich bedrock (Johnson et al., 2016). The 1556 

geochemistry of glacial sediments is known to influence the ionic composition of lakes in the 1557 

upper Midwest (Gorham et al., 1983). The glacial aquifers and aquitards in the upper Midwest 1558 

are known to have low redox conditions, particularly those deposited during the latest 1559 

Wisconsin-aged advance (Erickson et al., 2018; Erickson and Barnes, 2005; Simpkins and Parkin, 1560 

1993). 1561 
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To assess whether iron-rich groundwater is widespread in Minnesota, we retrieved total 1562 

iron on groundwater from private and municipal wells from the Minnesota Pollution Control 1563 

Agency’s (PCA; Supplementary Information). The total iron concentrations within 618 wells 1564 

drilled into quaternary aquifers were interpolated using the natural neighbor method in ArcGIS 1565 

to create a map of groundwater iron concentrations (Figure 12). The map shows iron-rich 1566 

groundwater widely distributed throughout the state. The highest iron regions visibly overlap 1567 

the extent of the Wisconsin-aged glaciation, i.e. are from wells drilled into sediments of the Des 1568 

Moines Lobe, the most aerially extensive glacial lobe in Minnesota surficial geology.  1569 

 1570 

Figure 12. A. Individual wells (triangles) colored by their total iron concentration (as log molar), 1571 

with shading representing interpolation. The proposed study areas are outlined. B. Wells 1572 
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overplotted on the lobes of the Laurentide ice sheet in Minnesota (source: Minnesota 1573 

Geological Survey).  1574 

 1575 

We hypothesize that the source of sediments to glacial drift, and thus aquifer material, 1576 

would have produce distinct differences in the total iron content of the resulting groundwater. 1577 

We therefore determined the total iron values for wells within the glacial lobes represented in 1578 

Minnesota (Des Moines, Rainy, Superior, Wadena, or Unspecified – areas glaciated by a 1579 

different lobe or not glaciated at all). The results indicate that the highest total iron 1580 

concentrations occur within the Des Moines lobe (Table 5). Wells in unspecified areas had the 1581 

lowest total iron concentrations. To test the hypothesis that the lobe’s identity had a significant 1582 

influence on the total iron values, we performed a pairwise ANOVA with a Tukey HSD post-hoc 1583 

test at 95 % intervals between all possible pairs of the average log molar (M) total iron 1584 

concentrations in the five lobes: Des Moines. Rainy, Superior, Wadena and Unspecified. Des 1585 

Moines to Superior, Des Moines to Unspecified, Rainy to Unspecified, Superior to Wadena and 1586 

Wadena to Unspecified were all significantly different based on a p<0.001 (1 %; Table 5). The 1587 

Rainy to Superior comparison was borderline significant (p=0.0199). All other pairs are not 1588 

significantly different.  1589 

 1590 
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Table 5. Statistics for total Fe concentrations of 618 MN wells. 
   

 
Glacial Lobe Number 

of wells 
Mean 
Fe  

Std. 
dev. Fe 

Tukey HSD p values: 

(log M)  (log M) Des 
Moines 

Rainy Superior Wadena Unspecified 

Des Moines 389 -1.96 0.89 -- 0.4988 <0.00001 0.9695 <0.00001 
Rainy 53 -2.19 1.19 -- -- 0.0199 0.9202 <0.00001 
Superior 52 -2.75 0.97 -- -- -- 0.0005 0.5155 
Wadena 70 -2.04 1.02 -- -- -- -- <0.00001 
Unspecified 54 -3.04 1.05 -- -- -- -- -- 
For Tukey HSD, bold indicates a significant difference, italics indicate borderline significant difference.  
 1591 

These results support the hypothesis that the total iron concentration of groundwater in 1592 

Minnesota are related to the origin of the glacial aquifers. The reasons that one lobe’s till would 1593 

produce aquifers with higher iron have yet to be elucidated, but may be related to the iron 1594 

content of the till, which is in turn related to its provenance (Wittkop et al., 2020a). Surface-1595 

groundwater interactions have dramatic implications for both water and elemental fluxes to 1596 

lakes in Minnesota where these processes have been studied (Dean et al., 2006; Jones et al., 1597 

2013). But if such surface groundwater interactions are widespread, they may be a ubiquitous 1598 

mechanism for sustaining ferruginous lakes. 1599 

Another potential source of iron to lakes in Minnesota could be from peatlands. 1600 

Peatlands are aerially extensive in the postglacial northern temperate zone (Jungkunst et al., 1601 

2012), and mobilize significant quantities of iron, solubilized by humic substances (Gorham, 1602 

1957; Jirsa et al., 2013). Peatlands are commonly mentioned in the literature as a source of iron 1603 

to lakes through streams or shallow seepage (Campbell and Torgersen, 1980; Kjensmo, 1962; 1604 

Nürnberg and Dillon, 1993). North-central and northeastern Minnesota is dominated by 1605 

peatlands, including bogs and fens, which can be significant sources of humic-bound iron in 1606 
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runoff (Jirsa et al., 2013; Krachler et al., 2016). The concentrations of iron in rainwater-fed 1607 

(bogs) or groundwater-fed (fens) peatlands in Minnesota can be several tens of μM (Robbins et 1608 

al., 1997; Urban et al., 1987), indicating this as an additional possible iron source to Minnesota 1609 

lakes, and possibly other postglacial lakes worldwide.  1610 

Meromixis has been recognized as a stage in lake evolution. For those lakes that have a 1611 

natural basin with a high Zr, they may start meromictic, but over time, sedimentation eventually 1612 

fills in the basin, shallowing it and promoting mixing. This is often seen as a transition from 1613 

meromictic to holomictic (Hakala, 2004; Wittkop et al., 2014). The history of mixing can be 1614 

inferred from a lake’s sedimentary record. The presence of laminated sediments indicates 1615 

holomixis, with annually laminated sediments (varves) indicating meromixis (Anderson et al., 1616 

1985). Numerous lakes in Minnesota contain ferruginous laminated sediments, although not all 1617 

are meromictic. In some modern, glacially-formed ferruginous meromictic lakes, both in North 1618 

America in Scandinavia, authors have noted a dynamic equilibrium between ferruginous and 1619 

non-ferruginous and/or meromictic and holomictic conditions (Campbell and Torgersen, 1980; 1620 

Hongve, 1999, 1980). Fluctuations between meromixis and holomixis can result due to a weak 1621 

salinity gradient that can be easily disrupted by changes in a lake’s hydrology.  1622 

Although meromixis can be a natural stage of a lake, human influence such as 1623 

manipulation of water levels or addition of solutes can induce meromixis. Changes in water 1624 

level due to canal building (Swain, 1984) and water use in the lake or adjacent, hydrologically 1625 

connected lakes (Hakala, 2004) have led to the onset of meromixis in some ferruginous 1626 

meromictic lakes. In Brownie Lake, this onset of meromixis is associated with an increase in 1627 

burial of iron to sediments (Tracey et al., 1996). Meromixis may also become more common 1628 
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due to increasing global average temperatures associated with climate change that enhance 1629 

stratification (Nisbet et al. 2014). Land-use changes due to agriculture can affect the drainage 1630 

system and increase dissolved solutes that help to stabilize the lake against mixing (Tilman et al. 1631 

2001; Hakala 2004). For example, use of road salt in the temperate regions may increase 1632 

salinity-driven stratification, poising urban lakes towards meromixis (Koretsky et al., 2012; 1633 

Lambrecht et al., 2018; Novotny et al., 2008; Sibert et al., 2015). Therefore, it is likely that the 1634 

occurrence rate of meromictic lakes will increase, both due to discovery and due to 1635 

anthropogenic factors.  1636 

 1637 

6. The biogeochemistry of ferruginous meromictic lakes 1638 

Photosynthesis & Primary Productivity 1639 

One of the early motivators for the use of ferruginous meromictic lakes as analogues for 1640 

ferruginous oceans was to test the hypotheses that photoferrotrophs were 1) major primary 1641 

producers, and 2) had a major role in Fe2+ oxidation and deposition of iron-bearing minerals to 1642 

the seafloor (Crowe et al., 2008a). Therefore, a premium has always been placed on finding 1643 

ferruginous meromictic lakes where the chemocline between oxygen and ferrous iron is 1644 

illuminated, so that Fe2+ and light are in sufficient supply to fuel photoferrotrophy. In this 1645 

regard, the large tropical lakes, Matano and the ferruginous Kabuno Bay of Lake Kivu have been 1646 

particularly valuable, because oligotrophic conditions give rise to clear water columns with 1647 

deep light penetration (Crowe et al., 2014a; Llirós et al., 2015). Additionally, a weak thermal 1648 

stratification allows for substantial vertical migration of the chemocline seasonally (Katsev et 1649 

al., 2017). Other sunlit chemoclines exist in karstic Lake La Cruz in Spain (Walter et al., 2014), 1650 
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and glacially-formed Brownie Lake in Minnesota (Lambrecht et al., 2018). A limitation of smaller 1651 

meromictic lakes in the temperate zone in this regard is that they often have deep oxyclines 1652 

(Lambrecht et al., 2018), eutrophic conditions, or humus-derived color (Hakala, 2004; Hongve, 1653 

1980), which can impede light penetration to the chemocline.  1654 

The keen interest in establishing whether photoferrotrophy contributes significantly to 1655 

carbon fixation and other biogeochemical cycles of ferruginous meromictic lakes has precedent 1656 

from the study of anoxygenic photosynthesis in sulfidic meromictic lakes and sulfidic seas. 1657 

Sulfidic stratified systems frequently contain populations of anoxygenic photosynthetic bacteria 1658 

in the anoxic photic zone. Visually apparent bacterial plates are commonly observed near the 1659 

chemocline of meromictic sulfidic lakes (but also sulfidic seas, such as the Black Sea), as well as 1660 

absorption maxima, enhanced bacterial DNA, or enrichments in bacterial sulfur-cycling genes 1661 

(Dickman and Ouellet, 1987; Gorlenko et al., 1978; Hand and Burton, 1981; Kuznetsov, 1968; 1662 

Ludlam, 1996; Lunina et al., 2013; Manske et al., 2005; Morana et al., 2016; Mori et al., 2013; 1663 

Parkin and Brock, 1980; Rogozin et al., 2010; Savvichev et al., 2005; Storelli et al., 2013; 1664 

Takahashi and Ichimura, 1968; Tonolla et al., 2017). Anoxygenic photosynthetic bacteria have 1665 

been shown to contribute significantly to total carbon fixation in some of these systems 1666 

(Gorlenko et al., 1978; Kuznetsov, 1968), and to a lesser extent in others (Savvichev et al., 1667 

2017). Dense bacterial plates can also contribute significantly to light attenuation (Ludlam, 1668 

1996), which could inhibit photosynthetic organisms from growing deeper in the water column. 1669 

Populations of anoxygenic photosynthetic bacteria have been found in the anoxic zone 1670 

of several ferruginous lakes, where sufficient sunlight is present to support carbon fixation 1671 

(Camacho et al., 2017b; Crowe et al., 2008a; Llirós et al., 2015; Walter et al., 2014). However, 1672 
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the presence of anoxygenic photosynthetic 16S rRNA sequences, even those closely related to 1673 

known photoferrotrophs, is not sufficient to demonstrate that photoferrotrophy is occurring. 1674 

Photoferrotrophs belong to several phylogenetically distinct taxa including the classes 1675 

Alphaproteobacteria (“purple non-sulfur bacteria”, PNSB) and Gammaproteobacteria (“purple 1676 

sulfur bacteria”, PSB), as well as the family Chlorobiaceae (themselves comprising the entirety 1677 

of the “green sulfur bacteria”, GSB). The most well-studied isolates are the PNSB R. ferrooxidans 1678 

strain SW2 (Ehrenreich and Widdel 1994) and R. palustrius strain TIE-1 (Jiao et al. 2005), and 1679 

the GSB C. ferrooxidans strain KoFox (Heising et al. 1999). Additionally, these organisms contain 1680 

bacteriochlorophyll (Bchl) pigments that distinguish them from eukaryotic phytoplankton and 1681 

cyanobacteria. For instance, Bchl e is a pigment associated with low-light adapted GSB 1682 

(Overmann et al., 1992), such as C. ferrooxidans (Heising et al., 1999). The presence of 1683 

anoxygenic photosynthetic organisms can be identified by pigment analysis in addition to 16S 1684 

rRNA gene sequencing. However, many anoxygenic photosynthetic bacteria are also capable of 1685 

using electron donors in addition to or instead of Fe2+, including hydrogen sulfide, but also 1686 

molecular hydrogen (H2), other forms of reduced sulfur, and small organic acids (Ehrenreich and 1687 

Widdel, 1994; Hegler et al., 2008; Heising et al., 1999; Jiao et al., 2005; Laufer et al., 2017; 1688 

Straub et al., 1999; Widdel et al., 1993). Also, examples exist of bacteria oxidizing Fe2+ as a side 1689 

reaction, rather than as an electron source for photosynthesis and carbon fixation, and thus are 1690 

not true photoferrotrophic primary producers (Heising and Schink, 1998; Kopf and Newman, 1691 

2012; Poulain and Newman, 2009). Therefore, to implicate anoxygenic photosynthetic 1692 

organisms in iron cycling and primary productivity in a ferruginous lake, it is necessary to 1693 
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demonstrate Fe2+ and light-dependent carbon fixation in situ, in addition to 16S rRNA or 1694 

pigments analysis.  1695 

In Lake Matano, the presence of a Bchl e peak was documented just below the Fe2+-1696 

oxygen chemocline at more than 100 m depth (Crowe et al., 2008a). Twenty-five percent of the 1697 

microbial community at the depth where Bchl e was detected belonged to the Chlorobiaceae 1698 

based on 16S rRNA sequences within the water column (Crowe et al., 2014a). These organisms 1699 

possessed genes for sulfur oxidation, indicating that sulfide, present at low μM concentrations,  1700 

was likely to be the electron donor for photosynthesis than Fe2+. Carbon fixation at the 1701 

chemocline attributable to anoxygenic photosynthesis was negligible to total primary 1702 

productivity in the lake, likely due to the extreme light limitation in the chemocline (Crowe et 1703 

al., 2014a). Savvichev et al. (2017) found GSB closely related to C. ferrooxidans in the Fe2+-1704 

bearing chemocline of ferruginous meromictic Lake Svetloe in Russia during the winter months. 1705 

The rate of anoxygenic photosynthetic carbon fixation was 2.5x that of oxygenic photosynthesis 1706 

at the chemocline, although it was not unambiguously demonstrated that anoxygenic 1707 

photosynthesis was using Fe2+ as an electron donor, as H2S was available from microbial sulfate 1708 

reduction at these depths. These studies highlighted the need to not just detect anoxygenic 1709 

phototrophs, but to perform additional measurements to infer whether or not they are actively 1710 

coupling photosynthetic Fe2+ oxidation to carbon fixation. Put concisely, finding the organisms 1711 

at the scene of the crime does not necessarily implicate them as the criminals. Additional 1712 

physical evidence is necessary. 1713 

Both purple bacteria and GSB populate the illuminated chemocline of ferruginous Lake 1714 

La Cruz, Spain (Walter et al., 2014). In this system, Fe2+ stimulated light-driven carbon fixation in 1715 
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the presence of an inhibitor of photosystem II in oxygenic photosynthesis [3-(3,4-1716 

dichlorophenyl)-1,1-dimethylurea; DCMU], indicating the role of photoferrotrophy to carbon 1717 

fixation in Lake La Cruz. A unique aspect of this study was quantification of a light-dependent 1718 

Fe2+ oxidation rate, 2.6 µmol L-1 h-1 (Walter et al., 2014). The authors note this is on the low end 1719 

of rates measured with pure cultures (Hegler et al., 2008; Kappler et al., 2005; Wu et al., 2014). 1720 

However, the number of photoferrotrophic cells was not directly measured in Lake La Cruz. A 1721 

lower cell density in Lake La Cruz vs. in culture could account for this difference. An enrichment 1722 

culture from the lake, which was composed of 80 % GSB closely related to Chlorobium 1723 

ferrooxidans, was also able to perform light dependent Fe2+ oxidation. 1724 

One ferruginous water body where photoferrotrophs have been documented to be a 1725 

significant part of the microbial community, and contribute significantly to primary productivity, 1726 

is Kabuno Bay, a sub-basin of Lake Kivu in the Democratic Republic of Congo (Llirós et al., 2015). 1727 

Several hundred µM Fe2+ is present in the illuminated Fe2+-oxygen redoxcline, and about 30 % 1728 

of the 16S rRNA sequences retrieved from this depth were closely related to a GSB isolate 1729 

known to oxidize Fe2+ rather than sulfide (Chlorobium ferrooxidans strain KoFox). Furthermore, 1730 

up to 28 % of primary productivity in the photic zone was attributed to photoferrotrophy (Llirós 1731 

et al., 2015). In situ and ex situ incubations of the Chlorobiaceae community demonstrated that 1732 

these organisms were oxidizing Fe2+ via anoxygenic photosynthesis, with negligible use of 1733 

sulfide, and a closely-related isolate from the site was also able to perform photoferrotrophy 1734 

(Llirós et al., 2015). Iron oxidation rates were 4.1 µmol L-1 h-1. Chlorobium phaoferrooxidans, a 1735 

photoferrotroph with 99 % 16S rRNA similarity to C. ferrooxidans has also been isolated from 1736 

Kabuno Bay (Crowe et al., 2017). 1737 
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Photoferrotrophy may have a wider impact than in just the illuminated Fe2+-oxygen 1738 

redoxclines of ferruginous, meromictic lakes. Berg et al., (2016) found evidence for light-driven 1739 

iron cycling in sulfidic, meromictic Lake Cadagno in Spain. Iron cycling was rapid in the zone of 1740 

the Fe2+-oxygen redoxcline, where ferrous iron appeared in micromolar quantities, but above 1741 

the depth of sulfide appearance. Enrichments of anoxygenic phototrophs from the chemocline 1742 

performed light-driven CO2 fixation, although the oxidation of Fe2+ was difficult to discern, likely 1743 

due to rapid scavenging by Fe3+-reducers in the enrichment culture. Another unique aspect of 1744 

this system was the dominance of purple bacteria, Chromatium sp. in the zone of putative 1745 

photosynthetic Fe2+ oxidation. Chromatium sp. made up more than 60 % of the microbial 1746 

community, while the GSB Chlorobium sp. made up 4.9 to 6.4 % of the microbial species. The 1747 

light intensity at the zone of Fe2+ oxidation in this lake was 0.5-3.2 µmol quanta m-2 s-1, higher 1748 

than other ferruginous lakes where photoferrotrophy was implicated. GSB likely have lower 1749 

light requirements, and are observed to populate deeper portions of water columns that are 1750 

also inhabited by purple bacteria (Camacho et al., 2017b).  1751 

Other putative biomarkers indicative of microbes that could have inhabited anoxic 1752 

portions of sunlit water columns (i.e. anoxygenic phototrophs) have been proposed. For 1753 

example, the presence of the carotenoids chlorobactane and isorenieratane in the rock record 1754 

have been linked to green-colored and brown-colored GSB (Mallorquí et al., 2005; Summons 1755 

and Powell, 1987, e.g. 1986). Similarly, the carotenoid okenane strictly infers the presence of 1756 

PSB (Brocks et al., 2005; Brocks and Schaeffer, 2008). In addition, sedimentary derivatives of 1757 

Bchl a and b provide evidence for PSB and PNSB, and Bchl c, d, and e for GSB (see Table 5 in 1758 
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Castañeda and Schouten, 2011 for a review of sedimentary pigments and their target 1759 

organisms).  1760 

There is a limited ability of specific pigments in past marine sediments to infer water 1761 

column redox conditions. For instance, the presence of the aforementioned carotenoids in the 1762 

rock record has typically inferred euxinic conditions, since many GSB and purple bacteria can 1763 

oxidize hydrogen sulfide (see references above). However, the oceans were commonly 1764 

ferruginous, not euxinic, for much of early Earth’s history (sec. 2). Photoferrotrophs have been 1765 

documented to oxidize sulfur species in addition to Fe2+ (Laufer et al., 2017; Straub et al., 1999), 1766 

and they can perform cryptic iron cycling in euxinic meromictic lakes (Berg et al., 2016). 1767 

Chlorobactene, a carotenoid distinguishing GSB that have been found in the rock record has 1768 

been extracted from the photoferrotroph C. ferrooxidans (Hegler et al., 2008).  1769 

Walter et al. (2014) documented a possible inorganic biosignature of photoferrotrophy 1770 

in the water column of ferruginous Lake La Cruz in Spain. A secondary Fe3+ peak was present 1771 

below the Fe2+-oxygen redoxcline and was attributed to oxygen-dependent Fe2+ oxidation. This 1772 

interpretation was supported with Fe2+-dependent carbon uptake experiments at that depth. 1773 

However, the influence of cyanobacteria on Fe2+-oxidation resulting in the secondary Fe3+ peak 1774 

remains ambiguous, and photoferrotrophs are likely also supported by sulfide, which exceeded 1775 

100 μM in anoxic waters (Walter et al., 2014). Although the anoxic Fe3+ peak is a promising 1776 

geochemical signature, it needs to be confirmed in other low-sulfide systems. 1777 

Photoferrotrophs may also leave a distinct biosignature in the carbon speciation and 1778 

isotopic composition of ferruginous lakes. Equation 1 predicts that active photoferrotrophs will 1779 

draw down DIC concentrations, produce Fe3+, and generate acidity. Hence, high-resolution 1780 
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profiling of lake water DIC and pH, in addition to particulate Fe3+, would be useful to indicate 1781 

photoferrotrophic activity. Another anticipated influence of photoferrotrophy on carbon cycling 1782 

is more positive δ13CDIC shifts due to preferential fixation of 12C- DIC during carbon fixation. This 1783 

enrichment should co-locate to an anoxic Fe3+ peak and be below any heavy δ13CDIC attributable 1784 

to oxygenic photosynthesis in the oxic zone. Savvichev et al. (2017) also noted a shift to heavier 1785 

δ13CDIC at the depth of maximum anoxygenic photosynthetic carbon fixation in Lake Svetloe, 1786 

although cyanobacteria were likely also contributing to a peak in oxygenic photosynthetic 1787 

carbon fixation and the isotope shift at this depth. A heavy δ13CDIC peak was also observed at 1788 

the chemocline of Brownie Lake, Minnesota (Figure 13; Wittkop et al., 2020b), but overlap with 1789 

a subsurface Chlorophyll a (Chl a) peak, indicating that detailed work is needed to decouple 1790 

anoxygenic vs. oxygenic photosynthetic contributions to carbon fixation. 1791 

 1792 

Figure 13. Depth-resolved trends at ferruginous Brownie Lake, Minnesota, USA (May 2017). The 1793 

dissolved iron-oxygen redoxcline coincides with a subsurface chlorophyll maximum, and distinct 1794 
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shifts in δ13CDIC and δ13CCH4. Photosynthetic carbon fixation (oxygenic and/or anoxygenic) and 1795 

methane oxidation both have the capacity to modulate the δ13CDIC, yet these processes are 1796 

likely occurring at similar depths in Brownie Lake. 1797 

Photoferrotrophy has been argued to be a common pathway in millions of holomictic or 1798 

dimictic lakes in temperate and boreal zones, which may also be commonly ferruginous (Schiff 1799 

et al., 2017). These authors tenuously link their detection of 16S rRNA sequences that are 1800 

closely related to photoferrotrophs living in other ferruginous lakes to active photoferrotrophy 1801 

in boreal lakes. Importantly, they did not conduct incubations that directly demonstrated 1802 

photoferrotrophic activity, such as tracking carbon fixation with light/dark and Fe2+ or H2S 1803 

supplied incubations (e.g. Llirós et al., 2015), or tracking light and Fe2+-dependent carbon 1804 

fixation in lighted incubations in comparison to incubations amended with the photosystem II 1805 

inhibitor DCMU (Walter et al., 2014). They utilized δ56Fe variations in dissolved and particulate 1806 

iron in the water column and a Δ56Fepart-diss of +1-2 ‰ (i.e. the difference between δ56Fe of 1807 

particulate and dissolved iron) below the Fe2+-oxygen redoxcline as an indicator of 1808 

photoferrotrophic Fe2+ oxidation. However, the δ56Fe data did not have sufficient spatial 1809 

resolution through the water column in combination with other lines of evidence (16S rRNA, 1810 

Bchl pigments, carbon fixation measurements) to support this inference. Furthermore, 1811 

insufficient evidence was given to falsify a competing hypothesis, specifically that these isotopic 1812 

trends could be explained by abiotic or other biotic pathways for Fe2+ oxidation. The Δ56Fepart-diss 1813 

between dissolved Fe2+ and rapidly precipitated Fe3+ (oxyhydr)oxides is similar for 1814 

photoferrotrophy, nitrate-dependent Fe2+ oxidation, and indirect, O2-mediated Fe2+ oxidation 1815 

by cyanobacteria (Croal et al., 2004; Kappler et al., 2010; Swanner et al., 2017). These scruples 1816 
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aside, if ferruginous (and/or meromictic) lakes are more common than previously recognized 1817 

(sec. 5; Schiff et al., 2017), there may be a significant contribution of photoferrotrophy to 1818 

carbon fixation in freshwaters globally (Morana et al., 2016). Ferruginous lakes with seasonal 1819 

stratification are likely to be far more common than ferruginous meromictic lakes, and so the 1820 

importance of this alternative style of primary productivity could be worth evaluating on the 1821 

landscape or global scale.  1822 

In addition to primary productivity attributed to photoferrotrophy, the presence of Fe2+ 1823 

in the photic zone may influence oxygenic photosynthetic organisms. Understanding how the 1824 

presence of Fe2+ regulates their primary productivity of oxygenic phototrophs has potentially 1825 

even more far-ranging implications for the carbon cycle of millions of potentially ferruginous 1826 

lakes suggested by Schiff et al. (2017). Although anoxygenic photosynthesis by Cyanobacteria 1827 

using sulfide as an electron donor is well-documented (Cohen et al., 1975; Hamilton et al., 1828 

2018), an analogous process has not been documented with Fe2+ (Swanner et al., 2015b). 1829 

Ferruginous lakes with sunlit Fe2+-oxygen redoxclines seem to be a promising place to look. 1830 

Further feedbacks between Fe2+ and primary productivity are also possible. For instance, the 1831 

efficiency of carbon fixation by cyanobacteria under ferruginous conditions could be limited 1832 

due to Fe2+ toxicity (Swanner et al., 2015a). In this capacity, the interaction of oxygen, Fe2+ and 1833 

light may increase the concentration of reactive oxygen species (ROS), due either to Fenton-1834 

type reactions occurring outside of the cell, or in relation to iron homeostasis, Mehler 1835 

reactions, and repair of oxidative damage. Such toxicity is likely more acute in high-light and 1836 

well-oxygenated environments, where Fe2+ is supplied advectively (Swanner et al., 2015a). Iron 1837 

can also be a limiting or co-limiting nutrient within the nutriclines of stratified regions of the 1838 
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modern ocean (Hogle et al., 2018), and a similar scenario could have played out within Fe2+-1839 

oxygen redoxclines within ferruginous oceans. 1840 

In ferruginous meromictic lakes, light is often a limiting factor at the Fe2+-oxygen 1841 

redoxcline. It is under these conditions that a perhaps even more important regulation of 1842 

photosynthesis by Fe2+ occurs. Consider the ubiquitous subsurface chlorophyll maxima (SCM) 1843 

observed in stratified marine systems, which often form areally extensive layers (i.e. SCML; 1844 

Cullen, 1982; Hopkinson and Barbeau, 2008). In stratified water columns, marine SCML are 1845 

characterized by a high chlorophyll to carbon ratio, and can (but may not) correspond to an 1846 

increase in photosynthetic biomass (Cullen, 1982). While density gradients in salinity stratified 1847 

waters are important in determining the depth of the SCML, biological factors, such as 1848 

responses to light, nutrient availability and grazing are generally more important (Kononen et 1849 

al., 1998).  Light levels in SCML are generally 1-5 % of surface irradiance, yet these layers can 1850 

contribute significantly to total primary productivity (Cullen and Eppley, 1981). SCML may also 1851 

be more important than near-surface phytoplankton in new production in marine systems, 1852 

(Silsbe and Malkin, 2016), as they intercept remineralized nutrients at the nitricline, which 1853 

often occurs at the same depth as the SCML (Cullen, 2015). Many different types of 1854 

phytoplankton are detected in marine SCML, including cyanobacteria and diatoms (Hopkinson 1855 

and Barbeau, 2012). 1856 

Subsurface chlorophyll maxima are thought to be common in seasonally or permanently 1857 

stratified lakes in addition to marine systems (Ludlam, 1996). There has been little direct study 1858 

of the dynamics of oxygenic phytoplankton in ferruginous lakes, yet SCM have been observed in 1859 

some ferruginous meromictic lakes (Boehrer et al., 2017). Cyanobacteria (Synechococcus sp.) 1860 
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made up 24 % of 16S rRNA sequences in the chemocline of ferruginous meromictic Lake 1861 

Svetloe, and they likely contributed significantly to carbon fixation at depth (Savvichev et al., 1862 

2017). In addition to Chl a, the accessory pigment phycocyanin was absent, but phycoerythrin 1863 

was detected at this depth and attributed to cyanobacteria. Phycoerythrin is synthesized as an 1864 

adaptation to low-light in Prochlorococcus sp., and specifically to harvesting blue light, which 1865 

penetrates deeper in the water column (Overmann and Garcia-Pichel, 2013). A SCM was also 1866 

detected at the Fe2+-oxygen redoxcline of Brownie Lake (Figure 13). In lakes with a sunlit Fe2+-1867 

oxygen redoxcline, iron may not limit growth of oxygenic phototrophs, and growth could 1868 

instead be limited by light and/or other nutrients. Exploring these controls within a chemically 1869 

stratified ferruginous system will refine our understanding of how nutrient availability 1870 

controlled primary productivity and the balance of new production and export from ferruginous 1871 

oceans.  1872 

Subsurface turbidity peaks were abundant in a subset of Wisconsin (USA) lakes, and 1873 

referred to as “microstratification” (Stewart et al., 1965). In these lakes, enhanced turbidity was 1874 

linked to higher bacterial abundance (Whitney, 1938). Subsurface turbidity peaks were also 1875 

found in four other putatively meromictic lakes (Deming, Josephine, Budd, Arco) in Itasca State 1876 

Park in Minnesota (Anderson et al., 1985; Stewart et al., 2009). Some of the chemocline 1877 

turbidity peaks contained filamentous cyanobacteria, while even deeper peaks contained 1878 

cryptomonads and green algae (Baker and Brook, 1971). Four of the lakes studied are thought 1879 

to be meromictic, with ferruginous bottom waters (Table 4; Baker and Brook, 1971). The SCM 1880 

in Brownie Lake (Figure 13), which corresponds to variations in δ13CDIC and δ13CCH4, which could 1881 

result from oxygenic or anoxygenic photosynthesis, or methanotrophy, all of which occur near 1882 
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the chemocline (Lambrecht et al., 2020, 2018). Importantly, in permanently stratified lakes, 1883 

density gradients can be important in explaining the accumulation of Chl a or biomass, but are 1884 

often impossible to disentangle from gradients of nutrients, light, and temperatures (Burnett et 1885 

al., 2006). 1886 

A final consideration on primary productivity is the importance of chemoautotrophic 1887 

carbon fixation in anoxic lakes. Savvichev et al. (2017) noted that during the winter in Lake 1888 

Svetloe, most carbon fixation was attributed to dark processes, presumably 1889 

chemolithoautotrophy, such as oxidation of hydrogen sulfide with nitrate. In Lake Kuznechikha, 1890 

oxygenic and anoxygenic photosynthesis were most significant to summer carbon fixation, but 1891 

dark fixation was not negligible (Gorlenko et al., 1980). Populations of putative 1892 

chemolithoautotrophic iron and sulfur-oxidizing microbes have been observed in Lake Pavin 1893 

(Berg et al., 2019; Lehours et al., 2007). The importance of chemolithoautotrophic carbon 1894 

fixation therefore should not be ignored, particularly in winter when light is limiting or in lakes 1895 

where light does not illuminate the chemocline. 1896 

Another type of photosynthesis that could be potentially important in stratified lakes is 1897 

aerobic anoxygenic photosynthesis. The aerobic anoxygenic phototrophs (AAP) are 1898 

taxonomically and morphologically diverse and are ubiquitous in the environment. For 1899 

example, a recent study showed AAP were detected in every freshwater interrogated (Ferrera 1900 

et al., 2017). These organisms can be distinguished from oxygenic phototrophs based on the 1901 

presence of Bchl a, although this pigment is also synthesized by other anoxygenic phototrophs 1902 

(Yurkov and Hughes, 2013). They grow under oxic conditions and are obligate heterotrophs 1903 

because they lack the enzyme RuBisCO, which is necessary for the Calvin cycle of 1904 
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photosynthesis (see Yurkov and Hughes, 2013 and references therein). AAP can augment their 1905 

energy production through light-driven anaplerotic reactions, which feed intermediates into the 1906 

TCA cycle (Yurkov and Hughes, 2013), and this ability provides a competitive advantage against 1907 

other heterotrophs. In contrast to other photosynthetic organisms discussed to this point, AAP 1908 

consume organic carbon rather than synthesize it. Nevertheless, the potential of AAP to cycle 1909 

carbon, distinct from non-photosynthetic heterotrophs, may be large globally (Kolber et al., 1910 

2001, 2000), but has only been emphasized for marine systems.  1911 

When parsing which types of photosynthetic reactions will be supported at different 1912 

depths in ferruginous lakes, light should be a first order constraint, both in terms of quantity, 1913 

the amount of irradiance, and its quality for photosynthetic organisms, namely its wavelength. 1914 

Photosynthetically active radiation (PAR) are photons with wavelengths between 400-700 nm, 1915 

which comprise the majority of wavelengths utilized by photosynthetic organisms, but each 1916 

class of phototroph synthesizes pigments specialized in absorption of light of specific 1917 

wavelengths (which are also potential organic biomarkers, discussed above). In Cyanobacteria, 1918 

for instance, Chl a and accessory pigments such as phycocyanin give rise to strong absorption of 1919 

light around 430 nm and 660 nm, and 605 nm, respectively. In purple bacteria, Bchl a or b is the 1920 

dominant light-harvesting complex with light absorption patterns around 375 nm and 770 nm, 1921 

and 400 nm and 790 nm (Oren, 2011). In addition to absorption and attenuation of light by 1922 

photosynthetic microbes, certain wavelengths can also be attenuated by other substances in 1923 

the environment, with water absorbing red and infrared light, and “yellow substances” or 1924 

dissolved organic carbon (DOC) in lakes preferentially absorbing UV and blue light (Overmann 1925 

and Garcia-Pichel, 2013).  1926 
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Oxygenic phototrophs need the highest light quantities to sustain growth, with an oft-1927 

cited requirement 1 % of surface PAR, although a true lower limit is thought to be 0.01 µmol 1928 

quanta m-2 s-1 (Raven et al., 2000). In Brownie Lake in May 2017 (Figure 13), the SCM occurred 1929 

at 4.5 m with 0.6 µmol quanta m-2 s-1. The lowest detectable PAR was 0.02 µmol quanta m-2 s-1 1930 

at 5.5 m. If a stratified community of photosynthetic organisms exist, purple bacteria should be 1931 

just below, as they require anoxic conditions, but also longer wavelengths that are attenuated 1932 

more readily in the water column. Purple bacteria have been observed in Lake La Cruz at 0.1 % 1933 

of surface PAR, although absolute PAR values were not given (Camacho et al., 2017b). Green 1934 

sulfur bacteria should be the deepest-dwelling phototrophs in the water column, both because 1935 

of their utilization of the shorter/blue wavelengths that persist in deep waters and their 1936 

tolerance of low light (Overmann and Garcia-Pichel, 2013). The lower light limit needed to 1937 

support GSB communities has been suggested to be less than 0.00075 µmol quanta m-2 s-1 1938 

(equivalent to 0.0003 % of surface PAR; Manske et al. 2005), based on observations of active 1939 

GSB at more than 100 m depth in the Black Sea. In Kabuno Bay, GSB in the chemocline were 1940 

sustained by 0.01-0.1 % of surface PAR (Llirós et al., 2015), however, absolute units were not 1941 

given in that study.  1942 

Importantly, GSB may be present in stratified systems, but may not be very active if light 1943 

has become too limiting. For example, Crowe et al. (2014a) noted that carbon fixation 1944 

attributable to anoxygenic phototrophs in Lake Matano, although negligible to overall 1945 

productivity in the lake, approached theoretical maximum values based on the light available 1946 

(0.003 % of surface PAR or 0.12 µmol quanta m-2 s-1). Their results indicated that light was the 1947 

limiting factor determining growth of the population of anoxygenic phototrophs. It is unclear to 1948 
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what extent such light-limited communities can persist and become active if and when light is 1949 

again sufficient. For instance, Chlorobium sp. have been detected at 70 m in Lake Pavin and are 1950 

implicated in sulfur-driven anoxygenic photosynthesis (Berg et al., 2019). The involvement of 1951 

GSB in photoferrotrophy in Lake Pavin is thought to be negligible based on low relative 1952 

abundances compared to GSB in Lake Matano and Lake La Cruz (Berg et al., 2019). 1953 

Canyon Lake in Michgan, USA also has a deep chemocline (16-17 m; defined by a sharp 1954 

increase in specific conductance), but a seasonally variable oxycline, which causes the Fe2+-1955 

oxygen redoxcline to overlie the chemocline (Lambrecht et al., 2018). The deepest depth at 1956 

which light was detected, equivalent to 0.01 µmol quanta m-2 s-1, was also seasonally variable, 1957 

and generally occurred at or above the depth of the Fe2+-oxygen redoxcline (Figure 14). 1958 

However, very few 16S rRNA sequences related to anoxygenic photosynthetic bacteria were 1959 

observed in that water column, with little evidence for an increased population at the Fe2+-1960 

oxygen redoxcline (Figure 14). Notably, these sequences persisted throughout a summer. 1961 

Although absolute light penetration depth is rarely quantified from lakes, this observation 1962 

might imply that photoferrotrophy may not be a significant pathway in ferruginous lakes with 1963 

deep Fe2+-oxygen redoxclines. 1964 

 1965 
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 1966 

Figure 14. Abundance of anoxygenic phototrophic bacteria in the water column of Canyon Lake, 1967 

Michigan in 2017. The yellow boxes denote the photic zone. The bottom of the photic zone 1968 

represents 0.02 μmol quanta m-2 s-1 in June and 0.03 μmol quanta m-2 s-1 in September (~ 0.01 1969 

% surface irradiance). The Fe2+-oxygen redoxcline occurred at 13 m in June and 10 m in 1970 

September (Lambrecht et al., 2018). Sulfate concentrations are <5 μM in Canyon Lake, and free 1971 

hydrogen sulfide was infrequently detected. 1972 
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Methane 1974 

A notable feature of many ferruginous lakes studied to date is the abundance of 1975 

methane below the chemocline (Hongve, 1980). Methane can be introduced to volcanic lakes 1976 

through sublacustrine springs (Pasche et al., 2011), but the observation of large reservoirs of 1977 

methane in the monimolimnion persists across non-volcanic ferruginous lakes (Camacho et al., 1978 

2017a; Lambrecht et al., 2020; Savvichev et al., 2017). For example, Brownie Lake and Canyon 1979 

Lake have maximum methane concentrations of 1,050 and 1,980 μM, respectively (Lambrecht 1980 

et al., 2018). Tropical Lake Matano and karstic Lake La Cruz have comparable maximum values 1981 

of 1,400 and 2,200 μM, respectively (Crowe et al., 2011; Oswald et al., 2016). In addition, Lake 1982 

Pavin, a volcanic crater lake, contains methane at >4,000 μM in the monimolimnion (Lopes et 1983 

al., 2011; Michard et al., 1994).  1984 

Methanogenesis is likely to be the source of methane when δ13CCH4 is -50 to -110 ‰ 1985 

(Whiticar, 1999). Methanogenesis could be the major pathway for organic carbon degradation 1986 

in ferruginous lakes due to the generally low availability of other electron acceptors for 1987 

heterotrophic metabolisms (e.g. oxygen, nitrate, sulfate; Crowe et al., 2011; Hayes and 1988 

Waldbauer, 2006). Other factors controlling the production of methane in lakes includes 1989 

temperature and the type of organic carbon present as substrate for methanogenesis. 1990 

Increasing freshwater sediment temperature generally correlates with an increased rate of 1991 

methanogenesis (Bastviken, 2009 and references therein; Zeikus and Winfrey, 1976). 1992 

Furthermore, methane production rates in lake sediment incubations have been observed to 1993 

significantly increase when the source of organic carbon is phytoplankton-derived vs. terrestrial 1994 

(West et al., 2012).  1995 
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Methane is generally thought to be confined to the bottom waters due to efficient 1996 

microbial oxidation pathways at the chemocline (Oswald et al., 2016). Oxidation occurs 1997 

primarily by the activity of methanotrophic bacteria under suboxic conditions (Lambrecht et al., 1998 

2020; Oswald et al., 2016; Savvichev et al., 2017). However, AOM by archaea and even bacteria 1999 

using electron acceptors such as nitrate, sulfate, or even Fe3+/Mn3+/4+ (oxyhydr)oxides has been 2000 

proposed to occur in ferruginous lakes (Crowe et al., 2011; Lopes et al., 2011; Oswald et al., 2001 

2016). Recently, methane oxidation in the anoxic and ferruginous monimolimnion of Lake 2002 

Matano was detected in incubations containing 14CH4 (Sturm et al., 2018). Sulfate was a likely 2003 

electron acceptor, and the authors also noted that methane assimilation was significant in the 2004 

anoxic zone. This process may not be important in all ferruginous lakes, as AOM organisms 2005 

were an insignificant portion of the microbial community and the metabolism had the process 2006 

had marginal energetics in comparison to oxygen-dependent bacterial methanotrophy in 2007 

Brownie and Canyon Lakes (Lambrecht et al., 2020).  2008 

Evidence for active methane oxidation and mitigation of dissolved methane in the water 2009 

column have been taken as evidence that fluxes of methane to the atmosphere out of 2010 

ferruginous lakes are negligible (Oswald et al., 2016; Sturm et al., 2018). However, most of 2011 

these studies base these inferences on concentration profiles of methane, representing a 2012 

diffusional flux. Several other emission pathways besides diffusion are at play in lakes and can 2013 

be much more significant, especially in shallower lakes, at releasing methane to the 2014 

atmosphere (Bastviken et al., 2004). Direct measurements of the methane flux from Brownie 2015 

and Canyon Lakes indicated that non-diffusional pathways make up the majority of methane 2016 

emissions (Lambrecht et al., 2020). Non-diffusional pathways can include bubbling of methane 2017 
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from the sediment to the atmosphere (i.e. ebullition), release of methane stored in anoxic 2018 

bottom waters upon seasonal mixing, transport through root systems of littoral plants 2019 

(Bastviken et al., 2004), and lateral transport from littoral areas (Lambrecht et al., 2020).  2020 

 2021 

Other element and nutrient cycles 2022 

Koeksoy et al. (2015) point out that aquatic settings where Fe2+ and sulfide co-exist are 2023 

rare, but are necessary to understand Proterozoic oceans, which record an increasing reservoir 2024 

of sulfate and transitions between ferruginous and euxinic conditions (sec. 2). Free bisulfide 2025 

(HS-), the predominant species at circumneutral pH, is likely to be in low abundance due to 2026 

rapid precipitation of iron monosulfides with Fe2+ (e.g. FeS). The activities of Fe2+ and HS- in 2027 

equilibrium with mackinawite (FeS) are governed by their solubility product (Ksp; Morse and 2028 

Arakaki, 1993): 2029 

𝐾./ =	
0#$%&∗0'()

0'&
= 1012.-3         (eq. 4) 2030 

Approximating concentration as activity (a reasonable assumption for dilute waters), at a pH of 2031 

8, 1.5 μM of both Fe2+ and HS- could coexist. Higher concentrations may be permissible if 2032 

aqueous complexes or organic ligands are present. For instance, in meromictic Lake Malawi, up 2033 

to 4 μM HS- are detected, indicating weakly sulfidic conditions that likely scavenge Fe2+. Yet 2034 

sedimentary accumulations of iron indicate that this lake may switch between being sulfidic 2035 

and ferruginous (J. Li et al., 2018). Low concentrations of Fe2+ and HS- may also occur near the 2036 

chemocline of ferruginous and/or sulfidic lakes, allowing for cryptic microbial cycling of these 2037 

elements. For instance, 10 μM Fe2+ co-occurred with 2 μM HS- in Lake Svetloe (Savvichev et al., 2038 

2017). Four µM HS- was observed in the presence of tens of μM Fe2+ in Lake Matano, and could 2039 
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provide a niche for sulfide-oxidizing anoxygenic phototrophs in ferruginous lakes (Crowe et al., 2040 

2014a). Conversely, the presence of 1-2 μM Fe2+ above sulfidic deepwaters can support Fe2+-2041 

based anoxygenic photosynthesis (Berg et al., 2019). In ferruginous meromictic lakes, microbial 2042 

sulfate reduction rates increase below the oxycline (Crowe et al., 2014a; Savvichev et al., 2017). 2043 

Sulfate-reducing bacteria may be as active as Fe3+-reducing bacteria at the chemocline of Lake 2044 

Pavin despite substrate limitation (<20 μM sulfate; Berg et al., 2019), and sulfate reduction 2045 

rates are highest near the oxycline (Busigny et al., 2014).  2046 

While iron monosulfides can be saturated in the water column of ferruginous lakes, the 2047 

role of sulfide in precipitation of iron from ferruginous lakes may also be more complicated 2048 

than represented by eq. 4. Iron monosulfides were suggested to be in the sediments of Lake 2049 

Pavin based on the extractability of this phase (Busigny et al., 2014). Pyrite is present in 2050 

sediments, but not at their surface (Cosmidis et al., 2014; Viollier et al., 1997). Within the water 2051 

column, aqueous or colloidal FeSaq clusters, detected with voltammetric microelectrodes, are 2052 

the predominant particulate form of reduced sulfur (Bura-Nakić et al., 2009). It has been 2053 

suggested that the formation of FeSaq clusters prevents formation of pyrite in ferruginous lakes 2054 

(Luther et al., 2003). However, these species were not detected by X-ray absorption 2055 

spectroscopy (XAS) in Lake Pavin (Cosmidis et al., 2014). While the total amount of iron 2056 

increased in particulate matter with depth in Lake Pavin, phyllosilicates and Fe3+ 2057 

(oxyhydr)oxides dominated the iron speciation above the chemocline, Fe3+-phosphates formed 2058 

at the chemocline, and Fe2+-bearing phosphates (e.g. vivianite) predominated in the deepest 2059 

waters and sediments (Cosmidis et al., 2014). The mineralogy of authigenic water column 2060 

precipitates has not been intensely investigated in many ferruginous lakes, as poorly crystalline 2061 
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iron minerals are both difficult to preserve upon collection, and difficult to detect with 2062 

traditional methods such as XRD. However, the solubility of different iron minerals will depend 2063 

on the availability of iron and other mineral-forming anions in the environment. In Lake 2064 

Matano, which is extremely phosphate-limited, green rust forms in the chemocline, as detected 2065 

by transmission electron microscopy and synchrotron-based X-ray techniques on particulate 2066 

matter (Zegeye et al., 2012). Green rust can contain hydroxyl, carbonate, sulfate, and/or 2067 

chloride ions, and so the specific iron minerals forming likely reflect which anions exceed 2068 

solubility of their respective iron mineral phases.  2069 

The persistence of Fe3+ (oxyhydr)oxides below the chemocline of ferruginous waters has 2070 

been documented, but such phases are absent in sediments of Lake Pavin, having already 2071 

undergone transformation to vivianite (Cosmidis et al., 2014). Lake Matano sediments contain 2072 

40-60 % Fe3+ (oxyhydr)oxides (Crowe et al., 2004), which are detritally sourced from lateritic 2073 

soils (Crowe et al., 2008b). Neighboring Lake Towuti contains amorphous Fe3+ (oxyhydr)oxides 2074 

in sediments, which are associated with carbonate green rusts and siderite (Vuillemin et al., 2075 

2019b). Both lakes also contain magnetite (Bauer et al., 2020). The reasons that Fe3+ 2076 

(oxyhydr)oxides sediment in some lakes and not others may be due to limited organic carbon 2077 

availability for microbial Fe3+ reduction, competition of methanogenesis with Fe3+ reduction 2078 

(Roden and Wetzel, 2003), or aging or passivation of the mineral surfaces in ferruginous waters, 2079 

making them inaccessible for further microbial reduction (Bray et al., 2017; Roden and Urrutia, 2080 

2002). Therefore any effect on nutrient removal from ferruginous waters by adsorption to Fe3+ 2081 

(oxyhydr)oxides (Bjerrum and Canfield, 2002; Konhauser et al., 2007) may depend on whether 2082 

they survived the journey through the water column. While iron phosphate minerals provide a 2083 
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sedimentation path for removal of phosphate in ferruginous waters (Cosmidis et al., 2014), 2084 

green rusts also potentially scavenge micronutrients, such as nickel (Zegeye et al., 2012).  2085 

Microbes play a key role in mediating diagenetic reactions that transform iron and 2086 

nutrients or other redox-active elements to forms that can precipitate as iron-bearing minerals 2087 

in sediments. Enrichments of Lake Matano sediments yielded active microbial Fe3+ reduction, 2088 

but only when provided with ferrihydrite (Bray et al., 2017). More crystalline forms of Fe3+ 2089 

(oxyhydr)oxides such as goethite resulted in less Fe3+ reduction but did stimulate 2090 

methanogenesis. The authors ascribed this to the lower energy yield of Fe3+ reduction with 2091 

more crystalline minerals, with organic and H2 substrates rather being used by methanogens. In 2092 

Lake Towuti, sulfate-reducing bacteria were active in ferruginous sediments, despite low sulfate 2093 

concentrations (usually <20 μM) (Vuillemin et al., 2016). 2094 

The cycles of iron and phosphate are intimately linked in ferruginous lakes, as 2095 

phosphate adsorbs strongly to Fe3+ (oxyhydr)oxides. Therefore, phosphate concentrations often 2096 

increase dramatically in the bottom waters of ferruginous lakes. The concentrations of 2097 

phosphate in ferruginous lakes vary widely, however, and likely depend on the trophic status of 2098 

the lake. Microbes likely play an active role in phosphorus cycling within ferruginous lakes. 2099 

Biological pathways for sedimentation of nutrients, specifically phosphate, could also prove 2100 

important for sequestration in sediments. For instance, abundant intracellular polyphosphate 2101 

was observed in microbes within Lake Pavin sediments, and vivianite was the predominant iron 2102 

mineral in sediments (Cosmidis et al., 2014). Numerous other microbial pathways exist for 2103 

sequestering nutrients intracellularly, especially in anaerobes. For instance, nitrate, 2104 

polyphosphate and polysulfide are stored in vacuoles of the benthic sulfide-oxidizing bacteria 2105 
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Beggiatoa (Schulz-Vogt, 2011), indicating that intracellular nutrient storage could be an 2106 

important pathway for delivering nutrients in sediments. Recently, vivianite nodules were 2107 

reported from ferruginous Lake Towuti (A Vuillemin et al. 2019), formed through diagenetic 2108 

processes involving microbial Fe3+ and sulfate reduction (Vuillemin et al., 2018).  2109 

In Kabuno Bay of Lake Kivu, ammonium was the predominant form of nitrogen below 2110 

the chemocline, with fixed nitrogen virtually absent in overlying water (Michiels et al., 2017). 2111 

Reduction of nitrate (NO3
-) to N2 was extremely rapid at the chemocline, but a significant 2112 

portion of nitrate was reduced to ammonium, which was retained as fixed nitrogen and 2113 

available for subsequent assimilation. Ferrous iron amendments stimulated nitrate reduction to 2114 

both N2 and ammonium (Michiels et al., 2017). Most other ferruginous meromictic lakes 2115 

investigated to date have abundant ammonium below the chemocline as was observed in 2116 

Kabuno Bay (Lambrecht et al., 2018; Sibert et al., 2015), likely resulting from remineralization of 2117 

organic nitrogen. In meromictic Lake Malawi, which is currently sulfidic but has been 2118 

ferruginous in the past (sec. 4), ammonium oxidation and nitrification at the oxycline followed 2119 

by denitrification explain the reaction zone for ammonium, more abundant in deep waters, and 2120 

nitrate, more abundant in oxic waters (J. Li et al., 2018). In Lake Pavin, nitrate was more 2121 

abundant than ammonium throughout the epilimnion, and supported primary production in 2122 

phytoplankton who first reduced nitrate to ammonium (Mallet et al., 1998). Many other 2123 

microbial nitrogen transformations could contribute to the nitrogen cycle in ferruginous lakes, 2124 

including anaerobic nitrate reduction coupled to Fe2+ oxidation and/or chemodenitrification 2125 

(Stanton et al., 2018), or Fe3+ reduction coupled to ammonium oxidation (Busigny et al., 2013). 2126 

In Brownie Lake, the chemocline and Fe2+-oxygen redoxcline co-occur with a minimum N:P, 2127 
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indicating potential nitrogen limitation (Figure 15). Further work could explore whether N2-2128 

fixation is active at this depth, and if Cyanobacteria or GSB are involved (Halm et al., 2009).  2129 
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Figure 15. An N:P minimum in Brownie Lake occurs at the Fe2+-oxygen redoxcline, which could 2132 

be a site of N-limitation and/or N2-fixation. 2133 

 2134 

An active cycle between ferrous and ferric iron has been recognized to turnover iron 2135 

rapidly across the oxycline of stratified waters. Microbes capable of non-photosynthetically 2136 

oxidizing Fe2+ have been detected at the oxycline of ferruginous lakes by microscopic 2137 

observation (Gorlenko et al., 1980). Magnetotactic bacteria, who perform non-metabolic redox 2138 

transformations of iron and are detectable through magnetic techniques, are in greatest 2139 

abundance at the oxycline of Brownie Lake, and occur in the anoxic sediments (Lascu et al., 2140 

2010). Non-photosynthetic Fe2+-oxidizing and Fe3+-reducing bacteria, detected by 16S rRNA and 2141 

culturing efforts, were more abundant than photosynthetic Fe2+-oxidizing bacteria within the 2142 

chemocline of Lake Pavin (Berg et al., 2019; Lehours et al., 2009).  2143 

From study of past ocean sediments, several observations regarding the iron isotope 2144 

budget of ferruginous oceans have been made, which can be informed by work in modern 2145 

systems. In meromictic ferruginous lakes, dissolved iron δ56Fe is heavy deep in the water 2146 

column, but becomes lighter as dissolved iron concentrations diminish upward in the water 2147 

column, toward the Fe2+-oxygen redoxcline (Busigny et al., 2014; Malinovsky et al., 2005; 2148 

Teutsch et al., 2009). This is interpreted to reflect distillation of heavy isotopes into Fe3+ 2149 

(oxyhdyr)oxides following Fe2+ oxidation at the Fe2+-oxygen redoxcline. A similar trend in 2150 

dissolved δ56Fe occurs at the chemocline of sulfidic meromictic Lake Cadagno (Ellwood et al., 2151 

2019). These examples corroborate interpretation of iron isotope data within a Neoarchean 2152 

setting (Czaja et al., 2012; Eroglu et al., 2018).  2153 
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Iron isotope trends are also influenced by iron sulfide precipitation under anoxic 2154 

conditions. In Lake Pavin the residual light δ56Fe of dissolved iron also co-occurs with an FeSaq 2155 

species, a possible precursor for pyrite, leading to the suggestion that pyrite is a sink for 2156 

residual light dissolved iron at the Fe2+-oxygen redoxcline (Bura-Nakić et al., 2009; Busigny et 2157 

al., 2014). In the Black Sea basin, dissolved iron occurs in a wedge above the euxinic bottom 2158 

waters, and the δ56Fe of dissolved iron increases by 3‰ into the sulfidic water (Rolison et al., 2159 

2018). The authors suggested that isotopically light iron is directly scavenged into sulfides at the 2160 

base of the ferruginous layer (Rolison et al., 2018). These examples provide evidence within an 2161 

Fe2+-oxygen redoxcline and a ferruginous-sulfidic transition zone to support pyrite as a sink for 2162 

light iron (i.e. Rouxel et al., 2005).  2163 

Iron isotope systematics above ferruginous chemoclines remain underexplored, 2164 

however. At Lake Cadagno, residual dissolved iron trended lighter upward into the oxycline, but 2165 

underwent a 1 ‰ increase in δ56Fe above the oxycline before returning to near 0 ‰ in the 2166 

epilimnion (Ellwood et al., 2019). The authors attributed this excursion to the activity of 2167 

photoferrotrophs at this depth (cf. Berg et al., 2016). However, no explanation was given for 2168 

how photoferrotrophy would produce this heavy δ56Fe in dissolved iron, as experimental 2169 

determination of iron isotope fractionation during oxidation by these organisms always leaves 2170 

residual dissolved iron isotopically lighter than the precipitated Fe3+ (oxyhydr)oxides (Croal et 2171 

al., 2004; Swanner et al., 2015c; Wu et al., 2017). Heavier dissolved iron in oxic waters could 2172 

also result from iron’s complex role as a nutrient, particle, colloid, and ligand-bound element in 2173 

the photic zone of lakes and the ocean (Conway and John, 2015; Lotfi-Kalahroodi et al., 2019; 2174 
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Mulholland et al., 2015; Sun and Wang, 2018). Further explorations of this oxic iron cycle and 2175 

could be explored as indicators of oxygenic photosynthesis (e.g. Swanner et al., 2018). 2176 

Molybdenum cycling has been investigated in euxinic meromictic lakes to validate its 2177 

utility as a redox proxy, particularly for euxinic conditions (Dahl et al., 2013; Dahl and Wirth, 2178 

2017). However, similar work has not been done in low-sulfate ferruginous lakes, despite 2179 

application of the Mo proxy to sediments inferred to have been deposited under ferruginous 2180 

conditions (Czaja et al., 2012; Kurzweil et al., 2015). The utility of Mo as a paleo-redox proxy is 2181 

dependent on its affinity for sulfide, which causes Mo enrichments in sediments deposited from 2182 

euxinic water columns (Algeo and Rowe, 2012; Scott et al., 2008). Thiomolybdate formation, 2183 

where sulfur progressively replaces oxygen, seems to be a primary mechanism for Mo 2184 

sulfidation (Helz et al., 1996; Wagner et al., 2017). An iron sulfide pathway has also been 2185 

suggested (Vorlicek et al., 2018), which could be relevant to ferruginous lakes where FeS 2186 

colloids are forming, e.g. Lake Pavin (Bura-Nakić et al., 2009). Pyrite, however, does not seem to 2187 

be the main mineral host of Mo in anoxic sediments (Chappaz et al., 2014). Molybdenum does 2188 

have significant interactions with organic carbon in anoxic sediments (Dahl et al., 2017; Wagner 2189 

et al., 2017), which could be relevant for ferruginous systems. Scavenging of molybdenum onto 2190 

Fe3+ and Mn3+/4+ (oxyhydr)oxides, which imparts a distinct isotopic fractionation (Barling and 2191 

Anbar, 2004; Poulson et al., 2006), might also be important under anoxic but not euxinic 2192 

conditions (Rico et al., 2019).  2193 

Uranium isotopes have been have emerged as a sensitive tracer of marine redox 2194 

conditions, particularly in their ability to parse anoxic vs. oxic seafloor area when coupled to an 2195 

isotope mass balance (Brennecka et al., 2011a; Kendall et al., 2015; Lau et al., 2019). However, 2196 
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there is little constraint on the fractionations expected under anoxic and ferruginous conditions 2197 

(Gilleaudeau et al., 2019; Hood et al., 2016), limiting the applicability of the uranium isotope 2198 

mass balance approach in the Precambrian. Recently, δ238U values were determined from 2199 

water column samples of Brownie Lake, and water column and sediment samples of Brownie 2200 

Lake and Lake Pavin (Cole et al., 2020). Although heavy δ 238U is preferentially buried in anoxic 2201 

settings, the average δ 238U of sediments deposited from oxic and ferruginous waters were 2202 

statistically indistinguishable in these lakes. However, the range of δ 238U was larger from 2203 

ferruginous samples (Cole et al., 2020). This may reflect the variety of potential processes for 2204 

soluble U6+ under ferruginous conditions: microbial (Stylo et al., 2015), abiotic by Fe2+ (Brown et 2205 

al., 2018), and reduction with FeS (Hua and Deng, 2008), each with a distinct fractionation 2206 

factor. Adsorption to Fe3+ or Mn3+/4+ (oxyhydr)oxides (Brennecka et al., 2011b), incorporation 2207 

into organic matter (Chappaz et al., 2010), complexation by carbonate (Chen et al., 2017), or 2208 

precipitation with phosphate (Dang et al., 2016) are all relevant pathways in ferruginous lakes 2209 

as well.  2210 

The mercury cycle has not been greatly explored in ferruginous meromictic lakes but 2211 

may be worth investigating. Atmospheric deposition of mercury has increased globally since 2212 

industrialization, with many records of enhanced mercury deposition from lakes (Fitzgerald et 2213 

al., 1998; Swain et al., 1992). Mercury methylation, which converts inorganic mercury into a 2214 

form that can bioaccumulate, has generally been attributed to sulfate-reducing bacteria 2215 

(Compeau and Barth, 985; Gilmour et al., 1998; Jeremiason et al., 2006). However, recent work 2216 

has documented that Fe3+ reducing bacteria such as Geobacteraceae can also methylate 2217 

mercury (Bravo et al., 2018; Kerin et al., 2006; Si et al., 2015). Furthermore, a variety of 2218 
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anoxygenic photosynthetic bacteria have recently been shown to mediate Hg2+ reduction under 2219 

anoxic conditions (Grégoire et al., 2018; Grégoire and Poulain, 2016; Lavoie et al., 2020). 2220 

Therefore, ferruginous environments may also have significant mercury methylation or other 2221 

mercury redox transformations. Lake Pavin shows increases in methymercury concentrations 2222 

below the thermocline, and sharp peaks in particulate mercury, both inorganic and 2223 

methylmercury, at the chemocline (Cossa et al., 1994). Mercury may be shuttled across the 2224 

chemocline in association with particulate iron or manganese.  2225 

 2226 

7. Conclusions 2227 

While absent from the marine waters today, ferruginous conditions were a feature of 2228 

oceans throughout the Precambrian, and re-occur in the Phanerozoic. While the major source 2229 

of dissolved iron in oceans that deposited IFs likely came from hydrothermal input, the 2230 

sedimentation of iron-rich clastic sediments throughout the Proterozoic indicates ferruginous 2231 

conditions may have been controlled by multiple processes. Emerging questions on the 2232 

temporal and spatial extent of ferruginous conditions include: What caused transitions from 2233 

ferruginous to euxinic and/or oxic conditions? Why did transitions occur transiently or 2234 

repeatedly in some basins? Where such transitions global in nature? And what is the tipping 2235 

point in basins that fluctuate between ferruginous to sulfidic or oxic, or vice versa?  2236 

While ferruginous meromictic lakes all have Fe2+-oxygen redoxclines, there is much 2237 

variation in their chemistry. Ferruginous meromictic lakes introduced here may provide 2238 

analogues to several of the depositional settings and mineral formation pathways in 2239 

ferruginous oceans (Figure 16). Investigation of paleoferruginous lakes that transitioned 2240 
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between ferruginous, euxinic, and/or oxic conditions, such as Lake Malawi or Otter Lake, can 2241 

provide insights to the physical and chemical triggers that initiate the onset of new redox 2242 

regimes. The supply of iron, water level fluctuations, and the ratio of iron to sulfur have all 2243 

emerged as controls on, or indicators of, shifting redox conditions. Translating the lessons from 2244 

lakes to oceans requires a careful accounting for the different scales of physical processes, such 2245 

as mixing dynamics (e.g. seiches vs. ocean currents). The very act of articulating these 2246 

differences, however, might yield new insights about the way in which physical processes 2247 

influence redox dynamics. For example, Lake Malawi’s fluctuations in response to mega-2248 

droughts are temporally linked to non-ferruginous intervals. Do sea-level fluctuations, or 2249 

oceanic basin restrictions also correspond to changing redox conditions and changing 2250 

sedimentation? Would re-organization of ocean currents or river systems change the supply of 2251 

iron in a way that affects the redox conditions within a depositional basin? 2252 

While paleoferruginous basins can help understand transitions, modern euxinic and 2253 

ferruginous basins can help us elucidate the extent of active iron and sulfur cycling. Examples 2254 

include cryptic iron cycling in euxinic Lake Cadagno mediated by photoferrotrophs, and iron 2255 

oxidation and distillation processes in a ferruginous depth interval of the Black Sea. In 2256 

ferruginous Lake Pavin, both pyrite and vivianite are sinks for iron in sediments, and pyrite 2257 

captures the light residual dissolved iron that in turn reflects iron oxidation near the Fe2+-2258 

oxygen redoxcline. In eutrophic ferruginous Brownie Lake, sufficient sulfate (50-100 μM) is 2259 

present for a significant sulfur cycle, similar to Lake Pavin. Productive ferruginous systems that 2260 

deposit pyrite may be analogous to basins that deposited ferruginous shales (Figure 16). 2261 
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In lakes, the sources of iron are controlled by regional geology. Aside from atmospheric 2262 

deposition, dissolved iron comes from runoff, streamflow, shallow recharge, groundwater 2263 

seepage, or the solid iron phases in sediments. The iron sources in the oceans include terrestrial 2264 

runoff, glacial sources, groundwater, atmospheric deposition, (hydrothermal) alteration of 2265 

seafloor, and mobilization from sediments. As the impact of each marine source varies 2266 

regionally with such factors as distance from shore or restriction, different types of lakes may 2267 

provide partial analogies. Could volcanic lakes (e.g. Lake Kivu, Lake Pavin) that receive their iron 2268 

through temporally variable sub-lacustrine springs echo the waxing and waning intervals of high 2269 

hydrothermal iron supply to the Precambrian oceans? The groundwater inputs of iron to post-2270 

glacial lakes may fluctuate with the water table, e.g. as in Lake Nordbytjernet. Can studying the 2271 

magnitudes of these fluctuations give insights to how sea-level fluctuations might have re-2272 

organized the continental iron supply? 2273 

 2274 

Figure 16. The depositional setting for different IF facies and other ferruginous sediment types. 2275 

Images show different types of ferruginous lakes and examples discussed in text that have 2276 

some analogy to the depositional environments encompassed in the top panel.  2277 
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 2278 

A key indicator of ferruginous intervals in paleoferruginous lakes is the deposition of 2279 

siderite, but also vivianite. Higher water levels are interpreted to raise the carbonate 2280 

compensation depth, resulting in dissolution of calcite, permitting siderite precipitation. 2281 

Paleoferruginous lakes such as Otter Lakes can be useful in exploring controls on primary or 2282 

early diagenetic formation of such carbonates and their preservation. Paleoferruginous lakes 2283 

(e.g. Lake Towuti, Lake Malawi) offer insights into diagenetic controls on siderite formation. 2284 

Constraining the δ13C and δ18O signatures that siderite or other Fe- and Mn-bearing carbonates 2285 

formed via multiple pathways in ferruginous lakes will aid in the interpretation of pathways 2286 

invoked in ancient systems. 2287 

The enigma of the primary iron precipitate to form IF may not have a single answer. 2288 

Different IF facies may have formed under different depositional and chemical conditions, 2289 

which resulted in different minerals. Oligotrophic Lake Matano’s catchment is lateritic soils, and 2290 

sediments record preservation of detrital Fe3+ (oxyhydr)oxides within a reducing water column. 2291 

This system may analogous to open marine conditions, with low export of organic carbon, 2292 

forming oxide-facies IF. Ferruginous volcanic lakes that support the cycling of hydrothermally-2293 

derived silica as well as iron may be appropriate analogues for silicate-facies IF forming closer 2294 

to hydrothermal iron sources (e.g. Paulina Lake; Lefkowitz et al., 2017; Lake Kivu; Pasche et al., 2295 

2012), although disentangling contribution of Si-requiring phytoplankton (e.g. diatoms) to the 2296 

silica cycle will be challenging. 2297 

Some of the major outstanding questions about the evolution of the Earth’s surface 2298 

environment revolve around primary productivity and oxygen production. Their levels could be 2299 
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regulated by nutrients, or some other chemical or physical attributes of the oceans could have 2300 

affected either the productivity or carbon preservation. Iron-replete conditions would have 2301 

been the backdrop for marine primary productivity in the Precambrian, yet our understanding 2302 

of primary productivity in the oxic ocean is galvanized by the paradigm of iron limitation 2303 

(Martin, 1990).  Studies from Lake Matano, Kabuno Bay of Lake Kivu, and Lake La Cruz have 2304 

helped to identify the contributions of anoxygenic photosynthesis to primary productivity, and 2305 

also delineate the controls on whether sulfide or Fe2+ is used as an electron donor. But 2306 

subsurface Chl a maxima within Brownie Lake and Lake Svetloe highlight how oxygenic 2307 

photosynthesis at an Fe2+-oxygen chemocline might yet be an important part of Precambrian 2308 

primary productivity. If subsurface chlorophyll maxima layers are so important to new 2309 

productivity in diverse ocean regions today, why wouldn’t they have been when chemical 2310 

stratification was even more pronounced? If so, how did the presence of an Fe2+-oxygen 2311 

redoxcline affect primary productivity? 2312 

These questions are guideposts along the intertwined paths of the study of past 2313 

ferruginous oceans and modern and paleo- ferruginous lakes. As our understanding of 2314 

ferruginous ocean increases, new questions will emerge, ready to be informed by the lessons 2315 

from ferruginous lakes. The increasing body of knowledge on ferruginous lakes will help to 2316 

expose the relevant questions. As more ferruginous lakes are discovered, the lakes themselves 2317 

might be elevated from curious limnological footnotes to important examples of how 2318 

ferruginous conditions have played a central role in Earth’s biogeochemistry not only in the 2319 

past, but also in the present. 2320 

 2321 
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