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Abstract
Epithelial cells form continuous sheets of cells that exist in tensional homeostasis. Homeostasis is maintained through cell-
to-cell junctions that distribute tension and balance forces between cells and their underlying matrix. Disruption of tensional 
homeostasis can lead to epithelial–mesenchymal transition (EMT), a transdifferentiation process in which epithelial cells 
adopt a mesenchymal phenotype, losing cell–cell adhesion and enhancing cellular motility. This process is critical during 
embryogenesis and wound healing, but is also dysregulated in many disease states. To further understand the role of inter-
cellular tension in spatial patterning of epithelial cell monolayers, we developed a multicellular computational model of 
cell–cell and cell–substrate forces. This work builds on a hybrid cellular Potts model (CPM)–finite element model to evaluate 
cell–matrix mechanical feedback of an adherent multicellular cluster. Cellular movement is governed by thermodynamic 
constraints from cell volume, cell–cell and cell–matrix contacts, and durotaxis, which arises from cell-generated traction 
forces on a finite element substrate. Junction forces at cell–cell contacts balance these traction forces, thereby producing 
a mechanically stable epithelial monolayer. Simulations were compared to in vitro experiments using fluorescence-based 
junction force sensors in clusters of cells undergoing EMT. Results indicate that the multicellular CPM model can reproduce 
many aspects of EMT, including epithelial monolayer formation dynamics, changes in cell geometry, and spatial patterning 
of cell–cell forces in an epithelial tissue.

Keywords  Cellular Potts model · Traction forces · Cell mechanics · Spatial patterning · Epithelial–mesenchymal transition · 
Cell–cell junction forces

1  Introduction

The epithelium is characterized by polarized sheets of cells 
that form by self-organization and reside in a mechanical 
equilibrium (reviewed in Fristrom 1988). This mechanical 
equilibrium is maintained by regulation of both adhesion 
between neighboring epithelial cells (cell–cell) and adhe-
sion between epithelial cells and the underlying extracellular 
matrix (cell–matrix). Cells generate cytoskeletal tension via 
actomyosin contractility, which is transmitted to the underly-
ing matrix (Weinberg et al. 2017), while cell–cell junctions 
mechanically couple abutted cells and distribute cytoskeletal 
tension to neighboring cells. This physical cellular inter-
connectivity and balance of tension at the cell–matrix and 
cell–cell interfaces produce a coupled monolayer that acts 
as a cohesive structure in static equilibrium.

Maintenance of static equilibrium in the epithelial sheet 
is essential to maintaining barrier and signaling functions of 
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the epithelial sheet; however, disruption of the static equilib-
rium plays an important role in both physiological phenom-
ena such as embryogenesis and pathological states including 
fibrosis and tumorigenesis (Ingber 2005; Ettensohn 1985). 
Mechanical equilibrium relies on tissue-scale coordination 
of mechanical dynamics extending beyond local cell–cell 
and cell–matrix adhesions (Nelson et al. 2005). Local per-
turbations to the equilibrium state result in localized tension 
in the monolayer and a disruption to the equilibrium. For 
example, the cellular phenomenon known as epithelial–mes-
enchymal transition (EMT), which is essential for embryo-
genesis and tissue morphogenesis but has also been impli-
cated in tumorigenesis and fibrotic diseases, is initialized by 
perturbations in cell–cell junctions. This process results in a 
phenotypic switch in which epithelial cells transdifferentiate 
into mesenchymal cells (reviewed in Thiery and Sleeman 
2006). The perturbation in cell–cell junctions redistributes 
tension in the monolayer, and cell–matrix adhesion compen-
sates for the resulting localized stress (Scott et al. 2019). As 
such, spatial patterning of mechanical stress can facilitate 
phenotypic regulation and is crucial to both maintenance and 
disruption of tissue homeostasis (Nelson et al. 2005; Ingber 
2005; Maruthamuthu et al. 2011; Narayanan et al. 2020).

Previous studies have explored the role of cell–cell junc-
tions in maintaining tensional homeostasis in either epithe-
lial or endothelial monolayers: Increasing cellular contrac-
tility has been shown to stimulate formation of cell–cell 
junctions (Liu et al. 2010), and subsequent transfer of force 
to the cell–cell junction allows for stress distribution about 
the monolayer to maintain tensional homeostasis (Nelson 
et al. 2005; Maruthamuthu et al. 2011). As a result, mechani-
cal gradients form that define spatial patterns and provide 
positional information within the monolayer. Both in vitro 
and in silico studies have demonstrated that the forces of a 
monolayer correspond to its geometry (Li et al. 2018; Mertz 
et al. 2012).

In this work, we explore the role of cellular adhesion in 
maintaining tensional homeostasis of epithelial monolay-
ers. To simulate epithelial monolayers, we extended a model 
recently developed by van Oers, Rens, and colleagues, which 
consists of a hybrid cellular Potts model (CPM) and finite 
element model (FEM) (van Oers et al. 2014). The model 
simulates individual cell traction forces based on their geo-
metric size and shape, as has previously been modeled and 
validated by one of the senior authors of this work (Lemmon 
and Romer 2010): Cellular traction forces are proportional 
to the first moment of area (FMA) about each point in the 
individual cell geometry. This results in a pattern of traction 
forces directed toward the cell centroid and proportional to 
their distance from the cell centroid. These traction forces 
generate substrate strains which, in addition to cell–cell and 
cell–matrix interactions, impose thermodynamic constraints 
and govern the dynamics of individual cells in the CPM. In 

the current work, we incorporate the formation of cell–cell 
junctions between neighboring cells to accurately represent 
the biology of epithelial cells. We extend the Lemmon and 
Romer FMA model to multicellular clusters and model trac-
tion forces based on the multicellular geometry rather than 
the individual cell. Thus, individual cell traction forces are 
directed toward and proportional in magnitude to the dis-
tance from the centroid of the multicellular cluster, instead 
of the centroid of the individual cell.

In the original Lemmon and Romer model, each cell is in 
static equilibrium: Because traction forces are proportional 
to the first moment of area, and the centroid by definition 
is the point where the integral of the first moment of area 
is zero, all traction forces within a cell must sum to zero. 
However, when we calculate traction forces based on the 
multicellular cluster, each individual cell is no longer in 
static equilibrium. Previous studies have suggested that cells 
in epithelial monolayers exist in a quasi-equilibrium, even 
when cell–cell junction forces are present (Liu et al. 2010). 
As such, we model the force applied to the cell–cell junc-
tion as the balancing force that opposes the traction forces 
for that cell, resulting in a quasi-equilibrium for each cell. 
This assumption has been observed experimentally in epi-
thelial cell pairs, in which the junction force is equal and 
opposite to the net traction force (Liu et al. 2010), and illus-
trated based on force balancing principles in small epithelial 
clusters (Ng et al. 2014). We thus are able to predict the 
formation of an epithelial monolayer, including epithelial 
cell geometry, cell–matrix traction forces, and cell–cell junc-
tion forces, based on first principles of cell contractility, cell 
geometry, and thermodynamic energy minimization. Results 
are compared to in vitro experiments in which epithelial 
monolayers were grown in a predetermined geometry estab-
lished by microcontact-printed islands. Cell geometry and 
cell–cell junction forces are quantified and compared to sim-
ulations. To further probe the role of junction forces in tis-
sue homeostasis, we induce phenotypic changes in epithelial 
clusters via addition of transforming growth factor-� 1 (TGF-
�1), a known inducer of EMT. To replicate these effects in 
the model, we change the relative weight of cell–cell and 
cell–matrix interfacial energies in the CPM and predict how 
changing phenotype can facilitate disruption of mechanics 
and morphology in the epithelial sheet.

Simulations demonstrate that traction forces of multicel-
lular colonies scale linearly with the size of the colony, inde-
pendent of the individual cell geometry. Additionally, we 
present a minimal analytical model that generalizes to pre-
dict the distribution of junction forces across a monolayer: 
Junction forces are predicted by a quadratic function that is 
highest at the monolayer center and decays toward the clus-
ter edge. These predictions are independent of individual-
cell geometry and are consistent with the existing literature 
(Trepat et al. 2009).
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2 � Materials and methods

In this study, we perform in silico and in vitro experiments to 
investigate intercellular tension and cell–matrix mechanical 
interactions in a multicellular geometry. Simulations were 
performed using a lattice-based cell model, the cellular Potts 
model (CPM), generalized from the Potts model, to simulate 
epithelial monolayer dynamics (Graner and Glazier 1992). 
The cell-occupied lattice is superimposed on a finite element 
lattice to determine substrate strains from simulated traction 
forces. We build on a prior iteration of the CPM framework 
recently presented by van Oers et al. (2014). In particular, 
we extend the first moment of area (FMA) prediction of 
single cell traction forces to predict the traction forces of a 
multicellular cluster. Additionally, we predict cell–cell junc-
tion forces maintain mechanical homeostasis by requiring 
that (1) cells in contact are mechanically coupled through 
cell–cell junctions, (2) the forces at these junctions balance 
net traction forces for each cell, and (3) the junction force is 
equal and opposite across a cell–cell adhesion. We compare 
model predictions of spatial patterning and junction forces 
with in vitro experiments of TGF-�1-treated epithelial cell 
monolayers.

2.1 � Cellular Potts model

The two-dimensional domain of the CPM lattice � contains 
interconnected sites or nodes �⃗x ∈ 𝛺 with states 𝜎(�⃗x) that 
denote the indices of distinct “cells.” Each distinct cell-occu-
pied site is defined by 𝜎(�⃗x) ∈ {1, 2, 3,…} , and an unoccu-
pied site, representing the underlying extracellular matrix, 
is defined by 𝜎(�⃗x) = 0 . The CPM approximates the effective 
energy for a given tissue configuration with the Hamiltonian, 
a sum of terms where each contribution reflects thermody-
namic constraints due to different properties of biological 
cells and together summarizes the configuration energy of 
the tissue. Here, the Hamiltonian is given by the sum of 
three terms,

The area term Harea approximates the cell area constraint 
as a deviation of the cell area, relative to a specified target 
or “ideal” area, such that

where a(𝜎(�⃗x)) is the area of a given cell determined by num-
ber of lattice sites occupied by that cell, A0 = 312.50 μm2 is 
the target area for all cells, and �area = 500 is an elasticity 
coefficient that maps deviations from the target area to a 
magnitude of energy.

(1)H = Harea + Hcontact + Hdurotaxis.

(2)Harea =
∑
𝜎

𝜆area

(
a(𝜎(�⃗x)) − A0

A0

)2

,

The contact term Hcontact represents costs due to con-
tact between neighboring pixels, with different thermody-
namic constraints associated with cell–cell and cell–matrix 
interfaces:

where J(𝜎(�⃗x), 𝜎(�⃗x�)) defines the interaction energy between 
adjacent lattice sites (x, x�) and 𝛿(𝜎(�⃗x), 𝜎(�⃗x�)) is the Kronecker 
delta function defined as 1 if 𝜎(�⃗x) = 𝜎(�⃗x�) and 0 otherwise. 
The cell–cell interface energy J(𝜎(�⃗x), 𝜎(�⃗x�)) is given by Jcc , 
and the cell–matrix interface energy J(𝜎(�⃗x), 0) is given by 
Jcm.

Lastly, the durotaxis term Hdurotaxis introduced in van 
Oers et al. (2014) mimics the tendency for cell migration 
along gradients of mechanical strain. In particular, this term 
captures preferential cellular extension into lattice sites of 
higher strain,

The �durotaxis = 1 term determines cell sensitivity to duro-
taxis; g(�⃗x, �⃗x�) = 1 if a cell extends into a target site �⃗x′ and 
g(�⃗x, �⃗x�) = −1 if a cell retracts; and �⃗v1∕2 ⋅ �⃗vm are defined such 
that extension and retraction are greatest parallel to the 
major and minor principal strain axes, �⃗v1 and �⃗v2 , respec-
tively, and negligible perpendicular to it. Vector �⃗vm defines 
the direction of the copy attempt, �⃗vm = �⃗x − �⃗x� . The sigmoid 
function h(E) captures the preference for stiffer substrates,

which assumes this preference has a minimal stiff-
ness for spreading and reaches a maximum � = 10 at 
rate � = 5 × 10−4 kPa−1 and the half-max stiffness as 
E� = 15 kPa . E(�) is the cell perception of substrate strain 
stiffening,

where �st = 0.1 determines the rate of strain stiffening, � is 
the substrate strain, and E0 = 10 kPa is the Young’s modulus 
of the substrate. H(�) is the Heaviside or indicator func-
tion, defined such that H(�) = 1 for � ≥ 0 and 0 otherwise. 
The strain stiffening only affects cell perception of strain 
stiffening, not the stiffening of the finite element mesh itself 
(discussed below).

2.2 � Finite element analysis

To describe the substrate strain that governs durotaxis, 
we assume that a uniform, isotropic, and linearly elastic 

(3)Hcontact =
∑
(⃗x,⃗x�)

J
(
𝜎(�⃗x), 𝜎(�⃗x�)

)
(1 − 𝛿(𝜎(�⃗x), 𝜎(�⃗x�)),

(4)
Hdurotaxis = − g(�⃗x, �⃗x�)𝜆durotaxis(h(E(𝜀1))(�⃗v1 ⋅ �⃗vm)

2

+ h(E(𝜀2))(�⃗v2 ⋅ �⃗vm)
2).

(5)h(E(�)) =
�

1 + exp(−�(E(�) − E�)
,

(6)E(�) = E0

(
1 + (�∕�st)H(�)

)
,
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two-dimensional substrate deforms to cellular traction forces 
projected from the CPM (described below). The CPM lat-
tice is mapped to the finite element model by relating each 
CPM lattice element to a finite element node. We solve the 
linear system

for the displacement u at each node, where K is the global 
stiffness matrix assembled from the stiffness matrix of each 
element and f is the applied traction forces. Boundary condi-
tions are imposed with the constraint u = 0 , i.e., the substrate 
is fixed at the CPM lattice boundary. In maintaining constant 
material properties during deformation, the element stiffness 
matrices K

e
 are given by

where B is the conventional strain-displacement matrix 
and D is the material property matrix under plane stress 
conditions,

relating the Young’s modulus, E0 = 10 kPa , and Poisson’s 
ratio, � = 0.45 , assuming planar stress and using realistic 
values for substrate material properties (Boudou et al. 2006). 
Lastly, B relates the local node displacements to the local 
strains by,

in which � is a vector of the strain tensor �.

2.3 � Traction forces

Prior work of van Oers et al. (2014) assumes that individual 
cell geometry relates to traction forces in the CPM by the 
first moment of area (FMA). Application of the FMA model 
to single cell geometries is previously described by one of 
the senior authors of this work (Lemmon and Romer 2010). 
In brief, the single cell FMA model assumes that each site 
or node i in a CPM cell � exerts a force on all other nodes j 
in the same cell that is proportional to the distance between 
those nodes �⃗di,j,

where � is a scaling factor that relates cell geometry to trac-
tion forces. Lemmon and Romer previously showed that the 
resulting traction force at each CPM node is directed toward 

(7)Ku = f ,

(8)K
e
= ∫�e

BTDB d�e,

(9)D =
E0

1 − �2

⎡⎢⎢⎣

1 � 0

� 1 0

0 0
1

2
(1 − �)

⎤⎥⎥⎦
,

(10)� = Bu
n
,

(11)
�⃗Fi = μ

∑
j

�⃗di,j,

the cell centroid with magnitude proportional to the distance 
from the node to the centroid (Lemmon and Romer 2010). 
Note that the magnitude of traction forces and thus scal-
ing factor � may depend on many factors not specifically 
accounted for in the model, such as extracellular matrix 
composition; thus, we simply define � = 1 a.u. μm−1 and 
report forces in relative arbitrary units (a.u.).

Recent experimental evidence demonstrates that trac-
tion forces in multicellular clusters are largest at the clus-
ter periphery (Mertz et al. 2012) and further that traction 
forces scale with cluster size (Mertz et al. 2012; Bazel-
lières et al. 2015), consistent with an extension of the 
FMA model to multicellular geometries. Here, we extend 
these previous works of the single cell FMA model to 
describe the magnitude and direction of traction forces 
acting about a point in a multicellular geometry and incor-
porate this model in the CPM framework. For the multi-
cellular FMA model, we assume that the boundary of two 
cells constitutes a cell–cell junction such that two or more 
adjacent cells behave as a single structural unit or cluster 
in mechanical equilibrium. We define an adjacency matrix 
A, where A is a Ncell × Ncell matrix, such that A�,�� = 1 if 
cells � and �′ are in contact, and 0 otherwise. By defini-
tion, A is symmetric. A cluster is defined as the connected 
components of the undirected graph defined by A.

Thus, the multicellular FMA model defines the traction 
force at each node in each CPM cell as directed toward the 
centroid of the associated multicellular cluster, with mag-
nitude proportional to the distance from the node to the 
cluster centroid. For the case of a cluster comprised of a 
single cell, i.e., a cell lacking cell–cell junctions, the mul-
ticellular FMA and single cell FMA models are equivalent.

2.4 � Intercellular tension

By construction, the single cell FMA model dictates that 
the sum of traction forces of an individual cell, i.e., the 
net traction forces �⃗T𝜎 =

∑
i∈𝜎

�⃗Fi for cell � , is equal to 0. In 
contrast, using the multicellular FMA model, the net trac-
tion forces of an individual cell T� within a cluster may not 
be equal to 0. Based on force balancing principles, Ng and 
colleagues recently predicted that cell–cell junction forces 
act as a reaction force, balancing the net traction force to 
maintain static equilibrium of each cell in a multicellular 
cluster (Ng et al. 2014). Here, we incorporate this concept 
into the CPM framework using the multicellular FMA: 
The multicellular FMA model is applied to calculate T� for 
each cell, and then we impose mechanical equilibrium on 
the multicellular clusters by relating the traction force to 
force across the cell–cell junction, such that for all cells �,
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where n� defines the set of “neighbors” of cell � , i.e., 
A�,�� = 1 , and J�,�′ is the junction force from cell �′ to cell 
� . Equation 12 defines Ncell linear equations, with N2

cell
 

unknown J�,�′ terms. We further constrain the junction force 
calculations by assuming that junction force pairs are equal 
in magnitude and opposite in direction, i.e.,

for all (�, ��) such that A(�, ��) = 1 . An illustration of the 
resulting system for a four cell cluster is shown in Fig S1.

Combining Eqs. 12 and 13, we arrive at a linear system 
with a set of Ncell + Njunc equations and N2

cell
 unknowns, 

where Njunc is the number of intercellular junctions, which 
can be determined by the sum of the terms above (or 
below) the main diagonal of A, with a maximum value of 
Ncell(Ncell − 1)∕2 . In practice, linear systems for Eqs. 12 
and 13 are determined separately to both the x- and y-com-
ponents of the traction and junction forces.

For nearly all cluster arrangements, the resulting linear 
system is overdetermined. Analogous to the CPM thermody-
namic energy minimization, we assume that the solution to 
be the minimization of junction force for each cell pair in the 
cluster, such that J�,�′ terms are calculated as the minimum 
norm least-squares solution to the linear system (using the 
MATLAB lsqminnorm function).

2.5 � Cell division

We incorporate cell division into the CPM model to repro-
duce epithelial cell capacity to proliferate and form a con-
fluent monolayer. A minimum cell size is necessary for cell 
proliferation, such that if an individual cell area exceeds a 
minimum area threshold, given by 2

3
A0 , then individual cells 

divide with random probability pdivide = 0.005 (unless other-
wise stated). For cell division, following the prior approach 
of Daub and Merks, we compute the line of division for 
each CPM cell as the line following the minor axis, such 
that each daughter cell is of approximately equal area (Daub 
and Merks 2013).

2.6 � Numerical simulations

Key details of numerical integration, specifically initializa-
tion and the iteration for each Monte Carlo step (MCS), are 
described as follows. The CPM is initialized on a map of 
pixels, with size 100 × 100, for which each pixel side corre-
sponds to a size of �x = 2.5 μm . Initial seeding is dispersed 
on the cell map with random probability, p = �x∕(4A0) , 
excluding the outermost boundary. An unloaded finite 

(12)
∑
𝜎�∈n𝜎

�⃗J𝜎,𝜎� + �⃗T𝜎 = 0, for 𝜎 ∈ (1,… ,Ncell),

(13)�⃗J𝜎,𝜎� + �⃗J𝜎�,𝜎 = 0,

element mesh of size 101 × 101 forms the nodes of attach-
ment for cells of the CPM map, in which each cell-occupied 
pixel is bounded by four nodes.

Iteration of the model describes successive cell move-
ments for each MCS. Cell movement consists of copy 
attempts of randomly selected pixel. For each pixel to have 
equal probability of selection, each MCS has a total of 104 
copy attempts. For each copy attempt, a pixel is selected and 
randomly perturbed; the sum of interaction energies with 
each pixel in the Moore neighborhood, 

∑
J(�(x, x�)) , deter-

mines the Hcontact term. Changes in substrate strain govern 
the Hdurotaxis term. To calculate forces from the CPM, pixels 
are first mapped to the finite element substrate by identify-
ing the corresponding nodes. At a given instant, the single 
cell or multicellular geometry is sufficient to define cellular 
traction forces at each node, using the single cell or multi-
cellular FMA models, as described above, respectively. The 
resulting traction forces govern the displacement at each 
node and determines the strain in the finite element mesh, 
which in turn is used in evaluating Hdurotaxis . Lastly, the cell 
area before and after the copy attempt provides the Harea 
term. Together, the net change in the Hamiltonian associated 
with that copy attempt, i.e., �H , provides the local energy 
for the cell before and after the copy attempt. Energetically 
favorable cell moves are always accepted, and to account for 
random motility, energetically unfavorable cell moves, i.e., 
copy attempts that increase the Hamiltonian, are accepted 
with Boltzmann probability,

where T > 0 is a temperature term that captures intrinsic cell 
motility. Since cell–cell contacts are dynamic, the adjacency 
matrix A and thus traction and cell–cell junction forces are 
recalculated after each MCS.

Key model parameters are given in Table S1, and unless 
otherwise stated, simulations utilize parameter values estab-
lished by van Oers et al. (2014). Parameter studies were per-
formed with different combinations of cell–cell interaction 
energies and cell–matrix interaction energies, Jcc and Jcm , 
respectively, each repeated with a uniquely seeded random 
number to account for simulation randomness. The conflu-
ence is determined by the ratio of total cell-occupied pixels 
to the total grid area. The cell area is the number of pixels 
occupied by each unique cell state, and the cell count is 
the number of unique states. Simulations were numerically 
integrated in MATLAB v2018a (MathWorks, Natick, MA).

2.7 � Cells and reagents

Human MCF10A mammary epithelial cells were obtained 
from the National Cancer Institute Physical Sciences 

(14)P(𝛥H) =

{
1, if 𝛥H < 0,

e−𝛥H∕T , if 𝛥H ≥ 0,
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in Oncology Bioresource Core Facility, in conjunction 
with American Type Culture Collection (Manassas, VA). 
Madin–Darby Canine Kidney (MDCKII) cells were a gift of 
Rob Tombes (VCU). All cells were cultured in a humidified 
atmosphere at 37 ◦C with 5% CO2. MCF10As were main-
tained under standard culture conditions in DMEM/F-12 
HEPES (Life Technologies, Carlsbad, CA), supplemented 
with 5% horse serum, 0.05% hydrocortisone, 0.01% cholera 
toxin, 0.1% insulin, 0.02% EGF and 1% antibiotics. MDCKII 
cells were maintained under standard culture conditions in 
DMEM (Life Technologies, Carlsbad, CA) supplemented 
with 10% fetal bovine serum and 1% antibiotics. Purified 
recombinant active TGF-�1 was purchased from Sigma-
Aldrich (St. Louis, MO). Immunofluorescence imaging 
was conducted using the following primary antibodies: Ms 
anti-Hu E-cadherin (HECD-1, Abcam, Cambridge, UK), Ms 
anti-Ms N-cadherin (BD Biosciences, San Jose, CA), Rb 
anti-Hu FN (Abcam, Cambridge, United Kingdom), Ms anti-
Hu LTBP-1 (RD Systems, Minneapolis, MN), Rb anti-Hu 
Smad2 (86F7, Cell Signaling Technology, Danvers, MA), 
and Dapi (Thermo Fisher Scientific, Waltham, MA). F-actin 
images were acquired by labeling cells with Alexa Fluor 555 
Phalloidin (Life Technologies, Carlsbad, CA).

2.8 � Microcontact printing

Microcontact-printed square islands were generated as previ-
ously described (Tan et al. 2004). Briefly, 250 μm × 250 μm 
squares were constructed by generating a negative mold 
template on a silicon wafer made from an epoxy-type, 
near-UV photoresist (SU-8; Microchem) using tradi-
tional photolithographic techniques. A replica mold of 
poly(dimethylsiloxane) (PDMS; Sylgard 184, Fisher Scien-
tific, Hampton, NH) raised patterns was coated with 100 
μg/ml laminin (Sigma-Aldrich, St. Louis, MO) for 2 h at 
37 ◦C . Stamps were then rinsed in dH2O and dried with 
nitrogen gas. The laminin square islands were then stamped 
onto a thin layer of UV-treated PDMS on top of a glass 
coverslip. 2% Pluronics F-127 in phosphate-buffered saline 
(PBS) was used to prevent cells from adhering outside of the 
laminin-stamped areas. Coverslips were rinsed in PBS prior 
to cell seeding. Efficiency of protein transfer was confirmed 
by immunofluorescence labeling of the extracellular matrix 
protein.

2.9 � Immunofluorescence microscopy

MCF10As or MDCK II cells (0.5 × 106 ) were plated on 
250 μm × 250 μm microcontact-printed square islands coated 
with 100 μg/mL laminin. Cells were cultured for 18 h and 
were then transferred to EGF- and serum-free culture con-
ditions for 2 h. Cells were then incubated with TGF-�1 (0, 
2, 4 ng/mL) and cultured for an additional 48 h. Cells were 

permeabilized with 0.5% Triton in 4% paraformaldehyde 
for 2 min and then incubated in 4% paraformaldehyde for 
20 min. Several PBS rinses were performed, followed by 
blocking in 0.1% BSA and labeling with primary antibody 
for 30 min at 37 ◦C . Cells were then blocked again in 0.1% 
BSA and incubated with the appropriate secondary antibody 
for 30 min. Images were acquired on a Zeiss Axio Observer 
Z1 fluorescence microscope using ZEN2011 software.

2.10 � Cell area and cell number quantification

Cell area and cell number were determined by analyzing 
immunofluorescence images of F-actin and nuclei via a 
custom-written image processing algorithm in MATLAB. 
Binary masks of nuclei were generated by thresholding 
grayscale nucleus images; objects in the binary mask were 
counted to determine total cell number. To determine cell 
size, the centroid of each object in the binary mask was 
determined using the regionprops function. Nuclei centroids 
were used to generate a Voronoi diagram, which consists of 
a series of polygons that have edges that are equidistant from 
neighboring nuclei. Previous studies have demonstrated 
that Voronoi diagrams reasonably predict cell boundaries 
in an epithelial monolayer (Bock et al. 2010) and provide 
a more consistent quantification of cellular size as opposed 
to quantification of protein markers in the cell–cell junc-
tion, whose expression and localization change as TGF-�1 
dose increases. Cell area was calculated for each cell by 
summing the pixels in each Voronoi polygon and was aver-
aged across the 250 μm × 250 μm colony. Spatial localiza-
tion of cell number and cell area was determined by binning 
nucleus centroids into a 5 × 5 grid. Cell counts in each bin 
were totaled, and cell areas for each bin were averaged if the 
nuclei centroid was contained within the bin. Spatial locali-
zation data were further combined into either corner bins, 
edge bins, or interior bins, such that there was no overlap 
between the three regions (i.e., corner bins were not included 
in the edge region).

2.11 � FRET analysis

To measure force on cell–cell junctions, fluorescence reso-
nance energy transfer (FRET)-based, full-length E-cadherin 
tension biosensors were stably transfected into MDCK II 
cells. Epithelial square islands were cultured as stated above, 
and images were acquired on a Zeiss LSM 710 laser scan-
ning microscope using ZEN2011 software. Briefly, mTFP 
(donor) and mEYFP (acceptor) fluorophores were imaged 
utilizing spectral unmixing at 458-nm excitation. The 
acquired intensity images were manually masked through 
ImageJ. Background subtraction and removal of saturated 
pixels were then performed via an image processing algo-
rithm in Python as previously described (Arsenovic et al. 
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2016). FRET ratio was determined by obtaining the accep-
tor/donor ratio and multiplying with a binary mask of the 
junctions. This allowed for inspection of FRET pixels of 
interest within outlined cell–cell junctions.

2.12 � Statistical analysis

Simulated and experimental data were exported to Prism 
8 (GraphPad Software Inc.) for analysis. Statistical signifi-
cance, indicated by a p value less than 0.05, was determined 
by one-way ANOVA across each TGF-�1 dosage, ratio of 
interaction energies, and/or spatial localization.

3 � Results

3.1 � Multicellular traction forces drive formation 
of epithelial monolayers

Prior studies from van Oers, Rens, and colleagues demon-
strated that a hybrid CPM–FEM model can predict cellular 
spreading and organization based on cell-generated traction 
forces, resulting strains in the substrate, and durotaxis-driven 
migration in the CPM. To expand this model to adherent cell 

monolayers, we incorporated several advancements: First, 
cellular traction forces were predicted from the FMA model 
(Lemmon and Romer 2010) based on a cell cluster geom-
etry, not on individual cells. As such, cells in contact with 
neighboring cells “adhere” and begin to generate traction 
forces as a cohesive unit. Second, we assume that each cell 
in a multicellular cluster still maintains a static equilibrium, 
as has been suggested previously (Liu et al. 2010). As such, 
we require the force acting on cell–cell junctions to counter 
the net traction force for each cell, as illustrated in a simple 
two-cell example (Fig. 1c, left).

Figure 1 depicts simulated non-proliferating cells (red 
pixels) with corresponding scaled substrate strains (black 
vectors) for two scenarios. In the first, traction force is calcu-
lated from the first moment of area (FMA) about the single 
cell geometry, and each cell is in static equilibrium. As a 
result, the net imbalance for each cell is zero and no force 
is transferred across the cell–cell junction (Fig. 1a, Movie 
S1). In the second scenario, traction force is calculated from 
FMA about the multicellular geometry and each cluster is in 
static equilibrium (Fig. 1b, Movie S2). The net force imbal-
ance for each cell is balanced by the intercellular tension, 
which transfers the traction force to neighboring cells. With-
out redistribution of cytoskeletal stress to neighboring cells 

Fig. 1   Simulated cells (red pixels) migrate on a finite element sub-
strate that responds to cell-generated traction forces. Traction forces 
are calculated based on either a individual-cell geometries or b multi-
cellular clusters. c (left) Representation of traction forces with result-

ing strain for multicellular geometries, and C (right) inset of time 
points from b. Time in units of Monte Carlo steps (MCS). Prolifera-
tion rate pdivide = 0 for this figure only
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across cell–cell junctions, cellular alignment is localized 
and multicellular structures behave as partially cooperative 
networks with discordant substrate strains (Fig. 1a), as dem-
onstrated by van Oers et al. (2014). In contrast, traction force 
distribution across cell–cell junctions to neighboring cells 
results in highly cooperative networks with a uniform spatial 
gradient of substrate strains. The formation of these cohesive 
multicellular clusters resembles an epithelial monolayer with 
preferential localization toward the boundary (Fig. 1b). In 
the resulting multicellular clusters, net traction forces have 
a magnitude and direction at any given point proportional 
to the FMA about that point in the cluster, resulting in a 
linear gradient of substrate strain oriented radially toward 
the cluster centroid (Fig. 1c, right, Fig S2).

3.2 � Spatiotemporal dynamics of monolayer 
confluence

Preliminary simulations demonstrated the formation of 
a subconfluent monolayer-like sheet, which alters the 
spatial distribution of monolayer stress. To reproduce 
the spatiotemporal dynamics of an in  vitro epithelial 

monolayer, specifically monolayer confluence, we incor-
porated cellular proliferation into the CPM to account for 
cell division dynamics and then compared the spatiotem-
poral dynamics with cultured epithelial cells (Fig.  2). 
Mammary breast epithelial cells (MCF10A) were seeded 
onto poly(dimethylsiloxane) (PDMS) substrates with a 250 
μm × 250 μm microcontact-printed area of laminin (Fig. 2a, 
Movie S3). Epithelial monolayers reached confluence over 
approximately 24 h. Simulated cells exhibit similar pat-
terning representative of MCF10A confluence dynamics 
(Fig. 2b, Movie S4). To estimate the rate of proliferation in 
the simulations, immunofluorescence images were analyzed 
at 0, 6, 12, 18, and 24 h and quantified for confluence as 
a function of time (Fig. 2c). We compare the half maxi-
mal confluence for simulations and experiments in order 
to estimate that 1 Monte Carlo step (MCS) corresponds to 
approximately 4.8 min of experimental time (Fig. 2b, c). 
The experimental timescale was used to estimate a simulated 
division probability of 0.5% per MCS. These results demon-
strate that simulated spatiotemporal dynamics approximate 
cellular dynamics observed in vitro and agree with previous 
studies (Puliafito et al. 2012).

Fig. 2   Spatiotemporal dynamics of simulated and in vitro tissue pat-
terning. Visual comparison of time points from initial seeding to con-
fluence illustrates parallels between a in  vitro immunofluorescence 
images of actin (red) and b simulated spatial patterns. Time in panel 
A in hours, and in panel in Monte Carlo steps (MCSs). c Conflu-
ence, defined as the fraction of total cell area to total substrate area, is 
shown as a function of time, for in vitro and in silico experiments, for 

different conditions: in silico measurements of confluence are shown 
for different values of the cell contact inhibition to substrate inhibi-
tion ( J

cc
∕J

cm
 ; green, red, blue lines). In vitro mean confluence meas-

urements ± standard error are shown for control (black) and 4 ng/mL 
TGF-�1 treatment (magenta). Timescale relating in vitro to in silico 
measurements: 4.8 min/1 MCS, J

cm
= 2.5
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3.3 � Decreasing contact inhibition increases cell 
size and decreases cell number in confluent 
monolayers

With the key addition that traction forces are governed by 
the FMA model about the cluster geometry rather than the 
single cell geometry, the previous results illustrate distinct 
spatial patterning representative of epithelial monolayers. 
We next utilized our model to simulate epithelial monolayer 
and associated EMT-like dynamics. One key aspect of the 
epithelial phenotype is contact inhibition, that is, the pro-
pensity of a cell to stop migration when a neighboring cell 
is encountered (Mendonsa et al. 2018; Scarpa et al. 2015). 
As epithelial cells undergo phenotypic changes associated 
with EMT and become more mesenchymal-like, contact 
inhibition is reduced (Carmona-Fontaine et al. 2008). To 
mimic the effects of these phenotypic changes in epithelial 
monolayers in our multicellular FMA model, we varied the 
relative interaction energies between neighboring cells in 
the CPM, which simulates changes in contact inhibition. We 
varied the ratio of interaction energies at the cell–cell and 
cell–matrix interfaces, Jcc and Jcm , respectively (see Materi-
als and Methods, Eq 3), for the single cell (Fig. 3a–d) and 
multicellular (Fig. 3e–h) FMA models. The magnitude of the 
respective energies represents a prohibitive interaction, i.e., a 
lower Jcc∕Jcm ratio reflects lower cell–cell contact inhibition 
between adjacent cells. For each simulation, we measured 

the steady-state monolayer confluence, average cell area, 
total cell count, and relative net cellular traction forces, aver-
aged over 5 simulations with distinct random cell seeding, 
and plotted these measures as a function of the Jcc∕Jcm ratio. 
These simulations were then repeated for 3 distinct values of 
cell–matrix interaction energies, Jcm.

Results indicate similar trends between the single cell 
and multicellular FMA models, with the exception of net 
cellular traction force, which equals zero by design for a cell 
in static equilibrium in the single cell FMA model (Fig. 3d). 
Beyond a critical point ( Jcc∕Jcm = 2 ), high cell–cell contact 
inhibition precludes the formation of confluent monolay-
ers (Fig. 3a, e). We note that for even larger values of the 
Jcc∕Jcm ratio, non-physiological conditions arise in which 
high contact inhibition prevents all cell–cell contacts and 
all cells remain completely isolated.

Below this critical point (i.e., Jcc∕Jcm ≤ 2 ), we find 
that the time course of monolayer confluence only weakly 
depends on cell contact inhibition (Fig. 2c). Further, for 
these conditions that form confluent monolayers, increas-
ing cell–cell contact inhibition results in smaller cell area 
(Fig. 3b, f) and higher cell count (Fig. 3c, g). In the mul-
ticellular FMA model, the mean net traction force per cell 
weakly decreases as the Jcc∕Jcm ratio increases (Fig. 3h), 
while for all parameter conditions, there is large variability 
in the net traction force due to the strong dependence on 
spatial location that arises in the multicellular FMA. We find 

A B C D

E F G H

Fig. 3   Parameter sweep of interaction energies. a–d Single cell first 
moment of area (FMA) model and e–h multicellular FMA-simulated 
confluence, cell area, cell count, and net traction force, shown as a 

function of the ratio of cell–cell contact inhibition to cell–matrix inhi-
bition ( J

cc
∕J

cm
 ), varying J

cm
 values
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that higher substrate inhibition, i.e., increased Jcm , tends to 
increase the sensitivity to the Jcc∕Jcm ratio for all measures. 
Thus, these data indicate that a loss of cell–cell contact inhi-
bition leads to larger cells and lower cell count.

3.4 � Decreasing simulated contact inhibition mimics 
TGF‑ˇ1‑induced EMT

The above results suggest that cells in the multicellular FMA 
model resemble the archetypal phenotype of epithelial cells 
undergoing EMT. With decreased cell–cell contact inhi-
bition (i.e., smaller Jcc∕Jcm ratio), simulated cells exhibit 
increased spreading and decreased proliferation character-
istic of the mesenchymal phenotype, while with increased 
cell–cell contact inhibition (i.e., larger Jcc∕Jcm ratio), simu-
lated cells exhibit decreased spreading and increased prolif-
eration characteristic of the epithelial phenotype. Together, 
these results indicate that the Jcc∕Jcm ratio may serve as a 
suitable comparison to in vitro models of growth factor-
induced EMT. We thus compared these results to experi-
ments in which EMT was induced by the soluble growth 
factor TGF-� 1, as has previously been detailed (Lamouille 
et al. 2014). Representative immunofluorescence images of 
MCF10A cells treated with increasing dosages of TGF-� 1 
illustrate a phenotypic switch from cortical actin, which is 
typically observed in epithelial cells, to pronounced actin 

stress fibers associated with the mesenchymal phenotype 
(Fig. 4a). In these confluent monolayers, MCF10A aver-
age cell count decreases and average cell area increases 
for increasing TGF-� 1 doses (Fig. 4b, d). As in Fig. 3, we 
observe similar trends in simulations for decreasing cell con-
tact inhibition (i.e., smaller Jcc∕Jcm ratio), although with a 
weaker dependence than observed in vitro (Fig. 4c, e). Thus, 
we find that cell contact inhibition similarly regulates the 
cellular geometry averaged over the confluent monolayer in 
both simulation and experiment.

3.5 � Cell–cell junction force maintains mechanical 
equilibrium of multicellular clusters

A key advance of the multicellular FMA model is the pre-
diction of forces acting on cell–cell junctions. By assuming 
static equilibrium and applying a force–balance principle, 
cell–cell junction force was predicted as a reaction force that 
balances traction forces of the monolayer. Cell–cell junc-
tion force magnitudes are shown on the boundaries between 
neighboring cells in simulated monolayers (Fig. 5d). To 
examine spatial trends, we segmented the simulation domain 
into a 5 × 5 grid of bins and calculated the mean junction 
force magnitude within each bin (Fig. 5e). The spatial dis-
tribution of junction forces is pronounced, with the largest 
forces in the interior and smallest in the corners (Fig. 5f). 

A B C

D E

Fig. 4   Morphological characterization of the epithelial tissues 
with altered contact inhibition. a Representative immunofluores-
cence images of actin (red) illustrate a confluent MCF10A mon-
olayer bounded by the 250  ×  250μm microfabricated square; scale 
bar = 50 μm . In vitro (b, d) and in silico (c, e) average cell count and 
cell area for the confined geometry are shown for each TGF-� 1 dos-

age and ratio of contact interaction energies ( J
cc
∕J

cm
 ), respectively. 

Sample sizes: n = 3 experiments, 7–10 monolayers per experiment 
per dose (in vitro); n = 5 simulations per parameter set (in silico). * 
denotes significance by one-way ANOVA test between each TGF-� 1 
dosage (b, d) or each contact energy ratio (c, e)
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However, interestingly, we find minimal variation in the spa-
tial trends between low, medium, and high contact inhibition 
ratios.

We next sought to compare these with experimentally 
measured junction forces. To measure cell–cell junction 
forces experimentally, MDCKII cells were stably trans-
fected with a full-length E-cadherin force sensor, as previ-
ously described (Mohan et al. 2018). Briefly, the force sen-
sor consists of two fluorophores coupled by a polypeptide 
that exhibits elasticity. The two fluorophores are designed 
such that, when in close proximity, the pair exhibits For-
ster resonance energy transfer (FRET), that is, emission 
light from the first fluorophore is absorbed by the second 
fluorophore, which emits light. As the sensor is stretched 
and the fluorophore pair moves apart, the excitation of the 
second fluorophore by the first fluorophore decays, result-
ing in a loss of FRET excitation relative to excitation of 
the first fluorophore. This force sensor was inserted into 
E-cadherin, which comprises the homophilic binding event 
in cell–cell junctions known as adherens junctions. Valida-
tion and functionality of this sensor have been previously 

demonstrated (Arsenovic et al. 2017; Borghi et al. 2012). 
Phenotypic changes associated with epithelial cells under-
going EMT were again induced by increasing dosage of 
TGF-� 1 (Fig. 5a). FRET ratio reflects the energy trans-
fer between the two fluorophores, in which FRET ratio is 
inversely proportional to tension on the FRET force sen-
sor: High FRET ratio indicates low tension and low FRET 
ratio indicates high tension. Representative pseudocolored 
images of the processed FRET ratio are shown in Fig. 5a. 
We next investigated whether spatial patterns of junction 
forces were established in these confluent monolayers. We 
again segmented images of the local net FRET ratios into 
a 5 × 5 grid. In the absence of TGF-� 1, colonies illustrated 
a nearly spatially uniform low FRET ratio, indicating high 
cell–cell tension throughout the monolayer (Fig. 5b). TGF-
� 1 treatment increased FRET ratio, indicating a drop in 
overall intercellular tension. Additionally, a small spatial 
gradient was established, with higher FRET ratios (lower 
cell–cell tension) in the corner and edges and lower FRET 
ratios (higher cell–cell tension) in the interior of the mon-
olayer, consistent with a spatial gradient of larger junction 

Fig. 5   Simulated cell–cell junction force spatial patterns reflect TGF-
� 1 effects in vitro. a In vitro FRET intensities in MDCK II cells. b 
Corresponding heatmaps for average FRET intensities are binned 
into a 5 × 5 grid, and c their associated mean for corner, edge, and 
interior bins for 0, 2, and 4 ng/mL TGF-� 1 dosages. Note the y-axis 
lower limit in panel C corresponds to a FRET ratio of 0.3. Schematic 
(right) illustrates bin positions. d Simulated cell–cell junction force 
is depicted as the net magnitude for high, medium, and low interac-
tion energy ( J

cc
∕J

cm
 ) ratios. e cell–cell junction force magnitudes are 

shown as a 5 × 5 grid with f their associated mean for corner, edge, 
and interior bins. Sample sizes: n = 3 experiments, 7–10 monolayers 
per experiment per dose (in vitro); n = 5 simulations per parameter 
set (in silico). Binned and position values shown in panels b, c and e, 
f represent averages over all samples. In panel c, p value denotes near 
significance for Student’s t test comparing Corner and Interior spatial 
locations. *Denotes significance by one-way ANOVA test between 
spatial location (f). Force in panels d, e, and f in arbitrary units (a.u.)
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forces in the center and decreasing toward the edges and 
corners (Fig. 5c).

Thus, we find that simulated cell–cell junction forces pre-
dict a spatial trend of decaying cell–cell tension from inte-
rior to periphery. Furthermore, simulated spatial gradients of 
cell–cell junction force are most comparable to experimental 
measures of TGF-�1-treated monolayers.

3.6 � Individual cell geometry spatial patterns

Summarizing our results presented thus far, we find that the 
multicellular FMA model reproduces contact inhibition-
dependent trends for average cellular geometry (i.e., cell size 
and count), but underestimates this dependence compared 
with experimental observations. Further, our model qualita-
tively predicts trends for spatial patterns of cell–cell junction 
forces in TGF-�1-treated monolayers, but overestimates the 
magnitude of the spatial gradient, in comparison with exper-
iments. We hypothesize that these discrepancies arise from 
an underestimation of cell size distribution throughout the 
monolayer in response to changes in contact inhibition. That 
is, individual cell size changes in response to TGF-� 1 treat-
ment due not only to loss of cell contact inhibition, but also 
to additional signaling not currently present in our model. To 

investigate this, we again segmented immunofluorescence 
images of MCF10A cells and binned cell area as before into 
a 5 × 5 grid (Fig. 6a). Consistent with overall monolayer 
averages, cell area increased with increasing TGF-� 1 dose. 
Evaluating the average cell area in the corner, edge, and 
interior of the monolayer reveals an overall increase in cell 
area at the periphery of the square, with the largest cell area 
localized to the corners in both low and high TGF-� 1 dos-
ages (Fig. 6a). Reduced contact inhibition by treatment with 
TGF-� 1 accentuates this trend, resulting in a large spatial 
gradient in cell area (Fig. 6b).

In contrast, simulated cell area exhibited substantially 
reduced spatial variation compared to experimental cell 
area (Fig. 6c). Furthermore, the effects of contact inhibition 
had a relatively minimal effect on spatial variation of cell 
area, resulting in slightly increased cell area at the mon-
olayer interior (Fig. 6d). Thus, the lack of accounting for 
heterogeneous cellular properties, specifically cell area, is a 
key limitation of our model. Since cells undergo profound 
phenotypic changes throughout EMT, it would be reason-
able that these changes lead to parameter changes within the 
CPM for each individual cell; incorporating these changes in 
cell phenotype into the CPM component is a primary future 
goal for the model development.

A C

B D

Fig. 6   Individual cell geometry spatial patterns a In  vitro heatmaps 
for binned cell area treated with 0, 2, and 4  ng/mL TGF-� 1 and b 
their associated bar graphs for average corner, edge, and interior. c 
In silico heatmaps for binned cell area at high, medium, and low con-
tact inhibition and d their associated bar graphs. Sample sizes: n = 3 

experiments, 7–10 monolayers per experiment per dose (in vitro); 
n = 5 simulations per parameter set (in silico). Binned and position 
values represent averages over all samples. *Denotes significance by 
one-way ANOVA test between each spatial location (b, d)
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3.7 � Analytical model of a simplified 
one‑dimensional geometry

Both experimental and simulation data indicate that while 
traction forces are largest at the periphery of the epithelial 
cluster, junction forces are largest near the center of the 
clusters and decay toward the periphery. We can gain addi-
tional insights by considering junction forces in tissue with 
a simple one-dimensional geometry, to both illustrate our 
approach and explain the perhaps counterintuitive prediction 
that larger traction forces at the periphery result in larger 
junction forces at the center. For this simple geometry, the 
traction and junction force magnitudes can be solved analyti-
cally, and further, these analytical results provide an expla-
nation for some of the discrepancies between experiments 
and simulations noted above.

Consider a linear array of 2n cells of length L that are 
arranged and coupled in a line, such that the cell–cell 
junctions are located at positions (−nL, 0), (−(n − 1)L, 0), 
… , (0, 0),… , ((n − 1)L, 0), (nL, 0) , and define T = nL as 
the length of half of the monolayer or tissue (Fig. 7c). 
Note that the y position is insignificant, since all forces 
are oriented in the x-direction. The centroid of the cell 

cluster aligns with the origin, (0, 0), which is the junction 
on the left edge of cell 1, and thus, the net traction force 
in each cell will be pointed toward this position. Further, 
we assume that each cell has f focal adhesions, uniformly 
spaced along the length of the cell L, and that traction 
forces are generated only at the focal adhesion positions. 
In the illustrated example, f = 4.

The magnitude of traction forces generated at each focal 
adhesion are thus proportional to the distance from the 
origin, and the net traction force for a given cell is the 
sum of all traction forces over all focal adhesions. We can 
show that for cell k, with left edge at position ((k − 1)L, 0) 
and right edge at position (kL, 0), the net traction force is 
given by �⃗Tk = (−𝜇Lf (k −

1

2
), 0) , where � is the appropriate 

scaling factor that relates cell geometry to traction forces 
(Lemmon and Romer 2010). For the rightmost cell, cell n, 
�⃗Tn = (−𝜇Lf (n −

1

2
), 0) . For mechanical equilibrium at cell 

n, this traction force must be balanced by the junction force 
from cell n − 1 to cell n, i.e., �⃗Tn +

�⃗Jn,n−1 = 0 , such that 
�⃗Jn,n−1 = (𝜇Lf (n −

1

2
), 0) . By assumption, net forces at the 

cell–cell junction are also in equilibrium, such that junc-
tion force pairs are symmetric, i.e., equal in magnitude and 
opposite in direction, and thus �⃗Jn−1,n = (−𝜇Lf (n −

1

2
), 0).

Fig. 7   Multicellular forces at mechanical equilibrium. a Representa-
tive snapshot of the traction and junction forces in the multicellular 
CPM model. b Plots of the traction and junction forces (in arbitrary 
units, a.u.) from the CPM simulations show that traction force (blue 
lines, circles) scales linearly with distance from monolayer centroid 

and cell–cell junction forces (red line, circles) drop off quadratically 
from the centroid. c One-dimensional tissue simplification illustrating 
the balance of traction and cell–cell junction forces. See text for fur-
ther description
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Next considering forces on cell n − 1 , the junction 
force from cell n − 2 to cell n − 1 must balance both the 
net traction force �⃗Tn−1 = (−𝜇Lf ((n − 1) −

1

2
), 0) and junc-

tion force �⃗Jn−1,n , i.e., �⃗Tn−1 +
�⃗Jn−1,n + �⃗Jn−1,n−2 = 0 , such that 

�⃗Jn−1,n−2 = (𝜇Lf (2n − 2), 0) . Similarly, junction force from 
cell n − 3 to cell n − 2 , �⃗Jn−2,n−3 = (𝜇Lf (3n −

9

2
), 0) . In gen-

eral, we can show that the intercellular tension from cell k 
to k + 1,

Thus, the junction force at the cluster center, i.e., the left 
edge of cell 1, �⃗J1,0 = (𝜇Ln2f∕2, 0) = (𝜇T2f∕(2L), 0) . This 
simple geometry arrangement predicts larger magnitude 
junction forces in the center and further illustrates a quad-
ratic drop-off (due to the −k2 term in the magnitude of �⃗Jk+1,k ) 
that is predicted as junction position k increases toward the 
periphery. A representative example of the CPM model illus-
trates the distribution of traction forces (blue) and junction 
forces (red) in a confluent monolayer (Fig. 7b) and both the 
linear increase in traction force magnitude from the mon-
olayer centroid and the quadratic drop-off in junction force 
magnitude (Fig. 7b).

Thus, for a monolayer of a given size, i.e., fixed T, Eq. 15 
predicts that for a smaller cell size (decreased L and thus 
increased n), the magnitude of junction forces is larger 
throughout the monolayer, which is consistent with experi-
mental measurements of lower FRET ratios (i.e., higher 
tension) in non-treated epithelial monolayers (Fig. 5c). Fur-
ther, in TGF-�1-treated monolayers, more mesenchymal-like 
larger cells at the monolayer periphery would be expected to 
have more focal adhesions per cell, in contrast to epithelial-
like smaller cells in the interior. Additionally, while larger 
cells at the periphery will reduce junction forces locally, due 
to the cumulative nature of junction forces required to main-
tain mechanical equilibrium originating at the periphery, this 
local reduction in junction forces would be expected to have 
a greater influence on interior junction forces. All of these 
considerations would be predicted to reduce the magnitude 
of the spatial gradient, also consistent with smaller spatial 
gradients observed experimentally. Thus, we expect that our 
future work incorporating spatial variations in cell size in the 
CPM model will more accurately reproduce experimental 
results.

We can further generalize this example and consider the 
continuous limit in the spatial dimension, in which the trac-
tion forces �(x) in the x-direction at position x (for x > 0 ) 
are given

(15)

�⃗Jk+1,k =
(
1

2
𝜇Lf (n2 − k2), 0

)
=

(
1

2
𝜇f

(
T2

L
− Lk2

)
, 0

)
.

(16)�(x) = −��(x)x,

where �(x) is the spatial distribution of focal adhesions per 
unit length. Junction forces J(x) at position x are then by 
definition the second moment of area, evaluated from the 
cluster periphery T to position x, where again x = 0 cor-
responds to the cluster center,

For uniform focal adhesion distribution, �(x) = f∕L , we can 
integrate Eq. 16, and using the relationship x = kL , the result 
is equivalent to Eq. 15.

4 � Discussion

In this study, we illustrate a generalized framework for pre-
dicting the spatial distribution of forces within and between 
cells in a monolayer. By assuming that i) clustered epithelial 
cells act as a syncytial unit and generate forces collectively 
in the FMA model and ii) each cell in a monolayer exists in 
a quasi-equilibrium, in which junction forces and traction 
forces are balanced, we are able to predict the distribution 
of cell–cell junction forces and cell traction forces within 
an epithelial cluster. Our model demonstrates that traction 
forces scale with the size of the multicellular cluster, a con-
sequence of the FMA in which traction force is applied at 
uniformly distributed cell–matrix adhesions (i.e., at all nodes 
in the CPM). The model further predicts that the intercel-
lular tension decays nonlinearly with the distance from the 
monolayer center. FRET analysis of TGF-�1-treated epithe-
lial clusters indicates junction force distribution depends on 
monolayer geometry and not individual cell geometry and 
confirms trends observed in simulations.

Many prior computational approaches have been devel-
oped to study tissue mechanical homeostasis, cellular migra-
tion, and cell–matrix interactions. Vertex-based mechanical 
models, which consider mechanical force–balance along 
the boundaries of cells accounting for active and passive 
mechanical forces, have been developed to model tissue-
scale emergent dynamics such as morphogenesis and migra-
tion (Okuda et al. 2015; Mathur et al. 2018; Du et al. 2014; 
Oelz et al. 2019; Bui et al. 2019). Agent-based models have 
been utilized to study cellular remodeling in response to 
mechanical perturbations, such as infarcts and wound heal-
ing (Richardson and Holmes 2016; González-Valverde and 
García-Aznar 2017; Lee et al. 2019). The CPM framework 
has also been utilized to study cell–matrix interactions via 
extracellular matrix remodeling, in settings such as meta-
static cancer cell migration and angiogenesis (Edalgo et al. 
2019; Daub and Merks 2013; Szabó and Merks 2013).

Our work builds on prior studies from Merks and col-
leagues that have demonstrated how local mechanical 

(17)J(x) = ∫
x

T

�(�)d� = −� ∫
x

T

�(�)�d�.
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interactions can drive global cellular patterning and struc-
ture, using a hybrid CPM–FEM framework (van Oers et al. 
2014; Rens and Merks 2017, 2019). Multiscale modeling 
studies from Chaplain and colleagues have predicted that 
junction forces are redistributed as cells form colonies, 
which in turn can drive intracellular signaling pathways 
(Schlüter et al. 2015; Ramis-Conde et al. 2008, 2009). Inter-
estingly, our extension to including multicellular mechanical 
interactions demonstrates that a gradient of intercellular ten-
sion can form even in the absence of heterogeneous cell pop-
ulations. Through transduction of the mechanical gradient 
to intracellular signaling pathways, this tension distribution 
can provide positional information within a monolayer that 
regulates cellular phenomena, such as cell growth, prolifera-
tion, and migration. This is of particular interest to spatial 
regulation of EMT, during which cell stress is distributed to 
the monolayer periphery (Gomez et al. 2010). Connecting 
biochemical and mechanical signaling, the dependence on 
E-cadherin further suggests that intercellular tension may 
serve as a predictor of EMT.

4.1 � Limitations and future considerations

The trends of our extended multicellular FMA model cap-
ture many key dynamical properties of epithelial monolayers 
undergoing EMT; however, the model does not fully capture 
all aspects of this transition. In particular, we noted above 
that simulated spatial gradients of cell–cell junction force 
based on the multicellular FMA model are most comparable 
to experimental measures of TGF-�1-treated monolayers, 
and not as comparable to the non-treated epithelial monolay-
ers. The one-dimensional analytical model provides some 
possible insight into the source of model and experiment 
discrepancy. In the simplified geometry of the one-dimen-
sional tissue, junction forces are predicted to decrease from 
the tissue center (see Eq. 15) and thus inconsistent with the 
near uniform distribution observed in non-treated epithe-
lial tissue. While this general conclusion need not strictly 
hold in the two-dimensional setting, nonetheless, it suggests 
that the multicellular FMA model may not strictly hold for 
epithelial tissues. This is a key insight, as it suggests that 
there is a transition that occurs during EMT in the proper-
ties governing tissue mechanical equilibrium, in which the 
multicellular FMA model becomes appropriate. This would 
be consistent with experimental observations of a redistribu-
tion of mechanical forces that occurs during EMT as well. 
This transition in tissue-scale properties is complicated by 
the associated phenotypic changes that occur throughout 
EMT at the individual cell level. Our study importantly 
demonstrates both the agreement and discrepancies between 
experimental results and model predictions for tissues before 
and undergoing EMT and thus suggests sources for model 
improvement that are the focus of ongoing work.

While one additional possible source of experimental 
discrepancy is the utilization of different cell lines for cell 
geometry and FRET analysis, respectively, in general, 
we expect similar responses between the two epithelial 
cell lines. However, we note that the lack of agreement 
between model and experiment is itself an important and 
meaningful result, in particular a result that facilitates 
identifying aspects of the model that require refining and 
improvement. The observed differences between simula-
tions and experiments may be due to a number of factors, 
including non-uniformity in cellular phenotype that in turn 
alters cell size and adhesion properties; changes in focal 
adhesion distribution that in turn alter traction forces; the 
number of cell–cell and cell–matrix attachments, as con-
tacts between neighboring cells, is not fixed and may vary; 
and properties governing mechanical equilibrium, as noted 
above.

A defining characteristic of TGF-�1-induced EMT is the 
disassembly of epithelial junctions, resulting in the loss of 
contact inhibition. During this process, intercellular tension 
redistributes from the cell–cell junctions to the cell–matrix 
attachments, which allows for increased mobility, growth, 
and spreading (Scarpa et al. 2015). Our model represents this 
shift by altering contact penalties within the cell–cell and 
cell–matrix interaction energies. By altering the cell–cell 
contact energy, the model captures the contact inhibition 
of neighboring cells in vitro. However, simulating EMT via 
changes in the contact energy is not sufficient to capture all 
dynamics; in particular, simulations do not reproduce spatial 
patterns in cell area. In the CPM model, a defined value for 
optimal cell area constrains the simulated cell area that, in 
turn, limits cell–matrix adhesion. The shift from cell–cell 
contact to cell–matrix adhesion is indirectly restricted as 
a result. The spatial distribution of intercellular tension 
therefore predicts the spatial distribution of cell area, which 
would seem to indicate a shift toward cell–matrix adhesion. 
An ongoing focus of work is to incorporate variable cellular 
properties into the CPM to incorporate the effects of EMT 
progression on cell geometry and resulting spatial patterning 
in a more physiological manner.

Our model incorporates durotaxis into the Hamilto-
nian term of the CPM by assuming that cell-derived strain 
drives a strain-dependent increase in elastic modulus. This 
local, strain-dependent stiffening of the substrate is con-
sistent with the viscoelastic nature of the PDMS substrates 
used here (unpublished results). However, the FEM com-
ponent of the model assumes that the substrate is isotropi-
cally linearly elastic. This is computationally more direct, 
but does not account for either the viscoelastic nature of 
the substrates or the viscoelasticity of extracellular matrix 
(ECM) fibrils that are assembled by cells on top of the 
substrate. Future iterations of the model will explore how 
both viscoelastic effects of the substrate and anisotropic 
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and viscoelastic effects of the ECM alter cell size, traction 
force, and phenotype of cells in the simulations.
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