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Abstract—Smart homes offer new possibilities for energy
management. One key enabler of these systems is the ability
to monitor energy consumption at the appliance level. Existing
approaches rely mainly on data from aggregated smart me-
ter readings, but lack sufficient accuracy to recognize several
appliances. Conversely, smart outlets are a suitable alternative
since they can provide accurate electrical readings on individual
appliances. Previous approaches for appliance recognition based
on smart outlets use passive machine learning, which are deficient
in the flexibility and scalability to work with highly heteroge-
neous appliances in smart homes. In this paper, we propose a
stream-based active learning approach, called K-Active-Neighbors
(KAN), to address the problem of appliance recognition in smart
homes. KAN is an interactive framework in which the user is
asked to label signatures of recently used appliances. Differently
from previous work, we consider the realistic case in which the
user is not always available to participate in the labeling process.
Therefore, the system simultaneously learns the signatures and
also the user willingness to interact with the system, in order
to optimize the learning process. We develop an Arduino-based
smart outlet to test our approach. Results show that, compared
to previous solutions, KAN achieves higher accuracy in up to
41% less time.

Index Terms—Appliance Recognition, Stream-based Active
learning, User-Centered Machine Learning, Labeler Abstention.

I. INTRODUCTION

The residential sector is responsible for more than 20%
of the total energy consumption of the United States [1],
and this amount has been constantly increasing for several
decades. As the demand for energy grows, there exists a
clear need for the management of energy consumption at the
residential level which can be obtained through fine-grained
electricity billing, demand-response programs, and electrical
power load balancing [2]. A well-recognized key enabler
for energy management techniques is the knowledge about
when each appliance is used and its consumption [3]-[6].
The problem of recognizing an appliance from its electric
signature is known as appliance recognition. Several previous
approaches in this context rely on smart meters. These meters
measure the aggregated energy consumption of all home appli-
ances and communicate such information to a utility company
for billing [7]. To infer individual appliance consumption,
load disaggregation techniques are used [8]. However, these
techniques lack the sufficient accuracy to enable fine-grain
energy management [8].

In this regard, smart outlets are a better alternative. These
outlets look like traditional wall plugs, but are actually Internet
of Things (IoT) devices [9], with the capability of monitoring

and controlling the power usage of a connected electric
appliance. Previous studies on appliance recognition using
smart outlets adopt passive machine learning, in which a set of
labeled data is given to train the model before it is deployed,
and then the fixed trained model is used for classification
[10], [11]. We argue that this approach is not practical in
a smart home for several reasons: (i) offline classification
is not flexible to new appliances subsequently available on
the market; (ii) similar appliances (e.g., different brands) may
have very different signatures (patterns of current over time),
making it hard to perform offline training.

In this paper, we propose the use of active learning,
and specifically of a stream-based active learning strategy.
Active learning assumes that the entire dataset is available
during training, and an expert user labels a selected subset
of instances. Conversely, in stream-based scenarios data is
generated over time, when an appliance is plugged in, and
the system must decide if manual labeling from the user is
needed [12]. However, stream based active learning has been
previously considered only in highly specialized sectors (e.g.,
image and text recognition) where the user is an expert nat-
urally incentivized to participate in the labeling process [13].
We point out that this is not the case in a smart home, where a
user may have a different level of engagement and availability
over time, and the number of queries should be limited to
prevent overwhelming her. As a result, in this context, in
conjunction to learning the appliances’ signatures, we must
also learn the user’s behavior in terms of the likelihood of
completing the labeling task, in order to optimize the overall
learning process. To the best of our knowledge the problem of
user abstention for active querying has only been addressed in
[14], [15]. These works assume that user responds to queries
uniformly at random or that user abstention is primarily
influenced by proximity to the decision boundary, which is not
a realistic assumption for labeling tasks in the smart home.

In this paper we propose a stream-based machine learning
framework named K -Active-Neighbors (KAN) for appliance
recognition that comprehensively learns appliances’ signatures
and the user behavior in engaging with the labeling task. KAN
trades off informativeness of new instances with the likelihood
of user engagement in order to improve the accuracy and
shorten the convergence of the identification procedure. We
develop an Arduino-based smart outlet to test the performance
of KAN versus existing approach using several appliances.
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Our results show that we are able to achieve 100% accuracy
in up to 66% less time with respect to previous solutions.
In summary, the main contributions of this paper are:

1) We propose an algorithm called KAN for appliance
recognition in smart homes;

2) KAN minimizes the instances necessary to train this
classifier by selecting the most informative instances and
learning the user’s behavior;

3) We tested KAN on real appliance signatures collected
with an Arduino-based smart outlet;

4) Results show that our approach is faster in achieving
high accuracy, and also quickly learns the user behavior.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We assume that time is divided into time slots, for example
corresponding to the 24 hours per day, denoted as h =
1,...,24. As a labeler, the user is assumed to follow a certain
response distribution according to his willingness/availability
to interact with the system. In this paper we use an indepen-
dent Bernoulli distribution at each hour; nevertheless more
complex models can be easily integrated in our framework.
As a result, we refer to P(h) as the probability that the user
will successfully respond to a query at hour h. We refer to D
as the number of days during which the framework operates,
and to B as the maximum number of queries that can be asked
in each day. Budget B and days D are system parameters,
and the impact of these values on classification performance
is explored in Section IV-C1.

We consider a smart outlet with minimal hardware costs,
and as a result, the tool is characterized by a low-frequency
sampling rate and collection of only electric current informa-
tion. When an appliance is plugged in the outlet and turned
ON, the electric current data obtained by the outlet results
in a time series of amp values, sampled at regular intervals
(e.g., 5 seconds). Such time series defines a signature. The n-
th collected signature is stored as a vector of current values,
denoted by x,,. Note that, two signatures may be of different
lengths, depending on the duration the device is used. In
addition, some appliances may only ON/OFF states (type 1),
may multiple states (type II), or continuously variable states
(type III) [16]. This clearly affects the resulting signature. We
refer to X as the set of signatures observed by the smart outlet.
X grows over time as new signatures arrive.

Problem Statement: Without loss of generality, we assume
that the appliance signatures are generated sequentially over
time. Thus, upon the arrival of a signature, x,, the system
must decide whether to query the user for the corresponding
appliance label. Intuitively, an upcoming signature should be
queried if it represents (i) a new appliance, i.e., it does not
match any existing label, or (ii) similar to an already observed
signature but with inadequate labels.

On the other hand, to avoid overwhelming the user with
too many queries, the system is not allowed to exceed the
budget of B queries per day. Therefore, the problem is to
find an effective query strategy to (i) maximize the accuracy
of recognizing appliances by querying signatures that are most
informative; (ii) learn the user distribution P(h) in each time

slot, and use this distribution to optimize the query strategy;
and (iii) do not exceed the maximum budget constraint.

III. PROPOSED SOLUTION

In this section, we describe the K -Active-Neighbors (KAN)
algorithm. Since KAN makes use of the Dynamic Time
Warping (DTW) metric to measure the distance between
signatures, we first introduce this technique.

A. Dynamic Time Warping

DTW is a distance measure between two different time
series of potentially different length [17]. It has been used in
several fields including medicine, industry and finance. Unlike
Euclidean distance, DTW exploits dynamic programming to
find the optimal alignment between two temporal sequences.
This minimizes the alignment cost, and returns optimal dis-
tance between two sequences of varying length. DTW is an
appropriate choice in a smart home scenario because two
signatures may likely have different lengths, depending on
duration of use. DTW has been used as a passive machine
learning classifier in [18]. In this paper, we adopt DTW as a
means of constructing a distance matrix to guide the KAN’s
stream-based active learning process.

B. K-Active-Neighbors Approach

We propose a K-Nearest-Neighbors based active learn-
ing algorithm, named K-Active-Neighbors (KAN), as the
querying strategy. KAN considers informativeness, represen-
tativeness, and the predicted user engagement, P(h), of an
incoming signature as the querying criteria.

1) Informativeness and Representativeness: The informa-
tiveness of a new sample (i.e., signature) represents the ability
of that sample to reduce the amount of error in the classifier
through the introduction of needed information. Conversely,
representativeness indicates how valuable a sample is in
reflecting the underlying structure of the data [19].

Consider an incoming event signature, x,, and the set
of instances already observed by the smart outlet, X =
{X1,...,Xn_1}. We let KNN(x,,) = {x{",... ,xg?)} rep-
resent the K nearest neighbors of x, in X, where DTW
is used as a distance metric. The K-nearest-neighbors algo-
rithm determines “who affects who” by defining relationships
between samples. This may be conceptualized as a directed
graph, where an edge is drawn from sample x; to sample x,
only if x, € KNN(xp).

Hence, an instance x,, is representative if it receives very
few edges overall, meaning it explores a new part of the fea-
ture space. We define the number of instances a sample affects,
or represents, as Ng(x,). This number represents the total
number of edges x,, receives, which is also the total number
of times x, € KNN(x;) for all x; € X. This is formally
defined as Ng(x,) = X1 1(x, € KNN(x;)).where, 1(-)
represents the indicator function.

Moreover, x, is considered informative if it has many
incoming edges from unlabeled samples. The labeled state
of a sample x;, € X is denoted by the Boolean function
l(x;). The number of unlabeled instances a sample affects is
denoted by N(x,) = YIX1 1(x, € KNN(x;) & —l(x)))).
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The definition N; considers how many of the received edges
come from samples with known labels.

Consider the set X. We can sort the signatures in X by their
score Ny(x;) and define the informativeness score I1(x,) €
[0,1] of the new signature x,, as the percentile rank (i.e.,
the normalized position) of Ny(x,) in the sorted set. This
metric indicates how informative a signature is compared to
all of the observed signatures. For example, a new signature
that is close to many unlabeled instances, and falls in the
90% percentile in number of unlabeled neighbors, may be
considered very informative. In a similar way, we evaluate the
representativeness score R(x,,). By definition, a representative
instance is one with few incoming edges. Therefore, we desire
the percentile rank of Ng(x,) with respect to the frequency
distribution of the remaining {Ng(x;) : Vx; € X} to be
small, i.e., receive few edges. The metric R(x,,) is defined by
the reverse percentile rank, which is the complement of the
percentile rank of Ng(x,,).

We bring these two criteria together by saying a sample is
worth querying if it is highly informative or highly represen-
tative of the dataset. A sample’s querying score, which ranges
from [0,1] is the highest of the two percentile values I(x,,),
i.e., a sample is related to many unlabeled points, and R(x,),
i.e., a sample represents a sparse area. The querying score is
defined as S(x,,) = max{I(x,), R(xx)}. We use a threshold
T to determine if the querying score is sufficiently high and
a query to the user is needed. Nevertheless, such score is
not the only factor in determining the querying decision. In
addition to the budget, we consider the willingness of the user
to answer that query at the current time slot, as explained in
the following section.

2) Learning the user’s response distribution: The KAN
algorithm considers the time to query the labeler by learning
the user’s response distribution. For every P(h) there are two
possible outcomes, a success (the user labels the data) and a
loss (the user ignores the system query). Let s(h) represent
the number of successes at slot h, and let n(h) represent the
total number of queries submitted at that slot. Thus, P(h) is
given by,

a, if n(h) < e
%, otherwise

Those hours that have been tested fewer than €7 trials, will
have a probability of a. Hours that have been tested fewer
than €9 trials but did not receive a response will still maintain
a minimal probability of 8 > 0. The parameters €3 and ¢;
are necessary to ensure that sufficient samples are available
to calculate the average % The parameters €; and e, may
be derived using any strategy for selecting a sample size to
estimate a population mean [20].

If a new signature x,, generated at time slot h, passes
the tests for informativeness and representativeness, and the
budget B is not exceeded, the user is asked to label the data
with probability P(h). The system observes the user behavior
to update s(h), n(h) and P(h).

Algorithm 1: K-Active-Neighbors algorithm
Input

: Incoming signature xy,, hour h, budget B, used budget b,
KNN(xy), threshold 7.

1 Find Ng(xn) to calculate R(xy)

2 Find Nj(xy) to calculate I(xy)

3 S(xn) = max{I(xn), R(xn)}

4 if S(xn)> T & b< B then

5 Query the user with probability P(h)

6 if user has been queried and query is successful then
7 s(h)++

8 n(h)++

9 b+ +

10 I(xn) = True

1 end

12 if user has been queried and query is not successful then
13 n(h)++

14 b+ +

15 I(xr) = False

16 end

17 X =XU{xn}

18 end

3) Pseudocode: In the following, we provide the pseu-
docode of our proposed algorithm. where b is the budget used,
or queries for the day, at any given instance. This value is
reset to b = 0 at the beginning of each day. Lines 1 and 2 of
the pseudocode use the definitions of Ng, N; to respectively
derive the number of representative and informative edges
possessed by the sample x,,. In line 3, the score is determined
by percentile rank of neighbors. The condition in line 4 checks
whether the sample querying score is higher than the threshold
T and would not surpass the allotted budget. If the condition
is true, the user is queried with probability P(h) (line 5).
Depending whether the user responds, or not, s(h), n(h),
P(h) and I(x,,) are updated accordingly (lines 6—16). Finally,
X, is added to the current set of signatures (line 17).

C. Classification

We use the DTW distance metric in guiding the KNN
classifier. We adopted a KNN classifier because it is a natural
extension of the KAN algorithm, which is designed to choose
the most useful “neighbors” in determining a sample’s label.
Like the original KNN algorithm, the DTW-based KNN is a
lazy algorithm which requires no official training period. The
DTW-KNN approach is well suited for a dynamic household
in which the dataset is constantly evolving. In classification,
a signature is assigned the label given by the majority of its
K nearest neighbors, and in our experiments we set K = 3
to mirror the value of K in the KAN algorithm.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In the following experiments, we explore the how budget,
user responses within a day, and mislabeling affect different
learning strategies. In this paper, we make design choices to
isolate these characteristics, which may not account for all
residential scenarios. However, our experimental framework
may be used to explore alternative design choices in the future,
such as user response behavior, the budget, and types/runtimes
of different appliances.
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Fig. 1: Schematic of the Arduino-based Smart Outlet

1) Smart Outlet: We implement a low-cost Arduino-based
smart outlet, which captures the current signal at 0.2Hz, i.e.,
one sample every 5 seconds, and saves this information on
a remote server. An Arduino with a Yun Shield, ACS712
current sensor, and a 5V relay switch was integrated with
a regular electrical outlet, as shown in Fig. 1. This platform
has been chosen since it is open-source, has a wide array
of “shields” that provide enhanced capabilities, has a large
resource library, and is very flexible and easy to use. The Yun
Shield is the component that allows wireless communication
to and from the Arduino, the ACS712 sensor outputs an analog
signal proportional to the RMS current of the circuit, and the
relay switch simply allows the outlet to be turned on or off
autonomously.

2) Dataset: We use our smart outlet to collect a total 380
signatures including 5 appliances of different types, namely a
laptop (type III), iPhone (type I), LED lamp (type I), fan (type
II) and hair dryer (type II), because they are common, portable
households appliances. Though our selected appliances are not
exhaustive, they test our solution’s stability, as they cover chal-
lenging characteristics such as low consumption appliances.
During data acquisition, each appliance is plugged in our the
smart outlet and turned ON for one minute before being turned
OFF. Type II appliances have been turned ON in different
states during the data collection. Appliance signatures are
restricted to one minute for comparability when testing the
impact of other attributes (budget, user response, mislabeling)
in the experiments below. In reality, DTW will allow us to
capture and compare appliances of varying run times, such as
a toaster or an entire washing machine cycle.

The collected data is then used to train and test the models
as described in Section I'V-B. In each trial of the experiment,
the data is randomly split into training (80%, 304 instances)
and testing (20%, 76 instances) sets. In testing, the accuracy
is defined as the proportion of instances in the test set for
which the label is correctly predicted by the trained classifier.

We consider a training period of D = 21. We also assume
that three appliance signatures are observed by the system ev-
ery hour, from a potential pool of five appliances. Accordingly,
there are N = 24 x 3 = 72 signatures observed within a day.
These N signatures are sampled with replacement from the
entire training set and randomly assigned an hour A to form a
usage schedule. To mimic how residents would use appliances
in the same manner every day, our generated usage schedule
remains the same for every day of training throughout a trial of
the experiment. Finally, we set the KAN parameters K and

15 5 5 10 15
Hour Hour

(a) User 1 (b) User 2

Fig. 2: Fixed user response distributions

t, defined in Algorithm 1, equal to 3 and 0.9, respectively.
We also set o = %, 8= i in Eq. (1). The chosen « value
represents a completely random probability of success, (3 is
the uniform probability a user will respond in any of the
hours of the day, and €;,€e2 = 0. We performed a sensitivity
analysis and observed similar trends with similar settings of
these parameters.

3) User Modeling Parameters: To evaluate the robustness
of our approach over different user response patterns, we
consider two distributions, displayed in Fig. 2, which are
created as a mixture of independent Gaussian distributions.
User 1 has a typical 9A.M. to 5P.M. job and is available
to answer queries in the mornings and evenings surrounding
these times. User 2 is available throughout the day and hence
follows a schedule composed of more Gaussian components.

B. Comparison Approaches

We compare three different stream learning strategies.

1) UBAL Sampling and Decision Tree Classifier: We com-
pare our approach to the solution proposed in [14], the
Uniform Budgeted Active Learning (UBAL) algorithm, paired
with the Decision Tree (DT) classifier. UBAL randomly
chooses B time slots in a day to query the user. To the best of
our knowledge, the sampling algorithm outlined by [14] is the
only other algorithm in literature that considers the problem
of addressing user abstention for active querying.

The DT is trained on a feature set extracted from the raw
time series data, which includes standard time series quanti-
fiers such as mean, minimum, maximum, standard deviation,
kurtosis and skew. Moreover, the transition time, i.e., the time
taken for an appliance to reach a steady state when turned
ON, is also included in this dataset. Thus, the dataset contains
seven features. On a five-fold cross validation of the this 380
instance feature set, we find that DT classifier achieves an
accuracy of 96.4%, which was comparable to our other tested
classification methods, such as Neural Networks (95.9%),
logistic regression (93.5%), and support vector machines
(78.9%), with untuned hyper-parameters for all models.

2) KAN: In this work, we propose the K-Active-Neighbors
query strategy. We adopt this algorithm along with the DTW-
based KNN classification method, collectively referred to as
“KAN” for notation simplicity. On a five-fold cross validation
of the entire 380 instance dataset, we find that the DTW-KNN
classifier achieves an accuracy of 96.5%.

3) Perfect KAN: We also include an adaptation of the KAN
strategy where the perfect user response distribution, P(h) for
h =1,...,24,is known and given to the KAN algorithm. This
is referred to as the “perfect KAN”, or P-KAN. This may be
considered the upper bound when testing the strategies.
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Fig. 3: Results of three active learning strategies on User 2
distribution for B € {1, 3,6} plotted with a 5% confidence
interval.

C. Experimental Results

We outline three experiments that test the robustness of
our proposed algorithm with respect to varying budgets, user
response distributions, and mislabeled appliances.

1) Impact of budget: In the first experiment, we examine
the impact of the budget B on the performance of the
three strategies described in Subsection IV-B. Fig. 3 displays
the average testing accuracy of the three methods over the
considered period for different budget values on User 2’s
distribution. The results look nearly identical for User 1, so we
omit the related figures due to space limitations. Each bullet
corresponds to the accuracy of the classifier on the testing
data at the end of each day. To account for the randomness
in the sampling methods, every experiment is repeated and
averaged across 10 trials.

As observed, the accuracy of the KAN and P-KAN methods
is noticeably higher than the UBAL strategy. In fact, for
higher budgets, the KAN algorithm is able to ignore redundant
instances and learn the user distribution faster. As a result, the
number of days necessary for the KAN algorithm to reach
a higher accuracy, such as 80%, consistently takes less time
than for UBAL, even as the budget increases (see Table I).For

TABLE I: Average number of days to reach 80% accuracy

Budget UBAL KAN P-KAN
1 > 21 21+£0 2041
3 18+1 15£2 14+2
6 12+2 7T+2 8+2
_ N i : EEE EE _Z I% Ey% #idi
o £
ol ssessd  Togeuw . aiaa?i
(a) User 1 (b) User 2

Fig. 4: Comparison of average learned user response distri-
bution with perfect user response distributions over 25 trials
with 5% confidence intervals at D = 21, B = 6.

example, given B = 3, the KAN algorithm reaches more
than 60% accuracy five days before than UBAL. In Fig. 3b,
we see that the UBAL strategy also has larger confidence
intervals, showing that random sampling does not always
provide guality labels, which leads to volatile classifiers with
respect to accuracy. Also according to Table I, KAN achieves
similar performance to P-KAN for all budgets, suggesting that
our strategy is effective a learning the user distribution similar
to the one provided to P-KAN.

For the value of B = 1, ie., in Fig. 3a, all three
strategies perform unsatisfactorily, with the average accuracy
around 0.75, 0.74 and 0.68 for the P-KAN, KAN and UBAL
strategies, respectively. The reason is the limited size of the
acquired labeled dataset, considering that the user may not
respond to the single query of the day.

Note that, in a few cases KAN and P-KAN may show a
non-monotone accuracy in consecutive days, for example for
P-KAN in Fig. 3a between day 10 and 11. This is because the
KNN classification method will assign a class based on the
“majority vote” of its neighbors and is vulnerable to noise in
small training sets. In our experiments, where K = 3, if the
KAN strategy does not have three instances of a given class
in the training set, it will include at least one incorrect vote.

2) Learning of the user response distribution: We also
explore the ability of the current KAN strategy to learn the
user distribution.

Fig. 4 provides a comparison between the learned user
distribution and the perfect one. First, note that the learned
distribution is very close to the true distribution for every hour,
with a 95% confidence. The error bars are considerably larger
for mid-range P(h) values, i.e., values within a [0.25,0.75]
interval. This implies that our strategy can distinguish hours
in which the user is always or never willing to respond to
queries, but less precise at learning mid-range P(h) values.
This can be explained from a statistical standpoint, because
the standard deviation is expected to decrease as Psyccess
approaches 0 or 1 in a binomial distribution. Moreover,
this clarifies the large intervals associated with the learned
distribution in Fig. 4b.

3) Impact of mislabeling on classification accuracy: Upon
involving users in labeling task, the occurrence of some errors
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TABLE II: Impact of mislabeling percentage on accuracy for
User 2 with B=3, D =21

Err. Labels UBAL KAN P-KAN
0% 77.31+0.04 84 +0.03 83.52+0.03
10% 73.16 £0.03 74.474+0.04 77.57+£0.03
20% 66.26 & 0.06 67.47+£0.05 71.05 £ 0.05

is inevitable. However, we expect minimal error from the user
in labeling appliances, as this is not a difficult task and the
user can simply abstain from labeling. In this experiment, we
observe the strategies’ robustness to low levels of mislabeling,
ie., 0%, 10% and 20%. The mislabeling percentage is the
portion of the training labels that are incorrect.

For this experiment, we set the strategy parameters to
B = 3 and D = 21. Note that the performance of all
strategies within these design parameters and perfect labels,
0% of mislabeling, is equivalent to the point at Day 21 in Fig.
3b.

Table II demonstrates that UBAL is less affected by misla-
beling when compared to the KAN methods. With a 10%
noise level, UBAL loses 4.2% while KAN loses 9.5% in
accuracy. This is likely because the K-Nearest-Neighbors
algorithm is susceptible to noise when many instances are
mislabeled, especially given our small value of K = 3.
We expect that for larger values where K > 3, the KAN
algorithms will be more robust to noise. As mentioned, we
do not expect high amounts of error in this simple appliance
labeling task, and expect abstention to be the larger component
to this active learning scheme, for which the KAN algorithm
is shown to be effective.

V. CONCLUSIONS

In this work, we address the challenge of creating adap-
tive machine learning algorithms that specifically take into
account the user’s behavior in determining learning choices.
To this aim, we introduce the KAN algorithm, which takes
as input the appliance signatures obtained from a low-cost,
low-frequency smart outlet. KAN is characterized as a stream-
based active learning algorithm that incorporates user behav-
ior, in terms of query response distribution, in forming a real-
istic testbed for these smart outlet algorithms. We demonstrate
that KAN, paired with a DTW-based KNN classifier, requires
a much shorter training period than the previously established
state of the art user-centric sampling method [14] to produce
high accuracy classifiers. On average, with a budget of 6
queries per day, our system is able to reach 80% accuracy
in seven days, while the uniform sampling method method
requires fifteen days. This reduction in training period is
attributed to the rate at which we learn the user’s response
distribution along with the highly representative training set
achievable through KAN.
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