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Abstract—Smart homes offer new possibilities for energy
management. One key enabler of these systems is the ability
to monitor energy consumption at the appliance level. Existing
approaches rely mainly on data from aggregated smart me-
ter readings, but lack sufficient accuracy to recognize several
appliances. Conversely, smart outlets are a suitable alternative
since they can provide accurate electrical readings on individual
appliances. Previous approaches for appliance recognition based
on smart outlets use passive machine learning, which are deficient
in the flexibility and scalability to work with highly heteroge-
neous appliances in smart homes. In this paper, we propose a
stream-based active learning approach, called K-Active-Neighbors
(KAN), to address the problem of appliance recognition in smart
homes. KAN is an interactive framework in which the user is
asked to label signatures of recently used appliances. Differently
from previous work, we consider the realistic case in which the
user is not always available to participate in the labeling process.
Therefore, the system simultaneously learns the signatures and
also the user willingness to interact with the system, in order
to optimize the learning process. We develop an Arduino-based
smart outlet to test our approach. Results show that, compared
to previous solutions, KAN achieves higher accuracy in up to
41% less time.

Index Terms—Appliance Recognition, Stream-based Active
learning, User-Centered Machine Learning, Labeler Abstention.

I. INTRODUCTION

The residential sector is responsible for more than 20%
of the total energy consumption of the United States [1],

and this amount has been constantly increasing for several

decades. As the demand for energy grows, there exists a

clear need for the management of energy consumption at the

residential level which can be obtained through fine-grained

electricity billing, demand-response programs, and electrical

power load balancing [2]. A well-recognized key enabler

for energy management techniques is the knowledge about

when each appliance is used and its consumption [3]–[6].

The problem of recognizing an appliance from its electric

signature is known as appliance recognition. Several previous

approaches in this context rely on smart meters. These meters

measure the aggregated energy consumption of all home appli-

ances and communicate such information to a utility company

for billing [7]. To infer individual appliance consumption,

load disaggregation techniques are used [8]. However, these

techniques lack the sufficient accuracy to enable fine-grain

energy management [8].

In this regard, smart outlets are a better alternative. These

outlets look like traditional wall plugs, but are actually Internet

of Things (IoT) devices [9], with the capability of monitoring

and controlling the power usage of a connected electric

appliance. Previous studies on appliance recognition using

smart outlets adopt passive machine learning, in which a set of

labeled data is given to train the model before it is deployed,

and then the fixed trained model is used for classification

[10], [11]. We argue that this approach is not practical in

a smart home for several reasons: (i) offline classification

is not flexible to new appliances subsequently available on

the market; (ii) similar appliances (e.g., different brands) may

have very different signatures (patterns of current over time),

making it hard to perform offline training.

In this paper, we propose the use of active learning,

and specifically of a stream-based active learning strategy.

Active learning assumes that the entire dataset is available

during training, and an expert user labels a selected subset

of instances. Conversely, in stream-based scenarios data is

generated over time, when an appliance is plugged in, and

the system must decide if manual labeling from the user is

needed [12]. However, stream based active learning has been

previously considered only in highly specialized sectors (e.g.,

image and text recognition) where the user is an expert nat-

urally incentivized to participate in the labeling process [13].

We point out that this is not the case in a smart home, where a

user may have a different level of engagement and availability

over time, and the number of queries should be limited to

prevent overwhelming her. As a result, in this context, in

conjunction to learning the appliances’ signatures, we must

also learn the user’s behavior in terms of the likelihood of

completing the labeling task, in order to optimize the overall

learning process. To the best of our knowledge the problem of

user abstention for active querying has only been addressed in

[14], [15]. These works assume that user responds to queries

uniformly at random or that user abstention is primarily

influenced by proximity to the decision boundary, which is not

a realistic assumption for labeling tasks in the smart home.

In this paper we propose a stream-based machine learning

framework named K-Active-Neighbors (KAN) for appliance

recognition that comprehensively learns appliances’ signatures

and the user behavior in engaging with the labeling task. KAN

trades off informativeness of new instances with the likelihood

of user engagement in order to improve the accuracy and

shorten the convergence of the identification procedure. We

develop an Arduino-based smart outlet to test the performance

of KAN versus existing approach using several appliances.

208

2020 IEEE International Conference on Smart Computing (SMARTCOMP)

978-1-7281-6997-2/20/$31.00 ©2020 IEEE
DOI 10.1109/SMARTCOMP50058.2020.00047

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 19,2021 at 13:27:26 UTC from IEEE Xplore.  Restrictions apply. 



Our results show that we are able to achieve 100% accuracy

in up to 66% less time with respect to previous solutions.

In summary, the main contributions of this paper are:

1) We propose an algorithm called KAN for appliance

recognition in smart homes;

2) KAN minimizes the instances necessary to train this

classifier by selecting the most informative instances and

learning the user’s behavior;

3) We tested KAN on real appliance signatures collected

with an Arduino-based smart outlet;

4) Results show that our approach is faster in achieving

high accuracy, and also quickly learns the user behavior.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We assume that time is divided into time slots, for example

corresponding to the 24 hours per day, denoted as h =
1, . . . , 24. As a labeler, the user is assumed to follow a certain

response distribution according to his willingness/availability

to interact with the system. In this paper we use an indepen-

dent Bernoulli distribution at each hour; nevertheless more

complex models can be easily integrated in our framework.

As a result, we refer to P (h) as the probability that the user

will successfully respond to a query at hour h. We refer to D
as the number of days during which the framework operates,

and to B as the maximum number of queries that can be asked

in each day. Budget B and days D are system parameters,

and the impact of these values on classification performance

is explored in Section IV-C1.

We consider a smart outlet with minimal hardware costs,

and as a result, the tool is characterized by a low-frequency

sampling rate and collection of only electric current informa-

tion. When an appliance is plugged in the outlet and turned

ON, the electric current data obtained by the outlet results

in a time series of amp values, sampled at regular intervals

(e.g., 5 seconds). Such time series defines a signature. The n-

th collected signature is stored as a vector of current values,

denoted by xn. Note that, two signatures may be of different

lengths, depending on the duration the device is used. In

addition, some appliances may only ON/OFF states (type I),

may multiple states (type II), or continuously variable states

(type III) [16]. This clearly affects the resulting signature. We

refer to X as the set of signatures observed by the smart outlet.

X grows over time as new signatures arrive.

Problem Statement: Without loss of generality, we assume

that the appliance signatures are generated sequentially over

time. Thus, upon the arrival of a signature, xn, the system

must decide whether to query the user for the corresponding

appliance label. Intuitively, an upcoming signature should be

queried if it represents (i) a new appliance, i.e., it does not

match any existing label, or (ii) similar to an already observed

signature but with inadequate labels.

On the other hand, to avoid overwhelming the user with

too many queries, the system is not allowed to exceed the

budget of B queries per day. Therefore, the problem is to

find an effective query strategy to (i) maximize the accuracy

of recognizing appliances by querying signatures that are most

informative; (ii) learn the user distribution P (h) in each time

slot, and use this distribution to optimize the query strategy;

and (iii) do not exceed the maximum budget constraint.

III. PROPOSED SOLUTION

In this section, we describe the K-Active-Neighbors (KAN)

algorithm. Since KAN makes use of the Dynamic Time

Warping (DTW) metric to measure the distance between

signatures, we first introduce this technique.

A. Dynamic Time Warping

DTW is a distance measure between two different time

series of potentially different length [17]. It has been used in

several fields including medicine, industry and finance. Unlike

Euclidean distance, DTW exploits dynamic programming to

find the optimal alignment between two temporal sequences.

This minimizes the alignment cost, and returns optimal dis-

tance between two sequences of varying length. DTW is an

appropriate choice in a smart home scenario because two

signatures may likely have different lengths, depending on

duration of use. DTW has been used as a passive machine

learning classifier in [18]. In this paper, we adopt DTW as a

means of constructing a distance matrix to guide the KAN’s

stream-based active learning process.

B. K-Active-Neighbors Approach

We propose a K-Nearest-Neighbors based active learn-

ing algorithm, named K-Active-Neighbors (KAN), as the

querying strategy. KAN considers informativeness, represen-
tativeness, and the predicted user engagement, P (h), of an

incoming signature as the querying criteria.

1) Informativeness and Representativeness: The informa-

tiveness of a new sample (i.e., signature) represents the ability

of that sample to reduce the amount of error in the classifier

through the introduction of needed information. Conversely,

representativeness indicates how valuable a sample is in

reflecting the underlying structure of the data [19].

Consider an incoming event signature, xn, and the set

of instances already observed by the smart outlet, X =

{x1, . . . ,xn−1}. We let KNN(xn) = {x(n)
1 , . . . ,x

(n)
K } rep-

resent the K nearest neighbors of xn in X , where DTW

is used as a distance metric. The K-nearest-neighbors algo-

rithm determines “who affects who” by defining relationships

between samples. This may be conceptualized as a directed

graph, where an edge is drawn from sample xb to sample xa

only if xa ∈ KNN(xb).
Hence, an instance xn is representative if it receives very

few edges overall, meaning it explores a new part of the fea-

ture space. We define the number of instances a sample affects,

or represents, as NR(xn). This number represents the total

number of edges xn receives, which is also the total number

of times xn ∈ KNN(xi) for all xi ∈ X . This is formally

defined as NR(xn) =
∑|X|

i=1 1(xn ∈ KNN(xi)).where, 1(·)
represents the indicator function.

Moreover, xn is considered informative if it has many

incoming edges from unlabeled samples. The labeled state

of a sample xi ∈ X is denoted by the Boolean function

l(xi). The number of unlabeled instances a sample affects is

denoted by NI(xn) =
∑|X|

i=1 1(xn ∈ KNN(xi) & ¬l(xi))).

209

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 19,2021 at 13:27:26 UTC from IEEE Xplore.  Restrictions apply. 



The definition NI considers how many of the received edges

come from samples with known labels.

Consider the set X . We can sort the signatures in X by their

score NI(xi) and define the informativeness score I(xn) ∈
[0, 1] of the new signature xn as the percentile rank (i.e.,

the normalized position) of NI(xn) in the sorted set. This

metric indicates how informative a signature is compared to

all of the observed signatures. For example, a new signature

that is close to many unlabeled instances, and falls in the

90% percentile in number of unlabeled neighbors, may be

considered very informative. In a similar way, we evaluate the

representativeness score R(xn). By definition, a representative

instance is one with few incoming edges. Therefore, we desire

the percentile rank of NR(xn) with respect to the frequency

distribution of the remaining {NR(xi) : ∀xi ∈ X} to be

small, i.e., receive few edges. The metric R(xn) is defined by

the reverse percentile rank, which is the complement of the

percentile rank of NR(xn).

We bring these two criteria together by saying a sample is

worth querying if it is highly informative or highly represen-

tative of the dataset. A sample’s querying score, which ranges

from [0, 1] is the highest of the two percentile values I(xn),
i.e., a sample is related to many unlabeled points, and R(xn),
i.e., a sample represents a sparse area. The querying score is

defined as S(xn) = max{I(xn), R(xn)}. We use a threshold

T to determine if the querying score is sufficiently high and

a query to the user is needed. Nevertheless, such score is

not the only factor in determining the querying decision. In

addition to the budget, we consider the willingness of the user

to answer that query at the current time slot, as explained in

the following section.

2) Learning the user’s response distribution: The KAN

algorithm considers the time to query the labeler by learning

the user’s response distribution. For every P (h) there are two

possible outcomes, a success (the user labels the data) and a

loss (the user ignores the system query). Let s(h) represent

the number of successes at slot h, and let n(h) represent the

total number of queries submitted at that slot. Thus, P (h) is

given by,

P (h) =

⎧⎪⎪⎨
⎪⎪⎩

α, if n(h) ≤ ε1

β, if s(h) ≤ ε2

s(h)

n(h)
, otherwise

(1)

Those hours that have been tested fewer than ε1 trials, will

have a probability of α. Hours that have been tested fewer

than ε2 trials but did not receive a response will still maintain

a minimal probability of β > 0. The parameters ε2 and ε1
are necessary to ensure that sufficient samples are available

to calculate the average
s(h)
n(h) . The parameters ε1 and ε2 may

be derived using any strategy for selecting a sample size to

estimate a population mean [20].

If a new signature xn, generated at time slot h, passes

the tests for informativeness and representativeness, and the

budget B is not exceeded, the user is asked to label the data

with probability P (h). The system observes the user behavior

to update s(h), n(h) and P (h).

Algorithm 1: K-Active-Neighbors algorithm

Input : Incoming signature xn, hour h, budget B, used budget b,
KNN(xn), threshold T .

1 Find NR(xn) to calculate R(xn)
2 Find NI(xn) to calculate I(xn)
3 S(xn) = max{I(xn), R(xn)}
4 if S(xn) ≥ T & b < B then
5 Query the user with probability P(h)
6 if user has been queried and query is successful then
7 s(h)++
8 n(h)++
9 b++

10 l(xn) = True
11 end
12 if user has been queried and query is not successful then
13 n(h)++
14 b++
15 l(xn) = False
16 end
17 X = X ∪ {xn}
18 end

3) Pseudocode: In the following, we provide the pseu-

docode of our proposed algorithm. where b is the budget used,

or queries for the day, at any given instance. This value is

reset to b = 0 at the beginning of each day. Lines 1 and 2 of

the pseudocode use the definitions of NR, NI to respectively

derive the number of representative and informative edges

possessed by the sample xn. In line 3, the score is determined

by percentile rank of neighbors. The condition in line 4 checks

whether the sample querying score is higher than the threshold

T and would not surpass the allotted budget. If the condition

is true, the user is queried with probability P (h) (line 5).

Depending whether the user responds, or not, s(h), n(h),
P (h) and l(xn) are updated accordingly (lines 6−16). Finally,

xn is added to the current set of signatures (line 17).

C. Classification

We use the DTW distance metric in guiding the KNN

classifier. We adopted a KNN classifier because it is a natural

extension of the KAN algorithm, which is designed to choose

the most useful “neighbors” in determining a sample’s label.

Like the original KNN algorithm, the DTW-based KNN is a

lazy algorithm which requires no official training period. The

DTW-KNN approach is well suited for a dynamic household

in which the dataset is constantly evolving. In classification,

a signature is assigned the label given by the majority of its

K nearest neighbors, and in our experiments we set K = 3
to mirror the value of K in the KAN algorithm.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In the following experiments, we explore the how budget,

user responses within a day, and mislabeling affect different

learning strategies. In this paper, we make design choices to

isolate these characteristics, which may not account for all

residential scenarios. However, our experimental framework

may be used to explore alternative design choices in the future,

such as user response behavior, the budget, and types/runtimes

of different appliances.
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Fig. 1: Schematic of the Arduino-based Smart Outlet

1) Smart Outlet: We implement a low-cost Arduino-based

smart outlet, which captures the current signal at 0.2Hz, i.e.,

one sample every 5 seconds, and saves this information on

a remote server. An Arduino with a Yún Shield, ACS712

current sensor, and a 5V relay switch was integrated with

a regular electrical outlet, as shown in Fig. 1. This platform

has been chosen since it is open-source, has a wide array

of “shields” that provide enhanced capabilities, has a large

resource library, and is very flexible and easy to use. The Yun

Shield is the component that allows wireless communication

to and from the Arduino, the ACS712 sensor outputs an analog

signal proportional to the RMS current of the circuit, and the

relay switch simply allows the outlet to be turned on or off

autonomously.

2) Dataset: We use our smart outlet to collect a total 380
signatures including 5 appliances of different types, namely a

laptop (type III), iPhone (type I), LED lamp (type I), fan (type

II) and hair dryer (type II), because they are common, portable

households appliances. Though our selected appliances are not

exhaustive, they test our solution’s stability, as they cover chal-

lenging characteristics such as low consumption appliances.

During data acquisition, each appliance is plugged in our the

smart outlet and turned ON for one minute before being turned

OFF. Type II appliances have been turned ON in different

states during the data collection. Appliance signatures are

restricted to one minute for comparability when testing the

impact of other attributes (budget, user response, mislabeling)

in the experiments below. In reality, DTW will allow us to

capture and compare appliances of varying run times, such as

a toaster or an entire washing machine cycle.

The collected data is then used to train and test the models

as described in Section IV-B. In each trial of the experiment,

the data is randomly split into training (80%, 304 instances)

and testing (20%, 76 instances) sets. In testing, the accuracy
is defined as the proportion of instances in the test set for

which the label is correctly predicted by the trained classifier.

We consider a training period of D = 21. We also assume

that three appliance signatures are observed by the system ev-

ery hour, from a potential pool of five appliances. Accordingly,

there are N = 24× 3 = 72 signatures observed within a day.

These N signatures are sampled with replacement from the

entire training set and randomly assigned an hour h to form a

usage schedule. To mimic how residents would use appliances

in the same manner every day, our generated usage schedule

remains the same for every day of training throughout a trial of

the experiment. Finally, we set the KAN parameters K and
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Fig. 2: Fixed user response distributions

t, defined in Algorithm 1, equal to 3 and 0.9, respectively.

We also set α = 1
2 , β = 1

24 in Eq. (1). The chosen α value

represents a completely random probability of success, β is

the uniform probability a user will respond in any of the

hours of the day, and ε1, ε2 = 0. We performed a sensitivity

analysis and observed similar trends with similar settings of

these parameters.

3) User Modeling Parameters: To evaluate the robustness

of our approach over different user response patterns, we

consider two distributions, displayed in Fig. 2, which are

created as a mixture of independent Gaussian distributions.

User 1 has a typical 9A.M. to 5P.M. job and is available

to answer queries in the mornings and evenings surrounding

these times. User 2 is available throughout the day and hence

follows a schedule composed of more Gaussian components.

B. Comparison Approaches

We compare three different stream learning strategies.

1) UBAL Sampling and Decision Tree Classifier: We com-

pare our approach to the solution proposed in [14], the

Uniform Budgeted Active Learning (UBAL) algorithm, paired

with the Decision Tree (DT) classifier. UBAL randomly

chooses B time slots in a day to query the user. To the best of

our knowledge, the sampling algorithm outlined by [14] is the

only other algorithm in literature that considers the problem

of addressing user abstention for active querying.

The DT is trained on a feature set extracted from the raw

time series data, which includes standard time series quanti-

fiers such as mean, minimum, maximum, standard deviation,

kurtosis and skew. Moreover, the transition time, i.e., the time

taken for an appliance to reach a steady state when turned

ON, is also included in this dataset. Thus, the dataset contains

seven features. On a five-fold cross validation of the this 380
instance feature set, we find that DT classifier achieves an

accuracy of 96.4%, which was comparable to our other tested

classification methods, such as Neural Networks (95.9%),

logistic regression (93.5%), and support vector machines

(78.9%), with untuned hyper-parameters for all models.

2) KAN: In this work, we propose the K-Active-Neighbors

query strategy. We adopt this algorithm along with the DTW-

based KNN classification method, collectively referred to as

“KAN” for notation simplicity. On a five-fold cross validation

of the entire 380 instance dataset, we find that the DTW-KNN

classifier achieves an accuracy of 96.5%.

3) Perfect KAN: We also include an adaptation of the KAN

strategy where the perfect user response distribution, P (h) for

h = 1, . . . , 24, is known and given to the KAN algorithm. This

is referred to as the “perfect KAN”, or P-KAN. This may be

considered the upper bound when testing the strategies.
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Fig. 3: Results of three active learning strategies on User 2
distribution for B ∈ {1, 3, 6} plotted with a 5% confidence

interval.

C. Experimental Results

We outline three experiments that test the robustness of

our proposed algorithm with respect to varying budgets, user

response distributions, and mislabeled appliances.

1) Impact of budget: In the first experiment, we examine

the impact of the budget B on the performance of the

three strategies described in Subsection IV-B. Fig. 3 displays

the average testing accuracy of the three methods over the

considered period for different budget values on User 2’s

distribution. The results look nearly identical for User 1, so we

omit the related figures due to space limitations. Each bullet

corresponds to the accuracy of the classifier on the testing

data at the end of each day. To account for the randomness

in the sampling methods, every experiment is repeated and

averaged across 10 trials.

As observed, the accuracy of the KAN and P-KAN methods

is noticeably higher than the UBAL strategy. In fact, for

higher budgets, the KAN algorithm is able to ignore redundant

instances and learn the user distribution faster. As a result, the

number of days necessary for the KAN algorithm to reach

a higher accuracy, such as 80%, consistently takes less time

than for UBAL, even as the budget increases (see Table I).For

TABLE I: Average number of days to reach 80% accuracy

Budget UBAL KAN P-KAN
1 > 21 21± 0 20± 1
3 18± 1 15± 2 14± 2
6 12± 2 7± 2 8± 2
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Fig. 4: Comparison of average learned user response distri-

bution with perfect user response distributions over 25 trials

with 5% confidence intervals at D = 21, B = 6.

example, given B = 3, the KAN algorithm reaches more

than 60% accuracy five days before than UBAL. In Fig. 3b,

we see that the UBAL strategy also has larger confidence

intervals, showing that random sampling does not always

provide quality labels, which leads to volatile classifiers with

respect to accuracy. Also according to Table I, KAN achieves

similar performance to P-KAN for all budgets, suggesting that

our strategy is effective a learning the user distribution similar

to the one provided to P-KAN.

For the value of B = 1, i.e., in Fig. 3a, all three

strategies perform unsatisfactorily, with the average accuracy

around 0.75, 0.74 and 0.68 for the P-KAN, KAN and UBAL

strategies, respectively. The reason is the limited size of the

acquired labeled dataset, considering that the user may not

respond to the single query of the day.

Note that, in a few cases KAN and P-KAN may show a

non-monotone accuracy in consecutive days, for example for

P-KAN in Fig. 3a between day 10 and 11. This is because the

KNN classification method will assign a class based on the

“majority vote” of its neighbors and is vulnerable to noise in

small training sets. In our experiments, where K = 3, if the

KAN strategy does not have three instances of a given class

in the training set, it will include at least one incorrect vote.

2) Learning of the user response distribution: We also

explore the ability of the current KAN strategy to learn the

user distribution.

Fig. 4 provides a comparison between the learned user

distribution and the perfect one. First, note that the learned

distribution is very close to the true distribution for every hour,

with a 95% confidence. The error bars are considerably larger

for mid-range P (h) values, i.e., values within a [0.25, 0.75]
interval. This implies that our strategy can distinguish hours

in which the user is always or never willing to respond to

queries, but less precise at learning mid-range P (h) values.

This can be explained from a statistical standpoint, because

the standard deviation is expected to decrease as Psuccess

approaches 0 or 1 in a binomial distribution. Moreover,

this clarifies the large intervals associated with the learned

distribution in Fig. 4b.

3) Impact of mislabeling on classification accuracy: Upon

involving users in labeling task, the occurrence of some errors
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TABLE II: Impact of mislabeling percentage on accuracy for

User 2 with B = 3, D = 21

Err. Labels UBAL KAN P-KAN
0% 77.31± 0.04 84± 0.03 83.52± 0.03
10% 73.16± 0.03 74.47± 0.04 77.57± 0.03
20% 66.26± 0.06 67.47± 0.05 71.05± 0.05

is inevitable. However, we expect minimal error from the user

in labeling appliances, as this is not a difficult task and the

user can simply abstain from labeling. In this experiment, we

observe the strategies’ robustness to low levels of mislabeling,

i.e., 0%, 10% and 20%. The mislabeling percentage is the

portion of the training labels that are incorrect.

For this experiment, we set the strategy parameters to

B = 3 and D = 21. Note that the performance of all

strategies within these design parameters and perfect labels,

0% of mislabeling, is equivalent to the point at Day 21 in Fig.

3b.

Table II demonstrates that UBAL is less affected by misla-

beling when compared to the KAN methods. With a 10%
noise level, UBAL loses 4.2% while KAN loses 9.5% in

accuracy. This is likely because the K-Nearest-Neighbors

algorithm is susceptible to noise when many instances are

mislabeled, especially given our small value of K = 3.

We expect that for larger values where K > 3, the KAN

algorithms will be more robust to noise. As mentioned, we

do not expect high amounts of error in this simple appliance

labeling task, and expect abstention to be the larger component

to this active learning scheme, for which the KAN algorithm

is shown to be effective.

V. CONCLUSIONS

In this work, we address the challenge of creating adap-

tive machine learning algorithms that specifically take into

account the user’s behavior in determining learning choices.

To this aim, we introduce the KAN algorithm, which takes

as input the appliance signatures obtained from a low-cost,

low-frequency smart outlet. KAN is characterized as a stream-

based active learning algorithm that incorporates user behav-

ior, in terms of query response distribution, in forming a real-

istic testbed for these smart outlet algorithms. We demonstrate

that KAN, paired with a DTW-based KNN classifier, requires

a much shorter training period than the previously established

state of the art user-centric sampling method [14] to produce

high accuracy classifiers. On average, with a budget of 6
queries per day, our system is able to reach 80% accuracy

in seven days, while the uniform sampling method method

requires fifteen days. This reduction in training period is

attributed to the rate at which we learn the user’s response

distribution along with the highly representative training set

achievable through KAN.
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