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Abstract—Smart Connected Communities (SCCs) is a novel
paradigm that brings together multiple disciplines, including
social-sciences, computer science, and engineering. Large-scale
surveys are a fundamental tool to understand the needs and
impact of new technologies to human populations, necessary to
realize the SCC paradigm. However, there is a growing debate
regarding the reproducibility of survey results. As an example,
it has been shown that surveys may easily provide contradictory
results, even if the subject populations are statistically equivalent
from a demographic perspective. In this paper, we take the
initial steps towards addressing the problem of reproducibility
of survey results by providing formal methods to quantitatively
justify apparently inconsistent results. Specifically, we define a
new dissimilarity metric between two populations based on the
users answers to non-demographic questions. To this purpose, we
propose two algorithms based on submodular optimization and
information theory, respectively, to select the most representative
questions in a survey. Results show that our method effectively
identifies and quantifies differences that are not evident from a
purely demographic point of view.

Index Terms—Reproducibility, Surveys, Dissimilarity Metrics.

I. INTRODUCTION

Smart Connected Communities (SCCs) is a novel paradigm
recently coined by the National Science Foundation (NSF)
[1]. According to this paradigm, communities can exploit
technological advances, such as ubiquitous connectivity, big
data analysis, and sensing technologies, to improve well-
being and prosperity [2]. The SCCs paradigm clearly has an
interdisciplinary nature, bringing together multiple disciplines
including social-sciences, computer science, economics, and
engineering.

A fundamental challenge in SCCs is the understanding of
the complex interaction between technology and society [1].
In fact, such social dimension is often neglected in engineering
and technological works [3]. Nevertheless, the success of
novel technologies is strictly related to the understanding
of social factors such as responses to and acceptance of
technological advances, behavioral changes due to availability
of new information, as well as short and long term impact of
new technologies on communities [4], [5].

In order to study such social aspects, large-scale surveys
have been widely used as a scientific tool. However, there
is a growing debate regarding the reproducibility of survey
results in particular, and scientific results in general [6], [7].
In fact, reproducibility is at the core of the scientific method
[8] and it refers to the possibility of repeating an experiment

independently, in order to corroborate or confute the scientific
findings.

A distinguished survey [9], in which over 1500 scientists
answered questions about the importance of reproducibility,
showed that 90% of the respondents believe that there is a
replication crisis at hand. This problem is especially important
in social science fields, where scientists aim to quantify and
understand complex human behaviors in hopes of making
reliable predictions about future behaviors. A 2015 study
conducted by Open Science Collaboration looked at 100
psychology studies from 2008 and claimed they were only
able to replicate about 40% of the findings [10].

There is a swell of interest in increasing rates and likelihood
of reproducibility with suggested approaches ranging from
efforts to increase publication value for replication studies and
null finding [11], to changing interpretation of p-values [12],
[13], to pre-registration [14].

What has not been explored is how to quantitatively char-
acterize similarities and dissimilarities between the original
subject pool and the subject pool being used for the replication
study. Generally, to make a broad determination of sample
similarity, demographic information is used, such as gender,
ethnicity, socio-economic status, and so on. However, such
information is often not sufficient in explaining dissimilarities
between subject pools.

In this paper we go beyond demographics qualities and pro-
pose a dissimilarity metric to compare two potentially different
populations. This measure may help explain incongruousness
and inconsistencies of survey replication results, by showing
the “dissimilarity” of two populations that are potentially
equivalent from a demographic perspective.

The scenario we envision is the following. A survey is
completed and its results are public (questions and anonymous
answers). When a second survey is designed to further inves-
tigate or corroborate the previous findings, some questions
that characterize the first population are selected from the
initial survey and included in the second survey. By comparing
the answers to these selected questions, we can calculate our
dissimilarity metric between the populations. This way we are
able to provide a quantitative justification for the potentially
incoherent or contradictory results. It is worth mentioning that
it is important to limit the number of selected questions. In
fact, it has been shown that asking too many questions is
not only cumbersome to respondents, but may even cause
deterioration in research quality [15]. To the best of our



knowledge, this is the first paper that addressed the issue of
reproducibility in survey results through the exploitation of
algorithmic and optimization techniques, and it represents a
first step towards understanding and mitigating this problem.

II. RELATED WORK

Reproducibility of scientific results particularly in social sci-
ence and psychology contexts has received significant attention
in recent years. In [10], [16], [17], the authors focused on
replicating selected studies from psychology journals, Nature
and Science journals. To evaluate the reproducibility of such
studies, they used measures such as significance, p-values,
Bayesian analysis, and prediction markets. Particularly, in
[10] they claim that no single indicator sufficiently describes
replication success, and their indicators are not the only ways
to assess reproducibility. Furthermore, the results obtained by
Bayesian analysis in [16] suggest that research community
could predict which results would replicate and that failures
to replicate were not the result of chance alone.

A remarkable work in this area is the Reproducibility Project
[18], an open large-scale collaborative effort to systematically
examine the rate and predictors of reproducibility in psycho-
logical science. In a first attempt of estimating reproducibility
of studies published in top psychology journals, it was found
that only 39% of them could be unambiguously reproduced.
This project has significantly captured the attention of the
scientific community [19], [20]. For example, in [19] they used
Bayesian analysis to conclude that the apparent failure of the
Reproducibility Project to replicate many target effects can be
adequately explained by overestimation of effect sizes due to
small sample sizes and publication bias in the psychological
literature. Furthermore, in [20] the obtained results showed that
researchers, replicators, and consumers should be mindful of
contextual factors that might affect a psychological process in
conducting a replicable study.

Note that, there exist some works studying the selection of
participants in both intercept and online surveys [21], [22],
[23]. However, their main goal is to avoid selection bias and
they do not consider the reproducibility of survey results.

In this paper, we present a different approach to provide an
additional tool towards the replication and reproducibility of
large-scale surveys. Specifically, we provide optimization and
algorithmic solutions to identify the most relevant questions
in a survey, which are used to calculate a dissimilarity metric
between population pools that goes beyond standard statisti-
cal demographic sampling. Note that, some surveys include
attention and manipulation checks, where some questions are
repeated, at different stages, to differentiate between partici-
pants who paid attention, and those who did not. As such, these
types of questions would not likely make good questions to
calculate a dissimilarity metric, as they would have very little
variability among participants.

III. SURVEY METHODOLOGY

In social science, survey question sets are widely used as
a tool to investigate human behaviors both in quantitative

and qualitative research [24], [25]. Some common forms of
questions include: (i) Multiple choice - categorical questions
that ask respondents to select an answer(s) from a pre-defined
set of categorical or nominal items. (ii) Multiple choice -
continuous questions that ask respondents to select an answer
that fits along a continuum or ordered range such as choices
that move from least to greatest. Researchers consider when
and how to employ these approaches based on consideration
of existing literature that informs their domain and particular
research question, typically with goals such as reducing bias
and increasing reliability [25], [24].

In this paper we focus on these two forms of discrete choice
questions. We will analyze additional questions types such as
ranked responses in future work.

IV. SURVEY MODEL AND PROBLEM FORMULATION

In this work, a survey is defined as a tuple, S = (Q,U),
where @ = {qi1,4¢2,...,qk} is the set of questions, and
U = {uy,us,...,u,} represents the subject pool, referred to
“users” in the following. To calculate our dissimilarity metric,
the first step is to identify the questions that best characterize
a population participating in a survey, with respect to their
answers. We model this through the concept of partition
implied by a set questions Q" = {¢},..., ¢/} € Q.

Definition 1 (Partition of a set). Given a survey S and a set
of questions Q' = {¢},...,q/} C Q, Q' implies a partition
C(Q") = {C4,Cy,...} defined as the set of nonempty disjoint
classes of users such that every user u € U is in exactly one
of these classes, and users in the same class gave the same
answers to all the questions in ()'.

According to our model, a population is characterized by a
partition, also refer to as class, with respect to their answers.
Any subset of () gives a partition of user with likely different
classes. Note that, since users in a specific class gave the same
answers to all questions, they are indistinguishable. Intuitively,
we want to minimize this ambiguity when selecting the most
informative questions. To this purpose, given a partition C(Q’),
we measure its quality by the largest class C(*Q,) defined as

Clearly, considering the entire set of questions, @, gives the
best possible partition. However, when designing the second
survey, this trivial solution is not practical for the following
reasons. First, research quality can be deteriorated when
participants are asked to respond to too many questions in
one setting [15], [26]. As such adding this subset of questions
should not unnecessarily increase the length of the follow-up.
An additional practical consideration is that, in cases where
participants compensation is determined by the time it takes
to complete the survey, superfluous question have a financial
cost as well. Finally, online survey platforms such as Qualtrics
[27] charge an amount of money proportional to the number
of question in a survey.

Taking into account the above considerations, our first
problem is to find the best subset Q* C (), that minimizes



the uncertainty in discerning individuals in U, under a budget
constraint for the number of questions that can be selected.
Formally, we look for the set Q* C ) with minimum |C(*Q*)
within a budget B, that is:

bl

Problem 1. Given a survey S = (Q,U) and a budget B, the
best partition is given by

|Q'| < B. 2)

Q" = min

Example 1. In the following, we provide a toy example to
clarify the problem formulation and the impact of different
subset of questions in the partition of a set of users U.
Consider a survey with 8 users and 4 questions, where each
question has exactly 6 possible answers (numbered from 0 to
5, for simplicity). In Table I, we exemplify the users’ answers
to each question.

Let us consider a set Q' = {q1}. This would result in a
partition set C({q1}) given by:

C({Q1}) = {{u17u27u7}7 {U?MUG}’ {u4’u8}7 {u5}}- 3)

The largest class in this case is {u1, uz,ur}, which is implied
by the fact that all these three users gave answer 5 to question
q1. By adding g2 to Q' = {q1}, we obtain the following
partition:

C{a,a2}) = {{wr, ur}, {ua}, {us, ug}, {ua}, {us}, {us}}.

“)
The size of the largest class has reduced to two users, since
adding qs resolved some ambiguity. However, not all questions
contribute in the reduction of the size of the largest class. In
fact, by including q3 we obtain the same partition as in Eq.
(4). If we assume a budget B = 3, the optimal solution in this
example is Q* = {q1,q2,q4}. In fact, in this case, every user
can be uniquely identified by their answers,

C({a1: g2, qa}) = {{ua }, {ua}, {us}{ua}, {us},
{ue}, {ur}, {us}}. (5

TABLE I
SURVEY EXAMPLE

[userid [ wy [ up [ uz [ ug [ us | ue | ur [ ug |

q1 5 5 3 2 4 3 5 2
q2 3 2 1 4 3 1 3 1
q3 1 3 0 1 3 0 1 0
qa 0 0 1 2 0 0 2 2

In the next sections, we propose two algorithms to solve the
optimization problem in (2).

V. ALGORITHMS FOR QUESTION SELECTION

In this section we discuss the two algorithms used to select
the most informative questions from a survey.

A. The MIMOSA Algorithm

The first algorithm is named MIn Max SubmOdulAr (MI-
MOSA) algorithm. In order to define MIMOSA, we reformu-
late the problem in Eq. (2) into an equivalent maximization
problem. To this purpose, we rewrite the objective function as
[U| = |C{g| and thus the problem becomes:

*= max |U|—|Cf, s. t. "<B (6
Q Q,CQ| | = [Clon] Q" < (6)

The following corollary shows that the two problems have
the same optimal solution.

Corollary 1. The problems defined in Egs. (2) and (6) have
the same optimal solution.

Given the equivalency between the two problems, we now
focus on the maximization problem in Eq. (6) and show that
its objective function is submodular. A function is submodular
according to this definition.

Definition 2 (Submodular function [28]). Given a finite
ground set QQ and a function f : 29 — R, then ¥ Q; C

Q2 CQ,q€Q\Qq, f is submodular iff
f(Q1+4q) = f(Q1) 2 f(Q2+ q) — f(Q2),
where the notation Q; + q stands for Q; U {q}.

The following theorem shows that the objective function of
the maximization problem in Eq. (6) is submodular, under the
assumption that users answer questions independently. Note
that, this assumption is only considered for the proof and
the MIMOSA algorithm does not rely on the independent
answers. However, the proof for the general case, consider-
ing potentially dependent answers, is strongly supported by
experimental evidence, but it is still an open problem.

Theorem 1. Let QQ and U be the sets of questions and users,
respectively. Given the fact that the users answer to each
question independently, the objective function of the problem
in Eq. (6) is submodular.

Proof: To prove the Theorem we need to show that, given
two sets of questions 1 and ()2 such that Q1 C Q2 C @ and
g € Q\ Q2, it holds the following:

Ul = 1Clg,+q! — (Ul = CigH) =
Ul = |Clg,+q) — (U= 1Cig, D,

This equation can be rewritten as:

[Clan! =10 +a)| 2 [Clgn)| = [Clgatgl- D
Using Eq. (1) we have,
max |Ci|— max |Cy] >
CieC(Q1) CieC(Q1+9q)
max |C;|— max |C. (8)
C;€C(Q2) Ci€C(Q2+q)

Let us define PJ’-’ as the probability of a user to answer j to a
question ¢. Let C; be the class of users that answered j, this

probability can be expressed as P = |C;|/|U]. We extend



this notation to a generic set of questions (;, by defining
PjQi as the probability of providing the set of answers j to
the questions in ();. Moreover, since we assumed that users
answer questions independently, for any additional questions
qg € Q\ Q, we have P,?"’Jrq = Pij' - P/, where the set of
answers k combines the answers j and [ to the questions in
Q; and g, respectively. Accordingly, by dividing both sides of
Eq. (8) by |U| we obtain:

max{P*'} — max{P{ - Pf} >
m,aX{PiQ?} - maX{PiQQ ) qu}~ 9
% %]

Without loss of generality, we assume that answers are num-
bered so that the first answer provides the largest class and
therefore the largest probability, that is: PQ1 > P ', Vioe
{2,...,n0, 1, P> > P vi e {2, nQQ} P >
P, Vi € {2,...,nq4} where ng, is number of the possible
answers to questions in @Q;. Therefore, it follows

PO PPl 2 P P

PP (1-P}) > PP*(1-Pf) = PP > PP,

which is always true since Q1 C Q2. Therefore, the objective
function of the problem is submodular. [ |

Following recent advancements in submodular optimization
theory [29] we can define the MIMOSA algorithm as a greedy
algorithm as shown in Algorithm 1. MIMOSA builds the
solution @y iteratively, and initially Qp; = @ (line 2). At
each iteration, the algorithm selects the question ¢ € Q \ Qs
that maximizes the gain in the objective function (line 4). The
algorithm terminates when [C*(Qps)| = 1 or the budget is
exhausted (line 3).

Algorithm 1 The MIMOSA algorithm
Input: S = (Q,U), B
Output: Q) C Q
1: procedure MIMOSA(S, B)

2: QA1€—®

3: while |C’(Q )| > 1 AND |Qx| < B do

4: qum < arg max{|CY, | = ICT, |}
1O\t (Qm) (Qm+q)

5 Quv — Qur +

6: return (),

The submodularity of the objective function allows us to
prove that MIMOSA provides a 1 — ﬁ approximation bound
for the problem in Eq. (6).

Theorem 2 ( [29] ). Given a finite ground set Q), a submodular
function f : 22 — R, and a budget B. If f is non-decreasing
and f(0) = 0, then the greedy algorithm produces a solution
which is at least 1 — % times the optimal value.

We prove that the objective function of the maximization
problem in (6) satisfies the conditions of Theorem 2.

Lemma 1. The objective function of the problem in Eq. (6) is
submodular, non-decreasing and it holds that |U|—|Cy | = 0.

Proof: Theorem 1 proves that the objective function is
submodular. In order to show that it is non-decreasing, let
us add a question ¢ € @ \ Q' to an arbitrary set Q)’. The
classes of users identified by the partition implied by Q' + ¢
are either the same as Q' (like the example in Section IV
when adding g3 to {g1,¢2}) , or otherwise some classes may
be further partitioned into smaller sets. Since this holds for all
classes, it also holds for the largest class, i.e. C’ ) < C'(Q,
Therefore, |U| — [Cion| < [U| = |Cigr iyl VQ’ q 6 Q\Q'
which proves that the function is non decreasing..

To conclude the proof of the Lemma, we point out that for
an empty set of questions Q' = (), the largest class corresponds
to the entire set U, i.e., C’*@) = U. Therefore, the objective
function is |U] — |C(y | = 0. [ |

B. The JINGO Algorithm

In this section, we describe the JoInt eNtropy alGOrithm
(JINGO). JINGO adopts the concept of joint entropy from
Information Theory, which is defined as follows.

Definition 3 (Joint Entropy [30]). Given a set of discrete
random variables, X1, ..., X, the joint entropy is given by

1
X,) = P
B 71) Z (xla 7$n)10g2(P($1, ]

L1y T

H(Xy,... )

where P(x1,...,x,) is the probability of X; = w;, for i =

1,....n.

The joint entropy measures the uncertainty of random
variables, and it is maximum for the uniform distribution [30].
In our case, we can interpret the questions in () as discrete
random variables, where the possible answers represent the
observed values of such variables. Given a subset of questions
Q' C Q, the partition C(Q’) = {C1,...,C;} can be seen as
a probability distribution over the set of all possible answers
to the questions in @’. Since C(Q’) is a partition of U, the
probability value of each class can be obtained by dividing
the size of that class by U.

Algorithm 2 The JINGO Algorithm
Input: S = (Q,U), B
Output: Q; C @
: procedure JINGO(S, B)

1

2: QJ %—@
3: while |C
4

| > 1 AND |Q,| < B do

(Qy)
qy < argmax{H(Qs +q)}
qEQ\Qs
5: Qr+Qs+aqs
6: return () ;

The joint entropy of a set ()’ is higher as the distribution is
more uniform, i.e. users are equally distributed in the classes.
As a result, the idea of JINGO is to select questions in order
to maximize the joint entropy. This also implies a reduction



in the size of the largest class, which is the objective of the
optimization problem in Eq. (6).

The pseudocode of the algorithm is shown in Algorithm
2. JINGO iteratively builds the solution (); by selecting the
question, ¢ € @ \ @, that provides the maximum increase
in the joint entropy value (line 4). Note that, JINGO and
MIMOSA can provide, in general, different solutions. In
fact, the joint entropy considers the entire distribution, while
MIMOSA only focuses on the size of the largest class.

C. A Note on Complexity

The pseudo codes of MIMOSA and JINGO show similar-
ities between the structure of the two algorithms, which are
reflected in a similar computational complexity. Specifically,
both while loops can iterate at most B times. Finding the
question that maximizes the reduction of the largest class
(line 4, MIMOSA), or the question that provides maximum
joint entropy (line 4, JINGO), have the same complexity. In
fact, they both require a time proportional to the number of
questions left and the number of classes. While the number
of questions left is upper bounded by (), the number of
classes may potentially grow exponentially at each iteration.
Nevertheless, we point out that the actual number of non-
empty classes can be at most |U|, since classes are disjoint and
users can be at most in one class. As a result, the complexity of
MIMOSA and JINGO can be expressed as O(B x |Q| x |U|).

VI. A NEW DISSIMILARITY METRIC

In this section, we discuss the mathematical formulation
of our dissimilarity metric between two subject pools. We
recall that, according to our approach, the solution of the
optimization problem in Eq. (6) returns a subset of questions
Q* from the first survey (MIMOSA or JINGO could be used
in practice for an approximated solution). When a second
survey is designed, the questions in @* are also included.
The dissimilarity metric quantifies the difference between the
answers to the common questions once the second survey is
completed. The metric is defined through a weighted bipartite
graph G = (L, R, E). The nodes in L and R represent the
users in the first and second survey, respectively. There is an
edge e € E for each pair of nodes (I, r), such that [ € L and
r € R. The edge is weighted according to the dissimilarity
between the answers provided to the questions in Q™.

Intuitively, this dissimilarity must take into account the dif-
ferent types of questions. We consider two types of questions
in this work, namely Multiple choice - categorical questions,
that ask users to select an answer from a pre-defined set of
categorical or nominal items, and Multiple choice - continuous
questions, that ask users to select an answer that fits along a
continuum or ordered range such as choices that move from
greatest to least. Let us consider two users [ and r, and a
categorical questions ¢; € Q* which was answered [; and
r;, respectively. Answers to categorical questions usually do
not follow an order, such as for example questions regarding
gender or ethnicity. As a result, we consider two answers
to be either the same (I; = r;), contributing zero to the

dissimilarity metric, or different (I; # r;), contributing one to
the dissimilarity metric. On the contrary, continuous questions
present a natural order. As an example, one of such questions
may ask to rate the level of agreement with a statement using
a Likert scale (strongly agree / agree / don’t know / disagree /
strongly disagree). In this case, we assign a numerical value to
each possible answer following this order. Let us consider the
same users, and a continuous question ¢; € Q*, which was
answered [; and 7;. The contribution to the dissimilarity metric
is given by the normalized distance between the answers, that
is (|I; — r;1)/llg;]|, where ||g;|| is the range of the numeric
interval assigned to the answers.

Let I..y C Q* be the subset of categorical questions
and I..,; C Q* be the subset of continuous questions, the
dissimilarity of two users [ € L and r € R is defined as

dil,r)y= > (Li#Er)+ >,

qi€lcat qj€lcont

|li — 74

. (10)
gl

This value is used to weight the edges in the bipartite graph.
To define the dissimilarity metric between the subject pools
of the first and second survey, we want match similar users,
and then measure the overall difference. Therefore, we define
the dissimilarity metric between survey pools as the value of
the maximum bipartite matching of the graph G. This can be
found by means of the Hungarian algorithm [31].

VII. EVALUATION

We use three real surveys on different topics. The first
survey focuses on attitudes towards mental health and fre-
quency of mental health disorders in the tech workplace
[32]. The second survey explores the preferences, interests,
habits, opinions, and fears of young people [33]. Finally,
the last survey is a research study on user perception about
common household appliances [34]. Table II summarizes the
information of each survey. We consider the heterogeneity of
the topics covered by these surveys a good test supporting the
methodology proposed in this paper. The interested reader is
referred to the cited references for more details.

TABLE 11
SUMMARY OF THE SURVEYS
S Mental Health in | Young People Household
urvey Tech [32] [33] appliances [34]
Questions 27 150 17
Avg. Nr Answers. 10.44 6.63 25
Std. Dev. 16.88 6.41 31.96
Nr. of Users 1259 1010 357

A. Questions Selection

To evaluate the performance of MIMOSA and JINGO, we
compare them with two other algorithms. The first algorithm
is based on the intuition that questions with a higher number
of possible answers are more likely to partition users in
smaller groups. As a result, this algorithm sorts questions in
decreasing order of the number of possible answers. Then,
it adds questions to the solution following that order, until
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the budget is met or the size of the largest class is one. We
refer to this approach as Ordered-base Questions Selection
(0QS). The second algorithm is a random baseline approach.
The algorithm simply randomly selects questions until the
same termination condition of OQS are met. We refer to this
algorithm as RANDOM.

As observed in Figs. 1 (a)-(c), RANDOM and OQS struggle
in identifying the most informative questions for all the consid-
ered surveys. The fact that a random approach performs poorly
may not be surprising, nevertheless it shows that a smart
optimization can significantly improve the performance. As a
numerical example, in the Young people survey shown in Fig.
1 (a), MIMOSA and JINGO only need 8 questions to uniquely
identify all users, while RANDOM needs 30. Interestingly,
0OQS performs worse than random in some circumstances, as
for the Young people survey and for some values of the budget
in the Household appliances survey (Fig. 1 (c)). This result
reveals that the actual distribution of answers is not necessarily
affected by the number of possible answers, and it is of
primary importance to identify the most important questions
by looking at the actual distribution. In all the considered
scenarios, MIMOSA and JINGO significantly outperform the
other algorithms and achieve desirable performance by re-
quiring only few questions to uniquely identify a user. For
example, in Fig. 1 (a) both algorithms only need 8 questions
out of 150, which is less than 6% of the whole set of questions
in the survey. As the results show, there is no clear winner

Dissimilarity: (a) Demographic statistics of Z(t), and Dissimilarity metric for (b) MIMOSA and (c) JINGO.

between MIMOSA and JINGO, since the performance are
slightly affected by the distribution of the answers, which is
specific of each survey.

B. Dissimilarity Metric

In the following, we show results to support the ability
of our dissimilarity metric to capture differences in subject
pools which are not evident from demographic statistics. Due
to space scarcity and similarity of the results, we show the
results for the Household appliances survey.

The experiments are performed as follows. We simulated a
scenario of two surveys by splitting the original population U
in two halves X and Y. Given these two disjoint sets and a
number ¢ € [0, 1], we create a new set of users Z(t) by picking
a fraction of ¢ users from X, and 1 — ¢ users from Y. We
use MIMOSA and JINGO to identify the most representative
questions under a budget constraint considering the users in X.
Then, we calculate the dissimilarity metric using the bipartite
graph approach discussed in Section VI between X and Z(t),
for a given value of ¢. Intuitively, ¢ represent the fraction of
overlap between X and Z(t). When ¢t = 0, X and Z are
disjoint (X N Z(0) = (), thus the dissimilarity is expected to
be maximum. Conversely, when ¢t = 1, X = Z(1), thus the
dissimilarity is expected to be zero (i.e., each user is matched
with him/herself). We averaged the results over multiple runs,
since users are assigned randomly to Z(t).

Fig. 2 (a) shows the average and standard deviation of



several demographic information of the users in Z(¢), under
different values of ¢. Note that, in order to provide a quantifi-
able average for such information, we assigned a numerical
value to non-numerical answers (e.g., gender and ethnicity).
In these cases, first we sort the answers alphabetically and
then assign a non-negative integer value to each possible
answer. Conversely, Figs. 2 (b) and (c) show the value of
the dissimilarity metric calculated between X and Z(t) under
different budget values, i.e., number of selected questions, for
MIMOSA and JINGO, respectively. As expected, the metric
decreases as the fraction of overlap ¢ increases.

VIII. CONCLUSION

In this paper, we take the initial steps towards addressing the
problem of reproducibility of survey results by providing for-
mal methods to quantitatively justify apparently inconsistent
or even contradictory results. Specifically, we define a new
dissimilarity metric between two populations, based on the
users’ answers to non-demographic questions. To this purpose,
we propose two algorithms named MIMOSA and JINGO,
which are based on submodular optimization and information
theory, respectively. The selected questions can be included in
other surveys answered by a potentially different population.
Results show that our method effectively identifies and quanti-
fies differences that are not evident from a demographic point
of view.
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