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Abstract

Microorganisms, including rotifers, are thought to be capable of long distance dispersal.

Therefore, they should show little population genetic structure due to high gene flow. Never-

theless, substantial genetic structure has been reported among populations of many taxa.

In rotifers, genetic studies have focused on planktonic taxa leaving sessile groups largely

unexplored. Here, we used COI gene and ITS region sequences to study genetic structure

and delimit cryptic species in two sessile species (Limnias melicerta [32 populations]; L. cer-

atophylli [21 populations]). Among populations, ITS region sequences were less variable as

compared to those of the COI gene (ITS; L. melicerta: 0–3.1% and L. ceratophylli: 0–4.4%;

COI; L. melicerta: 0–22.7% and L. ceratophylli: 0–21.7%). Moreover, L. melicerta and L. cer-

atophylli were not resolved in phylogenetic analyses based on ITS sequences. Thus, we

used COI sequences for species delimitation. Bayesian Species Delimitation detected nine

putative cryptic species within L. melicerta and four putative cryptic species for L. cerato-

phylli. The genetic distance in the COI gene was 0–15.4% within cryptic species of L. meli-

certa and 0.5–0.6% within cryptic species of L. ceratophylli. Among cryptic species, COI

genetic distance ranged 8.1–21.9% for L. melicerta and 15.1–21.2% for L. ceratophylli. The

correlation between geographic and genetic distance was weak or lacking; thus geographic

isolation cannot be considered a strong driver of genetic variation. In addition, geometric

morphometric analyses of trophi did not show significant variation among cryptic species.

In this study we used a conservative approach for species delimitation, yet we were able to

show that species diversity in these sessile rotifers is underestimated.

Introduction

Microorganisms are capable of long distance dispersal thus it has been suggested that they

have cosmopolitan distributions with little geographic structure [1–4]. However, biogeograph-

ical patterns have been documented for many taxa such as soil [5] and marine bacteria [6–8],
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protists [9,10], fungi [11], and rotifers [12,13]. One of the reasons that microorganisms are

often considered ubiquitous is the failure to identify cryptic species [14,15]. However, cryptic

species complexes commonly occur in these taxa (e.g., [16–19]).

Similar to the other microorganisms, rotifers have passive dispersal through their dormant

stages [20,21]. Thus, researchers inferred that rotifers have cosmopolitan distributions (e.g.,

[22]), and thus should show little population genetic structure due to gene flow. However,

incorporating molecular tools in the study of rotifer diversity has provided ample evidence of

cryptic species complexes and substantial genetic structure within and among rotifer popula-

tions (e.g., [23–30]). By definition cryptic species are not readily distinguished by morphology,

but subtle morphological variations have been detected among species in some complexes. For

instance, size and shape of lorica varies among cryptic species of Brachionus plicatilis Müller,

1786 (e.g., [31–36]), trophi and resting egg morphology differ in the Epiphanes senta (Müller,

1773) complex [37], and trophi size varies among populations of Rotaria magnacalcarata (Par-

sons, 1892) [38].

Genetic differentiation and the rate of diversification may vary among aquatic taxa with dif-

ferent life histories [39–41] and/or habitat differences [42]. Rotifer species can be planktonic,

associated with littoral vegetation, or sessile [20]. In littoral zones there is higher habitat diver-

sity provided by vegetation, debris, mosses, and filamentous algae as compared to the pelagic

zone [20]. Habitat preference has been reported for some rotifers inhabiting littoral zones such

as Collotheca campanulata (Dobie, 1849) [43–44] and Euchlanis dilatata Ehrenberg, 1830 [44].

Difference in habitat preference may limit connectivity among populations and cause genetic

divergence [45]. Therefore, as a result of habitat differentiation, substantial genetic diversity is

expected within and among populations [46]. In addition, genetic divergence among popula-

tions may be related to dispersal capabilities. For example, Russo et al. [47] found that genetic

variation in 16 allozyme markers within two anemone species, Bunodosoma caissarum Correa,

1987 and Actinia bermudensis McMurrich, 1889 was related to their dispersal ability. B. cais-
sarum has a long planktonic larval period that provides high dispersal capability. This species

showed lower genetic structure compared to that of A. bermudensis with low dispersal abilities.

Similarly, Lee et al. [48] found high genetic divergence among populations of the jelly Rhizos-
toma octopus (Linnaeus 1788) with bipartite life history (FST � 0.75) and Stopar et al. [49]

found low genetic differentiation within the holoplanktonic jelly Pelagia noctiluca (Forskål
1775) (FST � 0.09) in the COI gene. Genetic differentiation within these cnidarian species

may be associated with the variation in their dispersal capabilities. Therefore, sessile rotifers

may show higher genetic structure than planktonic groups because in sessile rotifers females

are mobile only during their larval stage, which can limit their dispersal range. However, simi-

lar to non-sessile rotifers, their resting stage may be transported across long distances.

Almost all studies on genetic structure and cryptic species of monogonont rotifers focus

on planktonic taxa, with little attention having been paid to sessile species. Sessile rotifers of

orders Collothecaceae and Flosculariaceae from superorder Gnesiotrocha are common in a

wide assortment of aquatic habitats and attach to varied substrata [50]. Study of these forms is

challenging as their plant substrata must be inspected to find them and several diagnostic char-

acteristics need to be examined in live individuals [20]. Thus, they are often overlooked, which

has led to gaps in our knowledge about their taxonomic diversity. Molecular tools have been

applied in few phylogenetic studies that have included sessile rotifers (e.g., [51,52]), but these

have not focused on examination of population level genetic patterns or detection of cryptic

species.

One poorly studied sessile taxon is the genus Limnias (Flosculariidae), in which six mor-

phospecies are currently recognized [53,54]: Limnias ceratophylli Schrank, 1803; L. cornuella
Rousselet, 1889; L. melicerta Weisse, 1848, L. myriophylli (Tatum, 1868), L. nymphaea
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Stenroos, 1898, and L. shiawasseensis Kellicott, 1888. Limnias melicerta and L. ceratophylli are

considered cosmopolitan and each has been reported from seven biogeographical regions [43].

The other four species have restricted distributions. Limnias cornuella has only been reported

from Palearctic [55], L. myriophylli is reported from Afrotropical and Palearctic [43], L. nym-
phaea from Palearctic, and L. shiawasseensis from Nearctic biogeographical regions [43]. The

few available studies on this genus include the following: taxonomy [54–58], trophi descrip-

tions [51,59], tube formation [58], tube ultrastructure of L. melicerta [60], post-natal develop-

ment [61], phylogeny of Flosculariaceae [51], ecological studies (i.e., water quality and

abundance (L. melicerta; [62,63]), population growth (L. melicerta and L. ceratophylli; [64]),

and toxicology [65]). To our knowledge, there are no published studies on genetic population

structure within or among species of this genus.

We hypothesize that sessile rotifers will have a discernable genetic structure that will be

more pronounced than that of planktonic rotifers and that this structure is sufficient to define

independently evolving lineages as cryptic species. To test these hypotheses we studied genetic

structure, identified cryptic species, and investigated geographic isolation of genotypes in Lim-
nias melicerta and L. ceratophylli. We used partial mitochondrial cytochrome c oxidase subunit
I (COI) gene and the internal transcribed spacer (ITS) region sequences from a broad geo-

graphic range. Partial 18S rRNA sequences were used to confirm monophyly of the two spe-

cies. In addition, we examined morphological variation in trophi among putative cryptic

species within L. melicerta and L. ceratophylli.

Materials and methods

Sample collection and culture

Aquatic plant samples were collected from habitats across the USA and a sediment sample

from Australia (S1 and S2 Tables). Limnias melicerta and L. ceratophylli were identified and

isolated from rehydrated sediments or by removing a piece of vegetation to which they were

attached. Species identification was based on tube structure, shape of corona, antennae length,

and the number of dorsal nodules [55]. Clonal lineages initiated from single females were cul-

tured in modified MBL media [66] and fed a mixture of the algae Chlorella vulgaris Berijerinck,

1890 (The UTEX Culture Collection of Algae at the University of Texas at Austin [UTEX]

strain 30) and Chlamydomonas reinhardtii Dangeard, 1888 (UTEX strain 90). Rotifers in this

genus produce tubes of hardened secretions [20]; we added powdered carmine (Alfa Aesar,

UK) to lab cultures to provide a supplementary matrix to aid tube construction and to increase

their visibility in culture.

Voucher specimens were deposited in the UTEP Biodiversity Collections at The University

of Texas at El Paso (L. melicerta: UTEP:Zoo:43, 105–134; L. ceratophylli: UTEP:Zoo:32–42,

UTEP:Zoo:52–61). Deposited specimens included approximately 10 individuals from each

population preserved in 95% ethanol and 10 clonal individuals preserved in 4% buffered for-

malin for molecular analyses and identification, respectively.

DNA extraction and gene amplification

DNA was extracted from one individual of each clonal lineage by adding 13 μl Chelex-100

(Bio-Rad Laboratories, CA, USA) and incubating at 100˚C for 10 min. DNA templates were

stored at -80˚C until used for amplification. Number of clonal lineages examined from each

population is given in S1 and S2 Tables.

An approximate 630 bp portion of the cytochrome c oxidase subunit I (COI) gene was

amplified using the primers LCO1490: 5' -GGTCAACAAATCATAAAGATATTGG-3' and

HCO2198: 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' [67]. The entire nuclear internal
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transcribed spacer region (ITS) was amplified using the primers ITS4: 5'-TCCTCCGCTTATT
GATATGC-3' and ITS5: 5'-GGAAGTAAAAGTCGTAACAAGG-3' [68], and 865 bp of the

18S rRNA gene was amplified using primers 3F: 5’-GTTCGATTCCGGAGAGGG-3’ as modi-

fied by Giribet et al. [69] and primer 18Sbi: 5’-CTAGAGTCTCGTTCGTTATCGG-3’ as mod-

ified by Whiting et al. [70].

PCR reactions contained 10 μl of genomic DNA, 1 μl of each primer (500 ng/ μl), 22 μl

HPLC grade sterile water, 1 μl GoTaq G2 DNA Polymerase (Promega), 10 μl 5X PCR buffer B

(10 mM MgCl2, pH 8.5, Invitrogen) or 5X PCR buffer A (7.5 mM MgCl2, pH 8.5, Invitrogen),

followed by adding 5 μl dNTP mix (2.5 mM each of dATP, dCTP, dGTP, dTTP) at 80˚C. PCR

cycles were run on a thermocycler (Techne TC-412) and consisted of an initial denaturation at

94˚C for 1 min, followed by denaturation at 94˚C for 1 min, annealing at 48˚C for 2 min and

extension at 72˚C for 3 min for 35 cycles, and a final extension step at 72˚C for 7 min. To verify

the size of amplification products we used electrophoresis, and we purified them using GENE-

CLEAN kits (MP Biomedicals, LLC) before sequencing. Sequencing was done at UTEP’s

BBRC Genomic Analysis Core Facility on an Applied Biosystems 3130xl Genetic Analyzer

using BigDye Terminator v3.1 Cycle Sequencing Kits (Applied Biosystems). GenBank acces-

sion numbers for all sequences obtained are given in S1 Table (L. melicerta) and S2 Table (L.

ceratophylli). The COI gene sequences of L. melicerta (accession number, KT870155.1) and L.

ceratophylli (KT870157.1) from GenBank are not included in our analyses for two reasons. 1)

The COI sequence of L. melicerta KT870155.1 is 330 bp, which was much shorter than COI

sequences obtained in this study (623 bp). 2) The COI sequence of L. ceratophylli KT870157.1

grouped with cryptic species M of L. melicerta in phylogenetic analyses. Additional 18S rRNA

sequences (L. melicerta: KM873599.1, L. ceratophylli: KM873598.1) and a COI sequence from

L. melicerta (KT870154.1) were included from GenBank. Sinantherina socialis (Linneaus,

1758) and Ptygura pilula (Cubitt, 1872) were included as outgroups in phylogenetic analyses

for the COI gene. Floscularia conifera (Hudson, 1886) and Ptygura brachiata (Hudson, 1886)

were used as outgroup taxa in phylogenetic analyses based on ITS region. For analysis of 18S

rRNA sequences, we used Collotheca campanulata as the outgroup taxon (S1 Table).

Genetic diversity

FinchTV v 1.4.0 [71] was used to check sequences manually, especially for potential double

peaks in the ITS region sequences. The ITS region alignment was uploaded to the SeqPhase

online tool (http://seqphase.mpg.de/seqphase/) to phase the sequences as described by Flot

[72]. Contigs for all sequences were made using CAP 3 [73] and were aligned using MAFFT v

7 [74]. Mesquite v 3.2 [75] was used to manually check the alignments and to translate COI

gene sequences to proteins. To measure substitution saturation, we used DAMBE v 6 [76].

Number of polymorphic sites, number of parsimony informative sites, number of haplotypes,

haplotype diversity (h), and nucleotide diversity (π) were calculated using DnaSp v 5.10.01

[77], and uncorrected pairwise sequences distances ("p") were calculated in Mega v 7.0 [78]. A

haplotype network was constructed using the median joining method in Network v 5.0.3 [79].

Species delimitation

Models for sequence evolution were TPM2uF+I+G for the COI gene, TPM1uF+I for the ITS

region, and JC for the 18S rRNA gene as determined using Jmodeltest2 [80,81] available at the

CIPRES Science Gateway 3.3 [82]. To construct the phylogenetic trees, Bayesian analysis was

run for 107 generations with two parallel runs and a 25% burn-in period using MrBayes v 3.2.6

on XSEDE high-throughput computing resources available at CIPRES Science Gateway [82].

Phylogenetic analyses were implemented in BEAST and �BEAST [83] using GTR+I+G model
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of sequence evolution for the COI gene and GTR+I model for the ITS region. TPM2uF and

TPM1uF models are not available in BEAST. However, both of these models are classified

under the GTR model. Thus GTR was used in both instances.

To determine the number of evolutionary entities (putative cryptic species), we used Gener-

alized Mixed Yule Coalescent (GMYC, [84]), Poisson Tree Process (PTP, [85]), Automatic

Barcoding Gap Discovery (ABGD, [86]), �BEAST v 1.8.3 [83], and Bayesian Species Delimita-

tion (BSD) implemented in Bayesian Phylogenetics and Phylogeography software (BPP v 3.1,

[87–89]).

We used BEAST v 1.8.3 [83] to construct ultrametric trees and �BEAST v 1.8.3 [83] for spe-

cies delimitation. Both analyses were run for the COI gene and ITS region sequences separately

for 107 generations, with sampling every 1,000 generations. Tracer v 1.6.0 [90] was used to

check the effective sample size (ESS>200) and to verify convergence. Consensus trees were

obtained using TreeAnnotator v 1.8.3 with a 25% burn-in. Ultrametric trees were used for spe-

cies delimitation in single threshold and multiple threshold GMYC [91] (http://species.h-its.

org/gmyc/, accessed June 12, 2018), Bayesian GMYC (bGMYC) [92] and PTP methods.

bGMYC was run using the R package bGMYC v 1.0.2 for 100,000 iterations with sampling

every 1,000 iterations. We ran PTP by uploading the ultrametric trees to the online tool avail-

able at http://species.h-its.org/ptp/ (accessed June 12, 2018) and used default settings. ABGD

delimitation was done by uploading the sequence alignment to the online tool available at

www.abi.snv.jussieu.fr/public/abgd/ under the default settings (accessed June 12, 2018).
�BEAST v 1.8.3 [83] was run under assumptions regarding the number of species for both

the COI gene and ITS region sequences. Lineages having posterior probabilities > 0.90 were

retained in �BEAST analyses. To run BSD, the phylogenetic tree based on Bayesian inference

was used as the guide tree, and we used the joint species delimitation and tree estimation

method (unguided species delimitation) that does not rely on the topology of the guide tree.

Isolation by distance

Geographic distance matrices were constructed using Geographic Distance Matrix Generator

v 1.2.3 [93]. To test the correlation between genetic variation and geographic distances (log

transformed; km) among populations, Mantel tests with 10,000 permutations were run using

the R package ecodist v 1.2.9 [94].

Trophi morphology

Trophi were prepared for scanning electron microscopy (SEM) by dissolving rotifer tissue in

~5% sodium hypochlorite, rinsing with deionized water 10–15 times, and air-drying on circu-

lar cover slips at room temperature [95]. Trophi were coated with gold/palladium using a

Gatan 682 PECS sputter coater. SEM images were obtained at 20 kV using a Hitachi S-4800

system. Trophi were prepared for individuals from one clonal lineage from each examined

population.

We used a geometric morphometric approach to study variation in the shape and size of 92

trophi for L. melicerta and 60 trophi for L. ceratophylli among putative cryptic species. This

method uses Cartesian coordinates for a set of anatomical landmarks [96]. SEM images were

obtained from caudal and frontal views of the trophi. Using TPS series software [97], nine

landmarks on the caudal view and 10 on the frontal view of the trophi were digitized (Fig 1).

Configuration of landmarks were analyzed using Generalized Procrustes Analysis [96]. Trophi

size was calculated as Centroid Size (CS): i.e., the square root of the sum of squared distances

between landmarks and their centroid [98]. Variation in the shape of trophi based on land-

marks was examined using Discriminant Analysis in SPSS v 24 [99]. Because trophi centroid
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size was not normally distributed, variation in size among putative cryptic species was tested

using a non-parametric Kruskal-Wallis test, and between the two morphospecies using a non-

parametric Mann-Whitney U test implemented in SPSS v 24 [99].

Methods used in this study are available at protocols.io, dx.doi.org/10.17504/protocols.io.

tppemmn.

Results

Genetic diversity

For the COI gene, sequences were analyzed for 72 individuals from Limnias melicerta and 25

individuals from L. ceratophylli. The ITS region was sequenced for 76 individuals from L. meli-
certa and 35 individuals from L. ceratophylli. For 18S rRNA, sequences were acquired for 17

individuals of L. melicerta and 18 individuals of L. ceratophylli. Alignment length was 623 bp

for the partial COI gene sequences, 763 bp for the ITS region including insertions, and 865 bp

for partial 18S rRNA gene sequences. COI gene, ITS region, and 18S rRNA sequences were

not saturated (index of substitution saturation < critical index of substitution saturation,

p < 0.001, S3 Table). For the COI gene, haplotype diversity was 0.87 for L. melicerta and 0.94

Fig 1. Shape of trophi and landmarks used in geometric morphometric analyses. A: frontal view of Limnias ceratophylli trophi, 1, 2: midpoint

of manubrium, 3, 4: base of first large tooth of ramus, 5, 6: base of second large tooth of ramus, 7–8: tip of first large tooth of ramus, 9, 10: tip of

second large tooth of ramus. B: caudal view of L. ceratophylli trophi, 1, 2: apical point of manubrium, 3, 4: midpoint of manubrium, 5: apical point

of fulcrum, 6, 7: apical point of ramus, 8, 9: basal point of ramus. C: frontal view of Limnias melicerta trophi. D: caudal view of L. melicerta trophi.

https://doi.org/10.1371/journal.pone.0205203.g001
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for L. ceratophylli; nucleotide diversity was 0.13 for L. melicerta and 0.11 for L. ceratophylli.
The overall genetic distance in the COI gene among populations was 0–22.7% for L. melicerta
and 0–21.7% for L. ceratophylli, and the genetic distance between L. melicerta and L. cerato-
phylli ranged from 19.2 to 24.1%. For the ITS region, haplotype diversity was 0.67 for L. meli-
certa and 0.56 for L. ceratophylli, nucleotide diversity was 0.01 for L. melicerta and 0.02 for L.

ceratophylli. The overall genetic distance in the ITS region among populations was 0–3.1% for

L. melicerta and 0–4.4% for L. ceratophylli, and the genetic distance between L. melicerta and

L. ceratophylli was 1.2–5.6%. We also found seven heterozygous individuals for the ITS region

in L. melicerta and two in L. ceratophylli. Based on 18S rRNA sequences, haplotype diversity,

nucleotide diversity, and genetic diversity were 0 for both L. melicerta and L. ceratophylli. The

genetic distance (uncorrected “p” distance) between L. melicerta and L. ceratophylli was 0.5%.

Genetic diversity measures for all markers are summarized in Table 1.

Species delimitation

In two of the phylogenetic trees (i.e., based on COI gene and 18S rRNA sequences), mono-

phyly of L. melicerta and L. ceratophylli was supported (Fig 2 and S1 Fig). Using 18S rRNA

sequences, there were only two highly supported clades, one with each species. Additionally, L.

melicerta and L. ceratophylli co-occurred in Moon Lake, WI. Each clustered with their conspe-

cifics from other habitats based on 18S rRNA and COI gene sequences, supporting monophyly

of the two morphospecies. However, ITS sequences did not resolve these taxa (Fig 3). The

number of species within L. melicerta ranged from 9–30 based on COI and 6–45 based on ITS

region sequences. For L. ceratophylli, 3–10 species were identified based on COI gene, and

3–20 based on ITS region sequences (Figs 2 and 3; Table 2). The most conservative results

were nine putative species for L. melicerta (BSD based on COI gene sequences) and three spe-

cies for L. ceratophylli (�BEAST based on COI gene sequences). However, �BEAST classified a

distinct clade that was represented by a population from Florida as part of species D. That

clade was considered a separate species by BSD and ABGD (Fig 2). As �BEAST may have

underestimated diversity within L. ceratophylli, we delimited cryptic species based on BSD

analysis of the COI gene sequences, which was the second most conservative method for this

species (Table 2).

The mean genetic distance in COI gene sequences was 0–15.4% within cryptic species of L.

melicerta, and 0.5–0.6% within cryptic species of L. ceratophylli (BSD based on COI gene

Table 1. Summary of genetic measures for COI gene, ITS region, and partial 18S rRNA sequences.

Limnias melicerta Limnias ceratophylli
COI gene ITS region 18S rRNA COI gene ITS region 18S rRNA

Inter-population genetic variation (%) 0.3–22.7 0–3.1 0 0–21.7 0–4.4 0

Intra-population genetic variation (%) 0–0.8 0 ND 0–1.9 0 ND

Number of haplotypes/ number of sequences 31/72 12/76 1/18 15/25 4/35 1/18

Haplotype diversity 0.87 0.67 0 0.94 0.56 0

Nucleotide diversity 0.13 0.01 0 0.11 0.02 0

Polymorphic sites/ number of base pairs 249/623 47/763 0/865 193/623 54/763 0/865

Parsimony informative sites 241 24 0 148 43 0

Heterozygous individuals (#) NA 7 NA NA 2 NA

Inter- and intra-population genetic variation (uncorrected “p” distance), haplotype and nucleotide diversity, number of haplotypes, number of polymorphic sites for

partial COI gene, ITS region, and partial 18S rRNA sequences, and the number of heterozygotes detected by phasing ITS region in Limnias melicerta and L. ceratophylli
populations surveyed. NA = Not applicable. ND = No data.

https://doi.org/10.1371/journal.pone.0205203.t001
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Fig 2. Bayesian inference consensus phylogenetic tree based on partial COI gene sequences of 32 populations of Limnias melicerta
and 21 populations of L. ceratophylli. Average branch lengths are proportional to the number of substitutions per site under a TPM2uF+I

+G substitution model. At each node posterior probabilities > 0.80 are shown. Putative cryptic species detected using Bayesian Species

Delimitation (BSD), �BEAST, Automatic Barcoding Gap Discovery (ABGD), and Single Threshold Generalized Mixed Yule Coalescent

models (GMYC) are shown. Abbreviations as in S1 and S2 Tables; independent clonal isolates are indicated by a number (e.g. 01).

https://doi.org/10.1371/journal.pone.0205203.g002
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Fig 3. Bayesian inference consensus phylogenetic tree based on ITS region sequences of 37 populations of Limnias melicerta
and 20 populations of L. ceratophylli. Average branch lengths are proportional to the number of substitutions per site under a

TPM1uF+I substitution model. Posterior probabilities > 0.80 are shown at nodes. Putative cryptic species found using Bayesian

Species Delimitation (BSD), �BEAST, Automatic Barcoding Gap Discovery (ABGD), and Single Threshold Generalized Mixed

Cryptic species in two sessile microinvertebrates
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sequences). Among BSD cryptic species, the COI mean genetic distance was 8.1–21.9% for L.

melicerta, and 15.1–21.2% for L. ceratophylli. For ITS region sequences, within cryptic species

mean genetic distance ranged 0.08–2.3% for L. melicerta and 0.04–1.5% for L. ceratophylli.
Among putative cryptic species, the ITS mean genetic distance was 0–2% for L. melicerta, and

0–4.3% for L. ceratophylli. In the haplotype networks based on COI gene sequences for both

species, genotype clusters corresponded to the BSD cryptic species (Fig 4).

There was discordance between phylogenetic trees based on COI gene and ITS region

sequences. For example, COI lineages E, F, G and H are clustered as one lineage based on the

ITS region (lineage 8). In another example, one lineage (lineage 9) based on the ITS region is

composed of populations from multiple COI cryptic species (E, I and M) (Figs 2 and 3).

Isolation by distance

For Limnias melicerta populations there was a significant, but weak, correlation between

genetic distance and log transformed geographic distance for both markers (Mantel test: COI:

r = 0.4 with 95% confidence interval of 0.27–0.46, p < 0.001 and ITS: r = 0.14 with 95% confi-

dence interval of 0.06–0.2, p = 0.03). For L. ceratophylli, genetic variation in the COI gene was

significantly correlated to log transformed geographic distance (Mantel test: r = 0.3; 95% confi-

dence interval of 0.27–0.4, p = 0.001). However, this correlation was not significant based on

ITS sequences (Mantel test: r = -0.02; 95% confidence interval of -0.12 to 0.08, p = 0.8).

Trophi morphology

We obtained 92 SEM images of trophi for L. melicerta representing six putative species, and 60

images for L. ceratophylli representing two cryptic species based on COI sequences. Trophi

images are available at UTEP Bioinformatics Data Repository. Representative trophi images

for each cryptic species are shown in S2 Fig. No significant variation was detected between

L. melicerta and L. ceratophylli in trophi shape (Discriminant Analysis: frontal: Wilks’

Lambda = 1, Chi-square < 0.001, df = 16, p = 1, and caudal: Wilks’ Lambda = 1, Chi-

square = 0.001, df = 42, p = 1) or trophi size (frontal: Mann-Whitney U = 911, p = 0.76, and

caudal: Mann-Whitney U = 298, p = 0.77). Trophi shape did not show significant variation

among putative species of L. melicerta (Discriminant Analysis: frontal: Wilks’ Lambda = 1,

Yule Coalescent models (GMYC) are shown. Abbreviations as in S1 and S2 Tables; independent clonal isolates are indicated by a

number (e.g. 01).

https://doi.org/10.1371/journal.pone.0205203.g003

Table 2. Comparison of species delimitation methods.

Limnias melicerta Limnias ceratophylli
Delimitation method COI gene ITS region COI gene ITS region

Single threshold GMYC 28 32 8 13

Multi threshold GMYC 25 45 8 20

bGMYC 17 12 3 3

PTP 30 37 10 18

ABGD 14 9 4 3

�BEAST 12 6 3 4

BSD 9 7 4 4

Number of putative cryptic species delimited by seven methods based on partial COI gene and ITS region sequences

for Limnias melicerta and L. ceratophylli populations

https://doi.org/10.1371/journal.pone.0205203.t002
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Chi-square = 0.001, df = 80, p = 1, and caudal: Wilks’ Lambda = 1, Chi-square = 0.0, df = 70,

p = 1) or L. ceratophylli (Discriminant Analysis: frontal: Wilks’ Lambda = 1, Chi-

square = 0.001, df = 12, p = 1, and caudal: Wilks’ Lambda = 1, Chi-square = 0.001, df = 28,

p = 1). There was significant variation in trophi size among putative species of L. melicerta
(frontal: Kruskal-Wallis Chi-square = 12.2, p = 0.002, and caudal: Kruskal-Wallis Chi-

square = 10.3, p = 0.02). Cryptic species D had the smallest centroid size (frontal and caudal:

1.33) and cryptic species E had the largest centroid size (frontal: 4, and caudal: 5). However,

trophi size showed no significant differentiation among putative species of L. ceratophylli
(frontal: Kruskal-Wallis Chi-square = 2.5, p = 0.11, and caudal: Kruskal-Wallis Chi-

square = 5.9, p = 0.051).

Discussion

With the advent of molecular tools, detecting cryptic species in rotifers has become a common

occurrence, which has improved our knowledge of their diversity. All the previous studies

about genetic variation and cryptic species in rotifers are on non-sessile taxa. Here, using two

molecular markers we found cryptic diversity within two morphospecies of sessile rotifers,

Limnias melicerta and L. ceratophylli. Using the BSD delimitation method, nine putative cryp-

tic species for L. melicerta and four putative cryptic species for L. ceratophylli were identified

based on COI gene sequences.

Fig 4. Haplotype network analysis of partial COI gene sequences of a) Limnias melicerta and b) L. ceratophylli
populations as determined by the median joining method [79]. Size of circles is proportional to the number of

sequences sharing the same haplotype. Branch lengths are proportional to the number of nucleotide substitutions.

Black symbols on the network correspond to cryptic species detected by Bayesian Species Delimitation. Color codes

are based on the collection site; Texas: red, New Mexico: light green, Georgia: purple, Oregon: light blue, Utah: brown,

Oklahoma: gray, California: pink, Florida: dark blue, Wisconsin: dark green, New Hampshire: yellow, Carolina:

orange, Pennsylvania: salmon, Minnesota: gold, Australia: dark pink, outgroups: white.

https://doi.org/10.1371/journal.pone.0205203.g004
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Although benefits of using multiple markers to investigate cryptic species is recognized

[100–104], most studies of rotifers are based solely on the mitochondrial COI gene (e.g., [24–

27,105–107]). In their study of the Brachionus plicatilis complex based on all available COI and

ITS sequences, Mills et al. [29] recommended the nuclear marker ITS1 over COI as it gave a

more conservative estimate of species diversity. Similarly, the ITS region was recommended

for species delimitation within the Euchlanis dilatata complex by Kordbacheh et al. [28]. In

another study, Papakostas et al. [30] reported discordance between COI and ITS markers for

species delimitation within the Brachionus calyciflorus complex. They argued that species

delimitation based on the ITS region better explains morphological variation within the com-

plex. In studies of other taxa, mitochondrial and nuclear markers are concatenated for species

delimitation (e.g., bothriurid scorpions Brachistosternus spp. complexes [108]; copepod

Cyclops spp. complexes: [109]), or nuclear markers are used to complement species delimita-

tions which were based on mitochondrial markers (e.g., the sea spider Pallenopsis patagonica
complex (Hoek, 1881) [110]; Madagascar’s Mouse Microcebus spp. complexes [111]). We did

not use a concatenated dataset for species delimitation because of differences in coalescent

times for these markers [112], and discordance between COI and ITS phylogenetic trees. The

observed discordance indicates a lack of coherence within cryptic species for mitochondrial

and nuclear markers. This could be due to introgression as was shown for B. calyciflorus [30]

or incomplete lineage sorting as in E. dilatata [28], Keratella cochlearis Gosse, 1851, Polyarthra
dolichoptera Idelson, 1925, and Synchaeta pectinata Ehrenberg, 1832 [113]. In our study, spe-

cies delimitation based on the ITS region was more conservative as compared to the COI gene.

However, the ITS region showed overall low levels of variation (L. melicerta: �3.1%, L. cerato-
phylli: �4.4%) and failed to separate L. melicerta and L. ceratophylli in the phylogenetic analy-

sis. These traditionally recognized species were monophyletic based on COI and 18S rRNA

gene sequences. Also, mitochondrial genes can be more informative in the phylogenetic analy-

ses of recently diverged lineages because of their faster rate of evolution [114]. These markers

have been successfully used to delimit species in, for example, the Puerto Rican termite Hetero-
termes [115], the copepod Paracalanus parvus complex [116], and within several rotifer species

(e.g., K. cochlearis [117]; S. pectinata [24]; P. dolichoptera [26]; E. senta [37]; Lecane bulla
(Gosse, 1851) [118]). Therefore despite the possibility of over-splitting, we used COI gene

sequences for species delimitation within L. melicerta and L. ceratophylli.
Populations included in this study were obtained from a wide geographic range. For exam-

ple, L. melicerta populations came from Oregon (USA) and the state of Victoria (Australia) a

distance of 12,890 km; and L. ceratophylli populations came from sites spanning from Oregon

and Georgia, a distance of 2,726 km. Cryptic species showed various distribution ranges, from

a single habitat to several distant habitats. For example, L. melicerta H was collected only from

a permanent lake in Florida, while K was collected from water bodies in New Mexico, Okla-

homa, Texas, and Florida. Of the four L. ceratophylli cryptic species, two were collected from

variety of habitats across our sampling range. L. ceratophylli B was found in sites in Texas, Wis-

consin, Oregon, Oklahoma, Pennsylvania, Minnesota, and species D from Georgia, California,

and Pennsylvania. The other two L. ceratophylli cryptic species are singletons, one from a per-

manent lake in New Mexico, and the other from a pond in Florida. The observed variation in

geographic distributions of these putative species may be an artifact of under sampling. The

geographic distributions of these cryptic species may be expanded by including samples from

additional biogeographical regions or they may represent lineages unique to a given locality.

There is also the possibility that some cryptic species are, in fact, cosmopolitan. However, simi-

lar patterns in distribution have been reported for other rotifer species complexes such as E.

dilatata (two singletons, five widely distributed species; [28]) and B. plicatilis (SM7 restricted

to North America, SM8 to Australia, and B. ibericus Ciros-Pérez, Gómez & Serra, 2001 to
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Europe; [29]). We observed cryptic species represented by few populations that showed wide

geographic ranges; as noted above cryptic species G from L. melicerta was represented by two

clonal isolates; one found in Oregon and the other in Georgia, and cryptic species I comprised

four populations from Wisconsin, Oregon and Utah. Thus, cryptic species in our study proba-

bly vary in their ability for dispersal and colonizing distant habitats. Intraspecific variation in

dispersal ability that we infer here has been discussed for other passively dispersing taxa (see

[119]).

In our study, genetic variation among populations based on COI gene and ITS region

sequences was significantly correlated with geographic distance, except for ITS sequences cor-

responding to L. ceratophylli populations. However, because the correlation was weak (or lack-

ing), geographic isolation cannot be considered a strong driver of genetic variation within

these cryptic species. Similar to studies on other invertebrates (e.g., 18 invertebrate species

[120]; Daphnia lumholtzi [121]; E. dilatata [28]; S. pectinata [24]; B. calyciflorus [122]), the

populations studied here showed high genetic differentiation across small geographic scales.

We compared the genetic divergence estimates for four sessile rotifer species with non-ses-

sile rotifers. There is evidence of habitat preference in sessile and non-sessile littoral species

(e.g., Collotheca campanulata [123] and E. dilatata [44], respectively). As mentioned above,

this differentiation can contribute to genetic divergence among populations. Therefore, we

expected to see similar levels of genetic differentiation for sessile and littoral morphospecies

and lower genetic divergence for planktonic rotifers. Examples of genetic divergence in ITS

region and COI gene in rotifer species with different lifestyles are summarized in Table 3.

As shown in Table 3, genetic variation in ITS region sequences for littoral rotifer species

Table 3. Genetic divergence (percentage) in ITS region and COI gene sequences of selected planktonic, littoral, and sessile rotifers and some additional sessile

invertebrates.

Taxa Species complex Life history ITS region

(% variation)

COI gene

(% variation)

Reference

Rotifer Brachionus plicatilis Planktonic �1.9 within clades

� 2.5 between clades

�13.3 within clades

�11.9 between clades

[126]

Synchaeta spp. Planktonic and littoral - 0.2–2.7 within clades

5.9–25.3 between clades

[107]

Polyarthra dolichoptera Planktonic - �4.4 within species

�5–24 between species

[26]

Testudinella clypeata Littoral - 0.16–4.5 within clades

16.7–27.7 between clades

[25]

Lecane bulla Littoral 0.0–12.5 0.9–16 [118]

Euchlanis dilatata Littoral 0.0–5.2 within species

1.0–13.4 among species

0.0–18.7 within species

0.2–21.9 among species

[28]

Limnias melicerta Sessile 0–1.5 within cryptic

0–2 among species

0–11.4 within species

8–20.5 among species

Current study

L. ceratophylli Sessile 0.04–1.5 within species

0–5.3 among species

0.5–0.6 within species

15.1–21 among species

Current study

Collotheca campanulata Sessile - 0.0–11.7 within cryptic

10.8–25.2 among species

Unpublished (A. Kordbacheh)

C. ornata Sessile - 0.3–20.0 within cryptic

14.6–29.0 among species

Unpublished (A. Kordbacheh)

Bryozoan Bugula neritina Sessile - 11.5 between two cryptic species [127]

Tunicate Ciona intestinalis Sessile - 11.1–18.4 among lineages [128]

Porifera Cliona celata Sessile - 6.2–8.4 among lineages [129]

"-" indicates that data were not available.

https://doi.org/10.1371/journal.pone.0205203.t003
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(E. dilatata and L. bulla) was higher than that of planktonic and sessile species complexes.

Besides, genetic variation in ITS region in sessile species was similar to that of planktonic

groups. It should be noted that there are few instances where the ITS region is used to study

rotifer cryptic species and reporting levels of differentiation among cryptic lineages (Table 3).

Therefore, there may not be sufficient information to make conclusions about the relationship

between rotifer life style and genetic differentiation in the ITS region. On the other hand,

higher diversification rates in the COI gene was reported in bdelloid rotifers compared to

monogononts [40]. It is hypothesized that this difference is related to the difference in repro-

ductive mode between bdelloids and monogononts (obligatory v. facultative parthenogenic,

respectively) [40]. In this study, genetic variation in the COI gene for L. melicerta and L. cerato-
phylli was similar to some other non-rotifer sessile taxa (Table 3). However, genetic variation

in the COI gene among rotifer cryptic species was within the same range for planktonic, litto-

ral, and sessile groups (Table 3). A similar pattern has been reported for marine nematodes

where genetic structure was not related to their habitat preference (algae versus sediments)

[124]. It should be noted that within the superorder Gnesiotrocha, there is no difference in lev-

els of genetic variation between different life styles (at least for the taxa examined thus far; ses-

sile: Limnias spp. and Collotheca spp. and littoral: Testudinella clypeata Müller, 1786, Table 3).

All of these rotifers are cyclical parthenogens, which may have contributed to similarity in the

range of genetic variation within them. Comparing diversification rate among rotifers with dif-

ferent life history features may not be possible by simply considering the genetic variation in

COI gene. To investigate the patterns of diversification for different groups of rotifers, more

sophisticated statistical analyses are essential. For example, Fontaneto et al. [40] used a statistic

measure (γ) to compare the relative position of nodes in the phylogeny to the positions

expected under a constant diversification rate scenario. Using this approach, positive values of

γ show that diversification rate is higher than expected. γ was used to compare diversification

rate among taxa. In another study, Fontanillas et al. [125] calculated branch length in the phy-

logenetic tree and used it to compare diversification rate between sister taxa.

Sometimes morphological variation among cryptic species is found after a more detailed

analysis (e.g., [37,130]). Thus, we investigated trophi morphology to identify potential varia-

tion among cryptic species of L. melicerta and L. ceratophylli. Limnias possess malleoramate

trophi. This type of trophi, has large teeth on the rami and thin teeth on the unci [50]. For

more detailed descriptions of Limnias trophi, see Gosse [59], Meksuwan et al. [51] and Wallace

et al. [54]. While trophi size differed among putative cryptic species of L. melicerta, it did not

show significant variation among putative cryptic species of L. ceratophylli or between the two.

The high variability in trophi size within each morphospecies may have led to failure in detect-

ing significant differences between them. No significant variation in trophi shape was found

between L. melicerta and L. ceratophylli, or among putative cryptic species. Therefore, trophi

shape cannot be used as a diagnostic character in distinguishing them. This morphological

conservation and stasis in trophi morphology, despite high genetic variation among putative

cryptic species (COI gene: L. melicerta � 22.7%, L. ceratophylli � 21.7%), may potentially stem

from incongruence between rates of speciation and morphological evolution [131]. Morpho-

logical stasis in a variety of traits has been observed in numerous organisms (e.g., the copepod

Eurytemora affinis (Poppe, 1880) [131]; the butterfly fish Pantodon buchholzi Peters, 1876

[132]; two amphipods Leucothoe ashleyae Thomas and Klebba, 2006 and Leucothoe kensleyi
Thomas and Klebba, 2005 [133]). Differences in trophi morphology has been shown to be con-

nected to variation in feeding habits (see Asplanchnidae [134]). Therefore, morphological sta-

sis in trophi could be a result of ecological niche conservatism through similarity in the diet of

L. melicerta and L. ceratophylli, both of which feed on small particles including yeast [135] and

planktonic algae [64]. Morphological stasis should be investigated within morphospecies of
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other rotifer taxa such as the genus Floscularia. This is because, unlike L. melicerta and L. cera-
tophylli, Floscularia species show interspecies variation in trophi morphology [136]. Thus, they

are likely to show variation in trophi features at the level of cryptic lineages.

Similar to other taxonomic groups, there are a variety of studies that did not find significant

morphological variation among rotifer cryptic species. Based on geometric morphometric

analyses of lorica and trophi features, Fontaneto et al. [130] suggested there are no robust mor-

phological differences between B. plicatilis and B. manjavacas. In addition, Leasi et al. [25] did

not find any significant variation in morphological features of the lorica or body size among

seven cryptic species of the T. clypeata complex. Similarly, morphological characteristics such

as variation in lorica size and the presence of a posterior spine were not able to distinguish

among eight putative cryptic species of K. cochlearis [117]. In summary, morphological fea-

tures have not always been effective in distinguishing among cryptic species of rotifers.

Several studies have complemented molecular methods with other types of data to delimit

species boundaries (e.g., [30,106,122,130,137–139]). In this study, we attempted to use a mor-

phological characteristic and geographic isolation of genotypes to find a reliable predictor of

genetic variation among putative species within Limnias melicerta and L. ceratophylli. How-

ever, trophi shape did not vary among cryptic species, and there was no strong correlation

between genetic and geographic distance in these species. Therefore, we did not find sufficient

morphological variation or geographic isolation needed to explain the observed genetic differ-

entiation among them. Past studies have focused on ecological differences between L. melicerta
and L. ceratophylli. For instance, Sarma et al. [64] showed that generation time changes in

response to food concentration for L. ceratophylli, while there is no effect on L. melicerta.

While ecological differentiation has been recorded among many rotifer cryptic species (see

[140]), to our knowledge there is no information on ecological or behavioral variation among

genetic entities of any Limnias species. Therefore, we recommend further examination of

these features in Limnias spp. to elucidate potential mechanisms involved in their speciation.

To examine ecological and behavioral differentiation among cryptic species, future studies

should include more comprehensive morphological analyses, life table and mating experi-

ments, investigating patterns of metamorphosis and substrate selection by larvae. Studies such

as these will aid in examining boundaries of sessile rotifer cryptic species and understanding

speciation in rotifers. Moreover, genetic differentiation in other sessile rotifers should be mea-

sured to obtain more data for comparing diversification rate among taxa with different life

styles (e.g., planktonic versus sessile, colonial versus solitary).
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