## **RESEARCH ARTICLE**

**WILEY** 

## Water sources for red maple trees in a northern hardwood forest under a changing climate

Jamie L. Harrison<sup>1</sup> G) Megan Blagden<sup>1</sup> M ark B. Green<sup>2</sup> G) Guido D. Salvucci<sup>3</sup> Pamela H. Templer<sup>1</sup> G>

<sup>2</sup>Earth, Envir onmental, and Planetary Sciences, CaseW estern Reserve University, Cleveland, OH. USA

<sup>3</sup>Department of Earth and Environment, Boston University, Boston, MA. USA

#### Correspondene

Jamie L Harrison, Department of Biology, Boston University, 5 Cumnington Mall, Boston, MA 02215, USA Email: harrisoj@bu.edu

#### **Funding**information

National Science Foundation CAREERGranV Award Number: DEB1149929: Nati onal Science Foundation Long Term Ecological Research (LTER,) GranVAward Numbers: 1637685, 1114804

## **Abstract**

Climate models project increased growing season air temperatures and decreased depth and duration of winter snowpack for the north-eastern United States, leading to greater frequency of soil freeze/thaw cycles in winter over the next century. We utilizedthe Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in New Hampshire to determine how projectedchanges in climate in this region affect the depth from which trees take up water, which to our knowledge has yet to be determined. We determined the stable isotopic composition of water in soils and branch xylem three times throughout the growing season to partition potential sources of water for red maple (Acer rubrum) trees. Using a Bayesian mixing model approach, we determined that all trees used similar water sources in the early (June) and mid (July) growing season However in the late growing season (August), trees exposed to ambient and warmer growing season soil temperatures took up more than 40% of their water from between 90- and 100-cm soil depth, likely due to greater water availability at this depth. In contrast, those trees exposed to soil freeze/thaw cycles in winter utilized water from all depths (0-100 cm) evenly (8- 10"/4), possibly due to soil freezing causing compensatory root growth in the following growing season compared with trees in the reference and warmed plots. These results demonstrate that the projected changes in climate for the nort heastern Unite d States are likely to alter the depth from which trees access water, especially in the late growing season.

### **KEYWORDS**

Aerubrunclimatchang, soil depth, stable isotopes, water uptake

#### 1 INTRODUCTION

The north-eastern United States is projected to experience a rise in air temperatur es throughout the growing season, a decrease in the winter snowpack, and an increased frequency of droughts over the next century (Hayhoe et al., 2007), which together will alter soil temperatures and water availability throughout the snow-free season (hence-forth 'growing season'). By the end of the next century, it is expected th at mean annual air temperatures in t he nort h-eastern

United States will be 2.9-5.3"C greater than the 1970-1999 mean (Hayhoe et al., 2007). In winter, the snowpack is expected to shrink in depth and duration (Reinmann, Susser, Demaria, & Templ er, 2019), causing increased frequency of soil freeze/thaw cycles in wint er (Campbell et al., 2010) in this region. With projected changes in climate that will alter soil temperatures, it is important to understand how these changes in climate might affect water uptake by dominant trees. Trees in temperate forests such as those in the north-eastern United States have a large effect on water cycling patterns because

<sup>&</sup>lt;sup>1</sup> D e partment of Biology, Boston University, Boston, MA, USA

wa ter uptake, the process resulting from transpiration, makes up the majority of evapotranspiration (Jasechko et al., 2013). Droughts that cause a reduction in water availability can impair the ability for trees to get sufficient water, possibly leading to desiccation for trees in temperate forests (Breda, Hue, Granier, & Dreyer, 2006; Granier et al., 2007).

Warmer soils in the growing season increase rates of wat er uptake by temperate trees in the north-eastern United States (Juice, Templer, Phillips, Ellison, & Pelini, 2016; Harrison et al., in press). However, soil freezing that is associated with a smaller snowpack in winter induces root damage (Comerford et al., 2013; nerney et al., 2001) and decreases rat es of water (Harrison et al., 2020; Robitaille, Boutin, & Lachance, 1995) and nutrient uptake capacity (Sanders-DeMott, Sorensen, Reinmann, & Templer, 2018) by roots. In order to examine t he combined effects of climate change across seasons, we exposed temperate forest trees to soil warming (+5°C) in the growing season and increased fr equency of soil freeze/ t haw cycles in winter in forests at the Hubbard Brook Experimental Forest (HBEF) in New H ampshire to d etermine how changes in soil temperatures aff ect forest ecosystem processes such as water uptake (Templer et al., 2017). We previously found in the same soil temperature manipulation experiment we utilize here that redmaple trees had higher rates of water uptake in response to soil warming, and surprisingly, these elevated rates of water uptake were not affected by soil freeze/thaw cydes in the previous winter when also exposed to soil warming in the growing season (Harrison et al., in press). It is possible that because of the negative effects of soil freeze/ t haw cycles on fine roots, uptake of water from various depths of the soil profile is also affected, which, combined with increased drought frequency, could have harmful effects on the water dynamics of northernhardwood forests.

It is possible that when combined with growing season warming, the lack of effect of soil freeze/thaw cycles in winter on water uptake by red maple trees in the growing season at Hubbard Brook, as indicated by Harrison et al. (in press) in this same study, is due to changes in depth from which these trees access water. Trees are known to have belowground rooting strategies t hat enable them to access water, where it is most available throughout the growing season. For example, past work in arid environments, where roots often grow throughout the soil surface to 2- to 3-m depth to enhance nutrient and water uptake (McCulley, Jobbagy, Pockman, & Jackson, 2004), shows that plants in these areas often switch their water source seasonally from shallow to deep soil water when water is more available at greater soil depths than in shallow soil depths (G6mez-Navarro, Pataki, Bowen, & Oerter, 2019; Liu et al., 2019; Schwinning, D avis, Richardson, & Ehleringer, 2002; Smith, Wellington, Nachlinger, & Fox, 1991). Trees in arid environments also change their water source to deeper soils as shallow water becomes less available in response to weather events, such as heat waves and drought's (Eggemeyer et al., 200 9; Goebel & Lascano, 2019; Moore, Li, Kui, & W est, 2016; Snyder & Williams, 2003; Williams & Ehleringer, 2000). With climate change, tree species that are able to switch between water sources may be at an advantage over those that are limited in their ability to

access water from a variety of soil depths. H owever, the ability to switch between water sources is limited by the depth and distribution of functional roots (Ehleringer Dawson, 1992), and trees in northern hardwood forests, such as those at HBEF, have more than 90% of their fine root biomass in the top 10 cm of the soil profile (Yanai, Park, & Hamburg, 2006). The great er root biomass in shallow soils may constrain the ability for northern hardwood to switch to deeper soils when water is more available there, but to our knowledge, the depth from which northern hardwood trees take up water has not yet been determined. In addition, the known detrimental effects of soil freezing on root health (Comerford et al., 2013; nerney et al., 2001) and nutrient uptake capacity (Campbell, Socci, & Templ er, 2014; Sanders-DeM ott et al., 2018) could also diminish the ability of these trees to change the depths from which they access wat er throughout the growingseason.

Natural abundance stable isotopic composition of water provides a powerful and minimally destructive way of determining the depth from which trees take up water. Given sufficient differences in the isotopic signatures of oxygen 0 ) and hydrogen (H) across various depths in soil, plant xvlem water canbe analysed for its stable isotopic cont ent of water, and the depths from which trees take up wat er can be determined. Evaporation, which causes fractionation of water isotopes at the soil surface, typically results in enrichment of heavy isotopes (both 180 and 2H) in the remaining water pools. Because of decreased rates of evaporation with increased soil depth, isotopic values of wat er typically decrease with soil depth (e.g., Barnes & Allison, 1983; Ehleringer & Dawson, 1992; Grossiord et al., 2017), allowing researchers to use the gradient in soil water isotopic composition to examine sources of water for plants. In addition, relatively low values of deuterium-excess (hereafter 'd-excess1 indicate a water source that has relatively high rates of evaporation, suggesting a relatively shallow depth from which roots take up water compared with higher values of d-excess that indicate a water source less affected by evaporation and a relatively deep source of water for plants (Flanagan, Orchard, Tremel, & Rood, 2019; Matheny et al., 2017; Simonin et al., 2014).

Some recent studies indicate there might be fractionation with water uptake, but the mechanisms are not fully understood (Vargas, Schaffer, Yuhong, & Sternberg, 2017; Barbeta et al., 2018), whereas other studies show that fractionation with water uptake does not ocrur (Dawson & Ehleringer, 1993; Zimmerman, Ehhalt, & Munnich, 1967). The natural abundance stable isotopic composition of water has been used extensively in the past for partitioning water sources, primarily in arid environments and across natural environmental gradients such as with proximity to surface water (Dawson & Ehleringer, 1991; Mensforth, Thorburn, Tyerman, & Walker, 1994; Wei, Fang Liu, Zhao, & Li, 2013; White, Cook, Lawrence, & Broecker, 1985). We are aware of one study in a semi-arid woodland that evaluated the sources of water for co-existing grasses and trees in response to experimentally induced increases in year-roun d soil temperature (Grossiord et al., 2018). In that study soil warming led grasses to take up more water from deeper soils and juniper trees to take up more water from shallow soil depths, whereas pilion pines did

notalter the depth from which they took up water, compared with under ambient soil temperature conditions. However, we are unaware of any studies that have utilized measurements of stable isotopic composition of plant and soil water to determine how experimental changes in soil temperatures impact the depth from which trees in a northern hardwood forest take up water.

Here, we describe the eff ects of experimental changes in soil temperatures throughout the year, with warmer soil temperatures in the growing season and increased frequency of soil freeze/thaw cycles in winter, on the depth from which red maple t rees in a northern hardwood forest take up water. We determined the stable isotopic composition of wat er in soils and branch xylem three times throughout the 2018 growing season to partition potential sources of water for red maple (Acer rubrum) t rees. We measured soil wat er availability across the growing season and used values of branch xylem and soil water in a Bayesian mixing model framework to determine t he primary depth from which trees take up water throughout the growing season. The objective of our study was to understand how climate change across seasons affects the depth from which red maple trees take up water. We aimed to determine whether, despite similar rates of water uptake in plots that experienced warming or the combination of warming and freeze/thaw cycles (Harrison et al., in press), the negative effects of freeze/thaw cycles on root health (Sanders-DeMott et al., 2018) also affects the primary depth from which trees take up water. We expected that the depth from which red maple trees take up water depends on the distribution of fine root biomas,s which is primarily locat ed in the t op 10 cm. Furt her, we expected red maples that experience soil freeze/thaw cydes in winter to switch their water source less frequently due t o t he documented root injury caused by soil freeze/thaw cycles.

## 2 METHODS

## 2.1 | Study site

Our research was conduct ed at the HBEF, in New Hampshire, USA (43°56'N, 71°45'W), a U.S. National Science Foundation Long-Term Ecological Research (LTER) site. Forests at HBEF are dominated by northern hardwoods, with coniferous species present on higher elevation and steeper slopes. Soils consist of base-poor spodosols, specifically Typic Haplorthods that developed in gladofluvial sand and gravel, and depth to bedrock is approximat ely 14 m deep (Winter et al., 2008). The climate is cool, humid, and continental with mean annual precipitation of 1,400 mm falling evenly throughout the year. Winter air t emperatures av erage -4 .7°C (Bailey, H ornbeck, Campbell, & Eagar, 2003; years 1969 - 2000), and soil frost is present approximately 2 out of every 3 years, with an average annual maximum depth of 6 cm (Campbell et al., 2010). The site for our experiment has been undisturbed since 1920, after 30-year logging of the conifer-hardwood forest (Bailey, Hornbeck, Campbell, & Eagar, 2003). Environmental data, induding soil temperature and moisture, snow,

and soil frost depth, and water potential were measured during the experimental period in 2018, and a description of our methods for these measurements is presented below.

## 2.2 Climate Change Across Seasons Experiment

We established Climate Change Across Seasons Experiment (CCASE) in summer 2012 at HBEF [Templer et al., 2017) to examine the effects of the 5°C increase in t emperature in the snow-free season (H ayhoe et al., 2007) and rise in soil freeze/t haw cycle frequency in winter (Campbell et al., 2010) projected in this region over the next century. The six plots (each 11 x 13.5 m² were purposefully located to have similar tree species composition and aboveground biomass. The six plots in our experiment are each centred on at least three mature red maple (A. *rubrum*) trees, a common canopy tree in northern hardwood forests of the north-eastern United States and the focus of this study. Red maples make up  $63 \pm 7\%$  basal area, and litterfall mass of red mapie trees was not significantly different across the six plots in 2012 (prior to the start of the experiment; t t est, p = 0.54). The understorey is composed primarily of American beech (Fagus grandifo/ia) saplings.

Soil temperature and snow-manipulation treatment's are ongoing and began in December 2013. There are two plots with soils warmed 5°C above ambient ('warmed) between spring snowmelt (early April) and the first snowfall in November or December (hereafter referred to as the growing season), two plots with the same warming treatment combined with soil freeze/th aw cydes induced in winter ('warmed + FTC'), and two plots with ambient soil temperature ('reference). The wanned and warmed + FTC plots together make up the four 'treatmen't plots and are equipped with heating cables that were buried by hand10 cm deep using a flat shovel in 2012 in parallel lines spaced 20 cm apart. Reference plots were similarly cut to mimic cable installation disturbance, but no cable was installed.

In the *wanned+ FTC* treatment plots, the first snow of winter is gently packed down to maintain albedo and minimize disturbance to the forest floor with subsequent shovelling. We induced soil freezing by removing snow within 24-h of snowfall events in winter. Soil freezing is operationally definedas soil temperature less than -0.SOC. After soils are frozen for 72-h, the heating cables are turned on to warm soils to 1° c to induce a 72-h thaw. The entire process of frozen 72-h and a thawing for 72-h total constitutes one soil FTC. We achieved four FTCs in the wint ers of both 2013/2014 and 2014/2015, two in 2015/2016,andonein 2016/ 2017andtwo in 2017/2018.

## 2.3 | Environment al variables

Soil t emperature (Betatherm type 10K3A1; n = 6 at 10-cm depth for all plots) and volumetric soil moisture (m³ H  $_{\rm 0}$  m  $_{\rm 3}$  soil volume; CS 616; n = 4 per plot integrated across0- to 30-cm depth) were logged every 5 s, and half-hourly means were stored on a CR1000 multichannel data logger (Campbell Scientific, Utah, USA). Air temperature (n = 2 sensors total) and relative humidity (RH; n = 2 sensors total)

were measured in two locations (CS215; Campbell Scientific, Utah, USA).

Soil frost and snow depth were measured weekly throughout winter using frost tubes (n = 4 per plot; Ricard, Toabiasson, & Greatorex, 1976) and a metre stick inserted into snowpack from November 30 to April 30 for all years. We report winter data only for the winter that preceded the growing season of 2018 (November 15, 2017 to April 4, 2018) as it is the focus of this study. Soil frost duration (i.e., number of days with frost) duringwinter was calculated as days when depth of soil frost was greater than 0 cm.

Soil water potential (kPa) was measured in 2018 at a nearby site at HBEF, approximately 1,500 m from the CCASE plots. Soil texture at both sites is similar, composed of loamy sand in the upper soil layers, eventually switching to gravelly sand at deeper layers (Scott Bailey, personal communication). Using four dielectric permittivity water potential sensors, one at 10-, 20-, 30-, and 50-cm soil depths (n = 4 sensors total), we processed data in 30-min intervals. We present soil water potential data for June, July, and August 2018, the months that overlap withourwaterisotopedata.

## 2.4 | Root water uptake patterns

We quantified the depths from which red maple trees took up water throughout the 2018 growing season using branch xylem and soil samples collected on 3 days that represented the early (June 11), peak (July 9), and late (August 16) growing season. For the trees, branch xylem water from a 2- to 5-cm-long excised branch xylem sample from each of three mature red maple trees in each plot (n = 18 trees on each sampling day) was sampled between hours 07:00 and 12:00. Samples weretaken by shooting down sunlti branches with a shotgun and taking subsamples with clippers. The samples were immediately placed in airtight scintillation vials and stored in a cooler to avoid evaporation. On the same day as branch xylem collection, we collected integrated, duplicated soil samples from the organic soil layer (Oe and Oa) and across every 10 cm down to 1 m in two soil pits but only analysed one sample for isotopic composition: one pit sampled adjacent (<5 m) to reference plots (n = 1 soil sample for each depth; n = 11 samples on each date; n = 33 samples total throughout the growing season) and one pit adjacent (<5 m) to treatment plots (warmed and wanned+ FTC; n = 1 soil sample for each depth; n = 11samples on each date; n = 33 samples total throughout the growing season). Pit s were 2 m wide and 1 m deep, and samples were collected from the edge of t he pit facing the plots. We gent ly scraped away soil from the 2 cm of the soil pit exposed to air (area of soil facing the opening of the soil pit) prior to sample collection throughout the 0- to 1-m depth soil pit in case evaporation occurred from the side of the pit that was exposed to air. Soil samples were placed directly into scintillation vials and stored in a cooler with ice. Once in the laboratory, all samples were frozen until analysi.sWe could not collect soil samples from within the six experimental plots due to the large area of destruction required when digging soil pits and concern about damaging the buriedheating cables.

Water from branch xylem and soil was extracted using a cryogenic vacuum distillation system at the Boston University Stable Isotope Lab (Boston, MA, USA). We first evacuated the extraction system, made of 0.5-in diameter glass tubing, to a baseline vacuum reading of 20 mTorr to test for leaks before the sample was extracted. A frozen sample was placed in a 1-inch diameter glass extraction system tube and further frozen with liquid nitrogen after which the system was evacuated once again. We then removed the sample from the liquid nitrogen and submerged it in boilingwater, while the collection vessel (0.5-in diameter glass tubing) was submerged in liquid nitrogen. During distillation, vacuum reading went up to about 2,000 mTorr. The extraction time was approximately 60 min for both branch xylem and soil samples. We believe this extraction time is sufficient based on previous research that found that 60 minwasa sufficient extraction time for all plant and soil materials (West, Patrickson, & Ehleringer, 2006). After extraction, water samples in the collection vessels were transferred to plastic cone cape scintillation vials and stored at 4°Cuntilanalysis.

All branch xylem and soil water samples were analysed for stable isotopic composition using a Liquid Isotope Water Analyser (LIW A) cavity ringdown spectrometer (Model DLT-100; Los Gatos Research, Mountain View, CA, USA) at Plymouth State University (Plymouth, NH, USA). For each date, the stable isotope ratios of hydrogen and oxygen in each water sample were determined and expressed in standard delta notation ( $6^2H$  and  $6^{18}0$ , respectively, %0). Deuterium-excess ( $=6^2H-8\cdot6^{18}0$ ; Dansgaard, 1964) was calculated for all branch xylem water samples. Precision of measurements for this analysis was  $\pm 1.0\%0$  for  $6^2H$  and  $\pm 0.5\%0$  for  $6^{18}0$ , based on repeated analyses of lab standards.

We corrected for narrow and broadband spectral interference due to the presence of organic compounds using the LGR-SCI software (Version 1.0.0.69; Schultz, Griffis, Lee, & Baker, 2011). Of our 126 samples, 17 were flagged as potentially having organic compounds and corrected with the software. Past studies show that cavity ring-down spectrometers can report incorrect isotope values due to organic compounds causing spectral contamination (Leen, Berman, Liebson, & Gupta, 2012; Schultz, Griffis, Lee, & Baker, 2011). We confirmed that organic compounds in our water samples did not interfere with the UWA analysis by also running avariety of soil samples across eight depths and branch xylem samples across all three treatments on an isotope ratio mass spectrophotometer (IRM S; GV Instruments IsoPrime Manchester) coupled with a Pyr-OH liquid auto-sampler (Eurovector, Milan) at the Boston University Stable Isotope Lab (Boston, MA, USA). We found a significant (p < .001) and strong (R2 = 0.9 1) positive relationship when comparing the results on the LIW A and IRMS (Figure 51) and therefore have confidence in the data from the cavity ring-down spectrometer.

## 2.5 | Sta tistical a nalyses

We conducted a repeated measures analysis of variance (ANOVA) to examine differences in soil water potential for each depth, each

month separately. To examine potential differences in stable isotopic composition of water across t he 11 depths in each soil profile, we conducted ANOVAs on each sampling date. We used linear mixed effects (LMEs) models to compare  $6^{18}0$ ,  $6^2H$ , and dexcess for branch xylem water within a given time period (early, peak, or late growing season) across treatments. The package 'nlme' in R (Pinheiro, Bates, DebRoy, & Sarkar, 201 2) was used for all LME models. For all LME models, t ree nested within plot was designated as the random effect with the treatment as the fixed effect. All post hoc pairwise comparisons among treatments for ANOVAs and LMEs were conducted using Tukey's honestly significant difference (HSD) tests.

We used a Bayesian mixing model to quantify the relative contribution of water from each soil sampling depth for trees on each sampling dat e with the package 'simmr' in R (Parnell, 2015). Bayesian mixing models use typical end member mixing equations (e.g., Dawson & Ehleringer, 1993) but implement Bayesian techniques that allow the probability of many sources to be estimated. Specifically, we used Markov chain Monte Carlo (MCM C) methods to determine proportions and probability distributions of potential water sources from 11 depths in the soil for plants to take up. We calculated the average isotopic value of both elements (hydrogen and oxygen) at all 11 soil depths across the two soil pits for a given sampling date, each representing a potential source of water. For all depths, the input into the Bayesian mixing model induded mean for stable isotopic composition of bot h elements. In addition, the model includes standard deviat ion for each input to account for uncertainty within a sample. The model uses MCMC sampling combined with Bayesian updating to update prior distributions and to create a posterior distribution of uncertainty surrounding estimates. We assumed no isotopic fractionation during uptake (Dawson & Ehleringer, 1993; Zimmerman, Munnich , 196 7).

The Bayesian mixing model was run with three chains and 100,000 iterations for each sampling date for each treatment. The

first 50,000 iterations were discarded and considered the 'burn-in' period. We assumed water uptake from all potential sources was equally likely. The result of the Bayesian mixing model provides probability distributions and mean fractional contribution for each depth, accounting for uncertainty in these sources. Recent studies highlight the robustness of the Bayesian mixing model compared with other analytical t echniques (two-end member, graphical inference, and multisource mixing models; Beyer, Hamutoko, Wanke, Gaj, & Koeniger, 2018; Evaristo, McDonnell, & Clemens, 2017; Rothfuss & Jayaux. 2016).

Due to t he cost and infrastructure required to implement the experimental treatments, it was not possible to have more than two *reference*, two *warmed*, and two *warmed* + FTC plots. Therefore, we used a = .10 to evaluate significant treatment effects, unless otherwise noted. All statistical analyses were conducted with R statistical software (version 3.0.3; R Core Team, 2013). All error is reported as standard error (SE) of the mean.

#### 3 RESULTS

## 3.1 Growing season and wint er environmental variables

Plots that were warmed throughout the growing season had higher soil temperatures relative to the reference plots by  $5.1\pm0.05^{\circ}$ C and  $5.0\pm0.05^{\circ}$ C, for wanned and warmed + FTC, respectively (April 4-November 15, 2018; Table 2 and Figure 1). This pattern is consistent with soil temperature increases reported for the years 2013-2017 in previous papers by our group (Harrison et al., in press; Sanders-DMott, Sorensen, Reinmann & Templer, et al., 2018; Sorensen et al., 2018; Templer et al., 2017). Also consistent with past years, soil warming did not affect soil moisture integrated from 0 to 30 cm throughout the growing season (p=.73) in 2018 or in the 2017/2018 winter prior to the growing season when we analysed

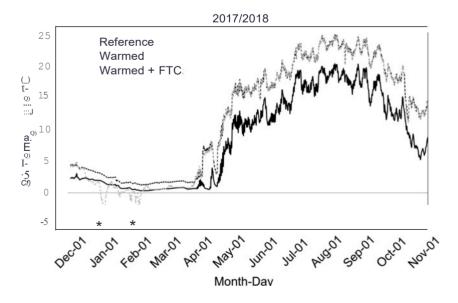
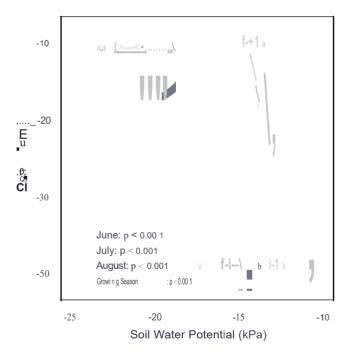



FIGURE 1 Soilt emperaturesat 10-cm depth for three treatments for December 1- Nov ember 30 for the 2017 /20 18 winter and growing season at H ubbard Brook. Asterisks indicate dates when experimentally induced soil freeze/thaw cycles in winter occurred (two in 2017/ 2018)


**TABLE 1** Environmental variables by experimental treatment for the 2017-2018 winter (November15, 2017-April 4, 2018) and growing season in 2018 (April 4, 2018-November 15, 2018)

|                                         | Reference     | Wanned        | Warmed + FTC   |
|-----------------------------------------|---------------|---------------|----------------|
| Minimum soil temperature (°C)°          | 0.32• ± 0.044 | 1.23• ±0.052  | - 3.64b± 0.061 |
| Maximum snow depth (cm)°""              | 66.25• ± o.84 | 65.13· ± 1.33 | 23.38b ± 0.68  |
| Maximum frost depth (cm)°"              | 9.44. ± 1.44  | 9_43• ±0.99   | 25.69b ± 1.30  |
| Number of soil freeze/thaw cycles       | 0             | 0             | 2              |
| Growing season soil temperature (° C)°" | 12.62. ± 0.19 | 17.81b ±023   | 17.74b ± 0.062 |

 $Note: Soil \, temperatures \, are \, averaged \, at \, 10\text{-cm} \, depth. \, Values \, are \, means \, with \, standard \, error \, across \, plots \, unless \, otherwise \, noted. \, Distinct \, letters \, within a \, row \, indicate \, statistically \, significant \, differences \, among \, treatments.$ 

plant samples (p = .34). Snow removal in the *warmed* + FTC led to lower snow depths and minimum winter soil temperatures and greater soil frost depths and number of soil FTCs in 2017/2018 (Table 1).

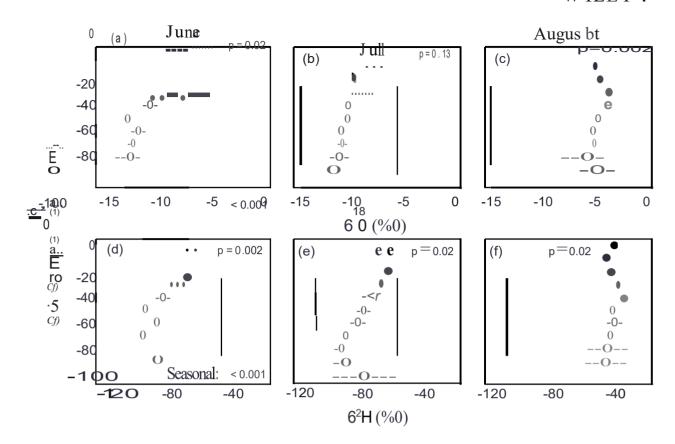
Soil water potential significantly increased with greater soil depth (Figure 2; p < .001on all three sampling dates) and was consistently greater at 50-cm depth compared with 10-, 20-, and 30-an depths throughout the growing season (Figure 2; p < .001 on all dates). In addition, the range in water potential values throughout the growing season was smaller at SO-cm depth (-13.1 to - 12.6kPa) compared with shallower depths (-18.8 to - 17.4kPa, - 16.7 to -15.9 kPa, and



FI GURE 2 Soil potential measured at five depths at a nearby flux tower with similar soil texture composition to our site, with means± SE values for June, July, and August of 2019, the year with the finest resolution in dataavailable. Mean± SE values for the entire growing season also provided. Pvalues indicate significance for potential differences in water potential across depths. Different lett ers represent statistically significant differences across the depths

- 14.2 to - 14.8 kPa, at 10-, 20-, and 30-cm depths, respectively; Figure 2).

# 3.2 | Stable isotopic composition of wat er in branch xylem and soil


Throughout the 2018 growing season, soil water  $6^{1}$  % values ranged from – 3.3% to – 13.3% and  $6^{2}$ H ranged from – 34.4% to – 1 O1.1 of  $6^{18}$ O and  $6^{2}$ H values were generally more enriched at the soil surface compared with more depleted deeper soil layers (Figure 3). We also observed significant variation in isotopic values across the growing season with August (late growing season) values (–4.9  $\pm$  0.3o/oo for  $6^{18}$ O and –42.9  $\pm$  2.0o/oo for  $6^{2}$ H) relatively enriched than June or July (–10.5  $\pm$  0.So/oo for  $6^{18}$ O and –82.2  $\pm$  3.4o/oo for  $6^{2}$ H in June and –10.1  $\pm$  0.3o/oo for  $6^{18}$ O and –76.1  $\pm$  3.2o/oo for  $6^{2}$ H in July; p < .001 for  $6^{18}$ O and  $6^{2}$ H, respectively). There was a positive and significant relationship between  $6^{18}$ O and  $6^{2}$ H across all depths of soil (Figure 52; p < .001), with slight  $6^{18}$ O enrichment compared withtheglobal meteoric water line (GMWL) and the local meteoric water line (LMWL; Green, Laursen, Campbell, Mcguire, & Kelsey, 2015).

Throughout the growing season,  $6^{18}$  0 values in branch xylem ranged from -5.lo/oo to - 9.500o, and 62H ranged from -43.30/oo to - 70.?o/oo (Figure 4). There were significant differences in the mean isotopic values of branch xylem across the growing season (p < .001 for both 6180 and 62H), with August having greater values than June and July. June branch xylem  $6^{18}$  0 values were -7.4  $\pm$  0.200/o, and  $6^{2}$ H were -65.5  $\pm$  1.Oo/oo; July branch xylem  $6^{18}$ 0  $-8.00 \pm 0.200$ /o, and 6 <sup>2</sup>H were - 60.8  $\pm$  0.90/oo; August branch xylem  $6^{18}$ O values were - 6.1 ± O.20/oo, and 6  $^{2}$ H were - 48.3 ± O.60/oo. Branch xylem had similar isotopic values across the treatments in July, but trees in the warmed + FTC plots were significantly more enriched in both <sup>18</sup>0 and <sup>2</sup>H compared with the *reference* and *warmed* plots in June and August (Figure 4; p < .05 across plots for both  $6^{18}$ 0 and 6<sup>2</sup>H). Similarly, *d-excess* in xylem branch water was not statistically different across treatments in July, but values were significantly lower in warmed + FTC compared with reference and warmed plots in June and August (Figure 4; p < .05).

p < .05.

<sup>..</sup>p < .05.

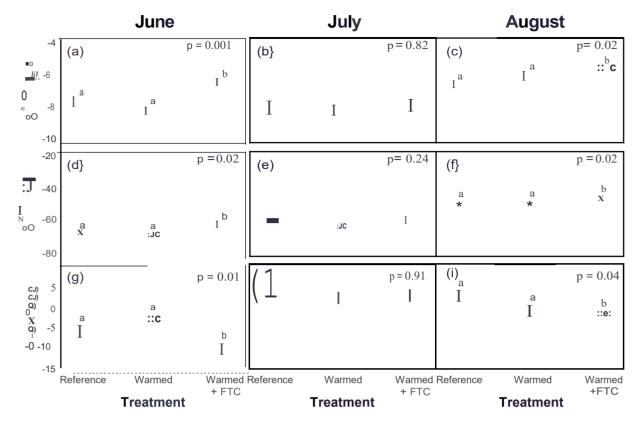
<sup>...</sup> p < .0001.



**FI G U RE 3** D iff er encesin soil water isotopic values (6<sup>18</sup> 0 and 6<sup>2</sup>H) with means and standard error for two soil pits during each sampling t ime across the growing season. The shaded region represents the range of values in June for comparison across the growing season. Different letters represent statistically significant differences across the season

Our Bayesian mixing model revealed t hat in June, t rees in t he reference, warmed, and wanned + FTC plots used shallow water (0-10 cm) as their primary water source (Figure 5d; Table 2;  $56.0 \pm 9\%$ ,  $49.8 \pm 11.5\%$ , and  $65.5 \pm 15\%$  for reference, wanned and warmed + FTC t re es, respectively). In July, 14.9-20.3% of water in all trees came from 0- t o 30-cm depth, with no apparent differences in wat er uptake depth by treatment (Figure Se; Table 2). In August, trees in the reference and warmed plots took up more of their water from 90- to 100-cm depths than from shallower depths (Figure Sf; Table 2;  $44.9 \pm 10\%$  and

 $40.2 \pm 12.5\%$  in reference and *warmed* plo ts, respectively). This pattern is in contrast to *warmed* + *FTC* plots, where trees utilized wat er from all depths evenly (8.1- 9.5% from each depth across the 1-m depth soil profile).


## 4 DISCUSSION

Our isotope values throughout the soil profile show significant variation, allowing ust o use natural abundance stable isotope values to calculate the proportion of water that trees take up from various soil depths (Figure 5a-c). In June and July, trees in all treatments took up the majority of their water from shallow depths (0-30 cm). In August,

trees in the *reference* and *warmed* plots t ook advantage of greater water availability at deeper soil depths, whereasthe trees in the *warmed+FTC* plots did not. These results suggest that with warmer temperatures alone, we will not see significant shifts in the soil depths where trees get their water, but those trees that experience FTCs in winter may not be as responsive to changes in soil water availability in the future.

## 4.1 | Soil water potential

Values of water potential w ere similar to reported values for HBEF (Federer, 1979). In addit ion, t he less variable wat er pot ential values we observed at greater depths are consistent with past studies (Eggemeyer et al., 2009; Eller, Burgess & Oliveira, 2015). Throughout the growing season, wa ter poten t ial was significantly higher at 50 cm compared wit h shallower soil depths. The less variable and higher water potential at greater depths suggests t hat t his depth experiences less removal (i.e., root uptake and evaporation) and/or more persistent inputs from redistribution fr om shallower soil layers (Gardner, Benyamini, 1970) or capillary rise of wat er fr om deeper soil layers (e.g., Brolsma& Bierkens, 2007).



**FIGURE 4** Stableisotopic values for branch xylem water (6<sup>18</sup>0, 6<sup>2</sup>H, and d-excess) for red maple treesfor each treatment for each sampling date in 2018. Values are means± SE. Different letters represent statistically significant differences between treatments on a samplingdate

# 4.2 I Stable isotopic composition of water in branch xylem and soil

The relative enrichment of isotopic values of water at the soil surface compared with deeper soil layers is consistent with past studies in temperate environments (Brinkmann, Eugster, Buchmann, & Kahmen, 2018; Grossiord et al., 2014). Soils are generally more enriched in heavier isotopes at the surface due to fractionation during evaporation that causes enrichment of the residual water pools (Dansgaard, 1964). The increased enrichment of the heavy isotopes of oxygen and hydrogen from the early to late growing season we observed is likely also reflective of changes in the isotopic values of precipitation inputs for these forests (Green, Laursen, Campbell, Mcguire, & Kelsey, 2015). For example, in June and July, the mean isotopic values t hroughout t he soil profile (- 10.3 and - 87.2 for 6180 and 62H, respectively) dosely resembled values for snow in this region (-12.4 and- 86.3 for 6180 and 62H, respectively; averaged from 2006 to 2010), indicating that in June and July, most of the soil water was likely from winter snowmelt, especially at depth. In contrast, later in the growing season, mean isot opic values in the soil profile (-4.5 and - 42.0 for 6180 and 62H, respectively) began to reflect rain (-7.6 and - 54.8 for 6180 and 62H, respectively; Green, Laursen, Campbell, M cguire, & Kelsey, 2015), indicating a seasonal shift from residual snowmelt to rainwater as the primary source of soil water in these forests in August.

It is likely that changes in water availability combined with differences in root biomass throughout the soil profile affected seasonal water use by these trees. For example, throughout the entire growing season, water potential was significantly greater at SO cm compared with 10-, 20-, and 30-cm depths (p < .001); Figure 2). H owever, the difference in water potential across the different depths was less than 5 kPa in June, and the primary source of water (>49.8%) for trees in all plots was shallow water (<10 cm depth), suggesting that in the absence of a large variation in water potential, such as in the early growing season, trees access water from the depth that has the greatest root biomass, in other words, the shallowest soil layers (<10 cm depth; Yana,i Park, & Hamburg, 2006). In contr ast, trees experiencing ambient or warmer growing season soil t emperatures switched their primary water source from shallow (10- to 30-cm depth) in June and July to deep water (>90-cm depth) in August, which may have been a result of decreased(i.e., more negative) water potential in the shallow soil lay ers compared with less variable and higher (i.e., less negative and doser to zero) water potential in the deeper soil layers in August. In other words, in the late growing season, trees swit ched their primary water source to deeper water as it became more available and less variable than shallower water, despite the fact that most fine root biomass in this forest is in the top 10 cm of soil (Yanai, Park, & Hambur g, 2006). In August, water potential values at SO cm were greater and less variable (-13.4  $\pm$  0.5 kPa) than at shallower (10-30 cm) depths (- 17.8 ± 1.1 kPa). Together, these

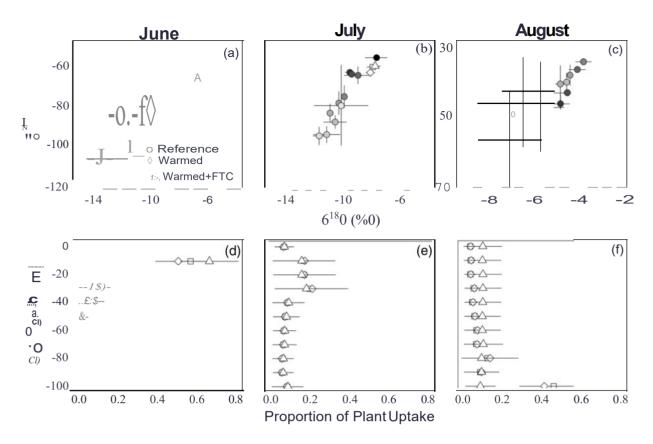



FIGURE 5 Panels (a)-(c): soil and branch xylem water (6180 and 62H) that was used in the Bayesian Mixing Model. Note: axes in Panel care different than other panels; values are mean ± SE. Panels (d)-(f): proportion of plant water uptakefrom each soil sampling depth on each sampling date in 2018. Values are means± SE determined by a Bayesian Mixing Model

results suggest that trees take up water from depths that have both greater wat er potential and less variability. The trend of trees switching their water source to deeper water in the late growing season when water availability and water potential are greatest has been demonstrated in other temperate tree species (Brinkmann, Eugster, Buchmann, & Kahmen, 2018; Cramer, Thorburn, & Fraser, 1999; Meizner, Kohler, Schwendenmann, & Holscher, 2012; Sun, Meng, Zhang, & Wan, 2011) and in many other plant species (Bargues Tobella et al., 2017; Bleby, Aucote, Kennett-Smith, Walker, & Schachtman, 1997; Dardanelli, Bachmeier, Sereno, & Gil, 1997; Ewe, Sternberg, Childers, & Ewe. 2018; Goebel, Lascano, Paxton, & Mahan, 2015; G6mez-Navarro, Pataki, Bowen, & Oerter, 2019; Li et al., 2019; Liu et al., 2019; Wu et al., 2018).

Several studies have shown that d-excess values are a suitable proxy for understanding depths from whichplants take up water, with lower values implying a shallower water source (Flanagan, Orchard, Tremel, & Rood, 2019; Matheny et al., 2017; Simonin et al., 2014; West, Goldsmith, Matimati, & Dawson, 2011). Deuterium-excess values for red maple trees exposed to soil freeze/thaw cycles were generally lower compared with trees experiencing ambient or warmer growing season temperatures. Values of d-excess confirmed the results that we found with the Bayesian mixing model and further demonstrate that trees exposed to greater frequency of soil freeze/thaw cycles in winter t endedto use shallower water, especially

in the late growing season, whereas those with ambient or warmer growing season temperatures switched their water source to deeper soils where water was more available (as indicated by water potential values).

In this study, we found that whereas trees in the reference and warmed plots took up water from the depths that had the greatest water potential (i.e. availability), the trees that experienced soil freeze/thaw cycles in winter did not respond to increases in soil water availability in the deepest soil layers and instead took up water equally across all depths in the late growing season, despite water potential being greater at deeper soil depths. In the same soil temperature manipulation experiment reported here, we found that growing season soil warming increased rates of water uptake in red maple trees, with these higher rates maintained despite trees experiencing soil freeze/thaw cycles in winter (Harrison et al., in press) and damage to roots in those plots (Sanders-OeMott et al., 2018). As such, we do not think that changes in water sources are due to changes in overall rates of water uptake and instead speculate that trees took up water equally across the depths after experiencing fr eeze/ thaw cycles due to compensatory root growthin shallow soils that ledto greater water uptake from shallower soil depths than expected. Members of our group demonstrated across a climate gradient at HBEF that soil freezing in winter causes compensatory root growth by 40% in the top 15 cm of soil in the following growing season (Sorensen et al., 2016),

'f

8

Sİ

.Y

|              |                                        | i                       |                 |                                             |                           |                            |                                                                                                                                                                                                            |                                        |                              |                                        |                   |                      |
|--------------|----------------------------------------|-------------------------|-----------------|---------------------------------------------|---------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|----------------------------------------|-------------------|----------------------|
| oiiie ∵a. EE | ::<br>!!<br>!                          | 0 E                     | E v 0 0         | E                                           | E V Q O O N               | <b>o</b> <sup>5</sup>      | E .  o₁  ij                                                                                                                                                                                                | E                                      | 9 <u>†</u>                   | a:                                     | E<br>%-<br>a:     | 0<br>-<br>0<br>•     |
|              | <del>-</del> ;                         |                         | 0,<br>.0H &     | ₩<br>-H<br>N                                | -0.f.<br>N                | ()<br>""¢ li<br>-H -<br>st | ; <sub>-H</sub> co                                                                                                                                                                                         | co<br>N <sub>H</sub> -                 | co<br>N<br>-H                | -H -                                   | "",               | co<br>N <sub>H</sub> |
|              | ·§                                     | lii<br>H -H<br><"i      | st              | ## ## ## ## ## ## ## ## ## ## ## ## ##      | 0<br>H<br>T:              | ii r<br>H -H -<br>«?       | " .<br>∃H<br>- <i< td=""><td>&lt;"i<br/>H<sup>0</sup>-H -<br/><br/>'''¢</td><td>≲"i<br/>-H<br/>st N</td><td>с<b>№</b><br/>н -н -<br/><b>!!</b><br/>М</td><td>,q<br/>t st</td><td>M<br/>-H<br/>st</td></i<> | <"i<br>H <sup>0</sup> -H -<br><br>'''¢ | ≲"i<br>-H<br>st N            | с <b>№</b><br>н -н -<br><b>!!</b><br>М | ,q<br>t st        | M<br>-H<br>st        |
|              | *\frac{t}{-1-}                         | iii                     | <br>    <br> -0 | -Н<br><b>!!!</b><br>'''¢                    |                           | ;<br>r.:: r.<br>HH         |                                                                                                                                                                                                            | .HNH .                                 | N<br>-H<br>co                | Н-Н                                    | ()                | co                   |
| 2:::-        | .;,                                    | co<br>-H -<br>0,<br>lii | «?<br>!!!       | -H -                                        | -0 N<br>r:<br>-H -<br>0,1 | -H                         |                                                                                                                                                                                                            | 0,                                     | ()<br> iii  ii<br> -H<br> -0 | -H                                     | -H r              | r_H                  |
|              | .§                                     | st<br>e<br>H -H<br>III  | i:              | o<br>-0                                     |                           | ***                        |                                                                                                                                                                                                            | -H -H<br>-0                            | i -0<br>-H<br>i:             |                                        | : '<br>st         | r∴H<br>N             |
|              | ************************************** | •••¢<br>•••             |                 | N N<br>"'¢                                  | -0<br>P                   | ""I<br>: co                |                                                                                                                                                                                                            | Ш                                      | <br>-H<br>N                  |                                        | ''<br>lii         | r                    |
| ii.          | <u> </u>                               | <b>N</b>                |                 | N<br><br>;                                  | θ;;<br>-H                 | N<br>;<br>-H<br>st         | ⊞¢<br>-H                                                                                                                                                                                                   |                                        | <b>≲"</b> j<br>-H            | N<br>                                  | o;i o<br>-H<br>co | 0<br>-H<br>0,        |
|              | .§                                     | NH<br>o                 | ;               | -H -<br>0.<br>;                             | °<br>'-'Á<br>             | st<br>;<br>-H<br>i:        |                                                                                                                                                                                                            | -0<br><b>"</b> -0                      | co<br>lii c<br>-H            | ₩ <sup>0,</sup> ···                    | co                | N.                   |
|              | u<br>t₁.<br>`\$                        | ιιι<br>ς-μ<br>ο<br>c,;  | o, ' c,;        | c,;<br>H<br>st<br>c;                        | N<br>CH<br>st<br>c,;      | о,;<br>П                   | 0,<br>-H<br><br>C,;                                                                                                                                                                                        | <br>c,;<br>c;;                         | ;;<br>;-H<br>-0<br>c,;       | id:i<br>II<br>a:i                      | ''ī∹<br>co        | <br>i:0              |
| t<br>t       | ]<br>!S<br>9!                          | .E                      | 0<br>0          | 3:<br><b>Q</b><br>1: <b>Q</b><br>1:H<br>8 > |                           | e<br>fiii<br>ai            | -9i                                                                                                                                                                                                        |                                        |                              |                                        |                   |                      |

<t:

meaning that theroot biomass at the soil surface for trees experiencing soil/freeze thaw cycles in winter may have been greater than in our plots with ambient or warmer soil temperatures. In contrast, soil

warming has been shown to decrease fine root biomass due to greater rates of nitrogen cycling and availability (Melillo et al., 2011). Therefore, it is possible that trees with ambient or warmer soil temperatures responded to changes in soil water potential by switching their water source to the depth with the highest water potential in the late growing season. In contrast those trees experiencing soil freeze/thawyof their root blomass due to compensatory root growing caused by

soil freeze/thaw cydes. We did not measure root biomass in our soils and therefore cannot conclude definitively the connection between soil temperatures, root biomass, and depths from which trees take up water.

While water did not appear to be limiting to trees at HBEF in the summer of 2018 based on the water potential values, our results have implications for how this forest might respond to water stress, with the frequency of drought projected to increase in the future (Hayhoe et al., 2007). Past studies suggest that freeze/thaw cycles in winter may damage roots (Sanders-DeMott et al., 2018), lead to larger root density at the soil surface in the following growing season (Sorensen et al., 2016), and minimize the tendency for red maple trees to switch to deeper water sources. These findings combined with our results suggest that winter climate change may cause red maple trees at HBEF to become more vulnerable to drought.

### 5 CONCLUSIONS

Over the next century, air temperatures will continue to rise (Hayhoe et al., 2007), and the frequency of winter soil fr eeze/ thaw events in winter is likely to increase (Campbell et al., 2010), which together are likely to impact the flexibility trees have to switch water sources in response to changing water availability in northern hardwoodforests. Our methods represent a novel approach to studying water uptake dynamics in a northern hardwood forest, by utilizing natural abundance stable isotopic composition of water in response to experimental changes in soil temperatures in a northern hardwood forest. Our results suggest that warmer soils in the growing season are unlikely to affect the ability of trees to switch to more available water sources in the late growing season when water potential at shallow depth decreases. How ever, increased frequency of soil freeze/thaw cycles in

winter will likely negatively impact the ability for trees to access deeper sources of water, which may hold greater water availability. Our findings demonstrate that trees experiencing soil fr eeze/ thaw

cydes respond differently to changes in soil water availability than those with ambient or warmer soil temperatures in the growing season, which could possibly be the result of compensatory root growth in the growing season following soil fr eezing. As the frequency of

drought rises (Hayhoe et al., 2007), it will be increasingly important to understand the ability for trees to access different water sources under a changing climate.

H\_AR\_RNE\_NL\_\_\_\_\_WJLEY 1110f13

#### **ACKNOWLEDGEMENTS**

We thank Andrew Reinmann, Stephanie Juice, and Frank Bowles for their invaluable contribution to the establishment and execution of the CCASE experiment, Laura Sofen, Amy Werner, Laura Clerx, and Jonathan Gewirtzman, Brendan Leonardi, and Gabe W inant helped to maintain CCASE and assisted with lab and fieldwork. We thank the staff at Hubbard Brook, including Lindsey Rustad, Ian Halm, Nick Grant, Dan Evans, Mary Martin, Tammy Wooster, Cam McIntire, Adam Wild, and Scott Bailey for providing support with site establishment, data collection, and data management. Robert Michener provided lab assistance. This research was supported by an National Science Foundation Long Term Ecological Research (LTER) Grant to Hubbard Brook (NSF 1114804 and 1637685) and an National Science Foundation CAREER Grant to PHT (NSF DEB1149929). This manuscript is a contribution of the Hubbard Brook EcosystemStudy. Hubbard Brook is part of the LTER network, which is supported by the NSF. The Hubbard Brook Experimental Forest is operated and maintained by the USDA Forest Service, Northern Research Station, Newtown Square, PA, USA.

#### **DATA AVAILABILITY STATEMENT**

Our data are publidy available through the Hubbard Brook Experimental Forest data archives (Templer, Harrison, Blagden, Green, & Salvucci, 2020a,b).

#### **ORCID**

Jamie L Harrison https://orcid.org/0000-0001-7937-0503

Mark B. Green https://orcid.org/0000-0002-7415-7209

Guido D. Salvucci https://orcid.org/0000-0003-3609-5972

Pamela H. Templer https://orcid.org/0000-0002-6570-3837

### **REFERENCES**

- Bailey, A S., Hornbeck, J. W., Campbell, J. L., & Eagar, C. (2003). Hydrometeorological Database for Hubbard Brook Experimental Forest: 1955-2000, in: Gen. Tech. Rep. NE-305 (p. 305). Newtown Square, PA: US Department of Agriculture, Forest Service, Northeastern Research Station. https://doi.org/10.2737/NE-GTR-305
- Barbeta, A., Jones, S. P., Clave, L., Wingate, L., Gimeno, T. E., Frejav ille, B., ... Ogee, J. (2018). Hydrogen isotope fractionation affects the identification and quantification of tree water sources in a riparian forest. Hydrology and Earth System Sciences Discussions, 1 - 29. https://doi.org/10.5194/ hess-2018 -40 2
- Bargues Tobella, A., Hasselquist, N. J., Bazie, H. R., Nyberg, G., Laudon, H., Bayala, J., & Ilstedt, U. (2017). Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid West Africa. *Ecohydrology*, 10, 1-10. https://doi.org/10.1002/eco.1008
- Barnes, C., & Allison, G. B. (1983). The distribution of deuterium and oxygen-18 in dry soil. *Journal of Hydrology*, 60, 141-156. https://doi. org/10.1016/0022-1694(83)90018-5
- Beyer, M., Hamutoko, J. T., Wanke, H., Gaj, M., & Koe niger, P. (2018). Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models. *Journal af Hydrology*, 566, 122-136. https://doi.org/10.1016/j.jhydrol. 2018.08.060
- Bleby, T. M., Aucote, M., Kennett -Smith, A K., Walker, G. R., & Sc hachtman, D. P. (1997). Seasonal water use characteristics of tall wheatgrass [Agropyron e longat um (host) beauv.] in a saline

- environment Plant, *Cell and Environment*, 20, 1361-1371. https://doi.org/10.1046/j.1365-3040.1997.d01-29.x
- Breda, N., Hue, R., Granier, A, & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. *Annals* of Forest Science, 63, 625 - 644. htt ps://doi.org/10.1051/forest 2006042
- Brinkmann, N., Eugster, W., Buchmann, N., & Kahmen, A. (2018). Species-specific differences in water uptake depth of mature te mperat e trees vary with water availability in the soil. *Plant Biology*, 21, 71-81. https://doi.org/10.1111/plb.12907
- Brolsma, R J., & Bierkens, M. F. P. (2007). Groundwater-soil water-vegetation dynamics in a temperate forest ecosystem along a slope. *Water Resources Research*, 43 , 1 - 10. htt ps://doi.org/10.1029/2005WR004696
- Campbell, J. L., O llinger, S. V., Rerchinger, G. N., Wicklein, H., Hayhoe, K., & Bailey, A. S. (2010). Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire. USA. *Hydrol. Process.*, 24, 2465 - 2480. http s://doi. org/10.1002/hyp.7666
- Campbell, J. L., Soc ci, A. M., & Templer, P. H. (2014). Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. *Global Change Biology*, 20, 2663 - 2673. https://doi.org/10.1111/gcb.12532
- Comerford , D. P., Schabe rg , P. G., Templer, P. H., Socci, A M. , Campbell, J. L, & Wallin, K. F. (2013). Influe nce of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. *Oeco/ogia*, 1 71, 261 - 269. http s://doi.org/ 10.1007/s00442-012-2393-x
- Cramer, V. A., Thorburn, P. J., & Fraser, G. W. (1999). Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia. *Agric. Water Manag*, 39, 187 204. https://doi.org/10.1016/S0378-3774(9)00078-X
- Dansgaard, **W.** (1964). Stable isotopes in precipitation. *Tel/us*, 16, 436 468. htt ps://doi.org/10.3402/tellusa.v16i4.8993
- Dardanelli, J. L., Bachmeier, O. A, Sereno, R., & Gil, R. (1997). Rooting depth and soil water extraction patterns of different crops in a silty loam haplustoll. F. Crop. Res., 54, 29 - 38. htt ps://doi.org/10.1016/ S0378-4290(97)00017-8
- Dawson, T. E., & Ehleri nger, J. R. (1991). Streamside trees that do not use stream water. *Nature*, 350, 335-337. https://doi.org/10.1038/ 350335a0
- Dawson, T. E., & Ehleri nger, J. R (1993). Isotopic enrichment of water in the "woody" tissues of plants: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochimica et Cosmochimica Acta, 57, 3487-3492. htt ps://doi.org/10.1016/001 6-7037(93)90554-A
- Eggemeyer, K. D., Awada, T., Harvey, F. E., Wedin, D. A., Zhou, X., & Zanner, C. W. (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grass land. *Tree Physiology*, 29, 157 1 69. htt ps: //doi.o rg/10.1093/t ree phys/tp nOl 9
- Ehle ringer, J. R., & Dawson, T. E. (1992). Water uptake by plants: Perspectives from stable isotope composition. *Plant, Cell & Environment, 15*, 1073-1082. https://doi.org/10.1111/j.1365-3040.1992.tb01657.x
- Eller, C. B., Burgess, S. S. O., & Oliveira, R. S. (2015). Environmental controls in the water use patterns of a tropical cloud forest tree species Drimys brasiliensis (Winteraceae). *Tree Physiology*, *35*, 387 399. htt ps://doi.org/10.1093/treephys/tpvO01
- Evaristo , J., McDonnell, J. J., & Cle mens, J. (2017). Plant source water apportionment using stable isotopes: A comparison of simple linear, twocompartment mixing model approaches. *Hydrological Processes*, 31 , 3750 - 3758. https://doi.org/10.1002/hyp.11233

Ewe, S. M. L., Sternberg, L.S. L., Childers, D. L., & Ewe, S. M. L. (2018). Seasonal plant water uptake patterns in the saline southeast Everglades ecotone. *Oecologia*, 152, 607 - 616.

- Federer, C. A. (1979). A soil-plant-atmosphere model for transpiration and availability of soil water. *Water* Resources *Research*, 15, 555 562. https://doi.org/10.1029/WR015i003p00555
- Flanagan, L. B., Orchard, T. E., Tremel, T. N., & Rood, S. B. (2019). Using stable isotopes to quantify water sources for trees and shrubs in a riparian cottonwood ecosystem in flood and drought years. *Hydrological Processes*, 33, 3070 - 3083. https://doi.org/10.1002/hyp. 13560
- Gardner, W. R., Hillel, D., & Benyamini, Y. (1970). Post-irrigation movement of water- Redistribution. Water Reources Res., 6, 851-861. https://doi.org/10.1029/WR006i003p00851
- Goebel, T. S., & Lascano, R. J. (2019). Rainwater use by cotton under subsurface drip and center pivot irrigation. Agricultural Water Management, 215, 1-7. https://doi.org/10.1016/j.agwat 2018.12.027
- Goebel, T. S., Lascano, R J., Paxton, P. R., & Mahan, J. R. (2015). Rainwater use by irrigated cott on measured with stable isotopes of wat er. /1.gri cultural Water Management, 158, 17-25. https://doi.org/10.1016/j. agwat.2015.04.005
- Gomez-Navarro, C., Pataki, D. E., Bowen, G. J., & Oerter, E. J. (2019). Spatiotemporal variability in water sources of urban soils and trees in the semiarid, irrigated Salt Lake Valley. *Ecdi ydrology*, 12, 1-16. https://doi.org/10.1002/eco.2154
- Granier, A, Reichstein, M., Breda, N., Janssens, I. A, Falge, E., Ciais, P., ... Wang, Q. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. /1,gricultural and Forest Meteorology, 143,123-145. https://doi.org/10. 1016/j.agrformet.2006.12.004
- Green, M. B., Laursen, B. K., Campbell, J. L., Mcguire, K. J., & Kelsey, E.P. (2015). Stable water isotopes suggest sub-canopy water recycling in a northern for ested catchment. *Hydrological Processes*, 29, 5193 5202. https://doi.org/10.1002/hyp.10706
- Grossiord, C., Gessler, A., Granier, A., Berger, S., Brechet, C., Hentschel, R., ... Bonal, D. (2014). Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. *Journal of Hydrology*, 519, 3511- 3519. https://doi.org/10.10\_16/j. jhydrol.2014.11.011
- Grossiord, C., Sevanto, S., Bonal, D., Borrego, I., Dawson, T. E., Ryan, M.,... McDowell, N. G. (2018). Prolonged warming and drought modify belowground interactions for water among coexisting plants. Tree *Physiology*, 39, 55-63. https://doi.org/10.1093/treephys/tpy080
- Grossiord, C., Sevanto, S., Dawso n, T. E., Adams, H. D., Collins, A. D., Dickman, L. T., ... McDowell, N. G. (2017). Warming combined with more extreme precipitation regimes modifies the water sources used by trees. *The New Phytologist*, 213, 584-596. https://doi.org/10.1111/nph.14192
- Harrison, J. L., Reinmann, A. B., Maloney, A. S., Phillips, N., Juice, S. M., W ebster, A. J., & Templer, P. H. (2020). Transpiration of dominant tree species varies in response to projected changes. In Oimote: *Implications for Composition and Water Balance of Temperate Forest Ecosystems*. Ecosystems. https://doi.org/10.100.7/s100.21-020-004.90-y
- Harrison, J. L., Sa nders-DeMott, R., Re inmann, A B., Sorensen, P. 0 ., Phillips, N. G., & Templer, P. H. (In press). Growing season warming and winter soil freeze / thaw cycles increase transpiration in a northern hardwood forest *Ecology*.
- Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., ... Wolfe, D. (2007). Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics, 28, 381-407. htt ps://doi.org/10.1007/s00382-006-0187-8
- Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013). Terrest rial water fluxes dominated by transpiration. *Nature*, 496, 347-350. https://doi.org/10.1038/nature11983

Juice, S. M., Templer, P. H., Phillips, N. G., Ellison, A M., & Pelini, S. L. (2016). Ecosystem warming increases sap flow rates of northern red oak trees. *Ecosphere*, 7, 1-17. https://doi.org/10.1002/ecs2.1221

- Leen, J. B., Berman, E. S. F., Lie bson, L., & Gupta, M. (2012). Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes. The Review of Scientific Instruments, 83, 044305. https://doi.org/10.1063/1.4704843
- Li, E., Tong, Y., Huang, Y., Li, X., Wang, P., Chen, H., & Yang, C. (2019). Responses of two desert riparian species to fluctuating groundwater depths in hyperarid areas of Northwest China. *Ecohydrology*, 12,1-12. https://doi.org/10.1002/eco.2078
- Liu, Y., Zhang, X., Zhao, S., Ma, H., Qi, G., & Guo, S. (2019). The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang mountains. *Forests*, 10. https://doi.org/10.3390/f100 20121
- Mathe ny, A M., Fiorella, R. P., Bohrer, G., Poulsen, C. J., Morin, T. H., Wunderlich, A, ... Curtis, P. S. (2017). Contrasting strategies of hydraulic control in two codomi nant temperate tree species. *Ecohydrology*, 10, 1-16. https://doi.org/10.100 2/e co.1815
- McCulley, R L., Jobbagy, E. G., Pockman, W. T., & Jackson, R B. (2004). Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. *Oecologia*, 141, 620-628. https://doi.org/ 10.1007/ 2-004-1687-z
- Meizner, M., Ko hler, M., Schwendenmann, L., & Holscher, D. (2012). Partitioning of soil water among canopy trees during a soil desiccation period in a temperate mixed forest. *Biogeosciences*, 9, 3465 3474. https://doi.org/10.5194/bg-9-3465-2012
- Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., ... Tang, J. (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. *Proceedings of the National Academy of Sciences*, 108, 9508-9512.https://doi.org/10.1073/pnas.1018189108
- Mensforth, L. J., Thorburn, P. J., Tyerman, S. D., & Walker, G. R. (1994). International Association for Ecology Sources of Water Used by Riparian Eucalyptus camaldulensis Overlying Highly Saline Groundwater. Published by: Springer in cooperation with International Association for EcologyStable 100, 21-28. https://doi.org/10.1007/BF00317126
- Moore, G., Li, F., Kui, L., & West, J. (2016). Flood water legacy as a persistent source for riparian vegetation during prolonged d rought An isotopic study of Arundo donax on the Rio Grande. *Ecohydrology*, 9, 909-917. https://doi.org/10.1002/eco.1698
- Parnell, A. (2015). simmr: Astable isotope mixing model. R package version 0.3. https://cran.r-project\_org/web/\_packages/simmr/\_index.html
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R CoreTeam. (2012). nlme: Linear and nonlinear mixed effects models. R package version 3. 1-149. https://CRAN.R-project.org/package: nlme
- R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/.
- Reinmann, A. B., Susser, J. R., Demaria, E. M. C., & Templer, P.H. (2019). Declines in northern forest tree growth following snowpack decline and soil freezing. *Global Change Biology*, 25, 420-430. https://doi.org/10.1111/gcb.14420
- Ricard, J., Toabiasson, **W**., & Greatorex, A. (1976). The field assembled frost gage. Technical Note. Hanover, New Hampshire: Cold Regions Research and Engineering Labo ratory, U.S. Army Corps of Engineers.
- Robitaille, G., Boutin, R., & Lachance, D. (1995). Effects of soil f reezing stress on sap flow and sugar content of mature sugar maples (Acer saccharum). Canadian Journal of Forest Research, 25, 577 - 587. https:// doi.org/10.1139/x95-065
- Rothfuss, Y., & Javaux, M.(2016). Isotop ic approaches to quantifying root water uptake and redistribution: A review and comparison of met hods. \*Biogeocienos\*\* Discussions, 1-47. https://doi.org/10.5194/bg-2016-410
- Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B., & Temp ler, P. H. (2018). Growing season warming and winter f reeze-t haw cycles



- reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. *Biogeobemistry*, *137*, 337- 349. https://doi.org/10.1007/s10533-018-0422-5
- Schultz, N. M., Griffis, T. J., Lee, X., & Baker, J. M. (2011). Identification and correction of spectral contamination in 2H /1H and 180/160 measured in leaf, stem, and soil water. *Rapid Communications* in *Mass Spectrometry*, 25, 3360-3368.https://doi.org/10.1002/rcm.5236
- Schwinning, S., Davis, K., Richardson, L., & Ehleringer, J. R (2002). Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia, 130, 345 355. https://doi.org/10.1007/s00442-001-0817-0
- Simonin, K. A, Link, P., Rempe, D., Miller, S., Oshun, J., Bode, C., ... Dawson, T. E. (2014). Vegetation induced changes in the stable isotope composition of near surface humidity. *Ecohydrology*, 7, 936-949. https://doi.org/10.1002/eco.1420
- Smith, S. D., Wellington, AB., Nachlinger, J. L., & Fox, C. A. (1991). Functional responses of riparian vegetation to streamflow diversion in the Eastern Sierra Nevada. *Ecological Applications*, 1, 89-97. https://doi.org/10.2307/1941850
- Snyder, K. A., & Williams, D. G. (2003). Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite). *Functional Ecology*, 17, 363-374. https://doi.org/10.1046j.1365-2435. 2003.00739.x
- Sorensen, P. 0., Finzi, A. C., Giasson, M. A., Reinman, A. B., Sanders-DeMott, R., & Templer, P. H. (2018). Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biology and Biochemistry, 116, 39-47. https://doi.org/10.1016/j.soilbio2017.09.026
- Sorensen, P. 0., Templer, P. H., Christenson, L, Duran, J., Fahey, T., Fisk, M. C., ... Finzi, A. C. (2016). Reduced snow cover alters rootmicrobe interactions and decreases nitrification rates in a northern hardwood forest *Ecology*, 97, 3359 - 3367. https://doi.org/10.1002/ ecy.1599
- Sun, S. J., Meng, P., Zhang, J. S., & Wan, X. (2011). Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. *Tree Physiology*, 31, 1378-1389. https://doi.org/ 10.1093/treephys/tpr116
- Templer, P. H., Harrison, J. L., Blagden, M., Green, M. B., & Salvucci, G. D. (2020a). Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest: Soli water isotopic composition. Data Initiat: Environ. htt ps://doi.org/10.6073pasta/e454102b8aa042Sde1507e4fafa5f545
- Templer, P. H., Harrison, J. L., Blagden, M., Green, M. B., & Salvucci, G. D. (2020b). Oimate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest Branch Xylem Water Isotopic Composition. Environ. Data Initiat https://doi.org/10.6073pasta/dd6fe0531c33de00c74c8e03d9079aed
- Templer, P. H., Reinman,n A B., Sanders-Demott, R, Sorensen, P. 0., Juice, S. M., Bowles, F., ... Grant, N. (2017). Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-cover ed ecosystems. PLoS *ONE*, *12*, 1-13. https://doi.org/10.1371/journal.pone.0171928
- Tierney, G. L., Fa hey, T. J., Groffrnan, P. M., Hardy, J. P., Fitzhugh, R. D., & Driscoll, C. T. (2001). Soil freezingalters fine root dynamics in a northern hardwood forest *Biogeochemistry*, 56, 175-190. https://doi.org/10.1023/A:1013072519889

- Vargas, A I., Schaffer, B., & Yuhong, L. (2017). Test ing plant use of mobile vs immobile soil water sources using stable isotope experiments. *The New Phytologist*, 215, 582-594. https://doi.org/10. 1111/nph.14616
- Wei, Y. F., Fang, J., Liu, S., Zhao, X. Y., & Li, S. G. (2013). Stable isotopic observation of water use sources of *Pinus sylvestris* var. *mongolica* in Horqin Sandy Land, China. *Trees Strud . Funct , 27,* 1249- 1260. https://doi.org/10.1007/s00468-013-0873-1
- West, A., Patrickson, S., & Ehleringer, J. (2006). Water extraction times for plantand soil materials used in stable isotope analysis. *Rapid Communications in Mass Spectrometry*, 20, 1317 1321. htt ps://doi.org/10.1002/rcm
- West, AG., Goldsmith, G. R., Mati mati, I., & Dawson, T. E. (2011). Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio inf rared spectroscopy (IRIS). Rapid Communications in Mass Spectrometry, 25, 2268-2274. https://doi.org/10.1002/rcm.5126
- White, J. W. C., Cook, E. R., Lawrence, J. R., & Broecker, W. C. (1985). The ratios of sap in trees: Implications for water sources and tree ring ratios. Geochim ica et Cosmochimica Acta, 49, 237-246. ht tps://doi. org/10.1016/0016-7037(85)90207-8
- Williams, D. G., & Ehleringer, J. R. (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. *Ecological Monographs*, 70, 517-537.
- Wint er, T. C., Buso, D. C., Shattuck, P. C., Harte, P. T., Vroblesky, D. A, & Goode, D. J. (2008). The effect of terrace geology on ground-wat er movement and on the int eraction of ground water and surface water on a mountainside near Mirror Lake, New Hampshire. *USA. Hydro/.* Proc ess., 22, 21- 32. https://doi.org/10.1002/hyp.6593
- Wu, H., Li, J., Li, X. Y., He, B., Liu, J., Jiang, Z., & Zhang, C. (2018). Contrasting response of coexisting plant's water-use patterns to experimental precipitation manipulation in an alpine grassland community of Qinghai Lake watershed, China. *PLoS ONE*, 13, 1-18. https://doi.org/10.1371/journal.pone.0194242
- Yanai, R. D., Park, B. B., & Hamburg, S. P. (2006). The vertical andhorizontal distribution of roots in northern hardwood stands of varying age. Canadian Journal of Forest Research, 36, 450 - 459. https://doi.org/10.1139/x05-254
- Zimmerman, U., Ehhalt, D., & Munnich , K. (1967). Soil water movement and evapotranspirat ion: Changes in the isotopic composition of water. In Isotopes *in Hydrology*.

## SUPP ORT IN G INF ORM ATI ON

Additional supporting information may be found online in the Supporting Information section at the end of thisarticle.

How to cite this article: Harrison JL, Blagden M, Green MB, Salvucci GD, Templer PH. Water sources for red mapletrees in a northern hardwood forest under a changing climate.

Ecoh ydrology. 2020;e2248. https://doi.org/10.1002/eco.2248