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Abstract The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)
was launched to the International Space Station on 29 June 2018 by the National Aeronautics and Space
Administration (NASA). The primary science focus of ECOSTRESS is centered on evapotranspiration (ET),
which is produced as Level-3 (L3) latent heat flux (LE) data products. These data are generated from the
Level-2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface
and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS
clear-sky ET product (L3_ET_PT-JPL, Version 6.0) against LE measurements at 82 eddy covariance sites
around the world. Overall, the ECOSTRESS ET product performs well against the site measurements
(clear-sky instantaneous/time of overpass: r* = 0.88; overall bias = 8%; normalized root-mean-square error,
RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times

of day (ECOSTRESS samples the diurnal cycle), though temperate sites are overrepresented. The 70-m-high
spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1-km pixels.
This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for
subsequent science that follows using these data.

1. Introduction

Remote sensing of evapotranspiration (ET) has advanced substantially over the past few decades (Fisher
et al., 2017). ET data are produced from a wide range of airborne and spaceborne sensors, instruments,
and missions from high spatial resolution to global coverage (Allen et al., 2007; Anderson et al., 2011;
Fisher et al., 2008; Miralles et al., 2011; Mu et al., 2011; Su, 2002). These data are used in, for example, bio-
diversity assessments (Fisher et al., 2011; Gaston, 2000), regional water balance closures (Armanios &
Fisher, 2014; Y. Chen et al., 2014; Marshall et al., 2012; Sahoo et al., 2011), studies of climate and cloud for-
mation (Molders & Raabe, 1996; Rabin et al., 1990; Shukla & Mintz, 1982), agricultural management (Allen
etal., 1998; Allen et al., 2011; Farahani et al., 2007), water resources decision-making (Anderson et al., 2012;
Bastiaanssen et al., 2005), detection of drought and heat waves (Miralles et al., 2014; Otkin et al., 2014; Rind
et al., 1990; Vicente-Serrano et al., 2010), urban heat islands (Oke, 1982; Taha, 1997), and water rights litiga-
tion (Allen et al., 2005; Anderson et al., 2012). Nonetheless, until recently, there remained a large gap in our
ability to monitor ET concurrently at both fine spatial and fine temporal scales globally. For example,
Landsat has provided fine spatial resolution (>60 m) but poor temporal resolution (16 days); Moderate reso-
lution Imaging Spectroradiometer (MODIS)/Visible Infrared Imaging Radiometer Suite has provided fine
temporal resolution (daily), but moderate spatial resolution (=375 m) (Allen et al., 2011, 2007; Anderson
et al,, 2012; X. Chen et al., 2008; Kilic et al., 2016). As polar orbiters, all of these missions miss the diurnal
cycle, passing over the same spot on Earth at the same time, every time. On the other hand, geostationary
satellites such as GOES capture the diurnal cycle, but lack cohesive global coverage, and suffer from even
worse spatial resolution (>3 km) (Fisher et al., 2017).

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was
launched to the International Space Station (ISS) on 29 June 2018. ECOSTRESS is a thermal radiometer built
by National Aeronautics and Space Administration (NASA)'s Jet Propulsion Laboratory (JPL) that measures
thermal infrared radiation (TIR) in five bands from 8- to 12.5-um wavelengths, plus an additional sixth band
at 1.6 um for geolocation and cloud detection (ecostress.jpl.nasa.gov). On board the ISS, which has an irre-
gular orbit (rather than a regular polar or geostationary orbit), ECOSTRESS collects measurements continu-
ously between ~52°N and ~52°S at different times of day. The overpass return frequency for any same spot on
Earth is 1-5 days, depending on latitude, with some areas measured multiple times in a single day (particu-
larly the higher latitudes where the ISS orbital direction shifts) within the ECOSTRESS swath width of
384 km (Figure 1). The pixel size at nadir is 38 m X 69 m, which is resampled by the ECOSTRESS data
production software to 70-m x 70-m pixels for noise reduction and ease of use. As such, ECOSTRESS now
provides a combination of good spatial and temporal resolutions with diurnal cycle sampling.

ECOSTRESS produces four levels of data products, with each increasing level incorporating additional ancil-
lary information. The first data-product level includes raw instrument and calibration information (L0-1A)
(Logan & Johnson, 2015), calibrated at-sensor radiances (L1B_RAD), and geolocation (L1B_GEO) (Smyth &
Leprince, 2018). The second data-product level incorporates additional data from numerical weather
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Figure 1. The 384-km swath width, high spatial resolution (70 m x 70 m) and accuracy of ECOSTRESS provide
field-scale detail and large coverage of evapotranspiration worldwide. Here, ECOSTRESS is acquiring data over
Texas, USA, showing differences between pivot irrigation fields as well as within fields.

prediction for atmospheric correction (Malakar & Hulley, 2016; Matricardi, 2008; Saunders et al., 1999) to
generate land surface temperature and emissivity (L2_LSTE) and a cloud mask (L2_CLOUD) using the
Temperature and Emissivity Separation retrieval algorithm also used in other missions (Gillespie
et al., 1998; Hulley et al., 2017; Hulley & Hook, 2011; Hulley & Hook, 2018). The third data-product level
incorporates additional atmospheric data from MODIS and surface properties from MODIS and Landsat
to generate ET (as the latent heat flux, LE), including the ET components of canopy transpiration, soil
evaporation, and interception evaporation using the Priestley-Taylor (PT) JPL retrieval algorithm
(L3_ET_PT-JPL) (Fisher et al, 2008; Fisher & ECOSTRESS algorithm development team, 2015;
Halverson, 2018). An additional ET product (L3_ET_ALEXI) is produced for a subset of agricultural sites
in the United States with the Disaggregated Atmosphere-Land Exchange Inverse model (Anderson,
Kustas, et al., 2013). Finally, the fourth data product level includes a stress index based on the
Evaporative Stress Index (ESI) (Anderson et al., 2010; Anderson, Hain, et al., 2013; Otkin et al., 2013)
(L4_ESI_PT-JPL; L4_ESI ALEXI), and a water use efficiency (WUE) product (L4_WUE) (Fisher &
ECOSTRESS algorithm development team, 2018), the latter of which originally incorporated gross primary
production from MODIS (Zhao et al., 2005), but switched to a native 70 m gross primary production product
retrieved using the Breathing Earth System Simulator algorithm (Ryu et al., 2011).

At the outset, the ECOSTRESS Early Adopters program was the largest in NASA history, with a large com-
munity of scientists using ECOSTRESS data for a wide variety of applications (ecostress jpl.nasa.gov/early--
adopters). NASA develops Early Adopters programs for new missions to enable support for learning to use
the data products while the mission and data production are still in development. Nonetheless, it is essential
that ECOSTRESS data are validated first to provide an assessment of accuracy and error before these scien-
tific investigations can be established. Validation is a necessary and important first step to launch these
science investigations forward. First, the L1 and L2 products were validated in Hook et al. (2019), who
reported uncertainties for those products at <1 K. The objective of this study is to conduct the initial valida-
tion and error assessment of the global ECOSTRESS ET product (L3_ET_PT-JPL). Specifically, we ask: how
well does ECOSTRESS capture ET across different biome types and climate zones? Are there biases in
ECOSTRESS across different times of day?

To conduct this analysis, we used ET measurements from eddy covariance sites (Baldocchi, 2008; Baldocchi
et al., 2001). Typically, eddy covariance data sets require many months to years for systematic collection,
organization, consistency, gap-filling, energy balance closure, spike removal, quality flags, and other proces-
sing procedures (Baldocchi, 2003; Falge et al.,, 2001; Foken, 2008; Moffat et al., 2007; Papale et al., 2006;
Wilson et al., 2002). In order to develop an initial preliminary and fast error assessment for ECOSTRESS
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to allow the science community to proceed forward, we collected as large a data set as fast as possible, con-
ducting a rapid processing of data from over a hundred disparate eddy flux sites. Consequently, we classify
this as the Land Product Validation Stage 1 (Committee on Earth Observation Satellites; 1pvs.gsfc.nasa.gov),
or preliminary validation, with the understanding that both future refined eddy flux-based validation data
sets and fully processed versions will become available, as well as further reprocessing for future versions
of the ECOSTRESS data.

2. Methods
2.1. ECOSTRESS ET Data

The ET retrieval approach for the ECOSTRESS L3_ET_PT-JPL product is the PT-JPL algorithm (Fisher
et al., 2008), which has been widely validated throughout the literature as one of the top performing global
remote sensing ET models (e.g., Y. Chen et al., 2014; Ershadi et al., 2014; Gomis-Cebolla et al., 2019; Jiménez
et al., 2018; McCabe et al.,, 2016; Michel et al., 2016; Miralles et al., 2016; Polhamus et al., 2013; Purdy
et al., 2018; Talsma et al., 2018; Vinukollu et al., 2011). Through ecophysiological constraint functions,
PT-JPL retrieves actual ET by reducing potential ET (PET) starting with the PT equation (Fisher et al., 2011;
Priestley & Taylor, 1972):

PET = a—23 Ry €))
A4y

where A is the slope of the saturation-to-vapor pressure curve, dependent on near-surface air temperature
(Tg; °C) and water vapor pressure (e,; kPa), y is the psychrometric constant (0.066 kPa/°C), R, is net radia-
tion (W/ m?), and « is the PT coefficient of 1.26 (unitless); PET is in units of W/m?>.

A series of ecophysiological scalar functions (unitless; 0-1), based on atmospheric vapor pressure deficit
(Dg; kPa), relative humidity (RH; fraction), and vegetation indices, including normalized difference and
soil adjusted vegetation indices (NDVI and SAVI; unitless), simultaneously reduce PET to actual ET,
and partition total ET into three sources for canopy transpiration (ET.), soil evaporation (ET;), and
interception evaporation (ET;):

ET = ET, + ET; + ET; 2

BT = (1~ fafut s Roc @

BT, = (fue + (1 ~Foa)t 53 (R =) @
ET; =f,,a ALHRM (5)

fr=e (1;&) (6)

Topt = Tmax at max (R,, Ta %) Y

where f,,,, is relative surface wetness (RH") (Stone et al., 1977), J, is green canopy fraction (f4par/frpar)
(Zhang et al., 2005), fr is a plant temperature constraint (June et al., 2004; Potter et al., 1993), fjs is a plant
moisture constraint (f4par/faparmax) (Potter et al., 1993), and fgy, is a soil moisture constraint (RHP=)
(Bouchet, 1963; Fisher et al., 2008). fapar is absorbed photosynthetically active radiation (PAR), fipar is
intercepted PAR, T, (°C) is the optimum temperature linked to plant phenology, and G is the soil heat flux
(W/m?) (Purdy et al., 2016). R,,. and R, are R,, for the canopy and the soil, respectively, based on leaf area
index derived from NDVL PT-JPL is run globally and continuously in space and time with no need for cali-
bration or site-specific parameters.

R,, is partitioned into the upward and downward shortwave and longwave components:
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Rn= (RSD_RSU) + (RLD_RLU) (8)

where Rgp is downwelling shortwave radiation, Rgy is upwelling shortwave radiation, Ryp is downwelling
longwave radiation, and Ry is upwelling longwave radiation. The R,, components are retrieved implement-
ing the Forest Light Environmental Simulator (Iwabuchi, 2006; Kobayashi & Iwabuchi, 2008) and Breathing
Earth System Simulator (Ryu et al., 2011, 2012, 2018). Rsp is calculated from eight inputs: (1) solar zenith
angle, (2) aerosol optical thickness at 550 nm, (3) cloud optical thickness, (4) land surface albedo, (5) cloud
top height, (6) atmospheric profile type, (7) aerosol type, and (8) cloud type (Ryu et al., 2018). Rg is calcu-
lated from broadband surface albedo, which integrates black and white sky albedo, and Rgp. Ry, and R; ;yare
calculated from Stefan-Boltzmann's law using LST, emissivity, and T, (Prata, 1996; Verma et al., 2016).

ECOSTRESS additionally computes ET using two other models, which are not provided as standard ET data
products but are used to produce a multimodel uncertainty product as the standard deviation among the
three models: a Penman-Monteith (Monteith, 1965)-based model (PM-Mu) (Mu et al., 2007, 2011) and the
Surface Energy Balance System (SEBS) (Su, 2002).

PM-Mu partitions total ET into ET,, ET;, and ET}:

ET, — (ARwf +PCpDaf 5) (1 — fwer)
A+ y(l +§f)

©)

_ (ARus+PCDuf 8o, (AR +PCoDuf ) (1= i)
T Ak n ek

(10)

ET,' _ (ARm:Fc + PCPDﬂfoghm) wet
(a+7e)

where C,, is the specific heat of air at constant pressure (-kg K1), pis air density (kg/ m>), gg is aerody-
namic conductance of dry canopy (s/m), gs is stomatal conductance, g, is aerodynamic canopy conduc-
tance, g,. is wet canopy conductance, g,, is soil aerodynamic conductance, and g, is soil total
conductance. Mu et al. (2011) provide constants for the conductances in a biome-specific lookup table.

@

SEBS is a single-source approach that targets the sensible heat flux (H), calculating ET from the residual of
the energy balance:

ET = AET (12)

H—H,

Ay=1— et
Hdry_Hm

(13)

Hyp = (R, — G) (14)

where A, is the relative evaporation, ET ., is the wet limit of ET, H,,., is the wet limit of sensible heat flux,
Hgyy, is the dry limit of sensible heat flux and H s the actual sensible heat flux (W/m?). This was later updated
to the TSEB model.

The ECOSTRESS L2 product is used for LST and broadband emissivity. Landsat is used for ancillary surface
properties NDVI, SAVI, and albedo. MODIS is used for ancillary atmospheric properties (with cloud
gap-filling from the National Centers for Atmospheric Prediction) and to gap-fill cloudy Landsat surface
properties (MODIS surface products are provided as gap-filled multiday aggregates) (Famiglietti et al., 2018;
Fisher & ECOSTRESS algorithm development team, 2015; Verma et al., 2016). PT-JPL, PM-Mu, and
SEBS/TSEB are all forced with the same input data for shared variables, including uniform calculation of,
for example, R,, and G. The multimodel uncertainty product provides spatiotemporally varying information,
necessary because a constant uncertainty value cannot be applied to the ET estimates. This is due to
non-Gaussian and spatiotemporally variable controls on ET, derived from Monte Carlo sensitivity
experiments, Gaussian error propagation, and Method of Moments uncertainty quantification
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Figure 2. The 155 eddy covariance sites from around the world, covering 14 vegetation classes (International Geosphere-Biosphere Programme; IGBP) and
15 climate zones (KGppen-Geiger), provided evapotranspiration validation data for ECOSTRESS across a wide range of conditions. Insets show landscape detail at

a selection of sites.

(Fisher et al., 2005, 2008). More information and detail on all the approaches can be found in the
respective references.

2.2, Eddy Covariance Data

Eddy covariance measurements of LE were collected for this study from 155 towers around the world from
July 2018 (just after ECOSTRESS launch) to July 2019 (Figure 2 and supporting information Table S1). There
were two ECOSTRESS recording gaps during this period (29 September to 5 December 2018 and 14 March to
15 May 2019) due to engineering anomalies that have since been resolved, thus limiting the full potential
extent of coverage in the first year. Of those 155 sites, ECOSTRESS obtained clear-sky data during this period
for 120 of the sites. The eddy covariance data also were not consistently continuous across all sites. After
quality control on both ECOSTRESS and eddy covariance data, 82 sites were ultimately used. The majority
of sites were located in North America (104), with additional sites spread across Europe (23), Central and
South America (5), Africa (2), Asia (3), the Middle East (2), and Australia and New Zealand (16). Fifteen
of the 23 Képpen-Geiger climate zones (Peel et al., 2007) were represented: humid subtropical, Cfa (27); tem-
perate oceanic, Cfb (24); warm-summer humid continental, Dfb (24); hot-summer Mediterranean, Csa (17);
cold semiarid, Bsk (16); tropical savanna, Aw (7); warm-summer Mediterranean, Csb (4); hot-summer
humid continental, Dfa (8); warm, dry-summer continental, Dsb (4); hot semiarid, Bsh (5); subarctic, Dfc
(3); monsoon-influenced hot-summer humid continental, Dwa (3); tropical monsoon, Am (2); hot deserts,
Bwh (3); and cold desert, Bwk (1). Fourteen of the 17 International Geosphere-Biosphere Programme
(IGBP) vegetation classes (Loveland et al., 1999) were represented, with the plurality in croplands (40);
and the rest in evergreen needleleaf forests (26); grasslands (23); deciduous broadleaf forests, (22); open
shrublands (9); savannas (6); evergreen broadleaf forests, EBF (6); permanent wetlands (5); woody savannas
(5); closed shrublands (5); mixed forests (5); water bodies (1); cropland/natural vegetation mosaics (1); and
deciduous needleleaf forests (1). Moreover, within vegetation classes there was large site variation, adding to
the sampling diversity. Many different agricultural crops were included, ranging from corn and potatoes to
almond orchards and rice fields, for example. Forest sites ranged from recently planted pine trees to 100
+year-old oak forests. Alpine grasslands, peat bogs, saltwater marshes, and desert grasslands also contrib-
uted to the diverse data set.

Large synthesis databases coinciding with the recent time period of this analysis were not yet available, so we
collated sites individually. Potential sites were identified from a wide variety of methods and sources:
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AmeriFlux (ameriflux.lbl.gov), FLUXNET (fluxnet.fluxdata.org/sites/site-list-and-pages), EuroFlux
(europe-fluxdata.eu), OzFlux (ozflux.org.au), AsiaFlux (asiaflux.net), NEON (neonscience.org), Tropi-Dry/
Enviro-net (tropi-dry.org; enviro-net.org), literature review, and personal communication. Additionally, site
point of contacts (POCs) or principal investigators (PIs) were asked if they knew of other sites in the region.
We developed individualized emails based on research of the contacts and sites, and networks or other con-
nections, to establish a social connection to facilitate response. Data from 35% of the sites (54) came from flux
data networks; data from the other 101 sites were received directly from PIs. Coauthorship (and gratitude)
was offered for data use. Introduction to other site POCs/PIs by already established partners led to a higher
likelihood of positive response and subsequent data contribution and collaboration. Nearly every contact
made led to at least an attempt to contribute data. The flux community in general was very supportive
and interested in supporting a new and novel NASA mission linked directly to their shared science interests.

Each site POC/PI was contacted to discuss a number of details, including the operational status of their
tower from July 2018 onward, verification of site descriptive information, confirmation of the required vari-
ables, and ability to deliver data relatively quickly (e.g., <1 month). To facilitate participation, a suggested
formatting, delivery, and quality assurance/quality control (QAQC) was offered, but not required. As such,
multiple data delivery mechanisms, formats, and QAQC were ultimately ingested. Data came from email
attachments, institutional servers and websites, automatic SFTP and FTP downloads, and continuously
updated internet-based services such as Google sheets. More than a dozen data formats were received across
DAT, ASCII, text, Microsoft Excel (XLSX), comma/tab separated value (CSV/TSV), Hierarchical Data
Format (HDF/H5), WINACE (.C*, .m**, .s**), Touchstone/SnP (s34, s46, c00, m34, and m36), and Block
Compression (BC1).

The data received varied widely in level of processing, from extensive to raw. As needed, we formatted data
for consistency, including renaming data gaps with NaN, conversion of timestamps to ECOSTRESS time-
stamps, and resampling of time steps finer than 30 min to 30-min time steps (for ease of analysis, under-
standing that ECOSTRESS does not overpass exactly on the hour/half-hour). We matched data to quality
flags and excluded data that were flagged from the source data as either “poor quality” or “not a direct obser-
vation” (Foken et al., 2004; Foken & Wichura, 1996; Gockede et al., 2008). Given the recency of these data,
we identify these data as initial estimates, which may be subject to change once ingested into repositories
and network-wide QA/QC applied. This limits the quality of our analysis, partially obviated by the large
number of sites.

Finally, we processed the data through the FLUXNET 2015 data processing standards and code for
half-hourly energy balance closure (fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing)
(Foken, 2008; Stoy et al., 2013; Twine et al., 2000; Wilson et al., 2002). The method produces a range of uncer-
tainty on the eddy covariance measurements as well. The method requires data availability for LE, R,,, H, and
G; 30% of the 155 sites were unable to provide all of these data, in which cases the statistical distribution in
energy balance closure across all available sites was applied to these sites. The range in lack of closure across
the sites varied from 10% (Q1, 25th %), 30% (Q2, median), and 50% (Q3, 75th %). As such, we included these
closure quartiles to those 30% of sites that did not provide enough data for site-specific closure, flagging
them, and those sites with Q3 energy balance closure, for additional assessment. These sites were given
energy balance closures of 30% with uncertainties ranging from 10% to 50%. Ultimately, we found that these
flagged sites mostly did not noticeably degrade the comparison against ECOSTRESS.

2.3. Analysis

ECOSTRESS instantaneous LE (time of overpass), uncertainty, quality flags, and cloud mask were used in
this analysis. For each daytime ECOSTRESS scene collected over a flux tower, a selection of 5 by 5 pixels
(70 m x 70 m for each pixel) was extracted centered on the tower coordinates, providing a subset
350-m X 350-m scene for each site. The mean, median, and interquartile ranges were calculated for the
5 x 5 subset, as well as for a further refined subset of 3 x 3 pixels (210 m x 210 m) meant to mitigate impacts
from landscape heterogeneity or smaller tower footprints. These subsets were selected based on conservative
assumptions of general footprint sizes. Generally, the 5 X 5 and 3 X 3 statistics were not statistically signifi-
cantly different from one another because eddy flux sites are commonly located in relatively homogeneous
landscapes. Nonetheless, some sites (especially agricultural sites) were located in very heterogeneous areas,
and differences in these calculations became more prevalent. We mostly used the 5 x 5 subset (70%) but
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visually examined each site in Google Earth to determine when the 3 X 3 subset should be used instead
(30%). Ideally, the spatially and temporally varying coordinates of each tower footprint (“footprint-aware”)
would be provided and ingested. This was not available, however; as such, the overall assessment of
ECOSTRESS error also includes some (unquantified) error due to footprint uncertainty (Chasmer et al., 2011;
DuBois et al., 2018; Montaldo & Oren, 2016; Xu et al., 2017). Dynamic footprint information should be
included in future validations. For comparison, we also evaluated a 1-km box around each tower (not all
sites were available for this larger comparison).

We used the ECOSTRESS L2 and L3 quality flags to filter for high quality ECOSTRESS data. The L3 quality
flag product, which itself is the combination of the quality flags of all of the ancillary inputs such as MODIS
and Landsat, is provided as integers but must be read as 8-, 16-, or 32-bit binaries. For example, with the
MODIS Cloud Mask flag, one-bit representation number can reveal: the cloud mask status flag (Bit 0), the
cloud mask cloudiness flag (Bits 1 and 2), day/night flag (Bit 3), sunglint flag (Bit 4), snow/ice flag (Bit 5),
and surface type flag (Bits 6 and 7). To decode each flag, one needs to shift the bit to the proper location
and read the appropriate length. Reading a quality flag 51 as an 8-bit binary would result in 00110011. In this
example, Bit 0 (read from the right to left) = 1 and would mean the data are useful. Specifically, data marked
with bad quality flags in the MODIS forcing data for clouds (MODO6; bit code 119 marks clear-sky condi-
tions) and aerosol optical depth (MODO4; bit codes 85 or 119 mark good conditions) were avoided as they
would introduce contamination into the ECOSTRESS ET retrieval. Users will also want to use the
ECOSTRESS uncertainty product for assessment of the ET quality, especially relative to the magnitude of
the retrieved ET estimate. After quality control and given available cloud-free and high-quality
ECOSTRESS acquisitions during this time period, 82 sites and 502 acquisitions were ultimately used for ana-
lysis, representing the majority of available site-to-satellite data pairs (supporting information Figure S1).

Our analysis of ECOSTRESS to eddy covariance measurements includes basic metrics of correlation, abso-
lute root-mean-square error (RMSE), and overall bias. We summarize these statistics across all sites, by
IGBP vegetation class, Koppen-Geiger climate zone, and time of day. For visualization and reduction, we
grouped the Képpen-Geiger climate zones into 7, the IGBP vegetation classes into 5, and the times of day
into 3. The Koppen-Geiger climate zones included (I) Bsh and Bwh (n = 5); (II) Bsk (n = 15); (IIT) Bwk
(n = 1); (IV) Aw and Cfa (n = 15); (V) Cfb (n = 13); (VI) Csa and Csb (n = 11); and (VII) Dfa, Dfb, Dwa,
and Dsb (n = 22). The IGBP vegetation classes included (I) croplands (n = 23); (II) deciduous broadleaf for-
ests and mixed forest (n = 13); (III) EBF (n = 2); (IV) evergreen needleleaf forests and deciduous needleleaf
forests (n = 8); and (V) grasslands, savannas, woody savannas, permanent wetlands, and open shrublands
(n = 36). The times of day included (I) <10 a.m. (n = 172); (II) 10 am. to 2 p.m. (n = 158); and (III) >2 p.
m. (n = 172). We note that although there was large diversity in the sites, they do not necessarily sample
a complete and unbiased statistical representation of the entire global land surface or their respective vege-
tation classes and climate zones (e.g., temperate sites are overrepresented); the available time window also
precludes analyses of interannual variability and seasonal analyses. Future validations with a longer
ECOSTRESS record and larger FLUXNET synthesis data sets should encompass such an analysis of repre-
sentative distributions (e.g., Chu et al., 2017; Famiglietti et al., 2018).

3. Results

ET from ECOSTRESS (L3_ET_PT-JPL) compared well against a wide range of eddy covariance sites, vegeta-
tion classes, climate zones, and times of day (Figures 3-5). For instantaneous ET, the * was 0.88, normalized
(by range) RMSE was 6%, and overall bias was 8% (Figure 4). The overall RMSE was 41.3 W/m? compared to
a mean of 182.0 W/m? and a range of 713.8 W/m?. The mean absolute bias was 19%. The eddy covariance
measurements were generally contained within ECOSTRESS uncertainty, which was often relatively well
constrained (Figures 3 and 4).

Correlation, RMSE, and bias were generally uniformly good across all group differentiations (Figure 5).
RMSE was relatively consistent across climate zones, though significantly lower in the Bwk and Csa-Csb cli-
mate zones. Bias was largest in the Bsh climate zone and consistently low across all the other climate zones.
RMSE was also relatively consistent across vegetation classes, though significantly lower in the EBF class,
and bias was largest in EBF. RMSE and bias were consistent across times of day. R* was generally consistent
across climate zones, vegetation classes, and times of day.
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Figure 3. ECOSTRESS evapotranspiration (L3_ET_PT-JPL; blue with gray uncertainty bars) matches to a wide range of eddy covariance sites (orange) from
around the world, covering 14 vegetation classes (International Geosphere-Biosphere Programme; IGBP) and 15 climate zones (Kppen-Geiger), sampling
throughout the diurnal cycle. A selection of 40 sites is shown here for a single day for illustration, from dry (top) to wet (bottom). On occasion, multiple
ECOSTRESS observations are taken throughout the same day at different times for a given site. Site name, latitude/longitude, vegetation class, and climate zone
are given for each site in the top right of the subpanels.

For comparison, we evaluated a 1-km box around a subset of towers to provide insight into accuracy
improvement with the ECOSTRESS high spatial resolution (Figure 6). As expected, most sites showed only
marginal improvement with the high spatial resolution. This is because most FLUXNET sites are, by design,
established in areas of relatively homogeneous surrounding land cover. However, many sites showed
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Figure 4. ECOSTRESS evapotranspiration (L3_ET_PT-JPL) aligns with in situ measurements of evapotranspiration
from 82 eddy covariance sites (n = 502 points) from around the world. Data shown here are for the clear-sky
instantaneous time of overpass. Each dot color corresponds to the text color of the site listed to the side of the scatterplot.
Multimodel uncertainty (thin vertical gray lines) is assigned to the ECOSTRESS value, and energy balance closure
uncertainty is assigned to the eddy covariance value (thin horizontal gray lines). The light gray shaded region around the
regression is the 95% confidence interval, and the dark gray shaded region is the prediction interval.

marked improvement with the high spatial resolution. These sites were primarily agricultural, though some
natural ecosystems also benefited from the high spatial resolution, due to large landscape heterogeneity
around the respective sites. Generally, 1-km pixels underestimated eddy covariance ET. This means that
the land surrounding flux sites tended to be drier than the flux site. This difference may be due to
irrigation for agricultural sites, or generally good growing conditions for natural ecosystems (Jung
et al., 2011). Relative to the eddy flux data, the high spatial resolution of ECOSTRESS ET improved
correlation by 85% (0.76 to 0.89) and normalized RMSE by 62% (13% to 8%). Note that the error from a
1-km pixel from, for example, MODIS, may be even greater than we report because each of our 1-km
boxes are centered perfectly on the tower site; a 1-km resolution imager would not necessarily be perfectly
centered on each site.

4. Discussion

These results were for the initial, or Stage 1, validation. Although previous analyses have shown good per-
formance of PT-JPL, results tend to be worse at the instantaneous level (generally better at daily/weekly/
monthly aggregates) (Y. Chen et al., 2014; Ershadi et al., 2014; Fisher et al., 2008; Fisher et al., 2009;
Jiménez et al., 2018; McCabe et al., 2016; Michel et al., 2016; Miralles et al., 2016; Polhamus et al., 2013;
Purdy et al., 2018; Talsma et al., 2018; Vinukollu et al., 2011). Some studies have shown PT-JPL to have a
high bias; so the small bias shown here was an improvement (Y. Chen et al., 2014; Jiménez et al., 2018;
McCabe et al., 2016; Polhamus et al., 2013; Purdy et al., 2018; Talsma et al., 2018). We postulate that the
results shown here are attributed to five main reasons: (I) the high spatiotemporal resolution of
ECOSTRESS; (II) systematic eddy covariance energy balance closure computation; (IIT) overrepresentation
of temperate ecosystems/underrepresentation of tropical ecosystems in the validation data set; (IV) careful
treatment and filtering of the ECOSTRESS quality flags and cloud mask; and (V); the high accuracy and pre-
cision of the ECOSTRESS measurement, L2(LSTE) product, and the PT-JPL model itself.
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Figure 6. The accuracy of remotely sensed against eddy covariance
evapotranspiration significantly improves with the high spatial resolution
of ECOSTRESS (70 m, blue) relative to 1-km pixels (orange).

Previous global-scale analyses of remotely sensed ET products and algo-
rithms, such as PT-JPL, have often been hindered by spatial resolutions
at 1 km or greater (e.g, MODIS) (e.g., Jiménez et al, 2018; Purdy
et al., 2018; Vinukollu et al., 2011; Yao et al., 2013). These resolutions
introduce pixel-to-footprint mismatch comparing a single pixel to eddy
covariance sites, which measure fluxes from footprints generally up to
1 km but usually much smaller, depending on tower height and wind
conditions (Allen et al., 2005; Baldocchi, 1997; B. Chen et al., 2009;
Gockede et al., 2004). Consequently, correlation coefficients may be
decreased due to pixel contamination outside the footprint (e.g., from
other land covers/uses) (e.g., Figure 6). In the case of ECOSTRESS, with
70-m pixels, multiple pixels are encompassed well within the approxi-
mately conservative footprint area here of 350 m x 350 m, or
210 m X 210 m, depending on the landscape conditions surrounding
each site. This sampling provides good representation of the footprint
while minimizing contamination. Still, as noted in the Methods, this
comparison could be improved further by more detailed spatiotemporal
information on footprint coordinates at each site (Montaldo &
Oren, 2016; Xu et al,, 2017). In comparison, Landsat-based ET valida-
tions contain comparable excellent spatial resolutions; but they often
lack the frequency of ET retrievals and multisite validation due to
limited temporal resolution (at most every 16 days) and challenges in
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data production (ET is not produced operationally from Landsat as it is for ECOSTRESS) (e.g., Allen
et al., 2005; Anderson et al., 2012; Senay et al., 2016).

Eddy covariance energy-balance closure varies significantly from site to site and even within a site from hour
to hour and season to season (Da Rocha et al,, 2009; Franssen et al,, 2010; Leuning et al., 2012; Stoy
etal., 2013; Wilson et al., 2002). What has not been historically well standardized, however, is how to correct
the data to account for the error indicative by that lack of energy-balance closure (Baldocchi et al., 2001; Barr
et al., 2006; Foken, 2008; Foken et al., 2011; Twine et al., 2000). The FLUXNET synthesis team, with contri-
butions from the larger eddy flux community, has established rigorous postprocessing procedures for eddy
covariance measurements, enabling a robust envelope of closure for all sites; this procedure was instituted
in the FLUXNET 2015 synthesis data set (Moffat et al., 2007; Papale et al., 2012, 2006; Pastorello et al., 2017).
Subsequently, a higher-quality eddy covariance observation is matched to the satellite-based estimate of ET.
The goodness of fit metrics between site and satellite, therefore, are likely improved because of improve-
ments in energy balance closure estimation and site level data quality.

It may be that the validation performance here is partially due to an overrepresentation of temperate ecosys-
tems in the validation data set, and an underrepresentation of other ecosystems, especially in the tropics. ET
in temperate ecosystems is typically easier to capture via satellite estimation than from tropical or semiarid
ecosystems (Ershadi et al., 2014; Fisher et al., 2009, 2017, 2008; Jiménezet al., 2018; Jung et al., 2010; McCabe
etal., 2016; Michel et al., 2016). Humid tropical ecosystems mix a multitude of species responses and water
use rates with a high radiation and moisture environment, in addition to cloud interference to the remote
measurement (Fisher et al., 2009; Gomis-Cebolla et al., 2019; Hasler & Avissar, 2007; Larson et al., 1999;
Vergopolan & Fisher, 2016; Werth & Avissar, 2004). A small percentage error in tropical ET estimation
can result in a large absolute flux error. ET from semiarid ecosystems is also challenging to estimate due
to strong biotic, or atmospherically decoupled, control over ET, as opposed to abiotic, or atmospherically
coupled, control largely dominating other ecosystems (Fisher et al., 2008; Fisher et al, 2017; Garcia
et al., 2013; Jarvis & McNaughton, 1986; Jung et al., 2010; Moyano et al., 2018; Nemani et al., 2003; Purdy
etal., 2018). In contrast, ET in temperate ecosystems tends to be strongly coupled to atmospheric conditions,
which also vary strongly diurnally and seasonally (Ershadi et al., 2014; Fisher et al., 2008; Jiménez et al., 2018;
Junget al., 2010; McCabe et al., 2016; Michel et al., 2016; Nemani et al., 2003; Purdy et al., 2018). Assuch, itis
relatively easy to capture temperate ET so long as the atmospheric conditions are well tracked. Here, the
majority of sites obtained were from the United States and temperate ecosystems, and under clear-sky con-
ditions, which also improve retrieval accuracy. We chose to include all of the sites in the analysis as we did
not have enough data to exclude or downweight/upweight sites for a more globally representative assess-
ment, as we have done with much larger synthesis data sets (e.g., Famiglietti et al., 2018). But this may inflate
the interpretation of ECOSTRESS performance at the global scale.

We cannot overstate the importance of incorporating the ECOSTRESS quality flags, cloud mask, and uncer-
tainty product in analyses such as validations. Often, validations ignore the quality flags altogether—both
from the satellite as well as in situ data, leading to incorrect assessment or attribution for error calculations.
In the case of ECOSTRESS, the L3_ET_PT-JPL product is the result of a combination of multiple sources of
data, each with their own quality flags and sources of error. These span from the ECOSTRESS L2 LSTE and
cloud mask products derived from the calibrated L1 products and ancillary numerical weather prediction
data, to the Landsat surface and MODIS atmospheric data, which include varying degrees of product levels.
The quality flags of the Landsat and MODIS data are worth noting here. Given the coarse temporal resolu-
tion of Landsat, especially when cloudy, ECOSTRESS shifts reliance to MODIS for surface properties (NDVI,
albedo) when the latest Landsat clear overpass becomes out of date (>16 days). This is now being improved
with incorporation of Sentinel 2AB data. For the MODIS atmospheric properties, which are retrieved gener-
ally with some diurnal time separation to ECOSTRESS, if there happens to be a cloud beneath MODIS but
not ECOSTRESS that day, then MODIS is in filled with numerical weather prediction data (e.g., backup
algorithm). As such, ECOSTRESS is sharper when tied more closely to Landsat than to MODIS for the sur-
face properties and more closely to MODIS than to the numerical weather prediction for the atmospheric
properties. This may or may not have bearing on the comparison to the eddy flux site, depending on land-
scape homogeneity/heterogeneity surrounding the site. It may be possible to incorporate higher temporal
resolution visible and near-infrared (VNIR) data from commercial cubesats (e.g., Planet) or other satellites
in the future to enable more coincident overpasses with the TIR acquisition (Aragon et al., 2018). These
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issues are relevant to future missions considering coincident versus separated TIR and VNIR measurements;
ET uncertainty can be significant when the TIR-VNIR temporal separation is large, and phenological change
(including agricultural harvest, deforestation, and leaf flush) is also significant (National Academies of
Sciences, Engineering, and Medicine, 2018). Here, we took the quality flags and cloud mask into careful con-
sideration at each site in order to ensure that the comparison against the eddy covariance measurement was
directly tied to the ECOSTRESS retrieval for each site and day. The ECOSTRESS multimodel uncertainty
product is the strongest predictor of ET quality. The larger uncertainty relative to the magnitude of the
retrieved ET estimate, the more likely the estimate has lower accuracy.

Finally, the performance of the ECOSTRESS ET validation may be due in part to the high accuracy (<1 K)
and precision (<0.2 K) of the ECOSTRESS measurement, the L2(LSTE) product, and the PT-JPL model
itself (Hook et al., 2019). PT-JPL is controlled by multiple drivers, from surface temperature and vegetation
characteristics to atmospheric properties, and the influence of those drivers varies depending on space and
time (Badgley et al., 2015; Fisher et al., 2017, 2008; Polhamus et al., 2013; Ryu et al., 2011). While it is pos-
sible to generate an approximate estimate of ET from vegetation and atmospheric properties alone, LST
dominates the ET signal at fine spatial scales, indicating when green vegetation is or is not transpiring
(Fisher et al., 2017) (supporting information Figure S2). Because of this sensitivity to LST by PT-JPL, the
accuracy and precision of the ECOSTRESS L2(LSTE) is critical to fine-scale ET estimates, such as in com-
parisons to eddy flux footprints (Fisher et al., 2013; Garcia et al., 2013). In turn, the accuracy and precision
of the L2(LSTE) product is a result of the ECOSTRESS instrument and L1 products themselves.
ECOSTRESS was built with a state-of-the-art combination of thermal bands, blackbody calibrations, spatial
resolution, temporal resolution, measurement accuracy, and precision, which, when used in conjunction
with the established Temperature and Emissivity Separation and atmospheric correction retrieval algo-
rithms, allows for a high-quality measurement that propagates upward through the higher-level ET and
other data products.

5. Conclusion

ECOSTRESS provides new thermal infrared temperature measurements from the vantage point of the ISS at
70-m spatial resolution, every 1-5 days, and sampling the diurnal cycle. These measurements are used to
generate a suite of data products, with the primary science focus on ET from the Level-3 latent heat flux
(LE) product (L3_ET_PT-JPL). We produced a relatively rapid and robust preliminary first Stage 1 validation
of ECOSTRESS clear-sky LE against 82 eddy covariance sites from around the world. ECOSTRESS LE
matched well with site measurements (instantaneous: P o= 0.88; overall bias = 8%; normalized
RMSE = 6%), showing good correlations and bias across a range of vegetation classes, climate zones, and
times of day. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and preliminary Stage
1 validation status for subsequent science that follows using these data.
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