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A B S T R A C T

Identifying the areal extent of bedrock outcrops and shallow soils has important implications for understanding
spatial patterns in vegetation composition and productivity, stream chemistry gradients, and hydrologic and soil
properties of landscapes. Manual methods of delineating bedrock outcrops and associated shallow soils are still
commonly employed, but they are expensive to implement over broad areas and often limited by representation
of polygon units. Few studies have automated the delineation of bedrock outcrops. These focused on delineation
approaches in landscapes with rapidly eroding hillslopes and sparse vegetation. The objectives of this study were
to assess the accuracy of visually interpreting high-resolution relief maps for locating bedrock outcrops and
associated shallow soil (BOSS)<50 cm deep in a heavily forested landscape, to use visually interpreted point
locations to train predictive models, and to compare predictions with manually delineated polygons in upland
glaciated landscapes. Visual interpretation of Lidar-derived 1 m shaded relief maps at Hubbard Brook
Experimental Forest (HBEF), USA resulted in a 79% accuracy of interpreting deep soil locations and 84% ac-
curacy in distinguishing BOSS. We explored four probabilistic classifications of BOSS using multiple Lidar-de-
rived topographic metrics as predictive variables. All four methods identified similar predictors for BOSS, in-
cluding slope and topographic position indices with a 15, 100 and 200 m circular analysis window, respectively.
Although all classifiers yielded similar results with little difference in interpretation, a generalized additive
model had slightly higher accuracy predicting BOSS presence, yielding 85% overall accuracy using independent
validation data across the primary study area, and 86% overall accuracy in a second validation area.

1. Introduction

Bedrock outcrops emerge at Earth’s surface where weathering pro-
cesses have greater potential to alter exposed bedrock than bedrock
covered with regolith (Humphreys and Wilkinson, 2007). In recently
glaciated landscapes, processes of glacial and post-glacial erosion and
deposition are likely as important as weathering in determining the
location and extent of bedrock outcrops and associated shallow soils
(BOSS). Differences in weathering processes as well as moisture and
physical characteristics of shallow soils have important implications for
understanding spatial patterns in vegetation composition and pro-
ductivity (Hahm et al., 2014; Kruckeberg, 2002; Meyer et al., 2007;
Sheffer et al., 2013), influencing water quality, runoff, and storage
(Asano et al., 2009; McNamara et al., 2011), and controlling soil de-
velopment (Sommer et al., 2000) and regolith thickness (Karlsson et al.,
2014; Shangguan et al., 2017). Therefore, identifying the areal extent of

BOSS is important to ecology, hydrology, and pedology.
In the northeastern USA as in other glaciated regions, vegetation

often reflects the physical and chemical conditions determined by
dominant geomorphic processes. In this region, forest types near bed-
rock outcrops are commonly found to have successional stands of
coniferous trees, with a prevalence of spruce-fir-birch-red maple in
shallow soils (Smith, 1995). Mixtures of deciduous trees, especially
sugar maple and oaks are found in deeper soils (Leak, 1982). In addi-
tion, areas dominated by bedrock outcrops limit deep percolation,
forcing lateral hydrological movement of groundwater through the
rooting zone (Gannon et al., 2014) and controlling spatial patterns in
carbon and metal sequestration in soil profiles (Bailey et al., 2014;
Bourgault et al., 2017; Sommer et al., 2001). Distance from bedrock
controlled-areas and proportion of bedrock outcrops in upslope drai-
nage areas have been used to explain vertical and horizontal soil
variability at the catchment scale (Gillin et al., 2015). Finally, primary
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mineral dissolution and soil development near bedrock outcrops can
explain the longitudinal variation of headwater stream chemistry, set-
ting regional background water quality characteristics (Bailey et al.,
2019).

Bare earth models derived from Light detection and ranging (Lidar)
provide a unique opportunity for bedrock and surficial geologic map-
ping where underlying geomorphic patterns are visible despite dense
vegetation cover (Webster et al., 2006). A high-resolution digital ele-
vation model (DEM) can be derived from the Lidar ground returns and
represents Earth’s bare surface. Computational algorithms are often
used to automate the extraction of various terrain features from Lidar
DEMs (Drăguţ and Eisank, 2011; MacMillan et al., 2000). The resulting
terrain features have been classified to predict a wide range of soil
properties including hydrologic influences on soil formation using
multinomial logistic regression in New Hampshire, USA (Gillin et al.,
2015), historical extent of Spodosols using random forests in West
Virginia, USA (Nauman et al., 2015), digital soil mapping using support
vector machines in British Columbia, Canada (Heung et al., 2016), soil
depth with generalized additive models in Idaho, USA (Tesfa et al.,
2009) and a regolith thickness model in Sweden (Karlsson et al., 2014).
The role of terrain features as covariates in digital soil mapping ap-
proaches, however, vary widely with the scale and resolution of the soil

property predicted (McBratney et al., 2003). Additionally, the wide
availability of Lidar DEMs has highlighted the influence of spatial re-
solution and scale on modelling (Behrens et al., 2010; Cavazzi et al.,
2013; Minasny and McBratney, 2016).

Bedrock outcrops can be visually distinguished in Lidar-derived
DEMs based on the rough topographic expression along exposed ridges
of upper portions of slopes with convex curvature. Extracting bedrock
outcrop features, however, is especially challenging in landscapes
where outcrops are scattered and where associated thin soils constitute
a thin mantle over shallow bedrock, resulting in a topographically
smooth appearance in a shaded relief map rather than the common
rough topographic expression of exposed outcrops. Since the areal ex-
tent of bedrock outcrops serves as a predictor of various biotic and
abiotic properties, a few studies have explored automating the deli-
neation of bedrock outcrops by leveraging the spectral characteristics of
exposed rock using high‐resolution panoramic photographs (DiBiase
et al., 2012) and image classification techniques (Scarpone et al., 2017).
Additionally, Milodowski et al. (2015) created a roughness metric
based on the rough expression and slope associated with bedrock de-
monstrating that the local variability of surface normal vectors can be
used as a topographic signature to identify rock exposure. However, the
challenge to delineate bedrock outcrops remains in landscapes with

Fig. 1. (a) Hillshade (315° illumination angle) of Hubbard Brook Experimental Forest (HBEF) buffered by 200 m and the 2000 randomly generated points used for
visual interpretation of bedrock outcrops and associated shallow soil (BOSS) locations. The solid black outlines indicate the three subcatchments selected for
validation of shaded relief visual interpretations. (b) Vicinity inset depicts the location of HBEF (43°56′N, 71°45′W) marked by a five-point star within the north-
eastern USA. (c) Three figure insets display hillshades (illumination angles 45°, 135°, and 315°) of northern W3 at a 1:5000 absolute scale.
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dense canopy cover since more commonly used image classification
approaches are not applicable because only a fraction of bedrock and
outcrops interspersed with shallow soils are revealed. In addition, the
multi-scale dependency of bedrock outcrops and associated shallow soil
needs to be addressed.

Therefore, new approaches are needed to address the automatic
delineation of BOSS in upland glaciated landscapes with dense vege-
tation cover. The first objective of this study was to assess the accuracy
of visually interpreting a high-resolution DEM-derived hillshades with
different illumination angles for locating BOSS. The second objective of
this study was to automate the delineation of BOSS from visually in-
terpreted training points using predictive analytics with Lidar terrain
derivates as predictors. The third objective was to compare binary
predictions to manually delineated polygons. This approach differs
from previous digital soil mapping efforts by evaluating visually in-
terpreted model training points and could significantly improve the
statistical rigor of generating a robust sample size. Finally, we eval-
uated predictive performance of four classifiers with two independent
validation datasets, the second being a distinct study area from where
the earlier objectives were performed. This also differs from previous
digital soil mapping efforts by leveraging a second geographically in-
dependent study area with a robust sample design for model evaluation.

2. Methods

2.1. Study sites

Hubbard Brook Experimental Forest (HBEF) is approximately
3175 ha within the White Mountain National Forest (WMNF) of New
Hampshire, USA (Fig. 1b) with elevation ranging from 213 to 1008 m
above sea level and comprising the catchment draining to third-order
Hubbard Brook. The climate is humid continental with annual pre-
cipitation of 140 cm and a mean stream runoff of 90 cm (Bailey et al.,
2003). Soils are mostly Spodosols with variable drainage conditions
with an average 0.7 m thickness to the base of the B horizon (Bailey
et al., 2014). Northern hardwood forest dominates HBEF including Acer
saccharum Marsh. (sugar maple), Betula alleghaniensis Britt. (yellow
birch) and Fagus grandifolia Ehrh. (American beech) as dominant spe-
cies in deeper soils. Shallow-to-bedrock soils are often vegetated with
conifer-dominated stands composed of Picea rubens Sarg. (red spruce),
Abies balsamea (L.) Mill. (balsam fir), and Betula cordifolia Regel
(mountain white birch). The forest was selectively harvested from 1880
to 1920, damaged by a hurricane in 1938, and is now relatively mature,
reaching a plateau in biomass accumulation in the 1980s (Siccama
et al., 2007).

Bedrock in HBEF consists of mica schist and granulite of the Silurian
Rangeley Formation and granitic rocks of the Devonian Kinsman pluton
(Burton et al., 2000). Bedrock is poorly exposed, outcropping mostly
along ridges and in some stream channels, and covered by a veneer of
glacial drift ranging up to 10 m or more in thickness (Bailey et al.,
2019). Shallow soils near outcrops grade to deep soils which commonly
occur along backslopes and lower landscape positions. Bedrock out-
crops and associated shallow soils are defined by an average thickness
of less than 50 cm to bedrock (Soil Science Division Staff, 2017).

The Wild Ammonoosuc catchment (WAMMO) was the second

distinct study area used solely for predictive model evaluation (see
Section 2.8). The WAMMO catchment, also in the WMNF 16.3 km
northwest of HBEF, is 6883 ha with elevation ranging from 336 to
1,946 m. The dominant vegetation is similar to HBEF, and includes
northern hardwood, spruce-fir, and mixed-species forests.

2.2. Sample design

BOSS were estimated to represent 40% of the study area using ex-
isting geologic maps (Burton et al., 2000). The HBEF catchment
boundary was buffered by 200 m to ensure the full extent of ridges were
considered. Two thousand points were randomly generated within
HBEF catchment (Fig. 1a) as recommended for sampling accuracy as-
sessment by Congalton and Plourde (2002) to capture 50 points per
categorical variable. Table 1 outlines dataset names, sources, sample
design, sample size, and purpose in this study.

2.3. Visual interpretation of 2000 randomly generated points

All 2,000 points were then visually interpreted as BOSS or deep soil
from Lidar-derived hillshade images with three illumination angles
(45°, 135°, 315°). The Lidar data were collected during leaf-off and
snow-free conditions by Photo Science, Inc. in April 2012 for the WMNF
using an Optech GEMINI Airborne Laser Terrain Mapper. The laser
returns were recorded at an average altitude of 1158.24 m above
ground level using a 30% overlap, scan angle of 27°, a nominal pulse
density of 3 pulses/m2 and a 9.25 cm vertical Root Mean Square Error.

Visual identification of BOSS regions from the Lidar-derived hill-
shades were defined as areas exhibiting a rough topographic expression
where the underlying bedrock structure was notable. Each point was
initially evaluated at 1:1000–3000 and then at a 1:6,000 absolute scale
to consider the context of the surrounding landscape (Fig. 1c). We then
validated the visual interpretations of the high-resolution hillshades
using a subset of 325 points (Table 1). Two coauthors independently
interpreted the 325 points from three subcatchment areas (Fig. 1a),
representative of transition from bedrock-controlled ridge to deep soils,
spanning a range of proportion of outcrops.

Glacial drift is thin in the three subcatchments and interspersed with
exposed bedrock in the uppermost portions of the catchments, parti-
cularly along catchment divides while it is variable and up to 10 m
thick in central to lower portions of the catchments (Bailey et al., 2019).
Catchment W9 is distinct in having much more bedrock outcrops while
the majority of the catchment is underlain by thin drift, with bedrock
less than 1 m deep. One coauthor had extensive field experience in the
three subcatchments and the other did not.

2.4. Field verification of visually interpreted points

A total of 51 points were randomly selected (Table 1) from the 325
subset points using a base package random number generator in R (R
Development Core Team, 2018) for field verification of visual inter-
pretations. The 51 subset points were located pedons using a Trimble
GPS unit equipped with a Trimble Hurricane Antenna. Soil pits were
hand dug at the point, approximately 0.75 × 0.5 m wide and up to
1.2 m deep, to sample the entire solum and the upper portion of the C

Table 1
Dataset name, reference, sample design, sample size (n), and purpose in this study.

Name Reference Sample design n Purpose

Visual interpretation This study Randomly generated 2000 Training/testing
Visual interpretation subset This study Randomly selected subset 325 Visual interpretation validation
Field verification This study Randomly selected subset 51 Visual interpretation field validation
Hubbard Brook Experimental Forest (HBEF) database Bailey, 2019 Systematic grid 329 Independent model validation
Wild Ammonoosuc (WAMMO) database Colter, 2019 Stratified random 176 Independent model validation
Natural Resources Conservation Service (NRCS) polygons NRCS Manual delineation – Comparison
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horizon or bedrock, whichever came first. Genetic horizons were sam-
pled and described by depth, thickness, Munsell color, texture, struc-
ture, moist consistence, presence of redoximorphic features, rooting
density, and coarse fragment content (Schoeneberger, 2012).

2.5. Topographic metrics

Topographic metrics (Table 2) were calculated, from a coarsened
5 m DEM using mean cell aggregation, to serve as the predictor vari-
ables. Slope (%) was calculated using the maximum slope algorithm
(Travis et al., 1975). A trigonometric transformation was applied to
scale aspect from−1 to 1, positions on flat ground with a value of 0 and
steeper south- or north-facing slopes with a value of 1 or −1, respec-
tively, by combining aspect and slope according to Stage (1976). To-
pographic ruggedness index (TRI; Riley, 1999) was created with a 3x3
neighborhood window. Vector ruggedness metric (VRM) was created
using a 3x3 neighborhood window size (Sappington et al., 2007). The
Zevenbergen and Thorne (1987) method was used to generate planform
(Plan) and profile (Prof) curvature. Topographic position indices (TPI;
Guisan et al., 1999) were created with a moving circular-window
centered on a target cell using a 15, 100, and 200 m radius taking the
difference between the elevation of each cell and mean elevation. To-
pographic wetness index (TWId; Beven and Kirkby, 1979) was com-
puted with the upslope accumulated area using multiple triangular flow
direction algorithm (Seibert and McGlynn, 2007) created from a 5 m
hydroenforced DEM as the numerator and a 5 m analysis window for
downslope index as the denominator (Hjerdt et al., 2004).

2.6. Predictive models

Four classification methods, or classifiers, commonly used for pre-
dicting soil properties were selected for predicting the presence of
BOSS. The 2000 visually interpreted points were used for training of all
classification methods. First, logistic regression (LR) was used to
probabilistically model BOSS presence using the topographic metrics.
Logistic regression relates the probability of occurrence in a group to a
set of predictor variables using the logit transformation (Kleinbaum
et al., 2013). The outputs of logistic regression are expressed in prob-
abilistic terms where values ranging from 0 to 1 indicate probability of
occurrence, with higher values representing a higher probability.
Second, we used a random forests (RF) classifier which is a hierarchical
non-parametric approach that uses a combination of tree predictors and
the results are based on a randomized subset of the sample and pre-
dictors (Breiman, 2001; Hastie et al., 2009).

We also used a support vector machine (SVM) approach with a
linear kernel which deals well with binary classification (Hastie et al.,
2009). SVM uses a hyperplane to separate the binary classes and predict
the maximum margin between each class based on the distance be-
tween the hyperplane and the nearest points (Hastie et al., 2009). Fi-
nally, we used a generalized additive model (GAM) which is a statistical
approach that generalizes multiple regression by replacing linear
combinations of the explanatory variables with combinations of

nonparametric smoothing or fitting functions, estimated through back-
fitting algorithms (Hastie and Tibshirani, 1990; Wood, 2004). GAM was
chosen due to the flexibility of the nonparametric smooth technique
which allows for fitting with either linear or non-linear predictors.
Generalized cross validation criteria (GCV) was used for estimating the
smoothing parameter.

2.7. Statistical analysis and predictive performance

Topographic metric computations and classification approaches
were implemented in R (R Development Core Team, 2018). Topo-
graphic metrics (Fraser et al., 2019a) were created from a 5 m spatial
resolution DEM (Fraser et al., 2019b) using RSAGA (Brenning, 2008).
RSAGA is a R package providing access to geoprocessing and terrain
analysis functions of SAGA-GIS (Conrad et al., 2015). The caret package
(Kuhn, 2008), with numerous prediction functions well suited for di-
gital soil mapping (Brungard et al., 2015; Malone et al., 2017), was
implemented for all four classifiers. Data were partitioned using the
70% for the training set and 30% for the testing set. The LR, RF, SVM,
and GAM models were calculated using the train function, within the
caret package which performs the training, pre-processing, tuning, and
performance assessment. The predictive binary performance of all four
methods, using a 0.5 probability threshold, were evaluated using a
standard error matrix (Congalton, 1991) with the confusionMatrix
function in the caret package, the coefficient of agreement (κ) (Cohen,
1960), and the 95% significance level (p < 0.05) of a topographic
metric as an independent variable. The 2000 visually interpreted points
were partitioned for cross validation and the error rates for cross-vali-
dation partitions were aggregated into a mean error rate with each
classifier. Recursive feature elimination was used for models without
built-in feature selection using the rfe function. The relative variable
importance measure of each topographic metric’s contribution to the
accuracy was calculated using the varImp function. The accuracy of
prediction was also evaluated using independent validation data across
the primary study area and a second validation area (see Section 2.8).

2.8. Independent model evaluation

Two independent validation datasets were used to evaluate the
predictive performance in two different geographic areas: HBEF and the
WAMMO. First, 329 pedons (Table 1) from the HBEF soil database
(Bailey, 2019) were categorized for each pedon as BOSS presence or
absence. A total of 32 pedons represented BOSS and 297 pedons re-
presented deep soil. The pedon locations from the HBEF dataset were
primarily sampled following a systematic grid (Schwarz et al., 2001).
The HBEF soil database includes descriptions from soil pits hand dug
using the same protocol for the 51 locations (see Section 2.4). To assess
all model binary predictions of BOSS, both validation datasets were
partitioned based on depth to bedrock. Soil profiles with a depth to
bedrock less than 50 cm were coded as presence of BOSS. Fig. 2 depicts
eight representative soil profiles (plots HB035, HB051, HB125, and
WS_F2) from the HBEF database selected for validating presence and
absence of bedrock outcrop and associated shallow soil. Mean predic-
tion probabilities were calculated from HBEF dataset by extracting
predicted probability at each point location to evaluate probability
threshold for final binary classification.

In contrast to the HBEF soil database, 176 pedon locations from the
WAMMO soil database (Table 1) were sampled using a stratified
random approach based on the distribution of multiple Lidar-derived
topographic metrics across the WAMMO catchment (Colter, 2019). This
method of stratified random sampling has been shown to reduce the
overall prediction error since points are uniformly allocated over the
feature space proportional to the distribution of the predictor (Brus
et al., 2011; Hengl et al., 2003). Natural Resources Conservation Ser-
vice (NRCS) personnel described the 176 WAMMO pedons using the
same methods as HBEF soil profile descriptions (see Section 2.4). All

Table 2
Topographic metrics created from terrain analysis functions as predictor vari-
ables and associated method.

Metric Reference

Maximum slope (%) Travis et al. (1975)
Aspect Stage (1976)
Topographic Ruggedness Index (TRI) Riley (1999)
Vector ruggedness metric (VRM) Sappington et al. (2007)
Plan and Profile curvature (Plan and Prof) Zevenbergen and Thorne (1987)
Topographic Position Index (TPI; 15, 100, &

200 m)
Guisan et al. (1999)

Topographic Wetness Index (TWId) Hjerdt et al. (2004)
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locations for pedons from HBEF and WAMMO were determined using a
global positioning unit. Continuously Operating Reference Station
(CORS) data from the National Geodetic Survey and differential cor-
rection software were used to obtain approximately 1–2 m horizontal
precision.

2.9. Manually delineated polygons

NRCS completed a comprehensive soil parent material map (Colter,
2019), including bedrock outcrops and associated shallow soils, across
portions of the WMNF. NRCS manually delineated parent material at a
1:3000–6000 absolute scale using shaded relief maps. Initial field ver-
ification was completed to assist in the manual delineation and later
followed with selective field verification focusing in areas with parent
material transitions.

3. Results

3.1. Evaluation of visual interpretation from shaded relief maps

A total of 525 points were visually interpreted as BOSS and 1475
points were visually interpreted as deep soil locations. The two in-
dependent observers who visually interpreted the 325 subset points had
91% agreement on BOSS. Areas with greatest disagreement typically
occurred near a likely transition to deep soils or an isolated pocket of
deep soil within an area surrounded by bedrock outcrops along ridges.
A total of 22 of the 51 field-verified locations were deep soils and 29
were BOSS locations. Visual interpretation of shaded relief maps com-
pared to the 51 field-verified locations yielded a 77.2% accuracy of
interpreting deep soils and 82.7% accuracy in distinguishing BOSS.
Field verification revealed visual interpretations of BOSS presence that
were in fact deep soil inclusions (< 15 m2; i.e. three or less pixels)
surrounded by bedrock outcrops were the greatest source of error for
visually identifying BOSS. There were 15 field-verified locations that
were identified as deep soil inclusions predominantly surrounded by
BOSS. Deep soil inclusions (< 15 m2) surrounded by BOSS accounted
for 62.5% of incorrectly interpreted BOSS locations.

3.2. Model comparison and variable importance

There were slight differences in model performance using the vi-
sually interpreted data points for training and cross validation. The LR
model using slope, TPI100 (TPI with a 100 m window) and TPI200 (TPI
with a 200 m window) resulted in κ = 0.51 (Table 3). Slope, TPI100,
and TPI200 had relative variable importance values of 34.8, 78.1, and

100.0 respectively. LR had an overall 83.4% accuracy predicting the
visually interpreted BOSS and 95.0% accuracy predicting deep soil lo-
cations. The RF model resulted in κ = 0.53, overall accuracy of 84.2%
and 94.1% accuracy predicting deep soil locations. The RF model using
TPI100 and TPI200 had relative variable importance values of 22.3 and
100.0 respectively. The SVM model resulted in κ = 0.54, also with the
same topographic metrics as LR, overall accuracy of 84.0%, 59.0%
accuracy predicting visually interpreted BOSS presence, and 92.8%,
deep soil locations (Table 3). Slope, TPI100, and TPI200 had relative
variable importance values of 65.8, 28.4, and 100.0 respectively. The
final GAM model variables differed slightly with slope, TPI15 (TPI with
a 15 m window) and TPI200, which resulted in the highest coefficient
of agreement (κ = 0.57) of all four classifiers and overall accuracy
85.2% (Table 3). Slope, TPI15, and TPI200 had relative variable im-
portance values of 68.6, 30.1, and 100.0 respectively. GAM had a
57.7% accuracy predicting the visually interpreted BOSS and 94.6%
accuracy predicting deep soil locations (Fig. 3).

3.3. Independent dataset validation in two geographic areas

The HBEF validation dataset consisted of 32 pedons that re-
presented BOSS and 297 pedons that represented deep soil locations.
The LR predictions had 46.9% accuracy predicting BOSS presence
compared to HBEF pedon data and 88.2% accuracy predicting deep soil
locations (Table 4). RF predictions had 53.1% accuracy predicting BOSS
presence compared to HBEF pedon data and 87.2% accuracy predicting

Fig. 2. Representative soil profiles (plots HB035,
HB051, HB125, and W3_F2) from the HBEF data-
base selected for validating presence of bedrock
outcrop and shallow soil predictions and four soil
profiles (HB086, W3_C5, W9_A2, ZZ_A2) re-
presentative of deep soils. The ‘aqp’ package in R
was used to create Fig. 2 (Beaudette et al., 2013).

Table 3
Error matrix comparing bedrock outcrops and associated shallow soil (BOSS)
and deep soil testing data (600 of 2000 points) to model predictions, overall
model accuracy and coefficient of agreement (κ) for all four classifiers.

Reference

BOSS Deep Soil Overall accuracy κ

Predicted LR
BOSS 79 22 0.83 0.51
Deep Soil 77 422

RF
BOSS 85 26 0.84 0.53
Deep Soil 71 418

SVM
BOSS 92 32 0.84 0.54
Deep Soil 64 412

GAM
BOSS 90 24 0.85 0.57
Deep Soil 66 420
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Fig. 3. Different views of a) LR, b) RF, c) SVM, and d) GAM predictions of BOSS (dark grey) across HBEF displaying independent validation data using a white circle
to depict deep soil sample locations and a dark grey triangle for BOSS. The BOSS predictions (5 m spatial resolution) are depicted with a dark grey transparency over
a 1 m hillshade (315° illumination angle).
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deep soil locations. SVM had 40.6% accuracy predicting BOSS presence
and 88.8% predicting deep soil locations. The GAM predictions had
46.9% accuracy predicting BOSS presence using HBEF pedon data and
89.6% accuracy predicting deep soil locations. In addition, the mean
prediction probabilities for BOSS presence differed. The LR had a mean
prediction probability of 0.62 for BOSS with a standard error (SE)
of ± 0.03 and RF had a mean prediction probability of 0.68 (± 0.03
SE). SVM had a 0.61 mean prediction probability for BOSS presence
(± 0.03 SE). Finally, GAM had a mean prediction probability of 0.72
for BOSS presence (± 0.01 SE).

The most notable differences in classifier predictions were based on
expert visual comparisons when all four predictions results were com-
pared on a 1 m hillshade (315° illumination angle). RF model predic-
tions, and LR in some areas, resulted in heavily pixelated predictions
with several isolated BOSS predicted pixels throughout the study area
that were inaccurate. Numerous BOSS soil presence pixels were ran-
domly scattered throughout deep soil predicted locations, regardless of
the prediction probability. SVM and GAM predictions, however, re-
sulted in more accurate, discrete clusters of BOSS presence. Single pixel
predictions of bedrock outcrops-associated shallow presence sur-
rounded by deep soil locations were more often predicted correctly by
SVM and GAM (Fig. 3).

The WAMMO validation dataset consisted of 36 BOSS pedons and
140 pedons that represented deep soil locations. The LR predictions had
55.6% accuracy predicting BOSS presence compared to WAMMO pedon
data and 92.9% accuracy predicting deep soil locations. RF had slightly
lower accuracy of 47.2% predicting BOSS presence and 91.4% pre-
dicting deep soil locations in WAMMO. SVM had a 52.8% accuracy
predicting BOSS presence and 93.6% accuracy predicting deep soil lo-
cations in WAMMO. Finally, the GAM predictions had 61.1% accuracy
predicting deep soil locations in WAMMO and 92.1% accuracy pre-
dicting deep soil locations.

3.4. Manually delineated polygons compared to independent dataset
validation

The HBEF manually delineated polygons had 71.9% accuracy
identifying BOSS presence, 64.3% accuracy identifying deep soil loca-
tions, and overall accuracy 65.1% (Table 5). Fig. 4a depicts probability
of BOSS from 0 to 1 with the GAM model and Fig. 4b illustrates binary
GAM predictions (0.5 threshold) to manual delineation of BOSS. The
overall agreement on bedrock occurrence is high, however, predicted
BOSS identified higher presence of small pockets in the valley bottom
and more scattered pockets of deep soil along ridges. Manually

delineated polygons overestimated the presence of BOSS validation
data by 28.1%.

The WAMMO manually delineated polygons had 77.8% accuracy
identifying BOSS presence, 86.4% accuracy identifying deep soil loca-
tions, and overall accuracy 84.7%. Fig. 5 depicts presence of predicted
BOSS from the GAM model (0.5 threshold) compared to manual deli-
neations of BOSS in WAMMO. Manually delineated polygons over-
estimated the presence of BOSS validation data by 22.2%.

4. Discussion

4.1. Visual interpretation and manual delineation

Visual interpretation of terrain derivatives is commonly used for
mapping of bedrock geology and soil properties (Belt and Paxton, 2005;
Haugerud et al., 2003). Current bedrock geology and soil mapping ef-
forts in the northeastern USA often requires the manual delineation of
bedrock-controlled areas using visual interpretation of Lidar-derived
hillshades (Shi et al., 2009) or derivatives of surficial geologic maps
(McBratney et al., 2003). Since a large sample size is often required for
rigorous predictive modeling, it poses a common limitation in mapping
critical zone features (Hengl et al., 2003). The visual interpretation of
bedrock outcrops in this study allows for a statistically valid sample size
to be achieved with a high accuracy and agreement in identifying
presence of BOSS. However, the greatest source of error in visually
identifying BOSS from Lidar derived hillshades, at point locations in
this study, occurred in deep soil inclusions (< 15 m2) of topo-
graphically smooth areas along ridges surrounded by BOSS.

The NRCS manual delineation of BOSS polygons at HBEF (Fig. 4b)
had 65.1% overall accuracy and overestimated the presence of BOSS by
28.1% in HBEF. The NRCS manual delineation of WAMMO BOSS pre-
sence (Fig. 5) was identified with 84.7% overall accuracy and manually
delineated polygons overestimate the presence of BOSS by 22.2%. Al-
though there is overall agreement on the topographic expression of
BOSS visual interpretation from high-resolution hillshade maps with
several illumination angles, the manual delineation of bedrock-con-
trolled landscapes retains numerous limitations associated with the
geometry, boundary, and scale of polygon units (Zhu et al., 2001).
Extensive time and expertise are required for manual delineations as
well as the limitations associated with polygons are related to scale
influencing delineation such as small, deep soil inclusions (< 15 m2)
commonly found along ridges. This study demonstrates visually inter-
preting BOSS point locations from Lidar-derived hillshade maps to
achieve a robust sample size for predictive analytics are comparable to
manual delineation of polygons depending on the geometry and scale
needed.

4.2. Comparison with other regions

Only a few studies have explored automating the delineation of
bedrock outcrops. For example, Milodowski et al. (2015) created a
computational algorithm for calculating a roughness metric which

Table 4
Error matrix, including overall model accuracy and coefficient of agreement (κ),
for all four classifiers (Predicted) compared to independent HBEF and WAMMO
soil databases (Reference).

Reference

HBEF Independent validation WAMMO Independent validation

BOSS Deep
Soil

Accuracy BOSS Deep Soil Accuracy

Predicted LR
BOSS 15 35 0.84 20 10 0.85
Deep Soil 17 262 16 130

RF
BOSS 17 38 0.84 17 12 0.82
Deep Soil 15 259 19 128

SVM
BOSS 13 33 0.84 19 9 0.85
Deep Soil 19 264 17 131

GAM
BOSS 15 31 0.85 22 11 0.86
Deep Soil 17 266 14 129

Table 5
Error matrix, including overall accuracy, for manually delineated polygons
digitized by visual interpretation of multiple 1 m Lidar-derived hillshades
compared to independent HBEF and WAMMO soil database (Reference).

Reference

HBEF Independent validation WAMMO Independent validation

Polygons BOSS Deep
Soil

Accuracy BOSS Deep Soil Accuracy

BOSS 23 106 0.65 28 19 0.85
Deep Soil 9 191 8 121
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performed well predicting rock exposures on rapidly eroding hillslopes
in California and Idaho, USA. Scarpone et al. (2017) increased accuracy
from 48% of bedrock exposures in manually delineated legacy land
cover maps to 88% with the use of a random forest model using 17
predictor variables predictions in southern British Columbia, Canada.
Then an independent dataset, created through photo interpretation and
in situ ground truthing, was used to validate the random forest exposed
bedrock model (Sandvoss et al., 2005). The most significant difference
between these studies and our work is that we used visually interpreted
points for predictive modeling combined with a second distinct study
area for model evaluation. In addition, the previous studies were done
in rapidly eroding hillslopes or in climatic regions where vegetation
was sparse enough to identify bedrock outcrops from aerial photo-
graphs and common image processing techniques of aerial imagery
were applicable (Grebby et al., 2011). Finally, the success of our
methods can likely be attributed to the use of only terrain derivatives as
model predictors in a landscape where the current vegetation does not
necessarily reflect the vegetation-soil relationships due to extensive
land use history. Our methods will be useful both in study areas with

small sample sizes and in humid climates where vegetation obscures
visualization of outcrops in aerial imagery and where Lidar data can be
used to create detailed bare earth surface models.

4.3. Multi-scale topographic metrics

The multiple radii for computing TPI in this study appear to address
the challenges of topographic convexity exhibited by bedrock-con-
trolled areas at multiple spatial scales (Behrens et al., 2010; Cavazzi
et al., 2013; Levi, 2017, 2017; Lindsay et al., 2015). It can be difficult to
determine the radius of generating predictor variables at one specific
scale in advance; therefore, multiple window radii have the potential to
produce results that do not limit the scope of TPI as a predictor. Al-
though the four classifiers in this study yielded very similar results,
GAM had a slightly higher coefficient of agreement and slightly better
overall binary probabilistic performance (Fig. 3). Additive models ac-
commodate a range of linear and smooth nonlinear effects of con-
tinuous covariates and the model process selects the most suitable
covariate. In the case of BOSS, GAM results presented here highlight the

Fig. 4. (a) HBEF catchment depicting probability of BOSS from 0 to 1 with highest probability depicted in dark grey. (b) Predicted BOSS locations depicted in dark
grey on a shaded relief (315°) map with manual delineation of BOSS are depicted by lighter grey polygons. Overall agreement on bedrock occurrence is high,
however, predicted BOSS suggest higher presence of small pockets in the valley bottom and more scattered pockets of deep soil along the ridges.

O.L. Fraser, et al. Geoderma 376 (2020) 114495

8



nonlinear nature of bedrock outcrops. The combination of these multi-
scale covariates increases the complexity of the model, and potentially
increases the accuracy, to predict bedrock structure in the landscape
(Behrens et al., 2010). It is not surprising that in landscapes with a high
degree of topographic complexity, such as the northeastern USA, more
than one neighborhood extent would be successful at characterizing
pedological processes at multiple scales.

5. Conclusions

Identifying the areal extent of BOSS plays a key role in under-
standing ecology, hydrology, and soil development. Extracting bedrock
outcrop features, however, is especially challenging in landscapes
where outcrops are scattered, vegetation is dense, and where associated
thin soils constitute a thin mantle over shallow bedrock. Manual
methods of delineating BOSS soils are still commonly employed and are
expensive to employ over broad areas, limited by geometry of polygon
units, and most commonly applied with aerial visualization methods in
regions with sparse vegetation cover. The success of this study in
leveraging visual interpretation of high-resolution relief maps and au-
tomated delineations could be applied to most landscapes with high
resolution bare earth surface models. Visual interpretation of hillshade
maps resulted in a 79% accuracy of interpreting deep soils and 84%
accuracy in distinguishing BOSS. The four classifiers explored in this
study yielded very similar results, however, a generalized additive
model had a slightly higher overall accuracy, 85%, predicting the
presence of BOSS in HBEF and 86% overall accuracy in WAMMO.
Manual delineation of polygons of HBEF had 65% overall accuracy and
85% overall accuracy in WAMMO. We were able to significantly im-
prove the efficiency of delineating BOSS presence as well as provide a

comparable alternative. This study demonstrates a framework in which
to generate a robust sample size from visual interpretation of point
locations and model multi-scale processes occurring within upland
landscapes. These methods are likely transferable across younger
landscapes across the globe where bedrock outcrops create roughness
contrasts with adjacent deeper soils.
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