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Abstract

Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their
prevalence in the Galaxy, contrasted with their absence in our solar system. HD97658 is one of the brightest stars
hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble
Space Telescope transits, 12 Spitzer/IRAC transits, and eight MOST transits of this system. Our transmission
spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight
increase in transit depth from wavelength 1.1–1.7 μm reported in previous works on the transmission spectrum of
this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model
provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O0.8)
and metallicities of 100×solar metallicity are favored. We combine the mid-transit times from all of the new
Spitzer and MOST observations and obtain an updated orbital period of P=9.489295±0.000005, with a best-fit
transit time center at T0=2456361.80690±0.00038 (BJD). No transit timing variations are found in this system.
We also present new measurements of the stellar rotation period (34±2 days) and stellar activity cycle (9.6 yr) of
the host star HD97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed
planets cooler than 1000 K and with sizes between 1 R⊕ and 4 R⊕. We find that at least a third of small planets
cooler than 1000 K can be well characterized using James Webb Space Telescope, and of those, HD97658b is
ranked fifth, meaning that it remains a high-priority target for atmospheric characterization.

Unified Astronomy Thesaurus concepts: Transit photometry (1709); Hubble Space Telescope (761); Exoplanet
atmospheres (487); Radial velocity (1332)

Supporting material: machine-readable tables

1. Introduction

With abundant candidate planets and confirmed planets
being identified through various exoplanet surveys, efforts have
been made to measure their mass and density, and to detect and
characterize their atmospheres. Among all confirmed planets,
sub-Neptune-sized planets (2–4 R⊕) are of great interest
because of (1) their absence in the solar system yet abundance

in the galaxy (Howard et al. 2012; Fressin et al. 2013), and (2)
their role of connecting the formation scenario of larger
gaseous planets and smaller terrestrial-sized planets (Crossfield
& Kreidberg 2017).
HD97658b is a sub-Neptune of 2.4R⊕ radius discovered with

Keck-HIRES in the NASA-UC Eta-Earth Survey (Howard et al.
2011) and later found to transit by Dragomir et al. (2013) using the
Microvariability and Oscillations in STars (MOST) telescope. It
orbits a bright (V=7.7) K1 star with a 9.5day period and was
ranked the sixth best confirmed planet for transmission spectrosc-
opy with Rp<5R⊕ in Rodriguez et al. (2017). HD97658b was

The Astronomical Journal, 159:239 (20pp), 2020 May https://doi.org/10.3847/1538-3881/ab8815
© 2020. The American Astronomical Society. All rights reserved.

21 NSF Graduate Research Fellow.
22 NSF Astronomy and Astrophysics Postdoctoral Fellow.
23 Beatrice Watson Parrent Fellow.

1

https://orcid.org/0000-0003-2313-467X
https://orcid.org/0000-0003-2313-467X
https://orcid.org/0000-0003-2313-467X
https://orcid.org/0000-0002-6115-4359
https://orcid.org/0000-0002-6115-4359
https://orcid.org/0000-0002-6115-4359
https://orcid.org/0000-0003-3667-8633
https://orcid.org/0000-0003-3667-8633
https://orcid.org/0000-0003-3667-8633
https://orcid.org/0000-0001-8391-5182
https://orcid.org/0000-0001-8391-5182
https://orcid.org/0000-0001-8391-5182
https://orcid.org/0000-0001-5578-1498
https://orcid.org/0000-0001-5578-1498
https://orcid.org/0000-0001-5578-1498
https://orcid.org/0000-0002-4297-5506
https://orcid.org/0000-0002-4297-5506
https://orcid.org/0000-0002-4297-5506
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0001-9165-9799
https://orcid.org/0000-0001-9165-9799
https://orcid.org/0000-0001-9165-9799
https://orcid.org/0000-0002-7129-3002
https://orcid.org/0000-0002-7129-3002
https://orcid.org/0000-0002-7129-3002
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0003-1125-2564
https://orcid.org/0000-0003-1125-2564
https://orcid.org/0000-0003-1125-2564
https://orcid.org/0000-0002-9843-4354
https://orcid.org/0000-0002-9843-4354
https://orcid.org/0000-0002-9843-4354
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8638-0320
https://orcid.org/0000-0001-8638-0320
https://orcid.org/0000-0001-8638-0320
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-4461-080X
https://orcid.org/0000-0002-4461-080X
https://orcid.org/0000-0002-4461-080X
https://orcid.org/0000-0003-4603-556X
https://orcid.org/0000-0003-4603-556X
https://orcid.org/0000-0003-4603-556X
https://orcid.org/0000-0002-4404-0456
https://orcid.org/0000-0002-4404-0456
https://orcid.org/0000-0002-4404-0456
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0002-3725-3058
https://orcid.org/0000-0002-3725-3058
https://orcid.org/0000-0002-3725-3058
mailto:ianc@ku.edu
http://astrothesaurus.org/uat/1709
http://astrothesaurus.org/uat/761
http://astrothesaurus.org/uat/487
http://astrothesaurus.org/uat/487
http://astrothesaurus.org/uat/1332
https://doi.org/10.3847/1538-3881/ab8815
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab8815&domain=pdf&date_stamp=2020-04-28
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab8815&domain=pdf&date_stamp=2020-04-28


also monitored by the Spitzer Space Telescope, and Van Grootel
et al. (2014) reported the photometric analysis result, as well as a
global Bayesian analysis result combing the Spitzer, MOST, and
Keck-HIRES data. They found that HD97658b has an inter-
mediate density of -

+ -3.90 g cm0.61
0.70 3, indicating a rocky composi-

tion of at least 60% by mass, around 0%–40% of water and ice,
and an H–He-dominated envelope of at most 2% by mass (Van
Grootel et al. 2014).

Transmission spectroscopy is one of the most effective ways
of constraining planet atmospheres, along with emission
spectroscopy and phase curve analysis. This method has been
widely applied to the atmospheric characterization of large
gaseous planets, yet to this day, no more than half a dozen of
the planets smaller than 4 R⊕ have had published transmission
spectra (Dragomir et al. 2013; Kreidberg et al. 2014a;
Southworth et al. 2017; Benneke et al. 2019). Fu et al.
(2017) and Crossfield & Kreidberg (2017) proposed linear
relationships between measured spectral amplitudes and planet
equilibrium temperatures and H/He mass fractions, which
could be better evaluated and constrained by decreasing the
uncertainty amount of each transmission spectrum with more
observations.

Based on Wide Field Camera 3 (WFC3hereafter) observa-
tions during two HST visits in 2013 and 2014, Knutson et al.
(2014) reported the first transmission spectrum of HD97658b
from 1.1 to 1.7 μm. By comparing a range of atmospheric
models to the transmission spectral data, they ruled out clear
atmospheres with 50×solar or lower metallicity and pure
water+hydrogen atmospheres with �10% fraction of water.

We obtained two more HST/WFC3observations of
HD97658b and 11 additional Spitzer transits of the planet.
In addition, 10 transits were observed with the Direct Imaging
mode of the MOST telescope, and three transits were observed
with the Space Telescope Imaging Spectrograph (STIS) on
HST using its G750L grism. In this work, we analyze all of
these data sets. With the extracted transit depths and the
combined transmission spectrum from 1.1 to 1.7 μm, where
molecular features including water, methane, carbon dioxide,
and carbon monoxide can be present, we test atmosphere
retrievals as well as forward modeling methods to explore
plausible atmospheric models and discuss their statistical
significance.

Data reduction and transit analysis of HST/WFC3, Spitzer,
MOST, and STIS observations are described in Section 2 and
Section 3. In Section 4, we present TTV analysis results using
multiple ephemerides and updated RV measurements, as well
as a discussion of the system’s newly identified stellar activity
cycle. Atmosphere property retrievals and forward modeling
are discussed in Section 5, and we conclude our findings and
discuss future prospects in Section 6.

2. HST/WFC3Data Analysis

2.1. Raw Data Reduction

HD97658b was observed on 2013 December 19 (visit1) and
2014 January 7 (visit2) under the HST program 13501 (PI:
Knutson), and then on 2016 April 20 (visit3) and 2017 January
31 (visit4) under the HST program 13665 (PI: Benneke). A
spatial scan mode is adopted for all four visits to accumulate
abundant photons on the detector. We use the “round trip” scan
method, which means the scan is carried out in two opposite
directions alternatively (one direction per exposure) during the

observations, and during each scan (one exposure), the image
on the detector is read out several times. Each visit of program
13501 was observed with a 256×256 pixel subarray,
consisting of around one hundred 14 s exposures in each scan
direction and three read outs in each exposure, while each visit
of program 13665 was observed with a 512×512 pixels
subarray, consisting of around one hundred 23 s exposures in
each scan direction and two read outs in each exposure. Two
typical raw images from program 13501 and program 13665
are shown in Figure 1, and raw data from all visits are
processed with a standard pipeline described as follows.
We start the data analysis from the HST/WFC3IMA files.

For each exposure, we mask out bad pixels that were identified
with flags from the WFC3/IR bad pixel table (Hilbert 2012).
Then we select a “clean” rectangle on the image—where
detected flux roughly flattens spatially—as the background and
take the median flux in that rectangle as our background flux
level fbkg. Next, we subtract fbkg from the whole image and
correct the image with the data cube from STScI.
Next, mean flux along the scanning direction is calculated

for each wavelength pixel in each exposure; thus, a raw
spectrum is produced for each exposure. And finally, we
correct for the wavelength shift on the detector over time by
picking the spectrum from the first exposure as the template
and shifting all subsequent exposures along the dispersion
direction to match the template.
The wavelength solutions, which translate pixel values on

the detector to wavelengths, are calculated using the wave-
length calibration coefficients from STScI, and we select the
range of pixels in the dispersion direction such that our
wavelength range coincides with that chosen by Knutson et al.
(2014) for easy comparison. We then obtain the raw white light
curve of each visit by summing up all flux in the dispersion
range in each exposure.
Lastly, we correct for the difference in flux levels between

the two scan directions of each visit, which results from the
dependence of the total flux on the vertical position of the
spectrum relative to the middle row of the detector (the “up-
stream/down-stream” effect; McCullough & MacKenty 2012).
Following a similar process to the one described in Tsiaras
et al. (2016), we fit the flux profile in the scan direction of each
exposure with a box shape to extract its read-out length and
mid-position, which should be related by two different linear
relations for the two scan directions. Then, we fit the linear

Figure 1. Left panel: a typical raw image from visit1 and visit2 (256×256
pixel subarray). Right panel: a typical raw image from visit3 and visit4
(512×512 pixel subarray). The zeroth order image is the bright thin line at the
center, and the right edge of the dispersion image of the latter two visits goes
out of the subarray. This is an unexpected observation error, which results in
the loss of two channels in the transmission spectra extraction from visit3 and
visit4.

2

The Astronomical Journal, 159:239 (20pp), 2020 May Guo et al.



relations and choose the first exposure as our reference point to
scale the flux of all subsequent exposures to the level where
they should be if they all had the same read-out mid-position as
the first exposure. Our final white light curve of each visit is
shown in Figure 2.

2.2. White Light-curve Analysis

Major systematic effects in the HST/WFC3observation
data include: (1) the “ramp” effect in each HST orbit, which is
thought to be caused by free charge carriers trapped in the
depletion regions of the detector; (2) visit-long trends, which is
a quasi-linear trend across the entire observation period; and (3)
“HST breathing effect”, caused by the spacecraft temperature
variation during each orbital period of HST(Wakeford et al.
2016).

2.2.1. Orbital Ramp Effects

The orbital ramp is one of the hardest HST observational
systematic effects to characterize. A traditional method to
correct for this effect is to apply an empirical exponential
model to the HST/WFC3data sets, proposed by Berta et al.
(2012), and this method has been used in a number of previous
works (Line et al. 2013; Knutson et al. 2014; Kreidberg et al.
2014a, 2014b). Subsequently, other empirical methods (such as
a polynomial model correction) have also been proposed
(Wakeford et al. 2013).

Since empirical models are not based on a good under-
standing of the physical processes that are causing the
systematics, they are hard to compare and evaluate. A
marginalization method proposed by Gibson (2014) was
implemented by Wakeford et al. (2016) to remove HST/
WFC3systematics. The method combines the best-fit results
from 52 polynomial/exponential models by calculating and
assigning a weight to each one. And from another perspective,
Zhou et al. (2017) described a method named Ramp Effect
Charge Trapping Eliminator (RECTE hereafter), which models
the intrinsic physical process of charge trapping on the
WFC3detector with a set of equations and parameters. The
RECTE model has been successfully applied to the HST/
WFC3observations of a range of exoplanets and brown dwarfs
(Zhou et al. 2017), and since RECTE is computationally
efficient, we adopt this method to correct for the orbital ramp
effects in our HST/WFC3data set.
An idealized charge carrier trapping process can be

described by Equations (1)–(4) in Zhou et al. (2017), which
contain 11 free parameters. Although the original paper
commented that six of the 11 parameters can be fixed to their
best-fit values for all HST/WFC3observations, our tests on a
range of parameter settings show that two of the six parameters,
ηs and ηf, which describe the efficiencies with which charge
carriers can fill the traps, converge to different values from
those provided in Zhou et al. (2017), and the best-fit values
change for different transit visits. Table 1 shows the

Figure 2. Raw white light curves observed during the four visits. Each visit is labeled at the lower right corner of its panel. The blue and magenta data points represent
the forward and reverse scan directions, respectively.
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comparison of best-fit ηs and ηf values of each HST visit
against the best-fit values presented in Zhou et al. (2017).
Therefore, we decide that ηs and ηf should be set as free
parameters when analyzing this data set.

Although Zhou et al. (2017) states that the RECTE method
can model the ramp effect well in all orbits in a visit, including
the first orbit, our tests show that for our HD97658b
observations, the ramp effect in the first orbits cannot be well
modeled with RECTE. The fact that the brightness of
HD97658 is approaching the saturation limit of the WFC3de-
tector may be a reason. Therefore, we apply RECTE only to the
rest of the orbits of each visit, and the first orbit of each visit is
removed from the ramp-effect modeling.

2.2.2. Residual Systematics and Noise Modeling

We present our treatment and discussions of visit-long trend
corrections in the next section, along with the best-fit white
light-curve transit signals.

In addition to orbital ramp effects removal and visit-long-
trend corrections, we treat any residual systematics, including
the “HST breathing effect” and other red-noise sources that do
not have a certain functional form, with a Gaussian process (GP
hereafter). GP has been successfully applied to WFC3data
analysis in previous works (Gibson et al. 2012; Evans et al.
2016, 2017, 2018) by fitting posteriors with a multivariate
Gaussian distribution. In this work, we model the noise with a
GP assuming a Matern-3/2 kernel using the Celerite package
(Foreman-Mackey et al. 2017). The kernel amplitude and
correlation timescale are set as free parameters, complemented
with another free parameter to describe the magnitude of the
white noise component. The noise model is fitted simulta-
neously with the mean photometric model to extract posteriors
of all parameters.

To ensure a realistic parameter uncertainty level, we scale
the photometric uncertainty associated with each data point in
each transit visit so that the final best-fit model gives a reduced
χ2 of 1.

2.2.3. Visit-long Trend

Visit-long trend corrections can be combined into the base-
level flux parameter f in the RECTE model, which becomes
( f0+bt) in a linear-shape visit-long trend case, where f0 and b
are free parameters, and t represents the time stamp of each
exposure. Although most previous works have used a simple
linear trend (Knutson et al. 2014; Evans et al. 2018), in this
data set of HD97658b, we observe evidence of a long-term
trend that deviates from a linear form from visual examination
of the white light curves (Figure 2), which may have been
induced or magnified by the high brightness of the host star that
is close to the WFC3detector saturation limit.

Therefore, we try four common functional forms to correct
for the visit-long trend:

(1) linear, with the form ( f0+bt);
(2) quadratic, with the form ( f0+bt+ct2);

(3) exponential, with the form ( ( ))- -f b t cexp ;0
(4) logarithmic, with the form ( ( ))- +f b t clog0 .

When applying these functional forms, we make use of the
first orbit to help anchor the trend by modeling the second half
of its data points, which are less affected by the ramp effect
because all charge traps should have been filled. To sum up, the
orbits after the first orbit are modeled with function
F1=framp×ftrend×ftransit, where framp, ftrend, and ftransit
represent the ramp-effect model, the visit-long trend model,
and the transit model, respectively, while the second half of the
first orbits are modeled with the function F0=ftrend×ftransit.
The data from the first half of the first orbits are discarded.
Simultaneously with instrumental systematic models, we fit

the transit signal with models generated using the BAsic
Transit Model cAlculatioN (BATMAN) package provided by
Kreidberg (2015). In our joint fit of the white light curves, the
transit depth, inclination, and orbital semimajor axis are tied to
be the same free parameters for all four visits, while the mid-
transit time of each visit is a separate free-floating parameter.
We adopt the fixed stellar parameters reported in Gaia Data
Release 2 (Gaia Collaboration et al. 2018), and the two-
parameter limb-darkening coefficients are extracted from Claret
& Bloemen (2011) assuming these stellar parameters are fixed
in our models.
The best-fit transit model and detrended white light curves of

all four visits assuming a logarithmic shape visit-long trend are
shown in Figure 3, with input parameters and best-fit output
parameters shown in Table 2. We can see the model does not fit
the second half of the first orbit very well, which is expected
because the ramp-effect component was excluded from the
modeling of this section of the data, and this section of the data
was only in the analysis to provide an anchor for modeling the
visit-long trends. Apart from this, there are a few outliers in the
detrended visit1 light curve, but they do not bias our overall

Table 1
Best-fit ηs and ηf from the White Light Curve of Each HST/WFC3Visit

Zhou et al. (2017) visit1 visit2 visit3 visit4

ηs 0.01320±0.00003 0.019±0.001 0.011±0.001 0.0030±0.004 0.015±0.002
ηf 0.00686±0.00007 0.0004±0.0003 0.0033±0.0002 0.0044±0.0003 0.0044±0.0002

Figure 3. Best-fit transit light curves from all four visits stacked together and
shifted so that the the mid-transit times are at 0. Here, we only show the results
when assuming a logarithmic visit-long trend.
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science results of this planet. The best-fit white light curves
assuming other forms of visit-long trends are of similar quality,
and we discuss those results as follows.

Using the raw white light curve from visit4 as an example, we
show the four best-fit visit-long trend models in Figure 4. The first
thing we examine is whether those models produce consistent
transit depths for different visits. Figure 5 shows the best-fit Rp/Rs
of each HST visit assuming four different visit-long systematic
trends. The logarithmic trend produces the most internally
consistent white light transit depths—all well within 1σ
uncertainty with respect to each other. And while the other three
cases all have maximum transit depth differences around 1σ
uncertainty, the quadratic trend model produces the largest transit
depth uncertainties and the most discrepant results among visits.
This result is expected since the curvature of a quadratic model is
much more sensitive to its parameters than that of the three other
models, and a transit signal itself could approximately be fitted
with a quadratic shape if it is blended at a high systematic level.
Similar to this work, Agol et al. (2010) compared long-term
systematic trend functions to be used to model Spitzer light curves
and found that a quadratic function could bias transit depth
measurements.

The white light-curve fitting result comparison does not
strictly rule out any of the four visit-long trend models, even
though the quadratic model is disfavored. Hence, we proceed to
calculate the transmission spectra assuming these four different
models and make further comparison of their corresponding
spectra in the following sections.

2.3. Spectral Light-curve Analysis

We group pixels along the dispersion direction into 28
channels with the same wavelength boundaries as those in
Knutson et al. (2014) for easy comparison and extract raw light
curves in each channel. One thing to notice is that the long
wavelength end of the dispersed flux ran over the edge of the
detector in visit3 and visit4 because of an observation error, as
is shown in Figure 1. Therefore, the last two channels of these
two visits were not observed. The channel boundaries
compared against the sensitivity curve are shown in Figure 6.

We use the divide-by-white technique to analyze the spectral
light curves. This technique was introduced by Kreidberg et al.
(2014a) and has been widely used in HST/WFC3transmission

spectrum measurements (Knutson et al. 2014; Damiano et al. 2017;
Tsiaras et al. 2018). First, a common-mode signal is generated by
dividing the white light curve by the best-fit transit signal, and then
this common mode is injected as a systematic component of
spectral light curves in each channel. This systematic component is
multiplied by a new transit model with the mid-transit time fixed to
the best-fit transit time of the white light curve. And since we notice
that the light curves in different channels have different visit-long
trends, we also multiply the model of spectral light curves by a
parameterized visit-long trend with the same form (linear,
exponential, logarithmic, or quadratic) as that of the white light
curve.
After extracting the best-fit Rp/Rs from each channel in each

visit, we calculate the Rp/Rs spectra over four visits using the
weighted mean on each spectral channel. The uncertainty of
Rp/Rs in each channel is calculated by taking the larger value
of either σ1(k) or σ2(k), where k represents the channel number,
σ1(k) represents the standard deviation of the transit depth
values from four visits weighted by their uncertainties, and

Table 2
Input and Best-fit Parameters from HST/WFC3White Light-curve Fitting

Parameter Symbol Value Unit

Input fixed Parameters
Orbital period P 9.4903 days
Eccentricity e 0.078
Argument of periapsis ω 90.0 degree
Quadratic limb-darkening

coefficients
u [0.246, 0.203]

Best-fit of output parameters
Radii ratio Rp/Rs 0.0293±0.0001
Mid-transit time visit1 T0,visit1 2456646.4829±0.0011 BJD
Mid-transit time visit2 T0,visit2 2456665.4621±0.0012 BJD
Mid-transit time visit3 T0,visit3 2457491.0312±0.0011 BJD
Mid-transit time visit4 T0,visit4 2457785.2021±0.0011 BJD
Semimajor axis ratio a/Rs 26.7±0.4
Inclination i 89.6±0.1 Figure 4. As an example, this plot shows the four best-fit visit-long trend

models of the light curve from visit4, and they are shifted vertically for clarity.

Figure 5. Comparison of white light-curve best-fit Rp/Rs of each visit,
assuming four different visit-long trends. The four visits are listed from left to
right in chronological order for each model. The quadratic trend model
produces the largest transit depth uncertainties and the most discrepant results
among visits.
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σ2(k) represents the standard deviation of the mean transit
depth of four visits. Formulae to calculate σ1(k) and σ2(k) are
shown as follows:
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where N is the total number of visits, Di(k) is the transit depth
in channel k from visit i, σi(k) is the uncertainty in Di(k), ¯ ( )D k

Figure 6. HST/WFC3sensitivity curves and our channel cuts for transmission spectra extraction. All channel boundaries are selected to be identical to those in
Knutson et al. (2014). The left panel shows the 28 channels applied to visit1 and visit2, and in the right panel, the two reddest channels are dropped because the
observed flux goes out of the CCD border in visit3 and visit4.

Table 3
Rp/Rs Averaged over Four Visits in Each WFC3Bandpass Assuming Four Different Visit-long Trends

Bandpass Center Linear Logarithmic Exponential Quadratic
(μm) Rp/Rs sR Rp s Rp/Rs sR Rp s Rp/Rs sR Rp s Rp/Rs sR Rp s

1.132 0.0308 0.0003 0.0292 0.0003 0.0285 0.0003 0.0286 0.0004
1.151 0.0306 0.0004 0.0290 0.0004 0.0280 0.0009 0.0283 0.0006
1.170 0.0305 0.0005 0.0293 0.0004 0.0287 0.0003 0.0282 0.0005
1.188 0.0308 0.0005 0.0294 0.0004 0.0290 0.0003 0.0274 0.0003
1.207 0.0300 0.0004 0.0286 0.0002 0.0278 0.0003 0.0273 0.0003
1.226 0.0303 0.0004 0.0287 0.0003 0.0283 0.0003 0.0277 0.0004
1.245 0.0302 0.0003 0.0288 0.0002 0.0283 0.0003 0.0276 0.0003
1.264 0.0299 0.0004 0.0286 0.0003 0.0282 0.0005 0.0268 0.0006
1.283 0.0301 0.0005 0.0289 0.0003 0.0281 0.0003 0.0278 0.0007
1.301 0.0307 0.0002 0.0293 0.0002 0.0286 0.0002 0.0276 0.0004
1.320 0.0303 0.0002 0.0290 0.0002 0.0282 0.0002 0.0272 0.0005
1.339 0.0300 0.0003 0.0287 0.0002 0.0280 0.0003 0.0268 0.0004
1.358 0.0302 0.0002 0.0291 0.0002 0.0284 0.0003 0.0268 0.0007
1.377 0.0302 0.0003 0.0288 0.0002 0.0280 0.0003 0.0273 0.0005
1.396 0.0308 0.0004 0.0294 0.0005 0.0289 0.0005 0.0275 0.0006
1.415 0.0314 0.0004 0.0302 0.0002 0.0298 0.0004 0.0285 0.0006
1.433 0.0308 0.0002 0.0294 0.0002 0.0288 0.0002 0.0276 0.0003
1.452 0.0306 0.0003 0.0292 0.0002 0.0283 0.0010 0.0281 0.0003
1.471 0.0303 0.0004 0.0291 0.0004 0.0285 0.0002 0.0273 0.0003
1.490 0.0302 0.0002 0.0290 0.0003 0.0280 0.0003 0.0273 0.0007
1.509 0.0305 0.0003 0.0291 0.0003 0.0282 0.0006 0.0267 0.0006
1.528 0.0302 0.0002 0.0288 0.0004 0.0284 0.0004 0.0270 0.0008
1.546 0.0302 0.0002 0.0288 0.0002 0.0283 0.0004 0.0262 0.0003
1.565 0.0304 0.0002 0.0290 0.0003 0.0280 0.0003 0.0258 0.0006
1.584 0.0302 0.0005 0.0295 0.0002 0.0290 0.0003 0.0279 0.0006
1.603 0.0314 0.0002 0.0298 0.0002 0.0297 0.0010 0.0288 0.0006
1.622 0.0311 0.0009 0.0299 0.0007 0.0294 0.0007 0.0277 0.0005
1.641 0.0312 0.0008 0.0299 0.0005 0.0291 0.0005 0.0294 0.0005

Note.We list the results using all four different visit-long trend formulae, but only the transit depth results using the logarithmic visit-long trend are adopted in our
atmospheric retrieval and modeling analysis. The reason for this choice and comparisons between results using different visit-long trends are presented in
Section 2.2.3.
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The final averaged Rp/Rs results in each channel, assuming
linear, quadratic, logarithmic, and exponential visit-long trend
models, are presented in Table 3.

We plot the transmission spectra for all four visit-long trends
in Figure 7, where all spectra are shifted to have zero mean for
easy comparison. It is apparent that the spectra assuming three
different visit-long trends have highly consistent shapes, with
the only difference between them being their mean (white light)
transit depth, whereas the spectral shape resulting from a
quadratic visit-long trend is distinctive from the other three.
Taking into consideration the white light-curve transit depth
comparisons shown in Figure 5, we decide that using a
quadratic shape to model the HST/WFC3visit-long trend
systematics of this data set could have deformed the resulting
transmission spectrum shape, so we discard this model in the
rest of this work. On the other hand, transmission spectral
features on the 1.1–1.7 μm wavelength range extracted by
assuming the other three visit-long trend models are consistent
with each other. Therefore, we adopt the spectrum assuming a
logarithmic visit-long trend, which shows the most consistent
white light-curve transit depths among different visits
(Figure 5), but we set the mean depth of the transmission
spectrum on this wavelength range as a free parameter when
performing atmosphere retrieval, so that uncertainties from the
visit-long trend model selection are included in the final error
budget.

2.4. Comparison with Previous Works

Knutson et al. (2014) fitted the light curves from visit1 and
visit2 with an exponential orbital ramp model and a linear visit-
long model. In Figure 8, we compare our transmission spectra
(assuming a linear trend) averaged over visit1 and visit2 (pink
shaded region) and averaged over all four visits (blue shaded
region) with the final spectrum from Knutson et al. (2014, gray
shaded region). We can see that our two-visit-averaged
spectrum shows a similar rising trend to the spectrum from
Knutson et al. (2014). Although there are some shifts in transit
depths between our spectra and the previous one, their
differences are mostly within 1σ, and the reduced χ2 between
our two-visit-averaged spectrum and the previous work is 0.98,
showing a high consistency between the two results. However,

for the spectrum averaged over all four visits, the rising trend is
mitigated, except for the possible feature redward of 1.6 μm.
Therefore, it is reasonable to speculate that the rising trend of
the HD97658b spectrum presented in Knutson et al. (2014)
results from an unidentified systematic effect. Nonetheless,
there could be astrophysical features remaining in the spectrum,
and we discuss atmospheric retrieval results in Section 5.

3. Observation and Analysis in Other Bandpasses

Aside from HST/WFC3 spectroscopy, the transit of
HD97658b was also observed with STIS on HST, with the
SpitzerSpace Telescopein the 3.6 μm channel and 4.5 μm
channel, and with the MOSTSpace Telescopein its 0.5 μm
bandpass. We describe data reduction processes and transit
depth results from these data sets in this section.

3.1. STIS Observations and Data Reduction

We observed three transits of HD97658b with HST/STIS
using the G750L grism (0.524–1.027 μm) as part of HST
program 13665. Like HST/WFC3, an initial orbit is required to
settle the telescope. The detector was purposefully saturated by
about a factor of three in the brightest part of the spectrum to
increase the signal-to-noise ratio (S/N; Gilliland et al. 1999).
Data from each of the three visits was reduced using the same
steps as Lothringer et al. (2018). Counts were added along
columns to reconstruct the observed flux at each wavelength.
The observations were then split into 10 bins of approximately
0.05 μm covering the G750L bandpass, and a transit and noise
model were fit to the data assuming orbital parameters from
Knutson et al. (2014). Unlike the systematics marginalization
procedure that was used in Lothringer et al. (2018), we instead
fit transit models to the data using GPs in a similar fashion to
Bell et al. (2017) and Evans et al. (2013, 2018), using a
squared-exponential kernel. Using GPs instead of a parametric
approach allows us to include time as a nonparametric
covariate, as it was found that assuming a linear slope in time
(as was done in Lothringer et al. 2018) produced worse fits to
the data and unrealistically small error bars. By including time
as a covariate in the GP, we can better reflect our uncertainty in
the baseline flux, which becomes more apparent over four
science orbits rather than the three in most other STIS data sets
(also see Demory et al. 2015). HST’s orbital phase was also
used as a covariate to account for orbit-to-orbit systematics.

Figure 7. Comparison of the shapes of four-visit combined transmission spectra assuming four different visit-long trend functions. Spectra are shifted to have zero
mean depth for easy comparison. It is shown here that the spectral shapes produced with linear, exponential, and logarithmic visit-long functions are highly consistent
with each other, while the spectral shape resulting from a quadratic visit-long trend is distinct from the other three. The size of one atmosphere scale height is shown
for comparison, which assumes an equilibrium temperature of 900 K and mean molecular weight of 2.3.
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In Table 4, we report the spectroscopic transit depths and the
mid-transit time from each of the three transits observed with
STIS, along with their uncertainties for future reference. The
STIS data quality limits our ability to achieve consistent transit
depths among different observations. As Table 4 shows, the
transit depths measured with data from three STIS observations
are highly discrepant in the long wavelength part
(λ>0.79 μm) of the STIS bandpass. And with the same
uncertainty calculation procedure as described in Section 2.3,
we find that the transit depth uncertainties can be as large as
100–200 ppm in the red end channels of the STIS bandpass.
This uncertainty level is far from adequate for providing any
meaningful constraint to atmospheric properties. Therefore, we
do not include the STIS data set in our atmospheric analysis.

3.2. Spitzer Observations and Data Reduction

Six transits were observed with the IRAC 3.6 μm channel,
and five transits were observed with the 4.5 μm channel from
2014 July to 2016 April under Spitzer program 11131
(Dragomir et al. 2014). Each transit was observed with 0.08 s

exposure per frame and approximately 0.13 s per frame
cadence.
We analyze the raw light curves using the “pixel-level

decorrelation” (PLD hereafter) technique (Deming et al. 2015),
following the same procedure as described in Guo et al. (2019).
Before fitting the light curves, we manually remove the first
50–80 minutes of each observation so that the drastic
systematic ramp at the beginning of each Spitzer observation
does not bias our fitting result. Using the PLD technique,
fractional contributions to the total flux at the observational
time points from each selected pixel are treated as an
eigenvector, and we set the weight of each eigenvector as a
free parameter and combine them together to model the total
flux variations. Since the PLD technique assumes that the
incoming stellar flux is falling on the same set of pixels
throughout the entire time series, we include all pixels around
the star that contribute more than 1% of the total flux to ensure
that the PLD technique is valid to apply. The same pixel
selection procedure is also successfully used in Guo et al.
(2019). Simultaneously, we fit a transit model generated using
BATMAN and defined with a free-floating transit depth and
mid-transit time. The rest of the transit parameters are fixed in
the same way as described in Section 2.2.2.
The best-fit transit models and detrended light curves of all

Spitzer transits are shown in Figure 9. The best-fit parameters
of all transits are presented in Table 5.
Figure 10 shows the Rp/Rs of each transit arranged

according to their mid-transit time. Discrepancies among
transits of the same channel are around 1σ. To ensure that
the scatter in transit depths and the associated error bars of each
transit are properly included in our error budget, we again take
the larger one between the standard deviation of the weighted
average of center values and the weighted reduced error bars as
our uncertainties in Rp/Rs. We find that the best-fit values of
Rp/Rs in the 3.6 μm and 4.5 μm channels are 0.0273±0.0003
and 0.0284±0.0003, respectively.

3.3. MOST Observation and Data Reduction

MOST (Walker et al. 2003; Matthews et al. 2004) is a
microsatellite carrying a 15 cm optical telescope that acquires
light through a broadband filter spanning the visible wave-
lengths from 350 to 700 nm. It is in a Sun-synchronous
polar orbit with a period of 101.4 minutes, which allows it to
monitor stars in a Continuous Viewing Zone (CVZ) without

Figure 8. Comparison of the transmission spectrum reported in Knutson et al.
(2014, gray), which uses a linear visit-long trend model, with our spectrum
assuming a linear visit-long trend. The pink spectrum is the result using only
visit1 and visit2, the same as in Knutson et al. (2014). The two spectra are
consistent with around 1σ uncertainty, which is expected given that we use
different methods to process the HST/WFC3data. The blue spectrum is the
combined result using all four visits, shown here for comparison.

Table 4
Best-fit Spectroscopic Transit Depths for Each Transit Observed with STIS

BandpassCenter Observation1 Observation2 Observation3
(μm) R Rp s sR Rp s R Rp s sR Rp s Rp/Rs sR Rp s

0.553 0.0273 0.0015 0.0255 0.0011 0.0252 0.0028
0.601 0.0282 0.0006 0.0272 0.0007 0.0277 0.0009
0.650 0.0281 0.0004 0.0282 0.0004 0.0290 0.0005
0.699 0.0278 0.0009 0.0281 0.0004 0.0290 0.0020
0.748 0.0282 0.0010 0.0302 0.0011 0.0308 0.0019
0.797 0.0268 0.0015 0.0286 0.0032 0.0315 0.0011
0.845 0.0265 0.0014 0.0294 0.0009 0.0312 0.0008
0.894 0.0246 0.0016 0.0275 0.0014 0.0315 0.0014
0.943 0.0260 0.0026 0.0294 0.0023 0.0326 0.0017
0.992 0.0213 0.0032 0.0346 0.0034 0.0378 0.0049

Mid-transit Times (BJD) 2457149.4191±0.0005 2457196.8642±0.0003 2457206.3537±0.0008
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interruption for up to 8 weeks. The CVZ covers a declination
range of +36°>δ>−18°.

HD 97658 was observed by MOST in Direct Imaging mode,
in which defocused images of the stars were projected directly
onto the CCD (Rowe et al. 2006). One, four, and five transits
were observed in 2012, 2013, and 2014, respectively. The 2012

and 2013 transits have been previously published in Dragomir
et al. (2013), while the 2014 observations are unpublished. For
the analysis performed for this paper, we used the three transits
observed in 2013 that do not show interruptions (March 10, 19,
and 29; see Dragomir et al. 2013), and all five transits that we
observed in 2014 (all of which are also continuous).
The exposure times were all 1.5 s, and the observations were

stacked on board the satellite in groups of 21 for a total
integration time of 31.5 s per data point. Raw light curves were
extracted from the images using aperture photometry (Rowe
et al. 2008). Outlier clipping and de-trending from the sky
background and position on the CCD were performed as
described in Dragomir et al. (2013). After these steps, a
straylight variation at the orbital period of the satellite
remained. This variation was filtered by folding each light
curve on this 101.4 minute period, computing a running
average from this phased photometry, and removing the
resulting waveform from the corresponding light curve.
We fit the eight transits simultaneously using EXOFASTv2

(Eastman 2017), a differential evolution Markov Chain Monte
Carlo (MCMC) algorithm that uses error scaling, and we
obtained a best-fit Rp/Rs value of -

+0.02866 0.00056
0.00054. We

summarize the ephemeris of these eight transits into two
best-fit mid-transit times: 2456361.8050±0.0033(BJD) in
year 2013 and 2456712.9096±0.0024(BJD) in year 2014.
The detrended light curves and the best-fit transit models are
plotted in Figure 11.

4. Ephemeris and Radial Velocity Analysis

We collect all HD97658b mid-transit times from previous
works, in combination with transit times measured in this work,
and analyze the overall ephemeris variation of this planet. With
a least-squares fit, we find the best-fit period of HD97658b to
be P=9.489295±0.000005 days. The deviations from a
linear ephemeris are shown in Figure 12. Most observed transit
times are consistent with a periodic orbit with 1–2σ confidence,
and we obtain a best-fit reduced χ2 of 1.7, corresponding to
only a 2σdifference between model and observation. This
means that no transit time variation (TTV) is detected, which is
consistent with our non-detection of additional planets in the
RV data, as discussed below.

Figure 9. Detrended transit light curves with their best-fit transit models of each Spitzer observation. Left panel: channel 1 (3.6 μm); right panel: channel 2 (4.5 μm).
Light curves are shifted vertically for the purpose of display.

Table 5
Best-fit Rp/Rs and Mid-transit Times of Each Transit Observed by Spitzer

AOR ID Channel
T0 (BJD-
2400000.5) sT0 (days) Rp/Rs sR Rp s

49696512 3.6 μm 56864.23938 0.00027 0.0276 0.0005
49697536 3.6 μm 56883.21892 0.00027 0.0270 0.0004
49698048 3.6 μm 56892.70742 0.00026 0.0280 0.0004
52197888 3.6 μm 57091.98243 0.00034 0.0261 0.0004
52198144 3.6 μm 57082.49324 0.00032 0.0275 0.0006
52198656 3.6 μm 57101.47164 0.00034 0.0277 0.0005
53908736 4.5 μm 57481.04364 0.00031 0.0272 0.0005
53909248 4.5 μm 57471.55445 0.00025 0.0281 0.0004
53909504 4.5 μm 57253.30001 0.00045 0.0284 0.0005
53909760 4.5 μm 57243.81157 0.00022 0.0293 0.0004
53910016 4.5 μm 57234.32179 0.00026 0.0284 0.0004

Figure 10. Rp/Rs from each Spitzer transit observation. The green data points
represent channel1 (3.6 μm) transits, and the blue data represent channel2
(4.5 μm) transits.
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4.1. Keplerian RV Analysis

Since 1997 January, we have collected 553 radial velocity
measurements with the High Resolution Echelle Spectrometer
(HIRES; Vogt et al. 1994) on the Keck I Telescope on
Maunakea and 215 measurements with the Levy spectrograph
on the Automated Planet Finder at Lick Observatory (APF;
Radovan et al. 2014; Vogt et al. 2014). These data were all
collected through an iodine cell for wavelength calibration and
point-spread function reference (Butler et al. 1996). One set of
iodine-free spectra were collected with each instrument to use
as a model of the intrinsic stellar spectrum. The HIRES data
were often taken in sets of three due to the short ∼2minute
exposures to mitigate the effects of stellar oscillations; this was
not necessary for the APF due to the smaller aperture and
longer exposure times (∼10–20 minute exposures). The HIRES
data from 2005 January to 2010 August were previously
analyzed in the discovery paper of HD 97658 b (Howard et al.
2011). The data reduction and analysis followed the California
Planet Search method described in Howard et al. (2010). The

resultant radial velocities are presented in Table 6 and in
Figure 15.
We first investigate the star for signs of stellar activity by

examining the Calcium H and K lines (SHK; Isaacson &
Fischer 2010, Figure 13) in the HIRES and APF data. There is
a clear periodicity in both the SHK and the radial velocity data
around 3500 days in the HIRES data set (Figure 14). The APF
data does not have a long enough baseline to detect such a long
signal. In addition, we compare this long-term variation in SHK
and radial velocity signals with the brightness and color
variation of HD97658, which was measured with the Fairborn
T8 0.80 m automatic photoelectric telescope (Henry 1999). As
is shown in Figure 13, there is a clear correlation in the
variations seen in radial velocities, stellar activity data, stellar
brightness, and stellar color. This relation implies that the long-
term radial velocity variation is actually caused by stellar
activity. The length of the signal indicates that it is likely the
star’s 9.6 yr magnetic activity cycle (slightly shorter than our
Sun’s 11 yr cycle); we discuss the stellar activity in more detail
in Section 4.2.
We analyze the radial velocity data using RadVel24 (Fulton

& Petigura 2017), which models Keplerian orbits to fit radial
velocity data by performing a maximum-likelihood fit to the
data and then subsequently determining the uncertainties

Figure 11. The detrended transit light curve of each MOST observation, along
with the best-fit transit model from EXOFASTv2 joint fit. The observations are
listed in chronological order, with the bottom one being the latest observation.
The light curves are shifted for the purpose of display.

Figure 12. The ephemeris of HD97658b. A linear fitting shows the period to
be P=9.489295±0.000005, with a best-fit transit time center at
T0=2456361.80690±0.00038 (BJD). The best-fit reduced χ2 is 1.7, which
shows that no TTV is detected.

Table 6
Radial Velocities

Time RV RV Unc. SHK Instrument
(BJDTDB) (m s−1) (m s−1)

2458559.90624 4.41 1.03 0.175 HIRES
2458559.90814 3.03 1.16 0.174 HIRES
2458487.99980 −5.97 2.19 0.185 APF
2458508.86464 −1.51 2.15 0.194 APF

(This table is available in its entirety in machine-readable form.)

Figure 13. Time series of our radial velocity and Calcium H and K activity
(SHK) data from HIRES and APF, and photometry from the Fairborn T8 0.80 m
APT including both brightness and color information. There is a clear variation
in the radial velocity data matched by the activity data, brightness, and color all
without a phase offset. This relation implies that the long-term radial velocity
variation is stellar activity.

24 Available athttps://github.com/California-Planet-Search/radvel.
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through an MCMC analysis. We use the default MCMC
parameters for RadVel of: 50 walkers, 10000 steps, and 1.01 as
the Gelman-Rubin criteria for convergence, as described in
Fulton & Petigura (2017).

We model this system in RadVel as a two-Keplerian system
for planet b and the stellar activity. We include priors on the
transit parameters of planet b from Van Grootel et al. (2014).
We incorporate this stellar activity signal at around 3500 days
into our radial velocity fit as an additional Keplerian signal
because it has a sinusoidal shape, and only two cycles of this
signal are captured by the data. We use a Gaussian prior on the
period (3424±41 days) and reference phase of this signal
(2457372±21 BJD) from a RadVel 1-Keplerian fit of the
HIRES SHK data. Our radial velocity fit is shown in Figure 15,
and the output parameters are listed in Table 7. Note that the
planet mass is calculated assuming our best-fit inclination
(i=89.6) with the HST/WFC3data set, which shows
sin(i)≈1.

We also test a nonzero planet eccentricity for completeness;
the resulting eccentricity is small, consistent with zero to 2σ
(eb= -

+0.030 0.021
0.034), and the results are consistent with the planet

parameters of the circular case. Therefore, we adopt the circular
fit results. We also test including a GP to model the stellar
activity signal with the hyper-parameters constrained from a fit
of the HIRES SHK data. The results are consistent with the
Keplerian fit; the baseline covers only two cycles of the
activity; therefore, the deviation from a simple sinusoid is
small. Since the fit has consistent posteriors, the additional
parameters needed for the GP fit do not seem warranted, and
we present the Keplerian fit as our final result.

4.2. Stellar Activity and Rotation in Context

As described above, our Keck-HIRES spectra allow us to
identify a 9.6 yr stellar activity cycle for HD97658. In
addition, we also estimate the star’s rotation period by
calculating a Lomb–Scargle periodogram of the Keck/HIRES
and APF activity indices after removing the long-term
variations induced by the stellar activity cycle. No single
period dominates, but we see an excess of power from
32–36 days in both data sets. We therefore report a stellar
rotation period of Prot=34±2 days, slightly lower than
previously reported (Henry et al. 2011).
HD97658ʼs rotation period is typical for stars with similar

photometric colors and activity levels (as measured by ¢RHK;
Suárez Mascareño et al. 2016). The activity cycle is also
typical, with HD97658 falling nicely on the empirical relation
between Prot and Pactivity/Prot (Baliunas et al. 1996; Suárez
Mascareño et al. 2016). Both HD97658ʼs overall activity level
( ¢RHK and SHK) and the 2 ms−1 RV variations induced by its
activity mark it as a quieter-than-average star for its spectral
type (Isaacson & Fischer 2010; Lovis et al. 2011).
Low-mass stars (M or K dwarfs) often have excessive X-ray

and UV radiation from their chromosphere and corona, and
these energetic emissions can drive photochemistry and
ionization processes in atmospheres of the planets orbiting
around them. Loyd et al. (2016) put together a catalog of seven
Mdwarfs and four Kdwarfs, including HD97658, in their
MUSCLES Treasury Survey, and they obtained Chandra or
XMM-Newton observations of each of them. An interline
continuum in the FUV bandpass is detected at 6.3σ significance
in HD97658. No observation of the X-ray bandpass was made
on this star; although, integrated X-ray flux was detected higher
than 10−14 erg s−1 cm−2 for all three of the other Kdwarfs in
the survey. Since UV and X-ray radiation are strongly related
to the dissociation of atmosphere molecules including H2O,
CH4, CO, O3, etc. (Rugheimer et al. 2013) and production of
hazes (Hörst et al. 2018), atmospheric models ought to take the
effect of high-energy stellar radiation into account. And to
understand the atmospheric compositions and evolutionary
history of HD97658b, more detailed stellar spectroscopy in
full wavelength coverage needs to be conducted.

4.3. No Additional Planets Found

We searched for additional planet candidates orbiting
HD97658 by applying an iterative periodogram algorithm to
our radial velocity data. First, we define an orbital frequency/
period grid over which to search, with sampling such that the
difference in frequency between adjacent grid points is
(2πτ)−1, where τ is the observational baseline. Using this grid,
we compute a goodness-of-fit periodogram by fitting a sinusoid
with a fixed period to the data, for each period in the grid. We
choose to measure goodness-of-fit as the change in the
Bayesian Information Criterion (BIC) at each grid point
between the best-fit one-planet model with the given fixed
period and the BIC value of the zero-planet fit to the data. We
then fit a power law to the noise histogram (50%–95%) of the
data and accordingly extrapolate a BIC detection threshold
corresponding to an empirical false-alarm probability of our
choice (we choose 0.003).
If one planet is detected, we perform a final fit to the one-

planet model with all parameters free, including eccentricity,
and record the BIC of that best-fit model. We then add a second

Figure 14. Periodograms of SHK (top panel) and radial velocity (middle panel),
and SHK vs. radial velocity (bottom panel). In both periodograms, the stellar
activity cycle (Figure 13, ∼3500 days) is represented by a dashed line, and the
planet’s orbital period (9.49 days) is represented by a dashed–dotted line. A
strong radial velocity signal and SHK signal are at the stellar activity cycle
timescale in the HIRES data. There is a correlation between the SHK and radial
velocity data in both data sets, shown as the solid lines in the bottom panel.
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planet to our RV model and conduct another grid search,
leaving the parameters of the first planet free to converge to a
more optimal solution. In this case, we compute the goodness-
of-fit as the difference between the BIC of the best-fit one-
planet model, and the BIC of the two-planet model at each
fixed period in the grid. We set a detection threshold in the
manner described above and continue this iterative search until
the (n+1)th search rules out additional signals. This search
method is known as a recursive periodogram, also described in
Anglada-Escudé & Tuomi (2012). Similar to our RV analysis
described in the previous section, we use RadVel (Fulton &
Petigura 2017) to fit Keplerian orbits, and we use an
implementation of this search algorithm known as RVSearch,
to be released at a later date (L. Rosenthal et al. 2020, in
preparation). For HD 97658, we search from 1.5 days to five
times the observational baseline and detect no new planet
candidates with significance higher than FAP=0.01.

5. Atmospheric Properties

We use two independent approaches, PLanetary Atmo-
spheric Transmission for Observer Noobs (PLATON; Zhang
et al. 2019) and ATMO (Tremblin et al. 2015; Goyal et al.
2019), to extract atmospheric parameter information from our
transmission spectrum. In Section 5.3, we present acceptable
model ranges by comparing our data with forward models
generated with PLATON.
We first test retrieving and forward modeling with only the

HST/WFC3data, and then we also test by adding the MOST
(0.5 μm) and Spitzer observation results (3.6 and 4.5 μm) into
our atmospheric property analysis process with PLATON and
ATMO. Since the mean transit depth of the HST/WFC3spec-
trum is uncertain due to its degeneracy with the HST/
WFC3visit-long trend shape, we let the mean transit depth
on the HST/WFC3bandpass float as a free parameter. The
posteriors of the atmospheric parameters are similar to what we
see with only the HST/WFC3data in both cases, and there is
almost no extra constraint from the extra MOST and Spitzer
data points. In light of this, we only present the best-fit
transmission spectrum model obtained with the combined
HST/WFC3, Spitzer, and MOST data in the following section
(Figure 17).

5.1. Retrieval with PLATON

PLATON is a forward modeling and atmosphere retrieval
tool for exoplanet transmission spectral analysis, developed by
Zhang et al. (2019). PLATON uses the same opacity files and
part of the same algorithms as the widely used atmosphere

Figure 15. Panel (a): best-fit one-planet Keplerian orbital model for HD 97658
including stellar activity. The maximum-likelihood model is plotted while the
orbital parameters listed in Table 7 are the median values of the posterior
distributions. The thin blue line is the best-fit one-planet model. We add in
quadrature the RV jitter term(s) listed in Table 7 with the measurement
uncertainties for all RVs. Panel (b): residuals to the best-fit one-planet model.
The bottom two panels show the RVs phase-folded to the ephemeris of planet b
(panel c) and of the stellar activity cycle (panel d) after removing the
contributions from all other RV variation sources. The small point colors and
symbols are the same as those in panel (a). The red circles are the same
velocities binned in 0.08 units of orbital phase, and the phase-folded model is
shown as the blue line.

Table 7
Radial Velocity Fit Parameters

Parameter Name (Units) Value

Planet Parameters
Pb Period (days) 9.49073±0.00015
Tconjb Time of conjunction 2456361.805±0.0006

(BJDTDB)
eb Eccentricity ≡0.0
ωb Argument of periapse ≡0.0

(rad)
Kb Semi-amplitude (m s−1) 2.81±0.15
Mb Mass (M⊕) -

+7.81 0.44
0.55

ρb Density (g cm−3) -
+3.78 0.51
0.61

Pactivity Period (days) -
+3652 120
130

Tconjactivity Reference Time -
+2457605 89
100

(BJDTDB)
eactivity Eccentricity ≡0.0
ωactivity Argument of periapse ≡0.0

(rad)
Kactivity Semi-amplitude (m s−1) 1.96±0.21

Other Parameters
γHIRES Mean center-of-mass −0.85±0.17

velocity (m s−1)
γAPF Mean center-of-mass - -

+0.42 0.34
0.33

velocity (m s−1)
g Linear acceleration ≡0.0

(m s−1 day−1)
̈g Quadratic acceleration ≡0.0

(m s−1 day−2)
σHIRES Jitter (ms−1) -

+2.93 0.1
0.11

σAPF Jitter ( -m s 1) -
+1.3 0.35
0.31
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forward modeling package Exo-transmit (Kempton et al. 2017),
but it is 100–1000 times faster than Exo-transmit, so that an
MCMC or a nested sampling retrieval method can be used to
extract the posteriors of atmospheric parameters.

We first retrieve the HD97658b atmospheric parameters
with the observed transmission spectrum on the HST/
WFC3bandpass only. The input stellar radius and effective
temperature are set to the latest published value in Gaia DR2,
with R*=0.746 Re and Teff=5192 K, and the input planet
mass is set according to our radial velocity results (Section 4)
with Mp=7.81M⊕. We let five atmospheric parameters—
planet radius Rp, planet surface temperature Tp assuming an
isothermal atmosphere, logarithmic metallicity ( )Zlog , C/O
ratio, and logarithmic cloud-top pressure ( )Plog —and one
hyper-parameter “err_multiple”, which is applied to the
spectroscopic error bars as a scaling factor, float as free
parameters during the retrieval process. We apply a uniform
prior on Tp and constrain it to between 550 and 950 K, which
are estimated assuming a 0–0.67 albedo and zero to full global
heat redistribution. The rain-out condensation process is taken
into account, and since our wavelength coverage from 1.1 to
1.7 μm is not adequate to identify the Mie scattering shape at
the short wavelength limit, we set the base-10 logarithm of the
scattering factor to its default value of 0, assuming a uniform
opaque cloud deck where the cloud-top pressure is a free
parameter in the atmosphere. We test using both MCMC and
nested sampling methods to explore the parameter space and
find that the nested sampling method is better suited for this
task to prevent samples from being trapped in local minima and
for faster convergence.

Figure 16 shows the posterior distributions of free
parameters in the retrieval, and we present the input fixed
parameter, priors, and the output posterior distribution center
and 1σ uncertainties in Table 8. Our fits constrain the cloud-top

pressure to values greater than 0.01 bars and C/O ratios to
above 0.8 (i.e., super-solar), but the posteriors for both
parameters are effectively uniform within this preferred range.
The planet radius posterior is consistent with our results from
the WFC3, MOST, and Spitzer data, the log(Z) posterior peaks
around ( ) =Zlog 2.4, and the equilibrium temperature poster-
ior favors temperature as high as 900 K. Aside from these, the
posterior of err_multiple is constrained at -

+1.47 0.13
0.13, indicating

that the uncertainties in our HST/WFC3transmission spec-
trum may be slightly larger than estimated, despite the
conservative approach we have adopted when analyzing our
uncertainty budget.
Additionally, we also combine all transit depth results from

WFC3, MOST, and Spitzer to perform a full (0.5–4.5 μm)
transmission spectrum analysis using PLATON. During the
fitting, the observed mean transit depth of the WFC3spectrum
is adjusted while the relative spectral shape is fixed to account
for the uncertainty in visit-long trend model selection when
analyzing the WFC3data (Section 2.3). The retrieved para-
meter posteriors are consistent with retrieval results using only
the WFC3data set within 1σ uncertainty. We plot the best-fit
full-range retrieval model (Teq=770 K, ( ) =Zlog 2.7, C/
O=1.0, and ( ) =Plog Pa 3.6, with a WFC3spectrum shift of
−78 ppm) against our transmission spectrum data sets in
Figure 17. And since adding three data points (MOST and
Spitzer) in the spectrum does not change our atmospheric
analysis result, we leave out the repeated process in the
following sections and only present results using the
WFC3transmission spectrum.

5.2. Posterior Marginalization with ATMO

In addition to PLATON, we use an existing generic forward
model generated with ATMO (Tremblin et al. 2015; Goyal
et al. 2019) to further explore HD97658b’s atmospheric
properties. We adopt this method based on PLATON’s
assumption that planetary atmospheres can be parameterized
using only bulk metallicity enhancement, C/O ratio, and
equilibrium chemistry. We first take a subset of the entire grid,
which spans across four planet equilibrium temperatures from
600 to 900 K, two surface gravities 10 and 20 m s−2, five
atmospheric metallicities (1×–200×solar), four C/O ratios
(0.35–1.0), and four uniform cloud parameters. The equili-
brium temperature grid span is constrained by our equilibrium
temperature prior, while the other three-dimensional spans are
constrained by the original ATMO grid upper and lower limits.
At each parameter setting, we also adjust the planet’s
photospheric radius and find its best-fit value by maximizing
the log-likelihood. Then, we calculate the posterior distribution
of each parameter by marginalizing maximum likelihoods over
all remaining dimensions. In order for the comparison to be
effective, we repeat the same evaluation process with
PLATON’s transmission spectra generation module on the
same parameters grid, and the resulting posterior distribution
comparisons of three critical atmospheric parameters are shown
in Figure 18.
A high consistency is achieved for Tp posterior distributions.

For the distributions of ( )Zlog and C/O, the ATMO and
PLATON models give similar shapes. ATMO produces a
bigger tail in the low-metallicity end, but ATMO and PLATON
both indicate high-metallicity (200×solar) peaks on the ( )Zlog
plot; on the C/O ratio plot, the ATMO models favor

Table 8
Parameters for the PLATON Atmospheric Retrieval Using Our

WFC3Spectrum

Parameter Names Median
Lower

Error (1σ)
Upper

Error (1σ)

Fixed
Parameters

Rs(Re) 0.746 L L
Mp(M⊕) 7.81 L L
Teff(K) 5192 L L

( )log scattering factor 0.0 L L

Fit Prior

Rp(RJup) ( ) 0.19, 0.22 L L
Teq(K) ( ) 550, 950 L L

Zlog ( )- 1.0, 3.0 L L
C/O ( ) 0.05, 2.0 L L

( )Plog bar ( )- 8.99, 2.99 L L

Fit Posteriors

Rp/Rs 0.0283 0.0004 0.0002
Teq(K) 809 142 103

Zlog 2.4 0.4 0.3
C/O 1.3 0.4 0.4
logP(bar) 0.15 1.81 1.89
error multiple 1.47 0.13 0.13
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C/O=0.7 while the PLATON models favor C/O=1.0 or
higher.

5.3. Forward Modeling with PLATON

In the previous retrieval sections, we showed that no clear
peak value of the parameters is found even when a large
volume of atmospheric parameter space is explored. We now
also pick out a small subset of forward models to compare with
our data.

As a baseline, we test similar scenarios that were considered
in Knutson et al. (2014), which include a range of models with
varying metallicity, cloud-top pressure, and C/O ratios, and a

range of models composed of only H2 and H2O with varying
H2O number fractions. On top of previously proposed models,
we also investigate the effect of adjusting the abundance of
other molecular species in the atmosphere. Several typical
atmospheric models that we investigated are presented in
Figure 19, along with a perfectly flat model (i.e., a wholly
featureless transmission spectrum). The equilibrium temper-
ature is set to 900 K in all atmospheric models, and we adjust
the mean transit depth of the model spectrum until we find the
location with the maximum likelihood. Table 9 summarizes all
models that have been compared with our transmission
spectrum data, as well as the best model retrieved with
PLATON (Teq=950 K, ( ) =Zlog 2.2, C/O=0.8, and

Figure 16. Posterior distributions of atmospheric parameters from PLATON retrieval on HST/WFC3transmission spectrum. P represents cloud-top pressure, and
errmulti is the uniform scaling factor applied to spectral error bars so that the best-fit model achieves cn

2 of around 1. The planet radius posterior is consistent with
previous studies of this planet, and the atmospheric metallicity posterior peaks around ( ) =Zlog 2.4. The result also shows that our transmission spectrum favors
planet equilibrium temperatures as high as 900 K, the C/O ratio is constrained to 0.8 or higher, and the cloud-top pressure is constrained to 0.01bar or higher.
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Figure 17. Best-fit full-range retrieval model (Teq=770 K, ( ) =Zlog 2.7, C/O=1.0, and ( ) =Plog Pa 3.6, with a WFC3spectrum shift of −78 ppm) against all
transit depth results from WFC3, MOST, and Spitzer. The full-range retrieval parameter posteriors are consistent with retrieval results using only the WFC3data set
within 1σ uncertainty. The horizontal error bars indicate the widths of the MOST and Spitzer photometric bandpasses.

Figure 18. Comparison of posteriors calculated using the PLATON and ATMO models. We evaluate the likelihood of PLATON models on the same parameter grid
as the ATMO models. The results show great consistency with the posterior of Tp. For the posterior distribution of ( )Zlog , ATMO produces a bigger tail in the low-
metallicity end, while they both peak at the high-metallicity (200×solar) end; and for the posterior distribution of the C/O ratio, ATMO models favor C/O=0.7
while the PLATON models favor values as high as 1.0.

Figure 19. Our extracted transmission spectrum is shown by the black data points, and five typical atmospheric models that we are fitting our transmission data with,
along with a flat model that assumes no atmosphere, are also shown. The transmission spectrum here is the same as the magenta spectrum reported in Figure 7, except
that in Figure 7, the spectrum is shifted to have zero mean. For all atmospheric models plotted here, the equilibrium temperature Tp is 900 K, and the cloud-top
pressure is 1bar. The model that best describes the data is an H2-dominated atmosphere with 1%CH4+4%CO2+10%CO in number fraction; although, the model
with 200×solar or 1000×solar metallicity and C/O=0.8 and an atmosphere composed of 100% H2O is not excluded.
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( ) =Plog Pa 7.8). Their reduced χ2 values and the confidence
levels with which they can be ruled out are presented in the
same table.

The result shows that with this data set, even the best-fit
atmospheric model is excluded at a 4σ significance level,
indicating that the uncertainties associated with the transmis-
sion spectrum are underestimated, as pointed out in Section 5.1,
despite the careful error budget treatments we implemented.

As mentioned in Section 5.1, the retrieval with PLATON
shows that c »n 1.02 can be achieved for best-fit models when
the spectrum data uncertainties are scaled up by a factor of
around 1.5. We apply this scaling factor to our data and
recalculate the forward modeling cn

2 and the number of σ, and
present the results in the last two columns of Table 9. After
applying the scale factor, we find that only models with low
metallicity (1×solar) or low C/O ratios (C/O=0.1) can be
ruled out with around 3σsignificance.

In light of the above analyses, we conclude that the existing
atmospheric models can barely be distinguished with the
current HST/WFC3data set; although, the Z=200×solar,
C/O=0.8, and P=1bar or 10 mbar models, which fall into
the high posterior regions presented in Sections 5.1 and 5.2,
and an H-dominated atmosphere consisting of around 1% of
CH4, a few percent of CO2, and around 10% of CO are favored
over other metallicity, C/O ratio, and cloud-top pressure
settings or other atmosphere molecular combinations.

We propose that more observations of HD97658b are
needed in order to more tightly constrain its atmospheric
features, and more discussions are provided in Section 6.

6. Summary and Discussion

We analyzed four HST/WFC3observations on a bright
(V=7.7) K1 dwarf, HD97658, using the RECTE ramp
modeling method, measured their combined transmission
spectrum consisting of 28 channels (from 1.1 to 1.7 μm) with
the divide-by-white method, and achieved an uncertainty of
around 20 ppm in each spectral channel. Of the four HST/
WFC3observations, two have previously been analyzed and
published in Knutson et al. (2014), and our reanalysis in
combination with the two new observations suggests that the
slight upward slope reported in the original paper is likely
systematic.

An atmospheric retrieval from the obtained transmission
spectrum is attempted with the PLATON package. We found
that the atmospheric metallicity posterior peaks around

( ) =Zlog 2.4, a high C/O ratio (C/O0.8) is favored, and
the cloud could be covering up to as high as a few millibar of
pressure, while a factor of 1.5 is suggested to be applied to the
spectral data uncertainties so that the best-fit model has a cn

2 of
around 1. In a second experiment, the marginalized likelihood
distributions of atmospheric parameters calculated by fitting
our transmission data to forward models generated with
PLATON on a parameter grid are compared with those
calculated via the generic forward models generated with
ATMO in Figure 18, and consistency is found between these
two modeling tools. Subsequently, we generate a range of
transmission models with various Zlog , C/O ratios, and cloud-
top pressure P values, or different molecular fraction
combinations, and calculate their reduced χ2 and significance
with which they can be ruled out by our HST/WFC3data.
When applying the 1.5 error bar scale factor revealed by the
PLATON retrieval, we find that only models with low
metallicity (1×solar) or low C/O ratios (C/O=0.1) can be
ruled out around 3σsignificance.
The C/O ratio of an exoplanet depends on the environment

from which it accretes its gaseous envelope. Previous work has
reported the C/O ratio of the host star HD97658 to be 0.45
with around 10% uncertainty (Hinkel et al. 2017), slightly
lower than the solar C/O ratio of 0.54. If future observations,
e.g., from the James Webb Space Telescope (JWST), confirm
HD97658b’s high C/O ratio hinted by the analysis from this
work, this planet may have a C/O ratio significantly discrepant
from that of its host star. Öberg et al. (2011) predicted that in a
core accretion model, planets that form between the H2O and
CO snowlines have a large fraction of oxygen preserved in the
icy form, leading to an elevated C/O ratio in the atmosphere.
However, a planet as small as HD97658b is unlikely to have
formed beyond the H2O snowline, and more recent models
suggest that planetesimal accretion by sub-Neptunes results in
sub-stellar C/O ratios (Cridland et al. 2019). To further
investigate the origin of a possible high C/O ratio in the
HD97658b atmosphere, studies of this planet’s formation
history are needed.
In addition to HST/WFC3transit analyses, we also analyzed

11 new transit observations of HD97658b with Spitzer and
eight transits (three old and five new) with MOST. We updated
their ephemerides, applied a linear fit on all mid-transit times,
and updated the orbital period of HD97658b to be
P=9.489295±0.000005, with a best-fit initial mid-transit
time at T0=2456361.8069±0.0004 (BJD). The best-fit
reduced χ2 is 1.7, indicating that no TTV is detected.

Table 9
Forward Modeling of HD97658b Transmission Spectrum in the HST/WFC3G141 Bandpass

Model cn
2 Rule-out Confidence cn

2 (Error Scaled Up) Rule-out Confidence (Error Scaled Up)

Flat 2.5 5.4σ 1.2 0.6σ
Best model retrieved with PLATON 2.5 4.9σ 1.2 0.5σ
1×solar, C/O=0.8, P=1bar 4.1 10.2σ 1.9 3.0σ
200×solar, C/O=0.8, P=1bar 2.5 5.0σ 1.2 0.5σ
200×solar, C/O=0.8, P=10 mbar 2.6 5.3σ 1.2 0.7σ
200×solar, C/O=0.8, P=1 mbar 3.3 7.7σ 1.5 1.7σ
200×solar, C/O=0.1, P=1bar 4.0 9.9σ 1.9 2.8σ
1000×solar, C/O=0.8, P=1bar 2.7 5.8σ 1.2 0.8σ
1%CH4+4%CO2+10%CO 2.2 4.0σ 1.0 0.1σ
4%CO2+10%CO 3.3 8.1σ 1.5 1.8σ
100%H2O 2.4 5.2σ 1.1 0.4σ
50%H2O 2.6 5.6σ 1.2 0.7σ
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As a reference to future works, we summarize the stellar and
planet parameters of the HD97658 system in Table 10 using
the analysis results from this work and preferred values from
previous works.

6.1. Transit Light Source Effect on HD97658b

Rackham et al. (2018) proposed the transit light source
effect, which describes the problem that spots and faculae of
Mdwarf stars can produce contamination in the transmission
spectra of nearby planets more than 10 times larger than the
transit depth changes expected from planet atmospheric
features. In Rackham et al. (2019), the transit light source
effect analysis was extended to F/G/K host stars. They found
that while the stellar contamination can bias the transit depth
measurement by as much as 1% for late G and K type dwarfs
from UV to NIR, the offsets in transmission spectral features,
including H2O, CH4, O3, and CO amplitudes, induced by F/G/
K stellar contamination assuming both spots only and spots
+faculae models on stellar surface are far smaller than the
atmospheric features expected in the transmission spectra of the
planets around these stars. Therefore, the stellar contamination
in the HST/WFC3wavelength range and the Spitzer IRAC
bandpass is not problematic for transmission spectroscopy
analysis for typically active F/G/K dwarfs. As is described in
Section 4.2, HD97658b’s activity cycle and rotation period are
typical of early K type stars, and its overall activity level ( ¢RHK
and SHK) and 2 ms−1 RV variations indicate that HD97658b is
slightly quieter than average K type stars. These facts ensure
the reliability of the transmission spectroscopy results pre-
sented in this work. Nonetheless, Rackham et al. (2019) show
that F/G/K stellar contamination may have larger impacts on
transmission spectra at UV and visual wavelengths, in which
TiO and VO display significant opacity. Therefore, we note
that stellar contamination should be taken care of when
analyzing the transmission spectrum of HD97658b at UV and
visual wavelengths in future works.

6.2. Transmission Spectroscopy Metric of All Small Planets
Cooler Than 1000 K

We assess the transmission spectrum detectability of all
currently confirmed small planets with future missions by
calculating the transmission spectroscopy metric (TSM) of each
planet, as defined in Kempton et al. (2018). The TSM is defined
to approximate an S/N of one scale height in transmission
spectra when observed with the NIRISS instrument on JWST
for 10 hr; therefore, it is proportional to ´R H R Fp

2
* , where

H=kTeq/μg is the atmospheric scale height, Rp is the planet
radius, R* is the stellar radius, and F is the stellar flux received
on the detectors. For planets with Rp<2 R⊕, a mean molecular
weight of μ=18 is chosen, representing pure water atmo-
spheres, and for planets with Rp�2 R⊕, a mean molecular
weight of μ=2.3 is chosen, representing H/He-dominated
atmospheres. The final formula of TSM is shown as
Equation (1) of Kempton et al. (2018) Applying the scale
factors specified for different Rp bins in Kempton et al. (2018),
the TSM value represents a near-realistic S/N of 10 hr of
JWST observations.
Following the above procedure, we calculate the TSM of all

confirmed planets with 1 R⊕<Rp<4 R⊕ and equilibrium
temperature Teq<1000 K, and we rank them according to
their TSM values. The 20 highest-ranked planets are listed in
Table 11, and the full table is available online. In Figure 20, we
show the TSM value of each planet versus its radius, and each
data point is color coded with the planet equilibrium
temperature. The names of the top 20 planets with the highest
TSM values are labeled. The shift in TSM values that we
observe between planets smaller than 2 R⊕ and larger than 2 R⊕
is caused by an artificial sudden jump of the mean molecular
weight values of these two groups of planets as described
above, but it represents the actual TSM trend when we move
from small planets to larger planets.
Louie et al. (2018) simulates the transmission spectroscopy

S/N of 18 known planets with sizes between 0.5 R⊕ and 4.0 R⊕

Table 10
Summary of the Stellar and Planet Parameter Values of the HD97658 System

Parameter Symbol Value Unit Source

Stellar Parameters
Stellar Mass M* 0.77±0.05 Me Van Grootel et al. (2014)
Stellar Radius R* -

+0.746 0.034
0.016 Re Gaia Collaboration et al. (2018)

Effective Temperature Teff -
+5192 55
122 K Gaia Collaboration et al. (2018)

Luminosity L* 0.4384±0.0007 Le Gaia Collaboration et al. (2018)
Activity Cycle Pactivity -

+3652 120
130 days this work

Rotation Period Prot 34±2 days this work

Planet Parameters
Ratio of Planet-to-stellar Radius Rp/R* -

+0.0283 0.0004
0.0002 this work

Planet Radius Rp -
+2.303 0.110
0.052 R⊕ this work

Semimajor Axis Ratio a/R* 26.7±0.4 this work
Orbital Period P 9.489295±0.000005 days this work
Mid-transit Time T0 2456361.80690±0.00038 BJD this work
Eccentricity e -

+0.030 0.021
0.034 this work

Inclination i 89.6±0.1 this work
Planet Mass M isinp -

+7.81 0.44
0.55 M⊕ this work

Planet Density ρp -
+3.78 0.51
0.61 g cm−3 this work

Equilibrium Temperature Teq -
+809 142
103 K this work

Atmospheric Metallicity Zlog -
+2.4 0.4
0.3 this work

Carbon-to-oxygen Ratio C/O 1.3±0.4 this work
Cloud-top Pressure ( )Plog bar -

+0.15 1.81
1.89 this work
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assuming they are observed with JWST/NIRISS. Twelve of
the 18 planets are also in our sample. Their treatment of
atmospheric mean molecular weight is similar to our method,
except that they divide the exoplanets into two categories at
1.5 R⊕ instead of 2.0 R⊕, and as a result, there is a similar S/N
shift at 1.5 R⊕ in Figure 5 of Louie et al. (2018). Although we
are measuring the detectability with different JWST instru-
ments, and the definition of TSM in this work is slightly
different from the simulated S/N in Louie et al. (2018),
the resulting TSM and S/N from Louie et al. (2018) of
the overlapping planets are highly consistent. Ten of the 12
overlapping planets are ordered the same in this work as in

Louie et al. (2018), and the TSM values of all 12 planets are
between half and two times of their S/N values in Louie et al.
(2018), showing that our analysis is reliable.
Among all planets in our sample, GJ1214b has the highest

TSM value, but the transmission spectrum of GJ1214b has
been revealed to be featureless from 1.1 to 1.6 μm (Kreidberg
et al. 2014a), indicating a cloudy atmosphere or no atmosphere.
Nevertheless, the opacity of clouds may vary across a broader
wavelength range, and emission and reflection spectra could
also contain additional features. Therefore, GJ1214b could
still be a valuable target for JWST observations. Ranked
second is K2-25b, a Neptune-sized planet orbiting an M4.5

Table 11
TSM of Confirmed Planets with 1 R⊕<Rp<4 R⊕ and Cooler Than 1000 K

Planet Name Rs Teff J mag Rp(R⊕) Mp(M⊕) Teq P TSM

GJ 1214 b 0.22 3026 9.750 2.85 6.26 576 1.580405 630.0
LP 791-18 c 0.17 2960 11.559 2.31 5.96 343 4.989963 153.2
K2-25 b 0.29 3180 11.303 3.42 11.67 478 3.484552 138.1
TOI-270 c 0.38 3386 9.099 2.42 6.46 463 5.660172 136.7
HD 97658 b 0.74 5175 6.203 2.35 9.54 738 9.490900 135.7
TOI-1130 b 0.69 4250 9.055 3.65 13.00 812 4.066499 126.6
GJ 9827 d 0.60 4340 7.984 2.02 4.04 685 6.201470 125.4
G 9-40 b 0.31 3348 10.058 2.03 4.78 458 5.746007 103.8
TOI-270 d 0.38 3386 9.099 2.13 5.19 371 11.380140 92.8
K2-36 c 0.72 4916 10.034 3.20 7.80 865 5.340888 87.9
K2-28 b 0.29 3214 11.695 2.32 6.01 570 2.260455 82.7
HD 3167c 0.87 5528 7.548 2.86 8.56 579 29.838320 82.7
Wolf 503 b 0.69 4716 8.324 2.03 4.78 790 6.001180 80.3
K2-55 b 0.63 4456 11.230 3.82 14.03 913 2.849258 66.5
K2-136 c 0.66 4499 9.096 2.91 8.85 511 17.307137 63.8
TOI-125 c 0.85 5320 9.466 2.76 6.63 828 9.150590 59.4
HD 15337c 0.86 5125 7.553 2.39 8.11 643 17.178400 57.7
GJ 143 b 0.69 4640 6.081 2.62 22.70 424 35.612530 54.5
K2-3 b 0.56 3896 9.421 2.17 5.38 506 10.054490 51.6
Kepler-445 c 0.21 3157 13.542 2.47 6.66 391 4.871229 50.0

(This table is available in its entirety in machine-readable form.)

Figure 20. TSM distribution of all planets cooler than 1000 K and with sizes between 1 R⊕ and 4 R⊕. The colors of the data points represent the equilibrium
temperatures of each planet, and we mark the TSM=3.0 limit with a horizontal line. The abrupt transition at 2 R⊕ is due to assumptions made for the atmospheric
mean molecular weight when calculating the TSM of each planet.
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dwarf in the 650 Myr old Hyades cluster (Mann et al. 2016;
Thao et al. 2020). The unusually large size (3.43 R⊕) of K2-25b
in comparison to other planets with similar orbital periods
(3.485 days) and the fact that it is orbiting a young star suggest
that K2-25b could represent an early or intermittent phase of
planetary evolution, where young Neptunes are in the process
of losing their atmospheres (Mann et al. 2016). These features
make K2-25b a target of high scientific value; although, we
must consider that a young Mdwarf like K2-25 could have
large spot and faculae covering fractions, which may generate
stellar contamination as large as several times the transit depth
changes expected in the transmission spectrum of K2-25b due
to its atmospheric features (Rackham et al. 2018). Ranked fifth
is HD97658b, the planet analyzed in this work. Since we are
not able to precisely determine the atmospheric composition of
HD97658b with the current HST/WFC3data as described in
previous sections, we simulate JWST observations of
HD97658b using its Near InfraRed Spectrograph (NIRSpec)
instrument in the following subsection and analyze quantita-
tively how well we can characterize the atmosphere of
HD97658b with JWST observations.

Out of all 1404 planets in Figure 20, 515 have TSM>5.0
and 820 have TSM>3.0. At least one-third of small planets
cooler than 1000 K can be well characterized using JWST, and
more valuable targets will be added to the pool with the
ongoing TESS mission.

6.3. JWST Simulation of HD97658b

The upcoming JWST mission, with a 6.5 m diameter primary
mirror and four near/mid-infrared instruments covering the
wavelength range from 0.6 to 28.5 μm, will provide unprece-
dented opportunities to characterize exoplanets of all sizes and
environments. Here, we simulate a transmission spectrum of
HD97658b as observed by JWST’s NIRSpec with its G235M
filter (1.6–3.2 μm) using the PANDEXO package (Batalha
et al. 2017). We assume one transit observation with a 45%
in-transit time and 90% saturation level. A reasonably optimistic
noise floor of 30 ppm is adopted according to Greene et al. (2016).

Figure 21 shows the simulated transmission spectrum observed by
JWST assuming a 200×solar metallicity atmosphere with 1bar
cloud-top pressure and C/O=0.8 and compares it with a flat
spectrum and two other atmospheric models with C/O=0.5 and
0.1, respectively. Our calculation shows that with only one transit
observed by JWST, we will be able to distinguish a C/O=0.8
atmosphere from a C/O=0.7 atmosphere, C/O=0.5 atmos-
phere, and C/O=0.1 atmosphere with 5σ, 12σ, and 17σ
significance, respectively, which will enable further study of the
formation environment and formation process of HD97658b. The
same data will also be able to exclude the flat spectrum with 4σ
significance.
With this result, and considering the fact that HD97658b is

ranked as the fifth-best target for future transmission spectra
observations from our previous calculations, we propose that
HD97658b be assigned top priority in JWST exoplanet
proposals.

We acknowledge support for this analysis by NASA through
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2017); EXOFASTv2 (Eastman 2017); RadVel (Fulton &
Petigura 2017); PLATON (Zhang et al. 2019); PANDEXO
(Batalha et al. 2017).

Figure 21. HD97658b transmission spectrum simulated with the JWST/NIRSpec G235M filter assuming one transit observation and a 200×solar metallicity
atmosphere with 1bar cloud-top pressure and C/O=0.8. In comparison, two other atmospheric models with different C/O values and a flat spectrum are also shown.
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