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Abstract

We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-
short-period planet. This bright (V= 10.2) star hosts three small transiting planets identified in photometry from the
NASA TESS mission: TOI-561 b (TOI-561.02, P= 0.44 days, Rp= 1.45± 0.11 R⊕), c (TOI-561.01, P= 10.8
days, Rp= 2.90± 0.13 R⊕), and d (TOI-561.03, P= 16.3 days, Rp= 2.32± 0.16 R⊕). The star is chemically ([Fe/
H]=−0.41 ± 0.05, [α/Fe]=+0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population,
making TOI-561 one of the oldest (10± 3 Gyr) and most metal-poor planetary systems discovered yet. We
dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution
Echelle Spectrometer. Planet b has a mass and density of 3.2± 0.8M⊕ and -

+5.5 1.6
2.0 g cm−3, consistent with a rocky

composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like
iron-to-silicates ratio is not ruled out. Planet c is 7.0± 2.3M⊕ and 1.6± 0.6 g cm−3, consistent with an interior
rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we
did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-
based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk
star confirmed with radial velocities and one of the best rocky planets for thermal emission studies.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet astronomy (486); Exoplanet systems (484);
Exoplanet detection methods (489); Exoplanet structure (495); Exoplanet formation (492); Exoplanet
evolution (491)

Supporting material: machine-readable table

1. Introduction

The NASA Kepler mission demonstrated that small planets
are abundant in the Milky Way (Borucki et al. 2010; Howard
et al. 2012; Fressin et al. 2013; Petigura et al. 2013). What are
the properties of small planets around nearby, bright stars,
including their bulk and atmospheric compositions? How do
planet properties vary with stellar type and age? The NASA
TESS mission is a two-year, all-sky survey that is finding
small, transiting planets around nearby F-, G-, K-, and M-type
stars (Ricker et al. 2015). The all-sky strategy enables TESS to
sample the transiting planets around brighter stars spanning a
wider range of properties than were represented in the pencil-
beam Kepler survey.

A TESS mission level-one science goal is to measure the
masses of 50 sub-Neptune-size transiting planets.54 The TESS-
Keck Survey (TKS) is a multi-institutional collaboration of
Keck-HIRES users who are pooling Keck-HIRES time to meet
this science goal and others (see TKS-I, Dalba et al. 2020; and
also TKS-0, A. Chontos et al. 2021, in preparation). The TKS
science goals include determining the masses, bulk densities,
orbits, and host-star properties of planets in our survey. Our
survey targets were selected to answer broad questions about
planet properties, formation, and evolution.

TESS Object of Interest (TOI) 561 is a V= 10.2 star that
advances three of the TKS science goals: (1) to compare
planetary siblings in systems with multiple transiting planets,
(2) to characterize ultra-short-period planets (USPs), and (3) to
study planetary systems across a variety of stellar types.
Systems with multiple transiting planets provide excellent
natural laboratories for testing the physics of planet formation
because the planets all formed around the same star and from

the same protoplanetary disk. TOI-561 is a bright star for which
planet masses, interior compositions, and eventually atmo-
spheric compositions can be determined through follow-up
efforts. Our investigation of TOI-561 advances our goal to
compare the fundamental physical properties of small-planet
siblings in extrasolar systems.
TOI-561 also hosts a USP that has an orbital period of <1

day and a radius consistent with a rocky composition (e.g.,
Weiss & Marcy 2014; Rogers 2015).55 The present-day
location of USPs corresponds to the former evacuated region
of the protoplanetary disk. Because the protoplanetary disk
cavity forms during the first few million years of the star’s
existence, this inner region should have been depleted of the
building blocks necessary to assemble planets. Thus, the
formation of USPs is poorly understood but likely involves
migration to overcome the low local density of solids.
Characterizing the mass and bulk density of TOI-561 b
clarifies how it and other USPs formed.
We did not initially select TOI-561 for its host-star

properties, but we discovered during our investigation that
TOI-561 is a member of the galactic thick disk. Its low
metallicity, high alpha abundance, and old age make it a special
case that may advance our understanding of both multiplanet
systems and the formation of USPs. Its unusual chemistry,
kinematics, and age also address a third goal of TKS, which is
to study planetary systems across a variety of stellar types.
In Section 2, we describe the TESS photometry, including the

signals of the three transiting planet candidates. In Section 3, we
characterize the host star. We describe our methods of planet
candidate validation with ground-based photometry (Section 4)
and high-resolution imaging (Section 5), and confirmation with
radial velocities (RVs; Section 6). We describe the planet masses
and densities in Section 7. We discuss the planetary system orbital

51 NSF Graduate Research Fellow.
52 NSF Astronomy and Astrophysics Postdoctoral Fellow.
53 National Science Foundation Graduate Research Fellow.
54 NASA TESS mission, accessed 2020 August 23: https://heasarc.gsfc.nasa.
gov/docs/tess/primary-science.html.

55 The definition of USPs as having P < 1 day is somewhat arbitrary; see
Sanchis-Ojeda et al. (2014) versus Dai et al. (2018).
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dynamics and prospects for future atmospheric characterization in
Section 8. We conclude in Section 9.

2. TESS Photometry

The vetting team of the TESS Science Processing Operations
Center (SPOC) identified three transiting planets in their
analysis of the photometry for TESS Input Catalog (TIC) ID
377064495 (Jenkins et al. 2016; Twicken et al. 2018; Li et al.
2019). The presearch data conditioning simple aperture
photometry (PDCSAP) is shown in Figure 1 (Smith et al.
2012; Stumpe et al. 2012, 2014). The star was observed in
Sector 8 at a 2 minute cadence. The SPOC-defined aperture is
overlaid on the target in a Full-Frame Image (FFI) in Figure 2.
The first planet candidate the SPOC pipeline detected is at
P= 10.78 days (TOI-561.01, planet c) based on two transits,
with signal-to-noise ratio (S/N) 9.8. After masking the flux
near the transits of planet c, the SPOC pipeline detected a
planet candidate at P= 0.45 days (TOI-561.02, planet b) based
on 55 transits, with S/N 10.0. After masking the flux near
transits of both planets c and b, the SPOC pipeline detected a
planet candidate at P= 16.4 days (TOI-561.03, planet d56),
which transits twice, with S/N 9.2.

Several attributes of the TESS photometry complicate our
analysis, particularly for planet d. There is a gap partway
through the time series that creates an alias in our interpretation
of the transit signals. The timing of the gap corresponds to a
data download and also an unplanned interruption in commu-
nication between the instrument and spacecraft.57 The USP
transited 55 times during the TESS observations, leading to a
robust ephemeris determination (although individual transits
are too shallow to identify by eye in the photometry; see
Section 4 for the phase-folded photometry and Section 6 for the
RV planet confirmation). However, only two transits of planet
c and two transits of planet d were detected. The transits of c

and d occurred on different sides of the data gap. For planet c,
the nondetection of additional transits in the TESS photometry
leads to a robust determination of the orbital period at 10.78
days, but, for planet d, periods of 16 days (there is no transit
during the gap) or 8 days (there is a transit in the gap; see the
dotted blue arrow in Figure 1).
Another challenge is that the second transit of planet d overlaps

with a transit of planet b and is near a transit of planet c, and so
much of the photometry during and near the second transit of d
was masked in the original pipeline. The lack of a photometric
continuum around the transit makes it difficult to isolate it and
determine an accurate midtime, depth, and duration.
To mitigate the frequent gaps from masking planets b and c,

we ran a custom iteration of the SPOC data validation (DV)

Figure 1. The presearch data conditioning SAP TESS photometry of TOI-561 (black points) and the same photometry but binned every 13 data points and flattened
with a Savitzky–Golay filter (Savitzky & Golay 1964, gray points, with flux offset). Individual transits of planets c (red arrows) and d (blue arrows) are marked. A
third transit of planet d could have occurred in the time-series gap (blue dotted arrow). A planet at P = 0.44 days (planet b) is also present, but the transits are too
shallow to see in these data (see Figures 6 and 8).

Figure 2. The TESS Full-Frame Image centered on TOI-561. The SPOC-
defined aperture is a pale pink overlay on the central star. The TESS plate scale
is 21″ per pixel. The target star has TESS magnitude 9.49. False-positive
scenarios in which the bright nearby stars are eclipsing binaries, with some flux
contaminating the target pixels, are ruled out with the data validation centroid
test (planet d) and/or follow-up ground-based photometry (Section 4, planets b
and c).

56 This planet is labeled planet f in the NASA Exoplanet Archive to
distinguish it from the planets d and e reported by Lacedelli et al. (2020).
57 TESS Data Release Notes: Sector 8, DR10, https://archive.stsci.edu/
missions/tess/doc/tess_drn/tess_sector_08_drn10_v02.pdf.
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pipeline (Figure 3). We first identified planets c and b but
subtracted the best-fit models rather than masking the transits
entirely so that we did not remove valuable continuum or in-
transit data from the region with overlapping transits. We then
identified and fit planet d. In our custom DV analysis, the depth
for the odd transit of planet d is 947± 126 ppm and the depth
for the even transit is 856± 124 ppm. The duration for the odd
transit is 5.06± 0.57 hours, and the duration for the even
transit is 5.62± 0.62 hours. The difference in the odd versus
even transit depths is 0.51σ, and the difference in the odd
versus even transit durations is 0.66σ. The transit depths from
our custom DV analysis are consistent with the values from the
original report.

A key difference between the original pipeline and our
custom analysis is that the original SPOC pipeline identified the
time between the two transits of planet d as 16.37 days,
whereas in our custom analysis, that interval is 16.29 days. The
partial masking of planet d’s transit in the original pipeline
likely caused an inaccurate transit midpoint determination for
the second transit, producing the inaccurate orbital period.
Our revised orbital period of 16.29 days implies that several

follow-up photometric efforts for planet d were off by> 1 day
(Section 4).
Despite the challenges related to planet d, the three planet

candidates performed well in the DV diagnostic tests. The
candidates passed all of the tests except for the difference
image centroiding test, which placed the source for 561 b
within 11″, 561 c within 23″, and 561 d within 7″ (and a
passing score for this test). They all passed the ghost diagnostic
test as well, indicating that if they were due to background
eclipsing binaries, the offending star would have to be within a
pixel of the location of the target star. All three planet
candidates pass the SPOC pipeline odd–even test, with
insignificant differences between the depths of odd-numbered
versus even-numbered transits.58

The combination of DV and ground-based follow-up is
sufficient to rule out a broad variety of astrophysical false-
positive scenarios for the planets. Planet d passes the
centroiding test in the DV report, ruling out a nearby eclipsing

Figure 3. A custom run of the SPOC pipeline and DV analysis for TOI-561 provided more robust parameters than the default SPOC analysis. In the default analysis,
the transits of planet d were affected by many short data gaps that resulted from masking the transits of b and c. In our custom analysis, we subtracted (instead of
masking) the transits of planets b and c, finding Pd = 16.29 days (instead of 16.37 days). The depths and durations of the two transits of planet d (bottom-left panel)
are consistent to <1σ.

58 In the scenario of an 8 day period for planet d, the odd–even test is not
meaningful, as the two transit-like events would correspond to two odd-
numbered events.
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binary (NEB) as the source of the transits. Through ground-
based photometry, we recovered additional on-target transits of
planet c, and also ruled out an NEB as the source of the transits
for planet b (Section 4). Ground-based high-resolution imaging
(Section 5) rules out background eclipsing binary false
positives for all three planets. RVs (Section 6) rule out that
the target star itself is a spectroscopic eclipsing binary, and we
detect planetary-mass RV signals at the ephemerides of planets
b and c.

3. Stellar Properties

3.1. High-resolution Spectroscopy

We obtained a high signal-to-noise spectrum at R= 60,000
(Section 6) of TOI-561 to determine atmospheric parameters and
detailed chemical abundances using the line list and forward
modeling procedure of Brewer et al. (2016). The modeling uses
Spectroscopy Made Easy (SME; Valenti & Piskunov 1996;
Piskunov & Valenti 2017) in an iterative scheme that alternates
between solving for global stellar properties and a detailed
abundance pattern. We begin by estimating Teff from B–V colors
then fitting for Teff, glog , [M/H], Doppler line broadening, and
the abundances of the α elements calcium, silicon, and titanium.
All other elements are scaled solar values based on the overall
metallicity given by [M/H] and the initial abundances are set to
solar. The temperature of the resulting model is perturbed
by±100K and used as input to refit the spectrum. The χ2

weighted average of the global stellar parameters is then fixed and
used as the input for the next step of simultaneously fitting for the
abundances of 15 elements.

Simultaneous fitting of the elements is critical in obtaining
precise abundances due to chemical processes in the stellar
photosphere (e.g., Ting et al. 2018). The formation of
molecules in cooler stars, even in very low numbers, can alter
the atomic number densities and hence measured abundances
using only isolated atomic lines.

The global parameters and abundance pattern obtained in
the first iteration are then used as an initial guess for a second
fitting following the same steps. Finally, the macroturbulence
is set using a Teff relation from Brewer et al. (2016), and we
solve for the projected rotational velocity, v isin , with all
other parameters fixed. The resulting gravities have been
shown to be consistent with those from asteroseismology
to within 0.05 dex and the abundance uncertainties are
between 0.01 and 0.04 dex (Brewer et al. 2015). An empirical
correction is applied to the abundances as a function of
temperature (Brewer et al. 2016), which adds additional
uncertainty to the absolute abundance, especially at tempera-
tures between 5000 and 5500 K, and we adopt 0.05 dex
uncertainty for most elements. Our analysis yielded a low
stellar metallicity and high α abundance ([Fe/H]=−0.41 ±
0.05, [α/Fe]=+ 0.23± 0.05, see Table 1).
The effective temperature derived from the SME analysis

(5326± 25K)59 is in good agreement with alternative estimates
using SpecMatch Synth (5249± 110 K; Petigura 2015), Spec-
Match-Emp (5302± 110 K; Yee et al. 2017), and color–Teff
relations applied in the TESS Input Catalog (5440± 110 K;
Stassun et al. 2018), and applying a J−K color–Teff relation
(5300± 110 K, Casagrande et al. 2010). We adopted the
SME-derived solution, with an error bar calculated from the

standard deviation of Teff estimates from different methods:
5326± 64 K.
For each spectrum, we measure the Mt. Wilson S value, an

indicator of the chromospheric magnetic activity. The Mt.
Wilson S value is a measure of the strength of the emission
cores in the Ca II H and K lines relative to the nearby

Table 1
Host-star Characteristics

Basic Properties

Tycho ID 243-1528-1
TIC ID 377064495
Gaia DR2 ID 3850421005290172416
R.A. 09:52:44.44
Decl. +06:12:57.00
Tycho VT Magnitude 10.25
TESS Magnitude 9.49
2MASS K Magnitude 8.39

Gaia DR2 Astrometry

Parallax, π (mas) 11.627 ± 0.067
Radial Velocity (km s–1) 79.54 ± 0.56
Proper Motion in RA (mas yr–1) −108.432 ± 0.088
Proper Motion in DEC (mas yr–1) −61.511 ± 0.094

High-resolution Spectroscopy

Effective Temperature, Teff (K) 5326 ± 64
Surface Gravity, glog (cm s−2) 4.52 ± 0.05
Projected rotation speed, v isin (km s−1) <2.0
log ¢RHK (dex) −5.1
Iron Abundance, [Fe/H] (dex) −0.41 ± 0.05
Carbon Abundance, [C/H] (dex) −0.19 ± 0.05
Nitrogen Abundance, [N/H] (dex) −0.51 ± 0.05
Oxygen Abundance, [O/H] (dex) +0.09 ± 0.05
Sodium Abundance, [Na/H] (dex) −0.39 ± 0.05
Magnesium Abundance, [Mg/H] (dex) −0.20 ± 0.05
Aluminum Abundance, [Al/H] (dex) −0.19 ± 0.05
Silicon Abundance, [Si/H] (dex) −0.24 ± 0.05
Calcium Abundance, [Ca/H] (dex) −0.27 ± 0.05
Titanium Abundance, [Ti/H] (dex) −0.20 ± 0.05
Vanadium Abundance, [V/H] (dex) −0.27 ± 0.05
Chromium Abundance, [Cr/H] (dex) −0.43 ± 0.05
Manganese Abundance, [Mn/H] (dex) −0.60 ± 0.05
Nickel Abundance, [Ni/H] (dex) −0.37 ± 0.05
Yttrium Abundance, [Y/H] (dex) −0.42 ± 0.05
Alpha Abundance, [α/Fe] (dex) +0.23 ± 0.05

Distance Modulus and Isochrone Modeling

Stellar Luminosity, Lå (Le) 0.522 ± 0.017
Stellar Mass, Må (Me) 0.805 ± 0.030
Stellar Radius, Rå (Re) 0.832 ± 0.019
Stellar Density, ρå (ρe) 1.38 ± 0.11
Surface Gravity, glog (cgs) 4.500 ± 0.030
Age (Gyr) 10 ± 3

Transit Modeling

Limb Darkening (TESS band), q1 -
+0.2 0.2
0.2

Limb Darkening (TESS band), q2 -
+0.4 0.2
0.3

Note. The TESS magnitude is adopted from the TESS Input Catalog (Stassun
et al. 2018), and the kinematics are taken from Gaia DR2 (Lindegren et al.
2018). Stellar parameters from isochrone modeling are formal uncertainties
only and do not incorporate systematic errors from different model grids. The
transit modeling is described in Section 4.

59 This error is the formal uncertainty, not the adopted error.
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continuum flux. Our procedure for determining the S values is
described in Isaacson & Fischer (2010). See Section 6, Table 2,
for the full S-value time series. A Lomb-Scargle periodogram
of the S values results in peaks near 100 days and 230 days,
neither of which is near the expected rotation period or
magnetic activity cycle of this old K dwarf (Section 6).

3.2. Distance Modulus and Isochrone Modeling

The stellar atmosphere and interior models are typically
calculated using a solar-scaled α-element abundance mixture
and thus assume [Fe/H]= [M/H]. To account for the nonsolar α
abundances of TOI-561, we averaged the individual abundance
measurements for [Mg/H], [Si/H], [Ca/H], and [Ti/H] to derive
[α/Fe]=+0.23 ± 0.05, and then applied the calibration by
Salaris et al. (1993) to convert the measured [Fe/H] value into an
overall metal abundance, yielding [M/H]=−0.24± 0.10:

= + ´ +aM H Fe H log 0.694 10 0.306 . 110
Fe[ ] [ ] ( ) ( )[ ]

We adopted a conservative uncertainty of 0.1 dex for [M/H]
to account for potential systematics in the Salaris et al. (1993)
calibration.

Next, we used Teff, [M/H], glog , Gaia DR2 parallax
(adjusted for the 0.082± 0.033 mas zero-point offset for
nearby stars reported by Stassun & Torres 2018), 2MASS K-
band magnitude, a 3D dust map, and bolometric corrections to
calculate a luminosity by solving the standard distance
modulus, as implemented in the “direct mode” of isoclas-
sify (Huber et al. 2017). We then combined the derived
luminosity with Teff and [M/H] to infer additional stellar
parameters (mass, radius, density) using the “grid mode” of
isoclassify, which performs a probabilistic inference of
stellar parameters using a grid of MIST isochrones (Choi et al.
2016). The isochrone-derived glog (4.50± 0.03 dex) is in
excellent agreement with spectroscopy (4.52± 0.05 dex),
confirming that no additional iteration in the above steps is
required for a self-consistent solution. The derived age of the
isochrone fit is 10± 3 Gyr, consistent with the mean age of a
galactic thick-disk star (see the following section).

The full set of stellar parameters is listed in Table 1. The
results show that TOI-561 is an early-K dwarf with a radius of
Rå= 0.832± 0.019 Re and mass Må= 0.805± 0.030Me. We
note that the quoted uncertainties are formal error bars and do
not include potential systematic errors due to the use of
different model grids (Tayar et al. 2021). For example, the
stellar radius in Table 1 is 3% lower than predicted from an

application of the Stefan–Boltzmann law using either the
“direct mode” of isoclassify or SED fitting (Stassun et al.
2017), both of which yield 0.86± 0.02 Re. However, this 3%
(≈1 σ) difference does not significantly affect our main
conclusions on the properties of the planets in the TOI-561
system, because the planet density errors are dominated by
uncertainties in the planet masses (see Section 7).
We used the stellar evolution model fitting tool kiauhoku

(Claytor et al. 2020) to estimate the rotation period of TOI-561.
Using the stellar Teff, [Fe/H], and [α/Fe] from Table 1 as
inputs and assuming an age of 10± 3 Gyr, we found two
different model-dependent estimates of the rotation period.
Assuming the magnetic braking law described in van Saders &
Pinsonneault (2013), we found Prot= 38.5± 7.3 days, but
assuming the stalled-braking law of van Saders et al. (2016),
we found Prot= 35.7± 3.4 days. These rotation periods are
consistent with the upper limit of v isin we determined
spectroscopically. However, the estimated rotation periods
differ significantly from the periodicity identified in the Mt.
Wilson S-value activity indices (see Table 2), suggesting that
the rotation period is not detected in the S-value time series. A
rotation period of >30 days is likely too long to identify in the
single sector of TESS photometry. We checked the archives of
several ground-based photometric surveys, but TOI-561
saturates in ASAS-SN and Pan-STARRS, and it is too close
to the equator to be included in WASP.

3.3. Galactic Evolution

Early studies of star counts in the Milky Way revealed two
distinct populations in the galactic disk which dominate at
different scale heights, commonly denoted the “thin” and “thick”
disk population (Gilmore & Reid 1983). Spectroscopic and
photometric surveys have shown that these populations can be
approximately separated based on kinematics and chemical
abundances, with thick-disk stars being kinematically hotter
(e.g., Fuhrmann 1998), older (Bensby et al. 2005), more metal
poor, and enriched in α-process elements (e.g., Fuhrmann 1998).
The formation of the thick disk is still debated, with scenarios

including external processes such as the accretion of stars from the
disruption of a satellite galaxy (e.g., Abadi et al. 2003) and
induced star formation from mergers with other galaxies (e.g.,
Brook et al. 2004), or a natural dynamical evolution of our galaxy
including radial migration (Schönrich & Binney 2009a, 2009b).
While the mere existence of a distinct thick disk is still in question
(Bovy et al. 2012), spectroscopic and asteroseismic surveys have
confirmed that chemically identified “thick-disk” stars belong to
the old population of our galaxy, with typical ages of ∼11Gyr
(Silva Aguirre et al. 2018).
The detection of exoplanets around different galactic stellar

populations can provide powerful insights into their formation
and evolution (Adibekyan et al. 2012). For example, the
discovery of five sub-Earth-size planets orbiting the thick-disk
star Kepler-444 (Campante et al. 2015) demonstrated for the
first time that terrestrial planet formation has occurred for at
least ∼11 Gyr, and the discovery of a close M-dwarf binary
companion demonstrated that this process can even proceed in
a truncated protoplanetary disk (Dupuy et al. 2016). While
TESS probes nearby stellar populations, it has significant
potential to expand this sample. Indeed, Gan et al. (2020)
recently presented the first TESS exoplanet orbiting a thick-
disk star identified based on kinematics.

Table 2
Radial Velocities

Time RV RV unc. S val
(BJD) (m s−1) (m s−1)

2458599.74193 3.9 1.3 0.148
2458610.76476 1.3 1.4 0.147
2458617.75866 −1.9 1.4 0.142
2458622.74736 2.3 1.2 0.146
2458623.75550 2.9 1.4 0.146
2458627.75794 −6.5 1.6 0.151

Note. The first few lines are shown for form and content. The full machine-
readable table is available.

(This table is available in its entirety in machine-readable form.)
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Figure 4 compares the chemical properties of TOI-561 with a
sample of field stars in the TESS candidate target list (CTL)
observed by the GALAH survey (De Silva et al. 2015; Sharma
et al. 2018) and a sample of known exoplanet hosts from the
Hypatia catalog (Hinkel et al. 2014). We calculated [α/Fe] for
stars in the Hypatia catalog in the same manner as for TOI-561
and discarded stars with abundance uncertainties> 0.2 dex
(calculated from the scatter between different methods). TOI-
561 is consistent with the thick disk in terms of its chemical
abundances, in agreement with the high proper motions
measured by Gaia (Table 1) and the kinematic classification
of TOI-561 by Carrillo et al. (2020). To independently confirm
the kinematic classification, we used the UVW velocity vector
of TOI-561 via the online velocity calculator of Rodriguez
(2016), finding (U, V, W)= (− 60.0, − 70.9, + 16.7) km s−1.
Using the probabilistic framework of Bensby et al. (2004) and
Bensby et al. (2014), we find a thick-to-thin disk probability
ratio of TD/D= 19, indicating strong evidence that this star is
a member of the thick disk.

TOI-561 is the first chemically and kinematically confirmed
thick-disk exoplanetary system discovered by TESS, the fifth
known thick-disk star known to host multiple planets, and the
first thick-disk star known to host an ultra-period short planet.
This further demonstrates that (1) small, rocky planets can form
in metal-poor environments (consistent with Buchhave et al.
2012), (2) USPs are not tidally destroyed around old stars
(consistent with Hamer & Schlaufman 2020), and (3) rocky
planets have been forming for nearly the age of the universe.

4. Time-series Photometric Follow-up and Analysis

We acquired ground-based time-series follow-up photometry
of TOI-561 as part of the TESS Follow-up Observing Program
(TFOP)60 to attempt to (1) rule out NEBs as potential sources
of the TESS detections and (2) detect the transits on target to
refine the TESS ephemerides. We used the TESS Transit
Finder, which is a customized version of the Tapir
software package (Jensen 2013), to schedule our transit
observations.

4.1. LCOGT

We observed TOI-561 using the Las Cumbres Observatory
Global Telescope (LCOGT) 1 m networks (Brown et al. 2013) in
the Pan-STARRS z-short (zs) band. The telescopes are equipped
with 4096× 4096 SINISTRO cameras having an image scale of
0 389 pixel−1 resulting in a ¢ ´ ¢26 26 field of view. The images
were calibrated using the standard LCOGT BANZAI pipeline
(McCully et al. 2018), and the photometric data were extracted
using the AstroImageJ (AIJ) software package (Collins et al.
2017). A full transit window of TOI-561 b was observed
continuously for 205 minutes on 2019 April 19 UT from the
LCOGT Siding Spring Observatory (SSO) node. TOI-561 c was
observed continuously for 381 minutes on 2020 February 3 UT
from the LCOGT McDonald Observatory node and again on
2020 March 17 UT from the LCOGT Cerro Tololo Inter-
American Observatory (CTIO) node for 230 minutes and then
later on the same epoch from the LCOGT SSO node for 269
minutes. TOI-561 d was observed continuously for 300 minutes
on 2020 April 24 UT from the LCOGT SSO node.

4.2. NGTS

The Next Generation Transit Survey (NGTS; Wheatley et al.
2018), located at ESO’s Paranal Observatory, is a photometric
facility dedicated to hunting exoplanets. NGTS consists of 12
independently operated 20 cm diameter robotic telescopes, each
with an 8 deg2 field of view and a plate scale of 5″ pixel−1. The
NGTS telescopes also benefit from subpixel guiding afforded by
the DONUTS autoguiding algorithm (McCormac et al. 2013). By
using multiple NGTS telescopes to simultaneously observe the
same star, NGTS can achieve ultra-high-precision light curves of
exoplanet transits (Bryant et al. 2020; Smith et al. 2020).
TOI-561 was observed on two nights using NGTS multi-

telescope observations. On UT 2020 February 2, a full transit
of TOI-561 c was observed using three NGTS telescopes. A
predicted transit ingress of TOI-561 d was observed on the
night of UT 2020 March 5 using four NGTS telescopes. A total
of 5179 images were obtained during the first observation and
7791 during the second. Both sets of observations were
performed using an exposure time of 10 s and the custom
NGTS filter (520–890 nm). The airmass of the target was kept
below 2, and the sky conditions were good for all the
observations.
We reduced the NGTS images using the custom aperture

photometry pipeline detailed in Bryant et al. (2020). This
pipeline performs source extraction and photometry using the
SEP library (Bertin & Arnouts 1996; Barbary 2016). The
pipeline also uses GAIA DR2 (Gaia Collaboration et al.
2016, 2018) to automatically identify a selection of comparison
stars that are similar to TOI-561 in terms of brightness, color,
and CCD position.

4.3. MuSCAT2

We observed full transit windows of TOI-561 b continuously
for 120 minutes on 2019 April 23 UT and 2020 May 24 UT
simultaneously in the g, r, i, and zs bands with the MuSCAT2
multicolor imager (Narita et al. 2019) installed at the 1.52 m
Telescopio Carlos Sanchez in the Teide Observatory, Spain.
The photometry was carried out using standard aperture
photometry calibration and reduction steps with a dedicated
MuSCAT2 photometry pipeline, as described in Parviainen
et al. (2020).

Figure 4. Iron abundance vs. [α/Fe] for stars in the TESS candidate target list
(CTL) observed by the GALAH survey (De Silva et al. 2015; Sharma
et al. 2018) and a sample of exoplanet host stars taken from Hypatia catalog
(Hinkel et al. 2014). Known exoplanet hosts are separated into those with a
single known planet (blue diamonds) and multiple known planets (green
circles). The position of TOI-561 is marked by a red star. The black dashed line
approximately separates the galactic thin-disk and thick-disk populations.

60 TFOP website: https://tess.mit.edu/followup.
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4.4. PEST

We observed a full transit window of TOI-561 b
continuously for 205 minutes on 2019 April 22 UT in the Rc

band from the Perth Exoplanet Survey Telescope (PEST) near
Perth, Australia. The 0.3 m telescope is equipped with a
1530× 1020 SBIG ST-8XME camera with an image scale of
1 2 pixel−1 resulting in a ¢ ´ ¢31 21 field of view. A custom
pipeline based on C-Munipack61 was used to calibrate the
images and extract the differential photometry.

4.5. El Sauce

We observed a full transit window of TOI-561 b
continuously for 206 minutes on 2019 April 23 UT in the Rc

band from El Sauce Observatory in Coquimbo Province, Chile.
The 0.36 m Evans telescope is equipped with a 1536× 1024
SBIG STT-1603-3 camera with an image scale of 1 47 pixel−1

resulting in an 18 8× 12 5 field of view. The photometric data
were extracted using AIJ.

4.6. TOI-561 b

The TOI-561 b SPOC pipeline transit depth is generally too
shallow (290 ppm) for ground-based detection, so we checked
all three stars within ¢2.5 that are bright enough to have caused
the SPOC detection (i.e., TESS magnitude <18.1) for a
possible NEB that could be contaminating the SPOC
photometric aperture. We estimate the expected NEB depth
in each neighboring star by taking into account both the
difference in magnitude relative to TOI-561 and the distance
to TOI-561 (to estimate the fraction of the star’s flux that
would be contaminating the TESS aperture for TOI-561). If
the rms of the 5 minute binned light curve of a neighboring
star is more than a factor of 3 smaller than the expected NEB
depth, we consider an NEB to be ruled out. We also visually
inspect each star’s light curve to ensure that there is no
obvious eclipse-like signal, even though the rms to the
estimated NEB depth threshold is met. Using a combination
of the LCOGT, MuSCAT2, PEST, and El Sauce TOI-561 b
follow-up observations, we rule out the possibility of a
contaminating NEB at the SPOC pipeline ephemeris.

4.7. TOI-561 c

In the LCOGT observation of TOI-561 c on 2020 February 3
UT, we detected a 142 minute, early (0.3σ) ∼1100 ppm egress,
relative to the nominal SPOC ephemeris, in a 9 7 radius
aperture around the target star, which is not contaminated by
any known Gaia DR2 stars. NGTS observed and detected the
same transit on time (Figure 5). As a result, we revised the
follow-up orbital period to 10.778325 days for further
scheduling. The 2020 March 17 UT LCOGT CTIO and SSO
observations then detected an on-time ingress and egress,
respectively, at the revised ephemeris.

4.8. TOI-561 d

The LCOGT observation of TOI-561 d on 2020 April 24 UT
covered an egress ±150 minutes relative to the nominal SPOC
pipeline ephemeris and provides ∼1σ coverage of the original
SPOC ephemeris uncertainty on the epoch of observation, but
is 2 days away from the transit midpoint predicted by our

revised 16.29 day ephemeris. The LCOGT light curve does not
show an obvious 923 ppm egress during the limited observa-
tion window. However, ingress- or egress-only coverage of
transits with depths less than 1000 ppm from the LCOGT 1 m
network can be difficult to interpret and reliably model due to
potential trends in the data that may inject or mask a shallow
ingress or egress. The NGTS observation on 2020 March 5
shows what might be the ingress of a transit of planet d.
However, given the low S/N, this is not a high-confidence
detection. Furthermore, if our revised 16.29 day ephemeris is
correct, this observation was 2 days away from the transit
midpoint.

4.9. Transit Modeling

Here we perform a joint analysis of TESS light curve and
ground-based follow-up to refine the planetary parameters.
We downloaded the TESS light curve from the Mikulski
Archive for Space Telescopes (MAST; Figure 1). We isolated
the transits of each planet with a window of three times the
transit duration. We removed long-term stellar variability/
instrumental effect by fitting a cubic spline with 1.5 day knot
length to the light curve after removing the transits. We also
downloaded the ground-based follow-up observations from
the ExoFOP website62. We used the BATMAN (Kreidberg 2015)
package for transit modeling, using the transit ephemerides
reported by the TESS team as an initial guess for our model.
Our model uses the mean stellar density ρå as a global
parameter (with a Gaussian prior as derived in Section 3 and
Table 1) on all three planets. For each planet, we allowed the
radius ratio Rp/Rå, the impact parameter b, the orbital period P,
and the midtransit time Tc to vary freely. We assumed circular
orbits for all three planets. The mean stellar density ρå and the
orbital period P together constrain the scaled semimajor axes
a/Rå of each planet. We adopted a quadratic limb-darkening

Figure 5. The individual transits of planet c from TESS and ground-based
facilities. The magenta points are binned data. The red stars indicate the
midtransits of planet b, which, due to the short orbital period, often overlap
with the transits of planets c and d. The red solid line is the best-fit global
model that includes both TESS and ground-based photometry and model
transits of all three planets simultaneously. Note that the ground-based transits
of planet d were acquired at times that are not consistent with our best-fit
ephemeris, and they are not shown.

61 http://c-munipack.sourceforge.net 62 https://exofop.ipac.caltech.edu/tess/
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law as parameterized by Kipping (2013). We allowed the
coefficients q1 and q2 to vary in different photometric bands.
We then performed a Monte Carlo Markov Chain analyses with
the Python package emcee (Foreman-Mackey et al. 2013) to
sample the posterior distribution of the various transit
parameters. The results are summarized in Table 3, and
Figure 6 shows the best-fit transit models.

Table 3
Planet Parameters

Parameter Median ± 1σ

Planet b

Orbital Period, Pb (days) -
+0.446573 0.000021
0.000032

Midtransit Time, Tc (BJD) 2458517.4973 ± 0.0018
Radius Ratio, Rp/Rå 0.016 ± 0.001
Impact Parameter, b 0.3 ± 0.2
Duration, T14 (hours) 1.42 ± 0.10
Orbital Eccentricity, e 0 (fixed)
RV Semiamplitude, Kb (m s−1) 3.1 ± 0.8
Semimajor axis, ab (au) 0.01064 ± 0.00013
Radius, Rb (R⊕) 1.45 ± 0.11
Mass, Mb (M⊕) 3.2 ± 0.8
Density, ρb (g cm

−3) -
+5.5 1.6
2.0

Equilibrium Temperature, Teq,b (K) 2480 ± 200

Planet c

Orbital Period, Pc (days) 10.77892 ± 0.00015
Midtransit Time, Tc (BJD) 2458527.05825 ± 0.00053
Radius Ratio, Rp/Rå 0.032 ± 0.001
Impact Parameter, b 0.2 ± 0.2
Duration T14 (hours) 4.04 ± 0.26
Orbital Eccentricity, e 0 (fixed)
RV Semiamplitude, Kc (m s−1) 2.4 ± 0.8
Semimajor axis, ac (au) 0.0888 ± 0.0011
Radius, Rc (R⊕) 2.90 ± 0.13
Mass, Mc (M⊕) 7.0 ± 2.3
Density, ρc (g cm

−3) 1.6 ± 0.6
Equilibrium Temperature, Teq,c (K) 860 ± 70

Planet d

Orbital Period, Pd
a (days) 16.287 ± 0.005

Midtransit Time, Tc (BJD) 2458521.8828 ± 0.0035
Radius Ratio, Rp/Rå 0.0256 ± 0.0016
Impact Parameter, b 0.1 ± 0.1
Duration, T14 (hours) 4.45 ± 0.46
Orbital Eccentricity, e 0 (fixed)
RV Semiamplitude, Kd (m s−1) 0.9 ± 0.6
Semimajor axis, ad

a (au) 0.1174 ± 0.0015
Radius, Rd (R⊕) 2.32 ± 0.16
Mass, Md

a (M⊕) -
+3.0 1.9
2.4

Density, ρd
a (g cm−3) -

+1.3 0.8
1.1

Equilibrium Temperature, Teq,d
a (K) 750 ± 60

Other

RV Zero Point, γ(m s−1) −0.8291
RV Jitter, σj (m s−1) -

+4.09 0.42
0.49

Note.
a The orbital period of planet d was incorrectly identified as P = 16.37 days in
the original SPOC pipeline because of a partially masked transit. An alias of the
orbital period of planet d, Pd = 8 days, is also consistent with the data.
Parameters marked with a dagger would be affected by an incorrect assumption
of the orbital period of planet d. See Section 8 for assumptions regarding planet
equilibrium temperatures.

Figure 6. The phase-folded transits of TOI-561 planets b (top), c (middle), and d
(bottom). We removed regions where two planets transit simultaneously before
plotting. The magenta points show binned fluxes. The red solid line shows the best-
fit transit models.
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We found that the transit duration for d is long compared to
what is expected for a planet in a circular, 16 day orbit, given the
well-characterized stellar density.63 The long transit duration can
be resolved with a moderate eccentricity for planet d. We
applied the photoeccentric method of Dawson et al. (2012) to
estimate the eccentricity of planet d, finding = -

+e 0.24d 0.13
0.27.

However, this eccentricity would likely result in the instability
of the 10 and 16 day planets, in contrast to the stable orbits we
find assuming low eccentricities (see Section 8). The too-long
duration of planet d only worsens if we assume the Pd= 8 day
solution. Another resolution of the long-duration transits of
planet d is suggested in a contemporaneous paper by Lacedelli
et al. (2020): the two apparent transits of planet d might be
single-transit events from two distinct planets, each with
P> 16 days. The similar depths of the transits could result
from the observed “peas in a pod” pattern, wherein planets in
the same system often have similar sizes (Weiss et al. 2018).
We do not detect a secure RV signal at P> 16 days that would
be consistent with the orbit of either such planet (Section 6).
Yet another possibility is that the apparent 2σ tension between
the transit duration and orbital period is the result of systematic
or random errors in the photometry. Ultimately, additional
high-precision photometry is needed to test these various
possible explanations for the long durations of planet d. For the
rest of this paper, we will assume that the transits are due to a
16 day planet (except where stated otherwise).

5. High-resolution Imaging

As part of our standard process for validating transiting
exoplanets to assess the possible contamination of bound or
unbound companions on the derived planetary radii (Ciardi et al.
2015) and search for possible sources of astrophysical false
positives (e.g., background eclipsing binaries), we obtained high-
angular-resolution imaging in the near-infrared and optical.

5.1. Gemini-North and Palomar

We utilized both Gemini-North with NIRI (Hodapp et al.
2003) and Palomar Observatory with PHARO (Hayward et al.
2001) to obtain near-infrared adaptive optics imaging of TOI-
561, on 2019 May 24 and 2020 January 8 respectively.
Observations were made in the Brγ filter (λo= 2.1686;
Δλ= 0.0326 μm). For the Gemini data, 9 dithered images
with an exposure time of 2.5 s each were obtained; at Palomar,
15 dithered frames with an exposure of 2.8 s each were
obtained. In both cases, the telescope was dithered by a few
arcseconds between each exposure, and the dithered science
frames were used to create a sky background. Data were
reduced using a custom pipeline: we removed bad pixels,
performed a sky background subtraction and a flat correction,
aligned the stellar position between images, and coadded. The
final resolution of the combined dithers was determined from
the FWHM of the point-spread function: 0 13 and 0 10 for the
Gemini and Palomar data, respectively.

The sensitivities of the final combined AO images were
determined by injecting simulated sources azimuthally around
the primary target every 20° at separations of integer multiples
of the central source’s FWHM (Furlan et al. 2017). The
brightness of each injected source was scaled until standard

aperture photometry detected it with 5σ significance. The
resulting brightness of the injected sources relative to the target
sets the contrast limits at that injection location. The final 5σ
limit at each separation was determined from the average of all
of the determined limits at that separation, and the uncertainty
on the limit was set by the rms dispersion of the azimuthal
slices at a given radial distance.
The sensitivity curves are shown in Figure 7 along with an

inset image zoomed to the primary target showing no other
companion stars. Both the Gemini and Palomar data reach a
Δmag≈ 2 at 0 15 with an ultimate sensitivity of 7.7 mag and
8.7 mag for the Gemini and Palomar imaging, respectively. To
within the limits and sensitivity of the data, no additional
companions were detected.

5.2. SOAR and Gemini-South

We also searched for stellar companions with speckle
imaging on the 4.1 m Southern Astrophysical Research
(SOAR) telescope (Tokovinin et al. 2018) on 2019 May 18
UT. The speckle observations complementing the NIR AO as
the I-band observations are similar to the TESS bandpass. More
details of the observations are available in Ziegler et al. (2020).
The observations have a sensitivity of ∼1 mag at a resolution of
0 06 and an ultimate sensitivity of ∼7 mag at a radius of 3″.
The 5σ detection sensitivity and speckle autocorrelation
functions from the observations are shown in Figure 7. As
with the NIR AO data, no nearby stars were detected within 3″
of TOI-561 in the SOAR observations.
High-resolution speckle interferometric images of TOI-561

were obtained on 2020 March 15 UT using the Zorro64

instrument mounted on the 8 m Gemini-South telescope located
on the summit of Cerro Pachon in Chile. Zorro simultaneously
observes in two bands, i.e., 832/40 nm and 562/54 nm,
obtaining diffraction-limited images with inner working angles
0 017 and 0 026, respectively. Our data set consisted of
5 minutes of total integration time taken as sets of 1000×
0.06 s images. All the images were combined and subjected to
Fourier analysis leading to the production of final data products
including speckle reconstructed imagery (see Howell et al.
2011). Figure 7 shows the 5σ contrast curves in both filters for
the Zorro observation and includes an inset showing the
832 nm reconstructed image. The speckle imaging results
reveal TOI-561 to be a single star to contrast limits of 5 to 8
mag, ruling out main-sequence stars brighter than late M as
possible companions to TOI-561 within the spatial limits of ∼2
to 103 au (at d= 86 pc).

6. Radial Velocities

We obtained 60 high-resolution spectra with the W. M. Keck
Observatory HIRES instrument on Maunakea, Hawaii between
2019 May and 2020 October, at a cadence of one to two RVs
per night. We followed the standard observing and data
reduction procedures of the California Planet Search (CPS;
Howard et al. 2010). We obtained spectra with the C2 decker,
which has dimensions of 14″× 0 86 and spectral resolution
R≈ 60,000 at 500 nm. We only observed when the target was
at least 25° from the moon. At V= 10.2, the star was always at
least 8 mag brighter than the moon-illuminated back-
ground sky.63 The custom DV report, which does not use spectroscopic stellar parameters

as priors, finds ρå = 0.7 ρe, which differs substantially from our spectroscopic
determination of ρå = 1.38 ± 0.11 ρe.

64 https://www.gemini.edu/sciops/instruments/alopeke-zorro/
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We placed a warm cell of molecular iodine gas in the light
path as a simultaneous wavelength calibration source for all RV
spectra (Marcy & Butler 1992). We obtained a template
spectrum by observing the star without the iodine cell. We
observed rapidly rotating B stars, with the iodine cell in the
light path, immediately before and after the template to model
the PSF of the HIRES spectrograph. Each RV spectrum was
reproduced with a combination of the deconvolved template
spectrum and a laboratory iodine atlas spectrum convolved
with the HIRES PSF of the observation (which we empirically
determined). The RVs are listed in Table 2 and displayed in
Figure 8. Before fitting for any planets, the RVs had an rms of
5.0 m s−1, and the median individual RV error (before applying
jitter) was 1.4 m s−1.

When fitting RVs, the mass (and density) determinations of
small planets can sensitively depend on the choice of model,
particularly the number of planets included and their orbital
periods and the use or non-use of correlated-noise models. For
example, in the Kepler-10 system, the measured mass of Kepler-
10 c ranged from 7 to 17 M⊕, based on the choice of model
(Dumusque et al. 2014; Weiss et al. 2016; Rajpaul et al. 2017). To

test the robustness of our mass and density determinations, we
applied several different models to the RVs of TOI-561.

6.1. Three-planet Keplerian Models

We modeled the RVs with the publicly available Python
package radvel (Fulton et al. 2018). We used the default
basis of a five-parameter Keplerian orbit, in which the RV
component of each planet is described by its orbital period (P),
time of conjunction (Tc), eccentricity (e), the argument of
periastron passage (ω), and RV semiamplitude (K ). Because
the orbital ephemerides from TESS are more precise than what
we can constrain with 60 RVs, we fixed P and Tc for each
transiting planet at the best-fit values from TESS photometry
plus additional ground-based photometry from the TESS
Science Group 1.65 The eccentricities of all three planets are
expected to be small for dynamical reasons. At P< 1 day, the
USP is almost certainly tidally circularized. The other planets

Figure 7. No nearby stars were detected in four independent imaging campaigns. Top left: sensitivity to background stars of our Gemini-N/NIRI images in the Brγ
filter. The images were taken in good seeing conditions, and we reach a contrast of 7.5 magnitudes fainter than the host star within 0 5. Inset: image of the central
portion of the data, centered on the star. Top right: same as top left, but with Palomar. Bottom left: sensitivity to background stars from SOAR speckle imaging
observations (5σ upper limits), with an example image inset. Bottom right: same as bottom left, but with Gemini-S/Zorro in two passbands.

65 We also tried allowing the periods and transit ephemerides to vary but with
priors from the best-fit ephemeris, without a substantial difference in the
results.
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have compact orbits (Pd/Pc≈ 1.5), such that large eccentri-
cities would result in orbit crossings, and even modest
eccentricities would likely result in Lagrange instability (Deck
et al. 2013). Furthermore, the majority of small exoplanets in
compact configurations have low eccentricities (Mills et al.
2019; Van Eylen et al. 2019). For these reasons, and also
because modeling eccentricities introduces two free parameters
per planet, we only explored circular fits for all three transiting
planets.

Thus, of the five Keplerian parameters that describe each
transiting planet, only the semiamplitude (K ) was allowed to
vary along two global terms: an RV zero-point offset (γ) and an

RV jitter (σj), which is added to the individually determined
RV errors in quadrature to account for non-Gaussian, correlated
noise in the RVs from stellar processes and instrumental
systematics. Our full likelihood model was

å å
s

ps- =
-
¢

+ ¢
x x

2 ln ln 2 , 2
i

i i

i i
i

meas, mod,
2

2
2( ) ( ) ( )

where

s s s¢ = + 3i i j
2 2 2 ( )

is the quadrature sum of the internal RV error and the jitter.
We optimized the likelihood function with the Powell

method (Powell 1964) and used a Markov Chain Monte Carlo
(MCMC) analysis66 to determine parameter uncertainties. We
explored the optimization of several models. In Model A, we
did not enforce any priors on planet semiamplitudes (thus
allowing values of K, and hence planet mass, to be negative).
Although negative planet masses are unphysical, their
consideration offsets the bias toward high planet masses that
occurs when planet masses are forced to be positive (Weiss &
Marcy 2014). The best-fit values with Model A were
Kb= 3.1± 0.8 m s−1, Kc= 2.2± 0.8 m s−1, and Kd= 0.3±
0.8 m s−1. The rms of the RV residuals was 4.2 m s−1.
In Model B, we restricted K> 0. The advantages of

restricting planet masses to be larger than zero are (1) the
planet masses are physically motivated, and (2) the residuals
are more likely to be useful in searching for additional planets.
Model B yielded Kb= 3.1± 0.8 m s−1, Kc= 2.4± 0.8 m s−1,
and Kd= 0.9± 0.6 m s−1. The rms of the RV residuals was
4.2 m s−1.
Model C was the same as Model B, except we allowed a linear

trend in the RVs, g , which could be caused by acceleration from a
long-period companion. However, the RVs do not strongly
favor a trend: g = 0.009± 0.004m s−1 m s−1 day−1, and the
best-fit K values changed by less than 1σ with the inclusion of a
trend: Kb= 3.2± 0.8 m s−1, Kc= 2.1± 0.8m s−1, and =Kd

-
+ -1.0 m s0.6
0.7 1. The rms of the RV residuals was 4.0 m s−1.

In Model D, we considered the hypothesis that planet d has
half of the presumed orbital period, which was possible given
the gap in the photometry. This model is the same as Model B,
except Pd= 8 days. This model did not affect the amplitudes of
planets b or c, but resulted in Kd< 2.04 m s−1 (2σ confidence).
The rms of the RV residuals was 4.1 m s−1.
In Models A to C, the choice of model makes very little

impact on the best-fitting RV semiamplitudes for each planet,
and hence our planet mass determinations are robust with
respect to our choice of model. For the rest of this paper, we
consider Model B as our default model unless stated otherwise.
The fitted and fixed parameters of Model B are provided in
Table 3.

6.2. Correlated-noise Analysis

The simple Keplerian model fit to observed RVs of TOI-561
displayed an rms of 4.2 m s−1 (Figure 8), which is unchar-
acteristically high for precision RVs of such a bright star
(Howard & Fulton 2016). A Lomb-Scargle periodogram of
the RV residuals reveals several peaks that might correspond
to correlated noise and/or additional planets in the system.
However, none of the peaks were significant at the 1%

Figure 8. Radial velocities of TOI-561, based on observations from Keck-
HIRES (black points). Error bars are 1σ confidence intervals, and the blue line
is the best-fit model. The top panel is the full RV time series and residuals.
Subsequent panels are the RV components of planets b, c, and d, phase-folded
to the orbital period of each planet (the model RV components from the other
planets are subtracted from each panel). The red points are RVs binned in
phases of 0.1.

66 Based on emcee, Foreman-Mackey et al. (2013).
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false-alarm probability (FAP) level, which we determined with
bootstrap resampling (Figure 9).

Nonetheless, we considered several correlated-noise models
in an attempt to model and remove a putative red-noise
component responsible for the high rms of the RV residuals. In
Model E, we employed Gaussian process regression (GP),
which has been previously applied in analyzing RVs of many
exoplanets (e.g., Haywood et al. 2014; Grunblatt et al. 2015).
For details of the GP model, see Dai et al. (2017). In principle,
the light curve and RVs are both affected by stellar activity
rotating in and out of view of the observer (e.g., Aigrain et al.
2012). In an attempt to model the correlated noise in the RVs,
we trained the various “hyperparameters” of our GP quasi-
periodic kernel using the out-of-transit TESS PDCSAP light
curve. We did not detect the stellar rotation period in the TESS
PDCSAP or SAP light curves, possibly because the star is very
inactive (log ¢ = -R 5.1HK ), or the expected rotation period of
the star is longer than the photometric baseline. Our MCMC fit
to the light curve produced broad posteriors on the rotation

period and the other hyperparameters. Therefore, we did not
impose Gaussian priors on the hyperparameters in our GP
analysis of the RV data, although we did limit the stellar
rotation period <500 days for quicker convergence. We used
EMCEE to constrain the posterior distribution of the GP
hyperparameters simultaneously with the orbital parameters
of the three planets. We detect the RV signal of planet b:
Kb= 2.9± 0.7 m s−1 and planet c: Kb= 1.7± 1.0 and an upper
limit for planet d: Kd< 1.6 m s−1 (95% confidence), all of
which are within 1σ of the planet semiamplitudes we
determined without the correlated-noise component of the
model.
We also attempted to train a correlated-noise model on our

spectroscopically determined Mt. Wilson S values. A Lomb-
Scargle periodogram of the S values shows two significant
peaks: one at 100 days and the other at 230 days, both of which
cross the 1% FAP threshold (which we computed with
bootstrap resampling, Figure 9). (The forest of regular peaks
with P< 1 day are likely aliases produced by our window
function, which had poor sampling below 1 day). Note that
these periods differ from the most prominent peaks in the RV
residuals, which are a doublet near 25 days. Furthermore, the S
values are not sampled as frequently as the light curve, but they
are sampled simultaneously with the RVs, and they are a direct
indicator of the chromospheric magnetic activity during the
observations. We tried a GP with a quasi-periodic kernel
trained on the S values (Model F), but this did not produce
significant changes in the semiamplitudes of the planets or the
rms of the RV residuals, possibly because the S values had
small variability or were sparsely sampled. We also tried a
model in which we decorrelated the RVs with respect to the S
values (Model G), which did not reduce the rms (and thus did
not remove the correlated noise).
None of our attempts to model correlated noise in the RVs

changed the amplitudes of the planets or reduced the rms of the
RV residuals, and so we prefer the simpler Keplerian models
(without correlated noise) described above. Perhaps TOI-561 is
too inactive for models trained on stellar activity to be
effective, given the current quality of the data. For comparison,
Kepler-10, another system with time-correlated RV residuals,
has log ¢ = -R 4.89HK , which is more active than TOI-561 log
¢ = -R 5.1HK . The use of GPs affected the mass determination

of Kepler-10 c, lowering it from 14M⊕ (no GP) to 7M⊕ (with
GP). Perhaps there is a minimum stellar activity for which
attempts to decorrelate the stellar activity signal can be
successful, given RVs with precision of 2 m s−1.
Nonetheless, there are substantial correlated residuals in the

RVs of TOI-561 which are uncharacteristic of the HIRES
instrument performance (typically 2 m s−1 for V< 11; Howard
& Fulton 2016). The residual RVs of TOI-561 are not well
explained by any of our models of stellar activity, and so
perhaps additional planets contribute to the RV residuals. More
RVs are needed to identify the orbital periods of any such
planets and model their Keplerian signals.

7. Planet Masses and Densities

Each K value can be converted to the planet’s minimum mass,
M isinp , but because all three planets transit, actual masses
(rather than minimum masses) can be calculated. Assuming
Model B, we find Mb= 3.2± 0.8M⊕, Mc= 7.0± 2.3M⊕,
and = -

+
ÅM M3.0d 1.9

2.4 . Furthermore, because the planets transit,
their radii are calculated from the planet-to-star radius ratios

Figure 9. Lomb-Scargle periodograms of (a) the RVs, (b) the RVs after
removing the best-fit [Model B] RV signatures from planets b, c, and d, (c) the
Mt. Wilson S-value stellar activity indicator time series, and (d) the window
function. False-alarm probabilities (FAPs) are computed based on a bootstrap
resampling of each time series. The RVs and RV residuals do not have any
peaks that cross the 1% FAP. The S values have significant (FAP > 1%) peaks
at 100 days and 230 days, and various short periods that are likely aliases of the
longer-period signals caused by the window function.
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and known stellar radius: Rb= 1.45± 0.11 R⊕, Rc= 2.90±
0.13R⊕, and Rd= 2.32± 0.16 R⊕. The bulk densities of the
planets are r = -

+ -5.5 g cmb 1.6
2.0 3, ρc= 1.6± 0.6 g cm−3, and r =d

-
+ -1.3 g cm0.8
1.1 3. The derived physical and orbital properties of the

planets are summarized in Table 3.
The masses and densities of the TOI-561 planets are shown

in comparison to the masses and densities of other sub-
Neptune-size planets in Figure 10. The other planet masses and
densities come from the NASA Exoplanet Archive, from which
we included only those with σ(Mp)< 2M⊕.

7.1. TOI-561 b

The USP TOI-561 b has a typical mass and density for its
size. At 1.5 R⊕ and -

+5.5 1.6
2.0 g cm−3, it is 1σ below the peak of

the density–radius diagram identified in Weiss & Marcy
(2014), consistent with a rocky composition that is either Earth
like or iron poor. Nearly all USPs are smaller than 2 R⊕ and are
expected to have rocky compositions, given their small sizes
and extreme stellar irradiation (Sanchis-Ojeda et al. 2015), and
TOI-561 b is consistent with this expectation. In a homo-
geneous analysis of USPs with masses determined from RVs,
Dai et al. (2019) found that most USPs with <10M⊕ are
consistent with having Earth-like compositions, whereas the
few USPs with>10M⊕ likely have H/He envelopes. TOI-561
b (3.2± 0.8M⊕) is consistent with the rocky group of that
study.

The minimum density of a USP can be determined from its
orbital period and the requirement that it orbits outside the
Roche limiting distance (Rappaport et al. 2013). We investi-
gated the minimum density of TOI-561 b, with the hope that it

would provide additional constraints on the mass of the planet.
Using the approximation from Sanchis-Ojeda et al. (2014), we
find that the minimum density of the USP is

r =- - Pg cm 11.3 hr 1.15g cm 4p
3

orb
2 3[ ] ( ) ( )

for TOI-561 b, which is below our measured density and
corresponds to a minimum mass of 0.64M⊕. Such a low mass
is ruled out by the data at nearly 3σ confidence. Thus, TOI-561
b is not close enough to its star for the Roche stability criterion
to provide additional information about the density.
An interpretation of the USP composition that involves a H/

He layer is disfavored by physical models. At a sufficiently low
stellar irradiation level, the low density of TOI-561 b might
have been consistent with a composition of an Earth-like core
overlaid with a thin H/He envelope. However, at P= 0.44
days (with equilibrium temperature >2000 K) and a mass of
∼3M⊕, the USP is too irradiated and too low mass to hold onto
a H/He envelope (Lopez 2017).

7.2. TOI-561 c and d

At Rp> 1.5 R⊕ and with low densities, TOI-561 c and d
have substantial gaseous envelopes by volume, although the
gas envelopes likely only constitute ∼1% of the planet masses
(Lopez & Fortney 2014). TOI-561 c has a radius and mass
consistent with the Weiss & Marcy (2014) empirical mass–
radius relationship.
The ambiguity of the orbital period for planet d poses a

challenge to accurate mass determination. Our RVs are
consistent with a nondetection of planet d at both the Pd= 16
and Pd= 8 day orbits. Assuming Pd= 16 days, the RVs
provide an upper limit of Kd< 2.1 m s−1, which corresponds to
Mp< 7.0M⊕ (2σ confidence; see Section 6). Assuming Pd= 8
days, the RVs provide an upper limit of K< 2.0 m s−1, which
corresponds to Mp< 5.6M⊕ (2σ confidence). In either
scenario, the mass of TOI-561 d is approximately 2σ below
the Weiss & Marcy (2014) mass–radius relationship and is too
low to be consistent with a rocky composition, given the
planet’s radius. However, if planet d is actually the transits of
two distinct planets as suggested in Lacedelli et al. (2020), the
low mass presented here does not apply.

7.3. Nondetection of Outer Giant Planets

With our 1.5 year baseline of RVs, we were able to place
constraints on possible long-period giant planets. In Model C, we
found a 3σ upper limit to an RV trend of g < - -0.02m s day1 1 .
This observational limit on the acceleration of the star can be
converted to a limit on the mass and orbital distance of a possible
perturber by setting it equal to the gravitational acceleration from a
planet at distance r: g=-

 GM M r Mp
2  , where G is the

gravitational constant and r is the distance between the perturber
and the star at the time the RVs were measured. Assuming a
circular orbit for the putative giant planet (r= a), we find

<
-M i

M

asin

5 au
1.0 5

p

J

2

( )⎜ ⎟⎛
⎝

⎞
⎠

(3σ confidence). Thus, our nondetection of an RV acceleration
rules out a 1.0MJ planet at 5 au with 3σ confidence (assuming
sin i≈ 1, e= 0, and that we did not primarily sample the orbit
while the planet was moving parallel to the sky plane). In
systems with compact configurations of transiting planets, giant

Figure 10. Planet bulk density vs. planet radius for small planets with
measured radii (Rp < 4 R⊕, σ(Rp)/Rp < 0.2) and masses (σ(Mp) < 2 M⊕),
based on results from the NASA Exoplanet Archive (queried 2020 June 24 by
Akeson et al. 2013, gray points). The point size is scaled to ρp/σ(ρp). The
Weiss & Marcy (2014) average mass–radius relationship, several model
composition curves from Zeng et al. (2019), and the theoretical maximum
density from collisional stripping (Marcus et al. 2010) are shown. The solar
system planets and Earth’s moon are provided for context. The TOI-561
planets are consistent with or slightly less dense than typical planets of their
sizes. TOI-561 b is 1σ less dense than an Earth-composition planet.
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planets often need to be approximately coplanar with the
transiting planets in order for the inner planets to remain
mutually continuously transiting (Becker & Adams 2017), and
so we do not expect nontransiting companions to have face-on
orbits. Thus, the nondetection of an RV trend rules out a variety
of scenarios of a coplanar giant planet near the snow line.

8. Discussion

8.1. Stability

We investigated whether we could constrain the architecture
of the TOI-561 system and in particular the orbital period of
planet d, with stability arguments. To assess stability, we used
Spock, a machine-learning-based approach to inferring orbital
stability (Tamayo et al. 2020). Spock incorporates several
analytic indicators (including MEGNO, AMD, and mutual Hill
radius) with an N-body integration of 104 orbits to compute a
probabilistic assessment of the system stability. We tested the
architectures of TOI-561 with planet d at Pd= 16 days (Model
B) and at Pd= 8 days (Model D). Because stability depends
sensitively on the eccentricities and inclinations of planets in
compact configurations, we varied the eccentricities, arguments
of periastron passage, and inclinations. The eccentricities and
inclinations in multiplanet systems are well fit with Rayleigh
distributions with characteristic values σe= 0.035 and σi=
2.45° (Mills et al. 2019), and so we sampled 1000 trials from
these distributions (sampling ω uniformly on [0,π]). For Model
B, the probability of stability is 95%± 3%, whereas for Model
D, the probability of stability is 84%± 30%. Thus, although
more configurations of Model B are stable, we cannot rule out
Model D based on a stability argument.

8.2. Formation and Evolution

TOI-561 is the second transiting multiplanet system
discovered around a galactic thick-disk star (Kepler-444,
Campante et al. 2015, is the first), and is the first galactic
thick-disk star with a USP. The iron-poor, α-enhanced stellar
abundances observed today are likely representative of the
nebular environment in which the planets formed. Thus, TOI-
561 provides an opportunity to study the outcome of planet
formation in an environment that is chemically distinct from
most of the planetary systems known to date. Furthermore, its
membership in the galactic thick disk indicates old age, making
the rocky planet TOI-561 b one of the oldest rocky planets
known.

The confirmed old age of the system is relevant for
dynamical studies of the planets. For instance, the formation
of USPs is still poorly understood. The majority of USPs are
the only detected transiting planet in their systems (Sanchis-
Ojeda et al. 2014). This is partially due to a bias of geometry
(as planet detection probability scales with Rå/a). However,
Dai et al. (2018) found that the mutual inclinations in
multiplanet systems with USPs are significantly larger than
those in multiplanet systems without USPs, suggesting that
systems with USPs have had more dynamically “hot” histories.
One mechanism for generating large mutual inclinations in
systems with USPs is if the host star is oblate and misaligned
with respect to the planets (Li et al. 2020).

Furthermore, dynamical interactions in a multiplanet system
can move short-period planets to ultra-short periods in a
manner that may excite large eccentricities. Petrovich et al.
(2019) proposed a mechanism of secular chaos in which the

innermost planet is kicked to a high-eccentricity orbit, which is
then circularized. In contrast, Pu & Lai (2019) proposed a
scheme in which the innermost planet’s neighbors consistently
force it to a low-eccentricity orbit, which results in inward
migration and eventual circularization.
In a study of the Gaia-DR2 kinematics of USP host stars in

the Kepler field, Hamer & Schlaufman (2020) found that their
motions are similar to those of matched field stars (rather than
young stars). The broad range of ages of USPs suggests that
USPs do not undergo rapid tidal inspiral during the host star’s
main-sequence lifetime. The existence of a USP around an
10 Gyr old star is consistent with this finding.

8.3. Predicted Transit Timing Variations

Because planets c and d have an orbital period ratio of ∼1.5
or less, the planets likely perturb each other’s orbits, producing
transit timing variations (TTVs). The TESS sector 8 baseline
was too short to detect TTVs (only two transits of each planet
were detected). The approximate amplitude of the TTV signal
can be computed analytically using the expressions from
Lithwick et al. (2012):

m» ¢ D + DV P e , 6∣ ∣ ( ) ( )

where P is the orbital period of the inner planet, m¢ is the mass
of the perturbing, outer planet (in units of stellar mass), e( ) is
a first-order dependency on the free eccentricities of the
planets, and Δ is the nondimensional distance from mean
motion resonance:

D =
¢ -

-
P

P

j

j

1
1, 7( )

where P and ¢P are the inner and outer orbital periods and j is
an integer. Equation (6) can be used to approximate the TTV
amplitude of the outer planet by setting ¢P P⟶ and m m¢ ⟶
(for a thorough derivation and caveats, see Lithwick et al.
2012).
Using the values for the planet masses determined in

Section 7 and assuming circular orbits, we find that the TTV
amplitude of planet c (P= 10.78 days) is about 6 minutes,
whereas the TTV amplitude of planet d is either 30 minutes (if
Pd= 16 days; j= 3) or 15 minutes (if Pd= 8.14 days, j= 4).

8.4. Atmospheric Probing Metrics

Using the system parameters tabulated in this paper, we
calculated the transmission and emission spectroscopy metrics
(TSM and ESM, respectively) of Kempton et al. (2018) to
determine whether these newly characterized planets are
compelling targets for future atmospheric or surface character-
ization via transit or eclipse spectroscopy. Assuming a flat prior
on the planets’ Bond albedos from 0 to 0.4 and on their
efficiency of day-to-night energy recirculation from 1/4 to 2/3,
and propagating the uncertainties on all relevant parameters,
we calculate the planets’ equilibrium temperatures to be
2480± 200 K, 860± 70 K, and 750± 60 K for planets b, c,
and d, respectively. Because of the relatively shallow transit
depths (1000 ppm for all three planets), space-based
spectroscopy is likely to be the only feasible avenue for such
studies. In contrast to some recent reports of these quantities for
other newly discovered TESS planets, here we propagate all
parameter uncertainties in order to report how well the TSM
and ESM are constrained, as well as how promising the median
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values are; this is especially essential when planetary properties
are not yet measured to high precision. We report the
transmission and emission metrics and their uncertainties in
Table 4.

Our analysis shows that TOI-561 b is among the best TESS
targets discovered to date for thermal emission measurements
(see Table 3 of Astudillo-Defru et al. 2020). With ESM=
7.1± 1.1, planet b is clearly a promising target for observations
of its secondary eclipse and/or its full-orbit phase curves, as
has previously been done for other irradiated terrestrial planets
such as 55 Cnc e (Demory et al. 2012, 2016) and LHS 3844b
(Kreidberg et al. 2019). The uncertainty on planet b’s ESM is
dominated by the uncertainty on its transit depth, but
regardless, the planet has a reliably high metric in this
category. Because of their cooler temperatures, the lower
ESM values for planets b and c mark them as less attractive
targets for secondary eclipse studies.

As for transit spectroscopy, the TSM values for the sub-
Neptunes TOI-561 c and d listed in Table 4 ( -

+93 37
55 and -

+82 33
109,

respectively) indicate that they may be particularly amenable to
transmission studies. However, because the TSM scales
inversely with planetary surface gravity, this result depends
on determining more precise values of these planets’ masses.
These planets clearly warrant additional precise RV follow-up:
if the expectation values of their TSMs do not change as the
uncertainties shrink, these two planets would be among the top
20 confirmed warm Neptunes for transmission spectroscopy
(see Table 11 of Guo et al. 2020). Due to the small size of the
highly irradiated planet b, and because it is unlikely to have
retained much of an atmosphere, it is not an appealing target for
transmission measurements.

Better ephemerides for planets c and d are necessary in
preparation for atmospheric studies. The alias of the orbit of
planet d should be resolved prior to interpretation of the
planetary atmospheres, as the factor of 2 change in the orbital
period produces a factor of ∼1.3 change in the equilibrium
temperature. Also, planet d may have significant TTVs with
amplitudes of ∼30 minutes (assuming the orbital period is
16 days).

9. Conclusion

TOI-561 is a system with multiple transiting planets
identified by the NASA TESS spacecraft. In this paper, we
have confirmed two of the planets, including a rocky USP, with
ground-based follow-up, and also characterized the properties
of the planet and the host star. We found:

1. TOI-561 is a metal-poor, α-enhanced member of the
galactic thick disk ([Fe/H]=− 0.4, α= 0.2). It is one of
the oldest planetary systems yet identified and one of the
most metal poor. In both of these aspects, it is an

important benchmark in our understanding of planet
formation and evolution.

2. We confirm the planets b (TOI-561.02, Pb= 0.45 days,
Rb= 1.45± 0.11 R⊕) and c (TOI-561.01, Pc= 10.78
days, Rc= 2.90± 0.13 R⊕) with RVs, high-resolution
imaging, and ground-based photometry. We rule out a
variety of astrophysical false positives for planet d (TOI-
561.03, Pd= 16.29 days, Rd= 2.32± 0.16 R⊕) but note
that the ephemeris is highly uncertain.

3. With 60 RVs from Keck-HIRES, we determined the mass
and density of the USP rocky planet TOI-561 b:
Mb= 3.2± 0.8M⊕, r = -

+ -5.5 g cmb 1.6
2.0 3. Planet b has a

below-average density for its size (by 1σ), suggesting an
iron-poor composition in the core.

4. We also determined the mass and density of planet c
(Mc= 7.0± 2.3M⊕, ρc= 1.6± 0.6 g cm−3) and an upper
limit for the mass of planet d assuming Pd= 16 days
( = -

+
ÅM M3.0d 1.9

2.4 ). The large radii and low masses of
planets c and d are consistent with thick volatile
envelopes overlying rocky cores.

5. The RVs from Keck-HIRES span 1.5 years and do not
have a significant trend. The nondetection of a trend rules
out various scenarios of a giant planet near the ice line.

6. Thanks to the bright host star, this multiplanet system is
amenable to atmospheric follow-up with space-based
telescopes. Planet b is expected to be a good eclipse
target, while planets c and d are promising targets for
transmission spectroscopy. Comparative atmospheric
properties for the planets in this very metal-poor system
would provide a unique test for planet formation
scenarios.
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