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Abstract

Stream solute monitoring has produced many insights into ecosystem and Earth sys-

tem functions. Although new sensors have provided novel information about the

fine-scale temporal variation of some stream water solutes, we lack adequate sensor

technology to gain the same insights for many other solutes. We used two machine

learning algorithms – Support Vector Machine and Random Forest – to predict con-

centrations at 15-min resolution for 10 solutes, of which eight lack specific sensors.

The algorithms were trained with data from intensive stream sensing and manual

stream sampling (weekly) for four full years in a hydrologic reference stream within

the Hubbard Brook Experimental Forest in New Hampshire, USA. The Random For-

est algorithm was slightly better at predicting solute concentrations than the Support

Vector Machine algorithm (Nash-Sutcliffe efficiencies ranged from 0.35 to 0.78 for

Random Forest compared to 0.29 to 0.79 for Support Vector Machine). Solute pre-

dictions were most sensitive to the removal of fluorescent dissolved organic matter,

pH and specific conductance as independent variables for both algorithms, and least

sensitive to dissolved oxygen and turbidity. The predicted concentrations of calcium

and monomeric aluminium were used to estimate catchment solute yield, which

changed most dramatically for aluminium because it concentrates with stream dis-

charge. These results show great promise for using a combined approach of stream

sensing and intensive stream discrete sampling to build information about the high-

frequency variation of solutes for which an appropriate sensor or proxy is not

available.

K E YWORD S
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1 | INTRODUCTION

Stream chemistry provides insights into a wide range of ecosystem

and Earth system dynamics. Because catchment processes with high

spatial variability are integrated into a catchment outlet sample, con-

siderable advances in understanding fundamental processes such as

mineral weathering, element limitation of vegetation growth, and soil

development can be made using stream chemistry and the whole

catchment approach (Bormann & Likens, 1979). Catchment solute

yields vary in response to changing atmospheric deposition, shifting

climate, ecosystem succession, extreme weather events, and major

forest disturbance (e.g., Bernhardt et al., 2003; Eshleman &
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Sabo, 2016; Valett et al., 2002). The resulting patterns in the timing

and magnitude of solute fluxes have important implications for water

supply management and stream ecosystem dynamics (Allan & Ibañez

Castillo, 2009). Continuous, long-term monitoring of atmospheric

inputs and stream solute outputs using the small catchment ecosys-

tem approach has allowed us to understand changes in ecosystem ele-

ment storage (e.g., Bailey, Buso, & Likens, 2003), the influence of

nitrogen deposition on catchment nutrient retention (Bettez

et al., 2015), and exploration of biogeochemical stationarity (Basu

et al., 2010).

Advances in water quality sensing are providing data on solute

concentration in streams and rivers at higher temporal resolution than

the typical weekly sampling that has been the backbone of many small

catchment studies (Likens, 2013; Schleppi et al., 2006; Sebestyen

et al., 2011). Stream water solute concentrations vary over diurnal

(Aubert & Breuer, 2016; Neal et al., 2013; Pellerin et al., 2009) and

storm scales (Inserillo et al., 2017; Koenig et al., 2017), which are not

well represented in monitoring programmes that rely on weekly or

coarser water sampling. How estimates of annual element yields

improve with higher frequency data remains to be seen. Pellerin

et al. (2009) used nitrate and dissolved organic matter sensors to

quantify the yield of both sensed solutes during a snowmelt season.

They estimated that the fluxes calculated from high resolution data

were 14% higher for dissolved organic carbon and 2% higher for

nitrate compared to estimates derived from their interpolations of

weekly sampling. For many solutes, high temporal resolution sensors

have not yet been developed or have poor detection, making it diffi-

cult to gain the benefits of high-frequency sampling.

Stream solutes that cannot yet be directly sensed, can still be

predicted by combining proxy data with predictive algorithms. Con-

centrations of mercury are known to vary with UV absorbance, and

thus optical sensing has allowed better estimation of the temporal

variation of stream water mercury concentrations (Dittman

et al., 2009). High-frequency conductivity measurements were effec-

tive predictors of all major ions derived from weathering of mountain-

top removal mined watersheds (Ross et al., 2018). High-frequency

sulphate time series were produced with discharge as an input vari-

able for multiple machine learning algorithms (Mewes et al., 2020).

Kisi and Parmar (2016) predicted monthly chemical oxygen demand in

an Indian river with nutrient and other water quality information.

High-frequency stream water phosphorus has been predicted using

turbidity as a proxy (Lannergård et al., 2019). Overall, these studies

have accurately estimated water quality constituents.

Building on these previous studies, we used high-frequency water

quality sensors in combination with an extensive set of discrete sam-

ples and two machine learning algorithms to predict non-sensed sol-

ute concentrations. We explored model predictions for all routinely

monitored solutes, but highlight Ca2+ and Al3+ here because past

research has demonstrated their sensitivity to anthropogenic acidifica-

tion (Lawrence et al., 2015; Likens et al., 1996), and their response in

surface waters as soils recover from acidification remains an impor-

tant forest management issue. These two solutes also have distinctly

different transport dynamics. Dissolved Ca2+ is generally derived from

mineral weathering within the catchment, with transport modified by

soil exchange and biotic cycling, resulting in a neutral-to-negative con-

centration relationship with discharge (Godsey et al., 2009; Johnson

et al., 1969). In comparison, Al3+ is also derived from mineral

weathering but its mobility is limited at moderate pH and by co-

precipitation with organic matter in soil development. As a result, it is

predominantly derived from eluvial, shallow-to-bedrock soils near the

catchment divide that are only hydrologically connected to the stream

network during high flow (Bailey et al., 2019). This results in a positive

Al3+ concentration relationship with discharge (Lawrence et al., 1988).

Differences in solute transport dynamics have resulted in differential

importance of high-frequency information in estimating stream loads

(Aulenbach et al., 2016; Swistock et al., 1997). We examined this dif-

ference by using the predicted Ca2+ and Al3+ concentrations to esti-

mate their solute yields. This study presents an advancement in

predicting high frequency stream solute concentrations (15-min). The

application of two machine learning models with a rich set of discrete

stream water samples covering 10 solutes and multiple years of high-

frequency sensor data allowed us to demonstrate how high-frequency

solute data sets might be produced and used in catchment solute

budgets.

2 | METHODS

2.1 | Site

This study was conducted at the Hubbard Brook Experimental Forest,

located in the White Mountains of New Hampshire, USA (latitude

43�560 N, longitude 71�450 W). Watershed 3 (W3) at Hubbard Brook

is a reference catchment of mature (approximately 110 years old)

mixed hardwood forest. Dominant tree species are sugar maple (Acer

saccharum), American beech (Fagus grandifolia), and yellow birch

(Betula alleghaniensis; Siccama et al., 2007). The catchment is a steep

(mean slope = 17.1%), glaciated hillside of spodic soils that show spa-

tial variation consistent with podzolization due to lateral groundwater

flux (Bailey et al., 2014; Gillin et al., 2015). Hubbard Brook has a

warm-summer humid continental climate according to the Köppen cli-

mate classification (Bailey, Hornbeck, et al., 2003; Kottek et al., 2006).

2.2 | Sensor data

Specific conductance (SC), pH, fluorescent dissolved organic matter

(FDOM), turbidity, dissolved oxygen (DO), and NO3
− were sensed at

the outlet of W3 between October 2012 and January 2017. A Yellow

Springs Instruments EXO2 multi-parameter sonde generated the SC,

pH, FDOM, turbidity, and DO data, and a Satlantic submersible UV

analyser generated the NO3
− data. All sensor data were logged at

15-min intervals. Snyder et al. (2018) describes the details of the

deployment, maintenance, and quality assurance.

2 of 13 GREEN ET AL.



2.3 | Stream chemistry data

In total, 478 samples were collected during the study period (October

2012 to May 2017), including routine weekly samples and multiple

storm and seasonal snow melt sampling campaigns. Immediately after

collection, samples were passed through a pre-combusted (450�C)

glass-fibre filter (0.7 μm nominal pore size). Samples were stored fro-

zen prior to analysis, except for cation analyses (Al3+, Ca2+, Mg2+, Na+,

K+ and Si), in which case an aliquot was poured off and refrigerated.

Samples were shipped to the United States Department of Agriculture

Forest Service, Forest Sciences Laboratory in Durham, New Hamp-

shire where they were analysed for SO4
2−, NO3

− and Cl− using ion

chromatography (Metrohm 761); Ca2+, Mg2+, Na+, K+ and Si with

inductively coupled plasma optical emission spectroscopy (Agilent

730); dissolved organic carbon (DOC) with combustion catalytic oxi-

dation on a total organic carbon analyser (Shimadzu TOC-V); and total

monomeric Al (Al3+) with the pyrocatechol violet method on a Flow

Injection Analysis System (Lachat Quickchem). Precision and detection

limits are given by USDA Forest Service, Northern Research

Station (2019).

2.4 | Data analysis

Support vector machine regression (SVM) was used to predict the

concentration of lab-measured solutes using sensed water quality

data. Support Vector Machine learning algorithms are designed to

identify patterns for use in prediction, and have been applied in water

quality analyses (Kisi & Parmar, 2016; Tan et al., 2012). The SVM

regression algorithm is described in depth by Vapnik (2013) and

Drucker et al. (1997). Briefly, SVM regression involves fitting a hyper-

plane to the multi-dimensional data set, with a margin surrounding the

hyperplane within which the cost is zero to the objective function.

Correlated independent variables do not violate any assumptions in

the SVM method. We used a radial kernel function to account for

non-linearity in the data set. We set the Cost parameter to 1 and the

gamma parameter for the radial kernel to 0.143 (the inverse of the

number of variables or dimensions included in the model), which are

default values in the algorithm. If the SVM regression predicted nega-

tive concentrations (this was the case only for NO3
−), the prediction

was set to zero.

We also used the random forest (RF) algorithm to predict the lab-

measured solutes. The Random Forest model builds an ensemble (for-

est) of regression trees by making many random subsets of the data

and using random variable sets to build many predictions of the

dependent variable. Those many predictions are averaged to produce

the final estimated dependent variable. Like SVM, the RF allows inclu-

sion of correlated variables and can represent non-linear relationships.

The RF model has been applied to problems ranging from water

source identification to time series gap filling in biogeochemistry

(e.g., Baudron et al., 2013; Kim et al., 2020). Further details about the

RF model are described in Breiman (2001). We accepted default

parameters for the RF model, including the number of trees required

for the ensemble (n = 500) and the number of variables tried at each

split in an individual tree (mtry = 2). We chose the SVM and RF

models because both have been previously applied in hydrological

contexts with strong results (e.g., Kim et al., 2020; Mewes

et al., 2020). The main difference between the two is the RF uses dis-

crete predictions, which can help identify non-linear patterns, and the

SVM is a continuous function.

We used the e1071 R package to build the SVM models (Meyer

et al., 2019) and the randomForest R package to build the RF models

(Liaw & Wiener, 2002). We trained the SVM and RF models to predict

solutes that were not sensed using a random 66% sample of the dis-

crete water samples paired with sensor data (FDOM, pH, SC, DO, tur-

bidity) and sine-transformed day of the year (DOY) to help explain any

residual variance due to seasonality sin DOY
365:25π

� �� �
. This sine transforma-

tion made DOY values on either side of January 1, which are normally

numerically distant (DOY of 1 vs. 365), of similar magnitude and thus

more representative of seasonality. The models were then used to

predict solute concentrations for the remaining 33% of samples. This

training and prediction approach was designed to improve interpola-

tion between discrete samples, as opposed to make predictions of sol-

ute concentrations into the future. Comparisons of predicted and

measured solute concentrations were quantified with the Nash-

Sutcliffe (NS) efficiency (Nash & Sutcliffe, 1970), which compares the

data variance to the 1:1 line (as opposed to an ordinary least squares

line, as is the case with the commonly used R2). Values of NS can

range from 1 (perfect predictions) to −∞ (poor predictions) with

values lower than 0 indicating that the mean is a better prediction

than the modelled values. Because the NS efficiency was based on a

random subset of training data, we calculated the NS efficiency 1000

times to quantify the distribution of possible values. We described the

central tendency of the distribution of NS values with the median,

and the 95% confidence as the range between the 2.5th and 97.5th

percentiles. When we predicted the concentration for the full data set

for time series visualization or flux calculations (described below), we

used 10 random models to ensure that each discrete water sample

was predicted multiple times, and the mean of the multiple predictions

were used to compare with measured concentrations.

We further tested the accuracy of the SVM and RF concentration

predictions using sensed NO3
−. We trained the NO3

− model using dis-

crete samples (n = 382) the same way we performed the training for

other solutes, and tested the prediction on the sensed data, which

accurately represents lab-measured values (sensed = 1.07[measured] +

0.008; r2 = 0.98; Snyder et al., 2018).

The sensitivity of the SVM and RF models to input variables was

tested by building a model using all available data (no training or test-

ing data split), removing an individual independent variable from the

model, and then re-calculating new NS efficiency values. The magni-

tude of the NS decrease was used to identify the most sensitive inde-

pendent variables. We also used partial dependence plots to visualize

the relationships, within the multivariate machine learning models,

between our focus solutes (Ca2+ and Al3+) and the independent vari-

ables. We used the pdp package in R to construct the partial depen-

dence plots (Greenwell, 2017).
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The annual flux of Ca2+ and Al3+ was calculated for 2016 by mul-

tiplying the predicted concentration by stream discharge for each

15-min period. Both concentration and discharge were assumed to be

constant for the 15-min period after measurement, changing in a step-

wise fashion. These fluxes from the 15-min predicted concentration

were compared to the monthly fluxes based on weekly water chemis-

try samples using the period-weighted approach described in

Aulenbach et al. (2016). Only 2016 was used for comparison because

it was the year with the most complete sensor record.

3 | RESULTS

Concentrations of major ions in our study stream were generally low

(median conductivity 11 μS cm−1), with Ca2+ and Na+ the cations

found in highest concentrations (median = 0.68 and 0.92 mg/L

respectively) and SO4
2− the dominant anion (median = 0.94 mg S/L;

Figure 1). DOC concentrations were generally low

(median = 2.3 mg/L), with the highest observed value reaching

10 mg/L in 12 August 2016 on a rising limb of a hydrograph after a

48 mm rain event. Concentration distributions of K+, Al3+, and DOC

showed the most positive skew, indicating occasional high concentra-

tions, and Si and SO4
2− showed the least amount of skew, indicating

more stable concentrations.

The median Nash-Sutcliffe (NS) efficiencies of predicted versus

observed concentrations ranged between 0.29 for Cl− and 0.79 for

Na+ from the SVM, and 0.35 for Cl− and 0.78 for Na+ from the RF

(Table 1). The NS values from the RF models were generally higher

than from the SVM models. For example, median RF-based NS effi-

ciencies were equal to or greater than the SVM-based values for 7 of

the 10 solutes. The 95% confidence intervals were generally greater

for solutes that had lower median NS efficiency. For example, Cl− and

K+ had the lowest median NS from both algorithms, and had a 95%

confidence interval >0.3. Both Mg2+ and Na+ had the highest median

NS values and 95% confidence intervals <0.2 for both algorithms.

Both Al3+ and DOC were exceptions to this general trend, both having

relatively high median NS values (NS > 0.6) and 95% confidence inter-

vals >0.3.

Both algorithms underpredicted the highest observed Ca2+ and

Al3+concentrations (Figure 2). This bias was indicated by the slope of

the ordinary least squares (OLS) fit line, which was greater than the

1:1 line (Figure 2). The SVM predictions showed more scatter around

the OLS line.

Time series comparisons between our continuous prediction of

solute concentration and measured values from our discrete samples

highlight time periods when model predictions are poor (Figure 3). For

example, the relatively high peak event concentrations of Ca2+ and

Al3+ tend to be underpredicted by the RF model. The SVM predictions

F IGURE 1 Boxplots showing the distributions of concentrations for each solute from this study. The box shows the median and the
interquartile range and the whiskers extend to 1.5 times the interquartile range away from the box

TABLE 1 Nash-Sutcliffe efficiencies (NS) of the predicted versus
measured solute concentration; 2.5th, 50th, and 97.5th percentile NS
values from 1000 random test sets are shown for both the support
vector machine and random forest models

Solute

Support vector machine NS

(2.5th, 50th, and 97.5th
percentiles)

Random forest NS (2.5th,

50th, and 97.5th
percentiles)

Al3+ 0.41, 0.63, 0.86 0.48, 0.70, 0.85

Ca2+ 0.53, 0.64, 0.73 0.57, 0.66, 0.75

Mg2+ 0.68, 0.76, 0.82 0.71, 0.78, 0.84

Na+ 0.68, 0.79, 0.85 0.66, 0.77, 0.84

K+ 0.33, 0.49, 0.68 0.28, 0.56, 0.68

SO4
2− 0.58, 0.74, 0.84 0.59, 0.74, 0.84

Cl− 0.15, 0.29, 0.47 0.15, 0.35, 0.48

NO3
− 0.72, 0.83, 0.89 0.68, 0.77, 0.85

DOC 0.34, 0.61, 0.78 0.33, 0.60, 0.79

Si 0.50, 0.65, 0.78 0.58, 0.70, 0.80
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are also least accurate at peak concentrations (Figure 4). Our

predicted 15-min NO3
− concentration data was trained from only

382 grab samples, but effectively predicted the high resolution NO3
−

concentration data derived from our nitrate sensor (NS = 0.68 and

0.64 for the SVM and RF models, respectively; Figure 5). Similar to

the comparison with discrete samples, the predicted 15-min values

underpredicted periods of high NO3
− concentrations. This under-

prediction is particularly apparent during the high concentrations in

the winter of 2013–2014.

The SVM and RF predicted solute concentrations showed little

degradation of the NS efficiency when removing just one independent

variable (Table 2). The lack of NS efficiency degradation suggested

that there is similar information held in multiple variables. Overall, the

RF models had much higher baseline NS values and much lower NS

changes when one variable was removed. The relative importance of

different dependent variables was similar in both the SVM and RF

models; FDOM, pH, and SC emerged as the most important variables.

The largest individual decrease in NS was 0.185, which occurred when

FDOM was removed from the SVM K+ model, which began at 0.659.

The largest decrease among the RF models was when FDOM was

removed from the K+ model; however, the decrease in NS was 0.046

(from 0.921). For both the RF and SVM models, other notable sub-

stantial decreases in NS were apparent for Ca2+ and Mg2+ when SC

was removed, DOC when FDOM was removed, and NO3
− when SC

was removed. The least important independent variable was turbidity.

There were some cases where the NS efficiency did not change or

slightly increased with removal of an independent variable, such as

with turbidity, SC, and DOY.

(d)(c)

(b)(a)

F IGURE 2 Comparison of measured calcium (Ca2+) concentrations to predicted values from (a) the random forest (RF) model and (b) the
support vector machine (SVM). The same comparison for total monomeric aluminium (Al3+) from the (c) RF model and (d) SVM. The solid line is
the 1:1 line and the dashed line is the ordinary least squares (OLS) line. The OLS models and Nash-Sutcliffe efficiencies were (a) y = 1.03x−0.02
(r2 = 0.66; NS = 0.67), (b) y = 1.14x−0.09 (r2 = 0.66; NS = 0.65), (c) y = 1.04x (r2 = 0.65; NS = 0.66), and (d) y = 1.08x (r2 = 0.64; NS = 0.64)
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F IGURE 3 Time series of measured
stream water samples (brown dots) and
the predicted high-frequency predictions
(grey points) for total monomeric
aluminium (Al3+) and calcium (Ca2+) from
the random forest model

F IGURE 4 Time series of measured
stream water samples (brown dots) and
the predicted high-frequency predictions
(grey points) for total monomeric
aluminium (Al3+) and calcium (Ca2+) from
the support vector machine model
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F IGURE 5 The time series of sensed
and predicted high-frequency stream
nitrate concentrations show similar
variation in the SVM predictions
(NS = 0.68) and RF predictions
(NS = 0.64). The predicted concentrations
(n = 146 213) are from models trained to
predict nitrate in 382 discrete water
samples. RF, random forest; SVM, support

vector machine

TABLE 2 Change in the Nash-Sutcliffe (NS) efficiency of solute prediction models when one independent variable is removed

Variable removed Al3+ Ca2+ Mg2+ Na+ K+ SO4
2− Cl− NO3

− DOC Si Mean change

Support vector machine

Baseline 0.747 0.74 0.853 0.836 0.659 0.807 0.471 0.882 0.681 0.716

FDOM −0.05 −0.016 −0.021 −0.031 −0.185 −0.039 −0.082 −0.012 −0.133 −0.015 −0.058

Turb 0 +0.002 −0.003 −0.017 0 −0.016 −0.05 −0.009 −0.021 −0.019 −0.013

pH −0.077 −0.018 −0.016 −0.011 −0.028 −0.056 −0.024 −0.193 −0.009 −0.018 −0.045

SC +0.001 −0.109 −0.107 −0.037 −0.052 0.001 −0.069 −0.073 +0.003 −0.06 −0.050

DO −0.013 −0.017 −0.004 −0.029 −0.038 −0.016 −0.053 −0.101 −0.046 −0.027 −0.034

DOY −0.012 −0.014 −0.018 −0.017 −0.056 0 −0.049 −0.017 0 −0.019 −0.020

Random forest

Baseline 0.912 0.928 0.958 0.954 0.921 0.952 0.883 0.958 0.898 0.946

FDOM −0.021 −0.012 −0.007 −0.009 −0.046 −0.023 −0.019 −0.013 −0.029 −0.01 −0.019

Turb −0.015 −0.014 −0.009 −0.008 −0.015 −0.016 −0.016 −0.013 −0.014 −0.014 −0.013

pH −0.021 −0.017 −0.015 −0.01 −0.029 −0.022 −0.028 −0.029 −0.013 −0.019 −0.020

SC −0.001 −0.028 −0.03 −0.011 −0.027 −0.012 −0.026 −0.032 −0.004 −0.017 −0.019

DO −0.001 −0.014 −0.015 −0.007 −0.024 −0.01 −0.024 −0.018 −0.01 −0.008 −0.013

DOY −0.002 −0.012 −0.012 −0.011 −0.044 −0.009 −0.031 −0.011 −0.011 −0.017 −0.016

Note: The baseline NS for the model with no variables removed (and all data points used; no training/testing sets) is shown for reference. The sensitivity of

the solute prediction to each independent variable is indicated by a decrease in the NS efficiency relative to the model with no variable removed.
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Partial dependence plots for the Ca2+ and Al3+ highlighted

the most important variables and the non-linear relationships

between the independent variables and the solute concentrations

(Figures 6 and 7). For Ca2+, the largest changes in Ca2+ concentra-

tion are as SC changes from 10 to 20 μS/cm in both the SVM and

RF models (Figure 6(b)). The RF model also shows higher Ca2+

(e) (f)

(c) (d)

(a) (b)

F IGURE 6 Partial dependence plots for the stream water calcium concentration RF and SVM models. The partial dependence on
(a) fluorescent dissolved organic matter, (b) specific electrical conductivity, (c) turbidity, (d) dissolved oxygen, (e) pH, and (f) sine-transformed day
of the year are shown. RF, random forest; SVM, support vector machine
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concentration at low DO concentration and high pH (Figure 6(d)

and (e)). The Al3+ predictions were dependent on more variables,

with high Al3+ concentrations associated with high FDOM, high

turbidity, and low pH (Figure 7). The SVM and RF partial depen-

dence plots were generally similar for each independent variable,

with the only notable divergence in the DO plot for RF where the

(a) (b)

(c) (d)

(e) (f)

F IGURE 7 Partial dependence plots for the stream water total monomeric aluminium concentration RF and SVM models. The partial
dependence on (a) fluorescent dissolved organic matter, (b) specific electrical conductivity, (c) turbidity, (d) dissolved oxygen, (e) pH, and (f) sine-
transformed day of the year are shown. RF, random forest; SVM, support vector machine
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lowest DO values show a step increase in Al3+ concentration

(Figure 7(d)).

Monthly fluxes of Ca2+ and Al3+ for 2016 using the predicted

15-min values were compared to the fluxes estimated with weekly

discrete samples that were analysed in the laboratory. The monthly

Ca2+ fluxes using the predicted 15-min values were 5% lower to 17%

higher than estimates derived from period-weighted estimates

derived from weekly samples, while the monthly Al3+ fluxes using the

15-min data were 9% lower to 69% higher than the estimates using

weekly samples, with the largest differences during months when

fluxes were high (Figure 8).

4 | DISCUSSION

We demonstrated that machine learning algorithms were effective at

predicting the observed concentrations of major ions in Hubbard

Brook stream water. Having access to such an extensive discrete

water sampling and stream sensing data set allowed us to test the

effectiveness of machine learning algorithms at predicting multiple

non-sensed solutes at much higher frequency than previous studies.

Our results demonstrate the potential to produce accurate, high-

frequency solute predictions that can be used to gain new insights

into hydrological and biogeochemical processes in catchments.

Machine learning algorithms proficiently predict multiple Earth system

variables (Lary et al., 2016; Olden et al., 2008; Raghavendra &

Deka, 2014), thus it is not surprising that our solute predictions are

generally accurate. The large number of discrete stream samples

allowed the models to be well trained. Better predictions of stream

solutes in the future could be gained from collection of a greater num-

ber of samples with high concentrations, particularly during storm

flows, to better characterize the physio-chemical conditions when

they occur. The optimal timing of discrete sampling could be identified

by testing the effect on training machine learning algorithms. Further,

a broader set of independent variables could be considered. For

example, solute production and transport is influenced by meteorolog-

ical conditions (e.g., Aulenbach, 2020; Wen et al., 2020) and thus the

inclusion of meteorological variables such as air temperature, precipi-

tation, vapour pressure deficit, snowpack condition, or potential

evapotranspiration may result in better predictions.

While the development of new sensors may improve our under-

standing of high-frequency solute dynamics, our results suggest that

machine learning applied to existing sensor data can provide accurate

information about the temporal variability in concentrations of solutes

for which no effective sensor has been developed. However, this

method requires a robust sensing programme coupled with temporally

and spatially intensive grab sampling to build models that are specific

to each stream site of interest across a range of conditions. A robust

set of discrete samples is vital to effective training of a machine learn-

ing algorithm. Once a significant number of models are built to repre-

sent a range of catchments, their transferability across places and

time can be tested, but this is not yet possible due to a lack of data.

As more paired stream solute and water quality sensing data sets are

made available, it will be possible to assess whether solute prediction

models like we have presented are stable when applied in other places

or during long-term deployments. If these models are transferable, the

cost of water quality monitoring could be greatly reduced and high

temporal resolution information could be broadly generated.

The differences in predictive strength across solutes appeared to

be related to their sources and biogeochemical dynamics. Generally,

the solutes with mineral weathering sources least affected by ecosys-

tem dynamics during this study period (Na+, Ca2+, Si, Mg2+) or

F IGURE 8 Comparison of stream calcium and monomeric aluminium monthly flux during 2016 using the weekly samples and the predicted
high-frequency solute concentrations from this study. The 1:1 line is shown for reference
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relatively constant atmospheric deposition inputs (NO3
−, SO4

2−) were

the best predicted. In contrast, those with either episodic or

unpredictable atmospheric inputs (Cl−) or those with potentially

strong biotic as well as abiotic control (e.g., K+; McDowell &

Asbury, 1994) were much harder to predict. Both Cl− and K+ had low

concentrations and were small contributors to the ionic charge bal-

ance. Among the major anions Cl−, SO4
2−, and NO3

−, Cl− was 16% of

the average total microequivalents. Among the cations Ca2+, Na+, K+,

Mg2+, and Al3+, K+ constituted 4% of the average total micro-

equivalents. The contribution to the ionic charge balance was not

always a factor in the predictability of a solute, as demonstrated by

NO3
− and Al3+ which contributed only 9 and 6% respectively, on aver-

age. In these cases, associations with other physiochemical variables –

pH in particular – made them more predictable. Hubbard Brook

streams are acidic and dilute (Likens & Buso, 2012), which was likely a

major factor in our results, highlighting the need for similar studies in

streams with different characteristics. It would be valuable to explore

whether the approach we present here is effective in catchments with

higher solute concentrations.

The sensitivity analysis uncovered the most important indepen-

dent variables generally and for specific solutes (Table 2). Specific

electrical conductivity (SC) was the most important independent vari-

able for major ions, particularly the divalent cations Ca2+ and Mg2+,

likely due to the direct dependence of SC on the ionic strength of a

solution (e.g., Miller et al., 1988). Model predictions were also sensi-

tive to inclusion of FDOM and pH. FDOM is an effective proxy for

dissolved DOC (e.g., Snyder et al., 2018; Wymore et al., 2018), which

our analysis also suggested. However, K+ was similarly sensitive to

FDOM, which is not intuitive. It is possible that these ions may be

associated with dissolved organic matter in our catchment, resulting

in strong predictive power, but the nature of this association is not

well-established. The strong dependence of Al3+on pH was consistent

with current understanding that aluminium biogeochemistry is acid-

sensitive (Driscoll et al., 1980). In particular, the steep shift in the par-

tial dependence of Al3+ on pH at pH = 5.5 in the RF model is interest-

ing because this is a pH below which Al speciation shifts to Al3+

(Figure 7(e); Driscoll & Schecher, 1990). Predictions of NO3
− were

also sensitive to the inclusion of pH, perhaps because most stream

water nitrate at Hubbard Brook is produced by nitrification (Pardo

et al., 2004), which is an acidifying process. The visible partial depen-

dence of high Ca2+ and Al3+ concentrations on very low DO was

unexpected and may be related to transport of low DO groundwater

(Figures 6(d) and 7(d); Krause et al., 2013). The low importance of tur-

bidity to prediction of any solute is not surprising because it is a com-

mon proxy for suspended materials rather than dissolved solutes

(Nasrabadi et al., 2016; Rügner et al., 2014). Turbidity is likely to be

the most important available predictor of P fluxes in our watershed

where nearly all P is exported in particulate forms (Meyer &

Likens, 1979).

Predicted high-frequency solute concentrations have multiple

applications, including source water tracing, catchment-scale mineral

weathering rate estimation, water quality monitoring, and aquatic

habitat assessment. Geogenic solutes provide useful tracers of stream

water sources (e.g., Benettin et al., 2015; Burns et al., 2001); being

able to trace water sources at higher temporal resolution will shed

new light on streamflow generation processes. The higher Al3+ flux

rates derived from our predicted concentrations may aid interpreta-

tions of mineral weathering rates, soil development, and soil

responses to human-caused disturbances (Bailey, 2020; Johnson

et al., 2000). Further, high-frequency streamflow tracing can help

identify sources of biogeochemically dynamic solutes like nitrate

(Pardo et al., 2020). Or, when paired with other high-frequency

sensed variables such as dissolved oxygen or CO2, stream solute

dynamics can be linked with ecological phenomena such as stream

metabolism. Further application of high-frequency water quality pre-

dictions would improve aquatic condition assessments because it may

allow for exploration of exposure to high pollutant concentrations

that are often episodic and challenging to measure and predict. For

example, free ionic Al3+ is toxic to gilled organisms (e.g., Kroglund &

Finstad, 2003), and predictions of episodic Al3+ increases in concen-

tration would allow quantification of organism exposure to toxic

concentrations.

5 | CONCLUSION

A wide range of stream solutes was accurately predicted at 15-min

intervals using two machine learning algorithms driven by data

from an array of physico-chemical properties derived from aquatic

sensors and extensive discrete sampling across a range of flow con-

ditions. More extensive data sets or other machine learning algo-

rithms will likely improve the accuracy of predicted stream solutes

for which no known physical or chemical proxy is available with cur-

rent sensor technology, thus opening new insights into the high-

frequency variability of non-sensed solutes. Such information will

allow improved estimation of stream water solute concentrations

and exports, especially those solutes that increase in concentration

with discharge.
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