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Abstract 

Accurate estimation of forest biomass is important for scientists and policymakers 

interested in carbon accounting, nutrient cycling, and forest resilience. Estimates often rely on 

the allometry of trees; however, limited datasets, uncertainty in model form, and unaccounted for 

sources of variation warrant a re-examination of allometric relationships using modern statistical 

techniques. We asked the following questions: (1) Is there among-stand variation in allometric 

relationships? (2) Is there nonlinearity in allometric relationships? (3) Can among-stand variation 

or nonlinearities in allometric equations be attributed to differences in stand age? (4) What are 

the implications for biomass estimation? To answer these questions, we synthesized a dataset of 

small trees from six different studies in the White Mountains of New Hampshire. We compared 

the performance of generalized additive models (GAMs) and linear models and found that 

GAMs consistently outperform linear models. The best-fitting model indicates that allometries 

vary among both stands and species and contain subtle nonlinearities which are themselves 

variable by species. Using a planned contrasts analysis, we were able to attribute some of the 

observed among-stand heterogeneity to differences in stand age. However, variability in these 

results point to additional sources of stand-level heterogeneity, which if identified could improve 

the accuracy of live-tree biomass estimation.  
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Introduction 1 

 Accurate estimation of live tree biomass is essential for scientific, economic and policy 2 

purposes. Live trees represent a large fraction of the total forest carbon pool (Pan et al. 2011). In 3 

North America live biomass accounts for 32% of the 103,110 Tg of carbon stored in forest 4 

ecosystems (Domke et al. 2018). Estimates of live tree biomass are frequently used to quantify 5 

important ecological indices such as productivity gradients, biomass recovery after disturbance, 6 

and forest resilience (Whittaker and Niering 1975; Peet 1981; Reiners et al. 2012). Due to 7 

concerns about global change, managers and policy-makers are interested in maximizing both 8 

the carbon storage and sequestration capacities of forests (Aalde et al. 2006; Domke et al. 2012; 9 

Van Breugel et al. 2011). Additionally, market-based policy instruments, such as carbon-offset 10 

trading schemes, tie estimates of forest carbon stocks to monetary transactions (Kerchner and 11 

Keeton 2015; Newell, Pizer, and Raimi 2013).  12 

It is not feasible to measure live tree biomass directly and thus estimates of forest 13 

biomass rely on allometric models (Jenkins et al. 2003, Van Breugel et al. 2011). Allometric 14 

models of trees relate easily-obtained dimensional measurements (e.g. diameter, height), to 15 

impractical- and destructive-to-measure quantities such as tree biomass (Huxley and Teissier 16 

1936). Typically, the allometric relationships used to estimate tree, stand, and forest biomass 17 

depend on measurements of diameter and/or height (Jenkins et al. 2003).  18 

A significant barrier to the development of accurate allometric models is the difficulty 19 

and expense involved in directly measuring tree biomass (Jenkins et al. 2003; Sileshi 2014; Van 20 

Breugel et al. 2011). In order to measure the biomass of a single tree, it must be cut-down, 21 

measured, dissected, dried and then weighed (Fatemi et al. 2011; Whittaker et al. 1974). The 22 

combination of destructive sampling and time-consuming analyses constrains sample size. For 23 



example, the median sample size for tree species included in BAAD (Biomass and Allometry 24 

Database) is 4 trees (i.e., stems ≥ 2 m tall) per location (Falster et al. 2015). Only rarely (47 out 25 

of 497 datasets) are there more than 21 trees. Small sample sizes limit the degree of certainty in 26 

allometric models (Weiskittel et al. 2015). This study addresses this limitation by synthesizing 27 

six comparable, small-tree datasets collected in the White Mountains of New Hampshire over the 28 

course of several decades. 29 

 Allometric equations are sometimes species-specific but are frequently developed for 30 

groups of species based on functional traits or taxonomic grouping (Jenkins et al. 2003, Picard et 31 

al. 2015; Radtke et al. 2017; Dettman and MacFarlane 2018; Poudel et al. 2019). In problematic 32 

cases, equations are developed for a single species and then applied to different species and/or 33 

species groups (Weiskittel et al. 2015). Misapplication and overgeneralization of allometric 34 

equations can lead to inaccuracies in live tree biomass (Weiskittel et al. 2015). Even small 35 

inaccuracies at the tree level can be amplified when biomass estimates are extrapolated to the 36 

stand, forest or national levels. Inaccuracies are especially problematic if they are systematic. 37 

Therefore, it is important to maintain a high standard of accuracy for tree-level allometric 38 

equations. 39 

The existence of spatial variability in tree allometry can also severely impact the 40 

accuracy of biomass estimates when equations are applied to different areas from where they 41 

were developed (Weiskittel et al. 2015). At the regional scale, variability in tree allometry is well 42 

explored; the consensus recommendation is that biomass equations be applied solely within the 43 

forest or region for which they were developed (Weiskittel et al. 2015, Koerper and Richardson 44 

1980). However, little attention is paid to the existence of among-stand variation in allometric 45 

relationships, despite evidence of its existence (Fatemi et al. 2011, Wang et al. 2002). The 46 



existence of among-stand variation necessitates even greater care in the application of allometric 47 

equations developed from small datasets or single stands. Nevertheless, if among-stand, 48 

allometric variation could be attributed to specific stand-level covariates, it could allow for more 49 

accurate biomass estimation in cases where the stand attributes are known and quantified.  50 

 Stand age, a determinant of stand structure and composition, is one such covariate that 51 

may account for some among-stand allometric variation. Even-aged stands tend to follow 52 

relatively deterministic successional patterns in the absence of disturbance. For example, even-53 

aged stands in the northern hardwood forests of the Eastern United States undergo distinct shifts 54 

in species composition, density and vertical structure as they mature (Marks 1974). It follows 55 

that trees of the same size which exist in different stages of stand development might exhibit 56 

differences in resource allocation strategies. Specifically, these strategies may differ in order to 57 

better compete for light or other resources and vary as a function of trees’ relative vertical 58 

positions (Peichl and Arain 2007; Walters et al. 1993). Differences in resource allocation 59 

patterns might further vary by the interaction between species and stand age. In other words, the 60 

way in which allometric relationships vary as a function of stand age might be different for 61 

different species. This variation in resource allocation can affect relationships between low 62 

dimensional measurements such as diameter and aboveground tree biomass. Several empirical 63 

studies suggest the importance of stand age in driving allometric variability (Bond 2000, Fatemi 64 

et al. 2011, Wang et al. 2002, Baskerville 1983). 65 

 Stand or species variation may be expressed in several aspects of allometric equations. 66 

For one, variability may be present in the intercepts and coefficients of an allometric model that 67 

explicitly considers stand effects and/or interactions between stand effects and other predictive 68 

variables. Second, among-stand and/or among-species variation may be expressed in the 69 



functional form of the model. Most commonly, allometric scaling relationships are assumed to 70 

follow the power law, owing to both metabolic scaling theory and the apparent linearity of 71 

allometric relationships on a log-log scale (Picard et al. 2015, Sileshi 2014). Other allometric 72 

analyses consider relationships that are non-linear on a double logarithmic scale (Huxley and 73 

Teissier 1936, Picard et al. 2015, MacFarlane 2015, West et al. 1999). However, the 74 

identification of an appropriate nonlinear model structure is difficult, and so previous 75 

considerations of nonlinearity are limited by their consideration of only a few alternative forms 76 

(e.g. geometric models, variable-density mass component models) (Picard et al. 2015, 77 

MacFarlane 2015). If the form of nonlinear allometric relationships itself varies in relation to 78 

species, age, stand characteristics or other environmental factors, estimation and prediction 79 

would be particularly complicated. If this were the case, the limitations of choosing a few 80 

parametric model forms could either obscure existing variability, or erroneously detect non-81 

existent variability.  82 

  The implementation of a non- or semi-parametric model, such as a generalized additive 83 

model (GAM), can compensate for uncertainty in the form of the model by relaxing the 84 

assumption of linearity without specifying an alternative, nonlinear model form. Instead, GAMs, 85 

which relate tree biomass to predictor variables (e.g. diameter, height, volume) via a combination 86 

of smoothing splines and linear terms, automatically identify the appropriate relationships 87 

between predictor and response variables (Hastie and Tibshirani 1987; Guisan et al. 2002). 88 

Thereby, these models provide freedom from the a priori assumptions about model form inherent 89 

in the choice of a parametric linear or nonlinear function (Hastie and Tibshirani 1987; Picard et 90 

al. 2015, MacFarlane 2015). Additionally, the use of GAMs allows us to examine nonlinearities 91 

in a general fashion without having to compare numerous potential nonlinear forms. The 92 



smoothing splines that constitute the non-parametric heart of GAMs are penalized fit objects 93 

which provide balance between goodness of fit and some measure of smoothness (Wood 2011). 94 

These splines are controlled by a smoothing parameter which adjusts the degree of penalization 95 

placed on the “curviness” of the underlying, representative functions. This smoothing parameter 96 

is fit by generalized cross validation and is typically constrained to be equal across splines in a 97 

given model. By controlling the sensitivity of the splines to variation in the data, the smoothing 98 

parameter provides the balance between fit and smoothness (Wood 2011).  99 

We consider four potential patterns of variation in allometric relationships (Fig. 1). For 100 

the purpose of demonstration, diameter is used as the continuous variable, and stand as the 101 

categorical, though one could apply the same thinking to cases which consider either height or 102 

species. In the left column, panels A and C depict relationships exhibiting among-stand variation 103 

which could be modeled using linear regression. In panel A only a main effect of stand is present 104 

(same slope, different intercepts), whereas panel C shows an interaction between diameter and 105 

stand (different slopes and intercepts). The right column shows nonlinear relationships that 106 

exhibit stand-level variability. The difference in the relationships between panels B and D 107 

demonstrates the main motivation for the use of GAMs. In panel B, a nonlinear relationship is 108 

presented which is constant in the form of the relationship, but variable in the intercept. This 109 

relationship could be modeled by a parametric nonlinear equation, given knowledge of the 110 

correct model form. Panel D shows a relationship which exhibits heterogeneous nonlinearity – 111 

the relationships between diameter and biomass for each individual stand are heterogeneous not 112 

only in the intercept or slope but also in the functional form.  113 

This fourth form of variability – variability in functional form – highlights an additional 114 

advantage of generalized additive models in exploring allometric relationships. Namely, they can 115 



reveal sources of variability which are obscured by models which are rigid in functional form 116 

(i.e. linear and parametric nonlinear models). Our goal in this study is to distinguish between 117 

these forms of allometric variability across stands. Likely, the errors caused by their omission are 118 

proportionally small, but can nevertheless become important when scaled up from the tree to the 119 

national scale. Additionally, because these variations are likely caused by exogenous factors such 120 

as stand characteristics or species functional traits, they can lead to key ecological insights.  121 

By examining generalized additive and linear models for allometric relationships in the 122 

northern hardwood forests of New Hampshire, this study seeks to answer the following 123 

questions: (1) Is there among-stand variation in allometric relationships for linear and/or 124 

nonlinear models? (2) Is there nonlinearity in allometric relationships? (3) Can among-stand 125 

variation or nonlinearities in allometric equations be attributed to differences in stand age? (4) 126 

What are implications for biomass estimation and ecological understanding? While the 127 

magnitude of changes in biomass predictions is clearly important for a variety of applications, 128 

detection of among-stand and among-species variation in allometric relationships is of 129 

fundamental interest given these can provide insight into important ecological patterns and 130 

functions.  131 

 132 

Methods 133 

Site Description - Data were compiled from a series of previous biomass studies 134 

conducted in the White Mountain National Forest, New Hampshire. The full dataset includes 318 135 

trees from 9 stands of 7 different ages. Most of the sampling was conducted in either Hubbard 136 

Brook Experimental Forest (208 trees) or Bartlett Experimental Forest (71 trees). The remaining 137 

trees were collected in two stands located in the vicinity of the experimental forests (Table 1). 138 



The stands varied in age from 14 to 100+ years. Except for the oldest site, forests developed 139 

following clearcut harvests and represent even-aged stands. The oldest site is a mixed age stand 140 

that was never clearcut but did experience logging in the 1800’s and early 1900’s (Whittaker et 141 

al. 1974). As a result, the trees in the oldest stand ranged from a minimum of 16 years old to 142 

maximum of 260 years old. Whittaker et al. (1974) report a weighted mean age that varied from 143 

124 years to 83 years across their sampling gradient. Thus, we identified this site as 100+ years 144 

old. 145 

All stands were located in a northern hardwood forest type. At maturity, the northern 146 

hardwood forest is dominated by sugar maple (Acer saccharum Marsh; ACSA), American beech 147 

(Fagus grandifolia Ehrh; FAGR), and yellow birch (Betula alleghaniensis Britton; PRPE). In 148 

young stands, pin cherry (Prunus pensylvanica L.f; PRPE), a pioneer species that rarely persists 149 

in the forest past 30 years, is the most abundant species. As stands age, paper birch (Betula 150 

papyrifera Marshall; BEPA), and to a lesser extent red maple (Acer rubrum L; ACRU) become 151 

more abundant. Red spruce (Picea rubens, Sarg; PIRU) is the most common conifer species in 152 

the northern hardwood forest and striped maple (Acer pensylvanicum L., ACPE) is a common 153 

understory tree species (Bormann et al. 1970, Marks 1974, Fahey et al. 1998). 154 

Stands were grouped broadly into three age classes based on the successional patterns of 155 

northern hardwood forests (Marks 1974). Besides reflecting our understanding of the ecology of 156 

Northern Hardwood forests, grouping the stands into three distinct age classes rather than 157 

treating stand age as a continuous variable avoids the assumption that the effect of stand age is 158 

monotonic and avoids estimating effects for stand ages we lack data on (<14, 29-100+). Stands 159 

aged 14, 16 and 17 (2 stands) are labelled “YOUNG,” stands aged 23, 26 (2 stands) and 29 160 

labelled “MID,” and the 100+ year old stand is labelled “OLD.” YOUNG stands were dominated 161 



by pin cherry and characterized by high stem densities. MID stands were defined by lower pin 162 

cherry prevalence and higher striped maple and yellow birch components. The OLD stand was 163 

dominated by yellow birch and two shade-tolerant hardwoods, sugar maple and American beech, 164 

though other species like red spruce were present. This stand lacked pin cherry and had lower 165 

stem density and higher basal area than other stands (Fahey et al. 1998; Fatemi et al. 2011; 166 

Whittaker et al. 1974). Despite these differences in characteristics between the three age classes, 167 

there was substantial enough overlap in species composition and tree size to justify allometric 168 

comparison.  169 

Study sites were all located at similar elevations (300-600m) with the “OLD” stand being 170 

the highest. Sites were measured during different years in the period from 1973 to 2004, but 171 

measurement protocols followed those described in Whittaker et al. 1972. Given their close 172 

physical proximity, we assume the stands developed in relatively similar climates. However,  173 

temporal differences could be present as a result of documented trends in climate and 174 

atmospheric pollution (Fatemi et al. 2011).  175 

Sampling - In each stand, a sample of trees was chosen to include a full distribution of 176 

present sizes without consideration for each species’ contribution to stand density or size 177 

distributions. Trees were selected to have good health and vigor, and diseased, damaged and 178 

multi-stem trees were excluded. Given the large presence of beech bark disease in the younger 179 

stands, this constrained the selection of beech individuals. Diameter at breast height (DBH, 180 

breast height = 1.37 m), and total height of each tree was measured on site. Following this, trees 181 

were felled and then separated into stem, branch and foliage components. These components 182 

were weighed in the field. Tissue samples were taken from each component of each tree, oven-183 

dried and weighed in order to determine moisture content. These relationships were then applied 184 



to determine total dry aboveground biomass of each tree. Parabolic volume was calculated from 185 

height and diameter according to eq. 1 (Whittaker and Woodwell 1968). 186 

(1)             𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 0.5 𝜋𝜋 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 187 

Analysis - First, diameter, height and aboveground biomass were log transformed for 188 

consistency with previous allometric studies, to ensure comparability between linear and 189 

generalized additive models, and to meet the assumptions of linear modeling. Additionally, trees 190 

from the OLD stand which were larger than the largest trees from the MID and YOUNG stands 191 

were not considered in the analysis. This filtering was done to remove any tree size bias from the 192 

comparison between stands of different ages. This reduced our total sample size to 273 trees.  193 

To determine the best predictive allometric model, we performed model selection on 182 194 

potential model formulations. Models were ranked separately for both the linear and generalized 195 

additive model forms using the Akaike Information Criterion corrected for small sample size 196 

,AICc, in the statistical analysis software R (R Core Team 2018 version 3.5.1; Burnham and 197 

Anderson 2004). We started with full models for the linear (Equations 1a and 1b) and for the 198 

GAM (Equations 2a and 2b), and then compared all simpler parameter and interaction 199 

combinations. For the linear models, possible parameter and interaction combinations were fit 200 

and then ranked using the package MuMIn (Barton, K. 2018; version 1.42.1). Models including 201 

parabolic volume as a predictor were constructed and fit separately from models including 202 

diameter and height. We reasoned that since parabolic volume is calculated from diameter and 203 

height, including all three quantities risks fitting redundant parameters in the models.  204 

 205 

(1)(𝑎𝑎)                     log(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ~ log(𝐷𝐷𝐷𝐷𝐷𝐷) ∗ log(ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼   206 

      (𝑏𝑏)                      log(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ~ log(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼 207 



(2)(𝑎𝑎)                     log(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ~ 𝑠𝑠(log(𝐷𝐷𝐷𝐷𝐷𝐷) : 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼)        208 

                                                 + 𝑠𝑠(log(ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡) : 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼) + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼 209 

      (𝑏𝑏)                       log(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ~ 𝑠𝑠(log(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) : 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼)           210 

                                                 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝐼𝐼 211 

Formulae written in R syntax. ‘s()’ denotes smoothing splines on the parenthetical variables. 212 

 213 

An analogous set of generalized additive models was constructed, fit and ranked. 214 

However, specifications differed slightly due to the nature of GAMs. Models including parabolic 215 

volume were again considered separately. Interactions between continuous variables were 216 

specified as multivariate smoothing splines. In models where different splines were fit for each 217 

species and/or stand ID, splines were specified to have the same smoothness penalty (fit by 218 

generalized cross-validation). For both the linear and generalized additive models, we adopted a 219 

fixed effect approach to controlling for the nested structure of the data. There are three reasons 220 

why we opted for fixed effect as opposed to mixed effect models: 1) There is no random effects 221 

analogue for among-stand variation in splines. 2) The assumption that random effects are 222 

normally distributed is constraining and without a priori justification and 3) a random effects 223 

structure precludes the post-hoc comparisons we hope to use to assess the effect of stand age. 224 

Full details regarding methods of model construction can be found in the supplementary 225 

material. GAMs were fit using the package mgcv (Wood 2011; version 1.8.24). 226 

 After performing model selection independently for both model types, we ranked all of 227 

the models by AICc in order to compare performance between model forms. AICc imposes a 228 

stronger penalty on model complexity than AIC and was chosen in order to avoid fitting models 229 

which were overly complex given the size of the dataset. The 50 best-fitting models of each type 230 



are shown in Tables S1 and S2 (Supplementary Material). Then, we generated graphs for three 231 

different measures of model fit (AICc, Log-Likelihood, and adjusted R2) as a function of the 232 

(estimated) degrees of freedom in order to compare model performance at various levels of 233 

model complexity (Figure 2).   234 

 The flexibility of Generalized Additive Models results in three potential limitations: They 235 

cannot be used to estimate values outside the range on which they were fit, can result in 236 

biologically inconsistent fits and are prone to bias towards over-complex models in the case of 237 

AIC based selection (Burnham and Anderson 2004; Wood et al. 2016; Greven and Kneib 2010). 238 

The first concern is mollified by the fact that we are primarily interested in identifying variation 239 

rather than developing predictive equations. The second is mitigated by fitting the smoothing 240 

parameters using generalized cross-validation. The third concern is the most relevant for this 241 

study: a generalized additive model might appear to outperform a linear model on a given dataset 242 

even if there are no important nonlinearities, or unaccounted-for sources of variation (i.e. panels 243 

B and D of Figure 1), simply due to AIC over-fitting. To check for this sort of spurious result, we 244 

simulated a null distribution of AICc differences between best fitting GAMs and linear models 245 

and used this to assess the difference found in our analysis. Similar to parametric bootstrapping 246 

where the best-fit model is used to approximate the sampling distribution of parameter estimates 247 

via simulation, we used the best-fit linear model for simulations. Specifically, we maintained the 248 

same values for the explanatory variables found in our dataset but drew new log(biomass) values 249 

from the best-fit linear model, including its mean predictions and residual variance. Then, we ran 250 

the same model selection protocol used on the real data to determine the AICc difference 251 

between the best fitting GAM and the best fitting linear model. We repeated this procedure 5,000 252 

times and used the distribution of simulated differences as the null distribution for testing 253 



whether the difference from the real data was significant. If the observed value is in the upper tail 254 

of the null distribution, it provides evidence against spurious overfitting due to use of AICc. 255 

 Following determination of the best-fitting model, post-hoc tests were employed to 256 

determine whether some of the among-stand variation could be attributed to the effect of stand 257 

age. Specifically, we compared tree allometries among the YOUNG, MID and OLD age groups. 258 

We performed tests separately for each species that was measured in the OLD stand as well as at 259 

least one YOUNG stand and one MID stand. Four species met this requirement: striped maple, 260 

sugar maple, yellow birch, and American beech. We first subset the data by species, then fit both 261 

a GAM and linear model to the subsetted data using the model terms in the overall best-fitting 262 

model (Table 3). Then, using the multcomp package in R (Hothorn et al. 2008; version 1.4.8) we 263 

specified general linear hypothesis tests in order to test for significant differences in the 264 

parameters fit for YOUNG, MID, and OLD stand effects. These tests were performed separately 265 

for parameters fit by linear and generalized additive models. The parameters that we considered 266 

varied depending on where stand effects were included in the best-fitting model (i.e. as an 267 

additive effect vs. interaction effect with diameter or height). 268 

To assess the effects of model choice on biomass estimation we generated tree-level 269 

log(biomass) predictions for each in tree in the study. Then, we transformed the estimates into 270 

real terms, correcting for log-transform bias using the methodology outlined in Sprugel (1983). 271 

We summed estimates by stand age and species in order to better understand where differences 272 

in estimation exist between the two model forms. While good for relative comparisons, this 273 

method likely underestimates prediction errors given the predictions are generated on the same 274 

data for which the models are fit.  275 



 Stand and species differences were visualized using prediction plots. To create these 276 

plots, predictions for log(biomass) were first generated using the best-fitting model. For ease of 277 

interpretation, plots only show predictions over either diameter or height even though predictions 278 

were generated over both. In order to avoid predictions over unrealistic combinations of height 279 

and diameter (for example a tree with 1cm height and 1,000cm DBH), a linear regression of 280 

diameter and height was used to choose values for the non-displayed variable. Four plots were 281 

generated: two showing distinct relationships for each stand age and two showing distinct 282 

relationships for each species. Within each group (stand age or species), one plot shows diameter 283 

and the other shows height (Figures 4-7). All plots were generated using the package ggplot2 in 284 

R (Wickham 2016). 285 

 286 

Results  287 

The best-fitting GAM (AICc = 34.3) outperformed the best-fitting linear model (AICc = 288 

55.0). Notably, the 15 best-fitting GAMs exhibit lower AICc scores than the best-fitting linear 289 

model (Tables 2, 3 and Tables S1 and S2). Furthermore, when measures of model fit were 290 

plotted as a function of model complexity (degrees of freedom), the generalized additive models 291 

consistently outperformed linear models of similar complexity (Figure 2). Moreover, the 292 

observed AICc difference between the best fitting GAM and the best fitting linear model, 20.7, 293 

falls in the far upper range of the values simulated from the null distribution (P = 0.00042, mean 294 

= -8.77, sd = 8.82; Figure 3).  295 

The overall best model (a GAM) includes terms for an additive effect of species and 296 

stand ID, different splines on log(DBH) for each species, and a single spline on log(height) 297 

(Table 3). The best-fitting linear model includes terms for an additive effect of both species and 298 



stand ID as well as different slopes on log(DBH) for each species and stand ID combination, and 299 

different slopes on log(HT) for each stand ID. Interaction terms between continuous predictors 300 

and stand ID or species indicate variation similar to the relationships shown in panels C and D of 301 

Fig. 1. These terms are included in both the best fitting linear model and generalized additive 302 

model for species, but only in the best fitting linear model for stand ID. Additive stand ID and 303 

species terms indicate relationships similar to those shown in panels A and B of Fig. 1. These 304 

terms are included for both species and stand ID for both the best fitting linear and generalized 305 

additive model. Parabolic volume is included in one of the six best-fitting generalized additive 306 

models, but none of the six best fitting linear models (Tables 2 and 3). The importance of 307 

species, stand ID, log(DBH) and log(height) in predicting log(biomass) is robust to the choice of 308 

model form with at least one parameter for each variable included in the six best fitting models 309 

of both types.  310 

General linear hypothesis tests detected statistically significant differences in allometric 311 

relationships between YOUNG and MID stands, and MID and OLD stands for each of the four 312 

species considered, and between YOUNG and OLD stands for three of the four species 313 

considered. Table 4 shows the full set of results from the planned contrasts analysis. However, 314 

these results are not consistent across or even within model forms for most combinations of ages 315 

and species. Thus, while we are able to establish some correlation between stand age and among-316 

stand variation in allometry, the association is highly variable. This variability suggests the 317 

existence of unexplained stand-level drivers of variability. 318 

Model choice resulted in small discrepancies in total biomass estimation. The linear 319 

model predicted higher total biomass (5,362 kg) than the generalized additive model (5,318 kg) 320 

when all trees in the study were summed. The actual total biomass of all measured trees in the 321 



study was 5,292 kg. Thereby, the best fitting linear model overestimated biomass by 1.3%, 322 

whereas the best fitting generalized additive model overestimated biomass by 0.5%. The root 323 

mean squared error (RMSE) was lower for the GAM than the LM (5.22 kg vs. 5.82 kg). The 324 

effects of omitting stand and species parameters were slightly greater. The best fitting model that 325 

included no stand ID terms overestimated biomass by 1.5%, and the best fitting model that 326 

included no species terms overestimated biomass by 2.9%. Both of these models were GAMs. 327 

 328 

Discussion 329 

 Generalized additive models reveal subtle (on a log scale) deviations from linearity in 330 

aboveground tree allometry. This result is consistent at all levels of model complexity (Figure 2). 331 

The most parsimonious model for log(biomass) shows that stands differ in intercept, while 332 

species differ in both intercept and model form. Thereby, this model (model 1 in Table 2) 333 

exhibits a common model form for all stands, with additive variation in log(biomass) among 334 

stands (see Panel B, Fig. 1). Among species, the model includes variation in model form as well 335 

as additive variation in log(biomass) (see Panel D, Fig. 1). Thereby, the best fitting model 336 

exhibits variable nonlinearities with species. Each species has a different spline shape, and 337 

analogously, a different model form.  338 

 Stand ID terms are included in 22 of the 25 best fitting models, including all six of the 339 

best fitting linear models and all six of the best fitting generalized additive models. The 340 

consistent inclusion of these terms indicates the existence of among-stand variation in the 341 

relationships between height, diameter and biomass. The best fitting model indicates that this 342 

variation occurs in the intercept, meaning that for every combination of height and diameter, 343 

stands vary in the logarithm of aboveground biomass by an additive factor.  344 



 The documentation of this variation raises two issues. First, stand level variation is rarely 345 

included in the application of allometric models.  Second, and perhaps more importantly, it 346 

points to sources of variation resulting from unmeasured stand-level covariates. For example, 347 

heterogeneity in species composition, tree size distributions, soil fertility, and/or microclimate 348 

could result in allometric variability among stands. These drivers of variation, if present, are of 349 

great interest because they may lead to a better understanding of ecological dynamics. If these 350 

drivers are discovered and modeled, they may be used to develop improved predictive equations.  351 

 One potential driver of allometric variation is stand age. When stands were grouped into 352 

three age classes, significant differences were found for all but one combination of species and 353 

age group pair (sugar maple, YOUNG vs OLD). This indicates that at least some of the among-354 

stand variation in allometry can be attributed to stand age. The structure of even-aged northern 355 

hardwood stands changes deterministically with age, resulting in differences in resource 356 

availability for trees at different stages (Marks 1974). Differences in resource availability can 357 

spur allometric variation if growth form is plastic. For example, leaf area and branch density 358 

both respond to changes in light availability, resulting in the sort of additive variation in 359 

log(biomass) among trees of a given size exhibited in the best-fitting model (Williams et al 1999; 360 

Duchesneau et al. 2001; Delagrange et al. 2004). The process of self-thinning can stimulate 361 

heterogeneity in leaf and branch density among trees of a single size by altering the structure of a 362 

stand (Mohler et al. 1978; Bi and Turvey 1996; Rio et al. 2016). As stands age, suppressed 363 

individuals die, freeing up growing space for surviving individuals. In order to take advantage of 364 

additional light resources, individuals then increase their leaf area and branch density (Mohler et 365 

al. 1978; Marks 1974; Bi and Turvey 1996). Through this mechanism, individuals of a given size 366 

can vary in biomass as a function of stand development, and therefore stand age.  367 



 Fatemi et al. (2011) also explored the effect of stand age on tree allometry in northern 368 

hardwood forests by comparing predictions from equations developed from a new dataset of 369 

young-stand trees to those from equations developed from old-stand trees in Whittaker et al. 370 

(1974). Fatemi et al. (2011) reported large differences in predicted biomass between the young 371 

and old stand equations for yellow birch, though these were less pronounced for sugar maple and 372 

American beech. As in Fatemi et al. (2011), we found significant differences for American 373 

beech, sugar maple and yellow birch, though we also detected significant differences for striped 374 

maple. These dissimilarities in results may be related to the alternative analytic approaches used 375 

by the two studies. In Fatemi et al. (2011), differences in allometric relationships between the 376 

young and old stands were determined by comparing biomass predictions from allometric 377 

equations on diameter developed in the old stand to those developed in the young stand. We 378 

instead compared the fit of parameter estimates for stands of various age classes. It is therefore 379 

possible that the results between the two studies could vary, as dissimilarities in parameter 380 

estimates do not necessarily translate to similar discrepancies in prediction. Regardless, both 381 

studies support the finding that allometric heterogeneity is present between stands.  382 

The best-fitting generalized additive model includes nonlinear splines on both diameter 383 

and height, with individual splines on diameter for each species. This indicates among-species 384 

heterogeneity in the form of allometric nonlinearities (on a log-log scale). One potential 385 

explanation for this among-species variation in model form is that it reflects differences in the 386 

way that species respond to the varying competitive circumstances posed by being a small vs. 387 

large tree in a given stand. To illustrate, one might predict that a shade-intolerant, pioneer species 388 

such as pin cherry would be invariable (i.e. nearly linear) in allometry given that it can only 389 

survive in full sun. Two trees living in full sun, regardless of their size, are unlikely to vary in 390 



growth form (Brisson 2001; Muth and Bazzaz 2002). On the other hand, a shade-tolerant climax 391 

species such as American beech might be more nonlinear in allometry given that it can survive in 392 

either shade or sun. In even-aged stands like the ones in this study, trees on the large end of the 393 

size distribution are likely canopy trees (except in the OLD stand) and are therefore not light-394 

limited in the way that small trees in the same stand would be. For a given species, growth form 395 

is highly dependent on light availability, and so the allometries for these two trees are likely to 396 

differ (Williams et al 1999; Duchesneau et al. 2001, Delagrange et al. 2004).   397 

Some evidence for this interpretation can be seen in Figures 4 and 5, where there appears 398 

to be a higher degree of nonlinearity for shade tolerant species (e.g. American beech and striped 399 

maple) than shade intolerant species (e.g. pin cherry and yellow birch). However, it is 400 

inappropriate to draw firm conclusions from visual inspection of the prediction plots. This 401 

method is purely heuristic (only one continuous explanatory variable is shown at a time), and 402 

nonlinearities are sensitive to the existence of outliers, especially in relatively small datasets like 403 

this one. Moreover, it is plausible that nonlinearities are really the result of unmeasured sources 404 

of variation. Therefore, we suggest that future research efforts continue to explore the existence 405 

of and explanations for allometric nonlinearities in both larger datasets and more diverse 406 

geographies. Generalized additive models provide a valuable tool to this end.  407 

Among-species variability also appeared in the planned contrasts analysis. There, the 408 

presence of significant stand age related differences in allometry varied by species for a given 409 

model form and age group comparison. This result points to an additional aspect of complexity 410 

in allometric relationships: variability in allometry due to stand conditions, including stand age, 411 

may also be affected by species differences. The reasoning behind this explanation is very 412 

similar to the explanation for species-specific nonlinearities discussed above. A tree of a given 413 



size is likely to experience a different competitive circumstance in a young even-aged stand than 414 

in an old even-aged stand, primarily because of differing size and species distributions. The 415 

degree to which this competitive circumstance varies among different stand ages is also 416 

influenced by the growth strategy and functional traits of the species (Williams et al. 1999; 417 

Delagrange et al. 2004). For example, intermediate and late successional species can be expected 418 

to exhibit more complex, dynamic relationships with stand conditions than early successional 419 

species (Küppers 1989). Again, while the existence of among-species variation in allometry is 420 

clear in this study, further research is required in order to attribute this variation to characteristics 421 

of the species. If allometric variation is attributable to species traits, this could aid the 422 

development of better allometric equations for species which lack sufficient data to develop 423 

equations directly.  424 

The differences in biomass estimates produced by the generalized additive and linear 425 

models are small. For the 273 trees in this study, the total biomass predicted by the linear model 426 

was approximately 1.3%, higher than the actual biomass of the sample trees. While the 427 

generalized additive model also overpredicted the total biomass, it was by only 0.5%. 428 

Overpredictions were worsened when stand ID and species terms were omitted from the models. 429 

These prediction errors are likely underestimates given that they are generated using the same 430 

data as the models. However, we cannot extrapolate these results to other datasets due to the 431 

inclusion of Stand ID terms in the model. Additionally, we are limited in our ability to 432 

extrapolate our results to larger scales given that the largest tree in this study was 17.6 cm in 433 

diameter. That being said, accurate estimates of live tree biomass in young stands are important 434 

for ecological monitoring and management. Aboveground, young-stand biomass is an important 435 

indicator of ecosystem function, being directly related to carbon cycling, primary productivity 436 



and tree demography. Many ecological studies of forest systems seek to quantify aboveground 437 

biomass in order to assess processes such as post-disturbance biomass recovery, and forest 438 

resilience (Reiners et al. 2012; Whittaker and Niering 1975). Thereby, systematic overestimation 439 

of aboveground, young-stand biomass has important ramifications for our understanding of 440 

forest resilience and recovery.  441 

Furthermore, while the difference in total biomass estimates is proportionally small, it 442 

points to an opportunity for important refinements. That generalized additive models provide 443 

consistently better fits than linear models and result in even slightly more accurate biomass 444 

estimates points to the presence of additional sources of variability that is not captured by linear 445 

models. As discussed previously, this heterogeneity shows up as variable nonlinearities in the 446 

generalized additive models (Figure 1, Panel D) as well as in the additive effects of stand ID and 447 

species (Figure 1, Panel B). The omission of these variables leads to larger prediction errors than 448 

the ones resulting from choosing a linear model over a GAM.  449 

Due to limitations in the available data we only examine stand age as a possible driver of 450 

allometric variation in this study. However, future studies should prioritize the identification of 451 

the sources of both among-stand and among-species variation. For example, among-stand 452 

variation may result from differences in the physical environment (i.e. soil type, aspect, 453 

hydrology etc.), or ecological characteristics (i.e. tree size distributions and density, species 454 

composition) while among-species variation could be the result of variation in functional traits 455 

such as shade tolerance, or wood structure. Attributing variation to these characteristics could 456 

lead to both improvements in the predictive accuracy of biomass equations and in a better 457 

biological understanding of allometric relationships.  458 

 459 



Conclusion 460 

 In this study we found that allometric relationships for aboveground biomass not only 461 

vary by species but also by stand. We documented substantial evidence for the importance of 462 

stand age in driving among-stand variation in allometry, but heterogeneity in these results points 463 

to additional drivers of allometric variation. The best-fitting model contains subtle nonlinearities 464 

which are variable among species. These nonlinearities may indicate unaccounted for sources of 465 

variation, or even interesting biological mechanisms.  466 

The nonlinearities uncovered by the GAMs lead to reduced prediction error when 467 

compared to the more standard linear models. Overestimation of biomass by the linear models 468 

compared to the GAMs is proportionally small, but nevertheless indicates the opportunity for 469 

refinements in the accuracy of biomass estimation equations, especially if the sources of 470 

variation can be identified and modeled in the future.  471 
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Tables: 

  Table 1: Summary of datasets, sources, locations, stand ages, sample sizes (n), and species.   
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Table 2: Summarized model selection results for the generalized additive model form. Only the six best-fitting 
models are shown. The estimated degrees of freedom (edf), AICc, change in AICc (delta), and relative model 
support (weight) are reported for each model. 
 

 
 
Table 3: Summarized model selection results for the linear model form. Only the six best-fitting models are shown. 

 

 
 

Table 4: Results of planned contrast analysis. Estimates and p-values are shown for each comparison and model. 
Light blue highlighting denotes significance at the p = 0.1 level, Dark highlighting indicates significance at the p = 
0.05 level. For each individual species the results of two tests are shown, one for the additive effect of stand in best-
fitting linear model (labelled “Linear”), and one for the additive effect of stand in the best-fitting generalized 
additive model. 



 
 
 
 
 
Figure Captions     

 
Figure 1: Four potential expressions of among-stand heterogeneity in allometric relationships as a function of 

log(diameter). Relationships in the left column are linear while relationships in the right column are nonlinear. The 
top row contains relationships with no interaction effect between stand and allometry, while the bottom row 

contains relationships with an interaction effect. The relationships displayed in panel D demonstrate the case of 
nonlinearity that does not follow a simple equation possibly due to stand history or characteristics, which motivates 

the consideration of generalized additive models for allometric equations.  
 



 
 

Figure 2: Three measures of model fit as a function of model complexity. From left to right the panels show the 
Akaike Information Criterion with correction for small sample sizes (AICc), Log-Likelihood, and adjusted R2 as a 

function of the (estimated) degrees of freedom. Each point represents one of the fitted models. Only the best-
performing models for each model type are displayed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3: Histogram of simulated differences (blue) in AICc value between best fitting generalized additive model 
and the best fitting linear model for 5,000 iterations (AICc difference = AICc Linear – AICc GAM). Negative values 
indicate cases in which the linear model performed better (had lower AICc values) than the GAM. The red line 
indicates the difference in AICc between these models for the observed data.  
 



 
 
Figure 4: Predicted log(biomass) values for the generalized additive model, shown here as a function of log(DBH). 

log(height) values were chosen using predictions from a linear model of height on diameter. Relationships are 
separated by species, and stand age is shown as a gradient from light to dark. Panels display results for each 

species.  
 



 
 

Figure 5: Predicted log(biomass) values for the generalized additive model, shown here as a function of log(height). 
Relationships are separated by species, and stand age is shown as a gradient from light to dark. log(diameter) 

values were chosen using predictions from a linear model of diameter on height. Panels display results for each 
species. 

 



 
 

Figure 6: Predicted log(biomass) values for the generalized additive model, shown here as a function of log(DBH). 
log(height) values were chosen using predictions from a linear model of height on diameter. Relationships are 

separated by stand age, and species are delineated by color. Panels display results for each stand age. 
 



 
 
Figure 7: Predicted log(biomass) values for the generalized additive model, shown here as a function of log(height). 

log(diameter) values were chosen using predictions from a linear model of diameter on height. Relationships are 
separated by stand age, and species are delineated by color. Panels display results for each stand age



 


