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Abstract

Ice storms are a type of extreme winter weather event common to north temperate and

boreal forests worldwide. Recent climate modelling studies suggest that these storms may

become more frequent and severe under a changing climate. Compared to other types of

storm events, relatively little is known about the direct and indirect impacts of these storms

on forests, as naturally occurring ice storms are inherently difficult to study. Here we

describe a novel experimental approach used to create a suite of ice storms in a mature

hardwood forest in New Hampshire, USA. The experiment included five ice storm intensities

(0, 6.4, 12.7 and 19.1 mm radial ice accretion) applied in a single year, and one ice storm

intensity (12.7 mm) applied in two consecutive years. Results demonstrate the feasibility of

this approach for creating experimental ice storms, quantify the increase in fine and coarse

woody debris mass and nutrients transferred from the forest canopy to the soil under the dif-

ferent icing conditions, and show an increase in the damage to the forest canopy with

increasing icing that evolves over time. In this forest, little damage occurred below 6.4 mm

radial ice accretion, moderate damage occurred with up to 12.7 mm of accretion, and signifi-

cant branch breakage and canopy damage occurred with 19.1 mm of ice. The icing in con-

secutive years demonstrated an interactive effect of ice storm frequency and severity such

that some branches damaged in the first year of icing appeared to remain in the canopy and

then fall to the ground in the second year of icing. These results have implications for

National Weather Service ice storm warning levels, as they provide a quantitative
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assessment of ice-load related inputs of forest debris that will be useful to municipalities cre-

ating response plans for current and future ice storms.

Introduction

The increase in the frequency, intensity and severity of extreme weather events is emerging as

a significant concern of climate change in the Anthropocene [1, 2]. These types of episodic

events can have a greater impact on natural and managed ecosystems than the more gradual

changes in mean temperature and precipitation that are typically associated with climate

change [3, 4]. Despite the importance of these extreme weather events in shaping ecosystems,

relatively little is known about their short- or long-term impacts. They are inherently difficult

to study due to infrequent return intervals, high spatial variation in occurrence and intensity,

difficulty to forecast reliably, and safety concerns [5, 6]. Much of the literature on ecosystem

response to extreme weather events is derived from post facto analyses following naturally

occurring events such as ice storms, late spring frosts or microbursts [7–9]. These studies gen-

erally rely on serendipitous pre-event data, lack true controls and rarely have immediate post-

storm impact assessments. Further, the historical understanding of ecosystem response to

extreme events based on these post facto studies may not be useful in predicting responses to

future events, as the underlying template of climate, nutrient reserves, or ecosystem health

may have changed over the intervening years [10].

As an alternative to post facto analyses, a growing number of controlled experiments are

emerging to help elucidate and model ecosystem responses to changes in the frequency, inten-

sity and severity of extreme events [e.g., 11, 12]. These experiments allow for investigation of

cause and-effect relationships with rigorous statistical models. They typically include pre- and

post-extreme event conditions as well as multiple levels and frequencies of disturbance that

allow for determination of response thresholds (i.e., the level of disturbance when an ecosys-

tem irreversibly shifts from one state to another) [4, 6, 13]. Experiments also have the advan-

tage that they can be implemented under controlled conditions designed to improve safety

associated with working in hazardous conditions.

Ice storms are a type of extreme winter weather event that are a major driver of forest dis-

turbance in temperate and boreal ecosystems worldwide [14–18]. Climate modeling studies

suggest that these types of winter storms will become more frequent and/or more intense

under a changing climate [19, 20]. Impacts of ice storms on forests depend on a variety of fac-

tors including amount of ice accretion, stand age, stand health and species composition [21].

Direct impacts range from twig and branch breakage with light-to-moderate icing, to loss of

tree tops and uprooting of entire trees with severe icing [16, 22–24]. Based on post facto stud-

ies, these changes can lead to a cascade of changes in forest ecosystem structure and function,

including increased inputs of coarse and fine woody debris to the forest floor, increases in light

below the forest canopy, reductions in photosynthetic capacity and stored plant carbohydrates,

alterations of soil temperature and moisture, changes in belowground plant and microbial pro-

cesses, and altered leaching and gaseous nutrient losses from the soil [5, 8, 25–27].

Despite this general understanding of the impacts of ice storms on forest ecosystems,

manipulation of icing intensity and frequency followed by investigation of ecosystem effects

have not been attempted to date. Given the widespread occurrence of these extreme weather

events in north temperate and boreal regions, their immediate and lasting impacts, and projec-

tions for increased frequency and intensity under a changing climate, there is an urgent need
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to better understand the impacts of a range of ice loadings and return intervals on forest

ecosystems.

The objectives of this paper are to (1) provide a detailed methodological approach for creat-

ing experimental ice storms, (2) discuss the efficacy of the design (i.e., our ability to create

glaze ice on surfaces), (3) describe possible artifacts of the treatments, and (4) present results

on the initial impact of these experimental storms on nutrient transfers in fine and coarse

woody debris and tree canopy damage assessments. This work was conducted at the Hubbard

Brook Experimental Forest (HBEF) in New Hampshire, builds on a feasibility study at the

same site [17], and complements reporting by Fahey et al. [28] on the response of forest can-

opy structure to these experimental perturbations. Fahey et al. [28] detailed how experimental

ice storms increased canopy openness, light transmission and complexity. Here, we describe

the initial loss of wood and nutrients from the canopy that contributed to those changes in

canopy structure. The detailed description of the methods and initial results on fine and coarse

woody debris inputs and tree canopy damage will aid in the design of future studies on ice

storm impacts specifically, and extreme weather events more generally, and inform utility

companies, emergency management organizations, forest managers, municipalities and the

public on how to better prepare for future ice storms.

Materials and methods

Site description

The HBEF is a 3,160-ha valley in central New Hampshire, USA (43˚56’46”N, 71˚47’19”W) (Fig

1A). The climate is humid continental with mean monthly air temperatures ranging from -9

˚C in January to 18˚C in July [29]. Annual precipitation averages 1400 mm (30% as snow) and

is distributed relatively evenly throughout the year. Much of the Hubbard Brook Valley was

cut approximately 100 years ago, with subsequent impacts from a hurricane in 1938 and an ice

storm in 1998.

The ice storm experiment was conducted in the central portion of the Hubbard Brook Val-

ley (~520 m altitude; 43˚56’09”N, 71˚45’51”W; Fig 1a). Total basal for all trees � 5cm D.B.H.

within the experimental plots was 37.9 m2/ha and was comprised of eight species: sugar maple

(Acer saccharum Marsh.) (34%), red maple (Acer rubrum L.) (25%), American beech (Fagus
grandifolia Ehrh.) (17%), yellow birch (Betula alleghaniensis Britton) (16%), red spruce (Picea
rubens Sarg.) (3%), bigtooth aspen (Populus grandidentata (Michx.) (2%), balsam fir (Abies bal-
samea (L.) Mill.) (2%) and paper birch (Betula paprifera Marsh.) (1%) (Fig 2). Canopy height

was ~20 m and stand age was estimated at 70–100 years in 2015, with the stand likely originat-

ing from the 1938 hurricane. No significant differences in basal area were observed across the

treatment plots for any species at the start of the study (Fig 2).

Experimental design

Ten 20×30 m plots were established in May 2015 and were blocked by location, with plots 1

through 5 in one block on the eastern side of the study site, and plots 6 through 10 on the west-

ern side (Fig 1B). Within the block, plots were randomly assigned to one of five icing treat-

ments, resulting in two replicate plots per treatment (Fig 1B). Treatments were based on target

radial ice accretion, which is defined as the radius of ice added to a cylindrical structure such

as a wire or branch [30]. Treatments (in mm radial ice accretion) included Control (0 mm),

Low (6.4 mm), Mid (12.7 mm), High (19.1 mm), and Mid×2 (12.7 mm applied in two conse-

cutive winters). The Low and Mid treatments were chosen to correspond to National Weather

Service Ice Storm Warnings, which are 6.4 mm for mid-Atlantic states and 12.7 mm for New

York and New England [31]. The High treatment was chosen to represent an extreme ice
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Fig 1. Ice plots location and layout. (A) Experiment location within the Hubbard Brook Experimental Forest. (B) Ice plot location between the

Hubbard Brook (top right) and the Hubbard Brook Experimental Forest access road (bottom). Plots 1–5 are in Block 1 and plots 6–10 are in

Block 2. Asterisk indicates plots that were iced in both 2016 and 2017. (C) Individual ice plot design, showing the entire plot (20 x 30 m), the

inner plot (10 x 20 m), and subplots (5x5 m) for destructive and non-destructive measurements.

https://doi.org/10.1371/journal.pone.0239619.g001
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storm comparable to the 1998 storm [8].. The minimum distance between plots was 10 m. The

rectangular plot shape maximized the ability to ice the interior of plots from outside the plots.

The entire 20×30-m plot was iced during treatments. All response measurements were

made within an inner 10×20-m area, allowing for a 5-m buffer zone (Fig 1C). The inner

10×20-m plot was further subdivided into eight 5×5-m subplots (Fig 1C). Four of these sub-

plots were used for non-destructive measurements repeated over time; three were used for

destructive measurements; and one was undisturbed and reserved for future measurements.

Ice application

To create ice, stream water (~4˚C) was taken from Hubbard Brook by two low pressure/high

volume pumps and supplied to two track-equipped utility terrain vehicles (UTV) via moveable

fire hoses. Each UTV was equipped with a BB41 centrifugal pump that fed high pressure

water to a nozzle mounted next to the pump. Pump nozzles were pressurized to flow at

approximately 300 liters per minute. All pumps were gasoline powered. One UTV operated

along each of the two long sides of the plot, with each spraying water the full length and half

the depth of the plot (Fig 1C; S1 Fig). Water was sprayed up through gaps in the tree canopy,

with spray nozzles adjusted so that the water would be deposited over the canopy as a fine

mist, freezing on contact with vegetation surfaces. The two UTV teams worked simulta-

neously, spraying layers of ice on the canopy from opposite sides of the plot. The total amount

of time of water application was recorded for each UTV ensemble, with approximately equal

icing times on both sides. Icing continued until visual inspection of branches within the plots

and physical measurements of ice accretion on twigs indicated that the target ice accretion had

been achieved. Final measurements of ice accretion were made immediately following the

icing treatments on passive ice collectors, as described below.

Weather conditions during icing. Air temperature was measured using two Campbell

Scientific1 HMP 60 thermistors housed in gill solar radiation shields, with one located near

plot 9 and one near plot 2. Wind speed was measured with a RM Young1 model 05103

Fig 2. Pre-treatment tree basal area for all trees � 5 cm DBH by species and treatment. Treatments did not differ

in mean basal area for any species (P > 0.05). Vertical lines are ± 1 standard error.

https://doi.org/10.1371/journal.pone.0239619.g002
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anemometer at a weather station approximately 5 km east of the experimental plots (250 m

altitude). Application dates were chosen to meet criteria assuring effective ice accumulation on

canopy surfaces (air temperature < -4˚C) with minimal drift of mist (i.e. wind speed < 4.5 m/

s) as detailed by Rustad and Campbell [17]. Much of the applications took place at night when

low temperature requirements were met.

Water volume and chemistry of application. Volume of water applied per plot was cal-

culated as the product of application time and water flow. To construct chemical budgets for

the treatments, a 60 ml aliquot of Hubbard Brook stream water was collected prior to each

icing, and analyzed for sulfate (SO4), nitrate (NO3) and chloride (Cl) on a Metrohm1 Ion

Chromatograph; calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) on an Agi-

lent1 730 ICP optical emission spectrometer; dissolved organic carbon (DOC) and total dis-

solved nitrogen (TDN) on a Shimadzu1 TOCV with a TNM-1 nitrogen (N) detector; and

ammonium (NH4) by colorimetry on a SEAL Analytical AQ2 discrete analyzer at the Louis C.

Wyman Forest Sciences Laboratory, Durham, NH. Dissolved organic N (DON) was calculated

as the difference between TDN and inorganic N (NO3-N + NH4-N). Total mass of elements

applied to the canopy as iced ‘precipitation’ was calculated as the ‘precipitation’ chemistry

from the stream aliquot multiplied by the ‘precipitation’ volume for each plot.

Ice accretion. Ice accretion was measured using passive collectors constructed from 2.54

cm diameter birch dowels, with six 30-cm long arms radiating out from a central six-way gal-

vanized steel connector in six directions (0˚, 90˚, 180˚, 270˚, up and down; Fig 3). Four collec-

tors were suspended in the forest canopy using parachute cord (to provide a low resistance

surface to facilitate release after icing) at a height of ~15 m prior to the icing, with one collector

in each of the four cardinal corners of the inner plots.

Radial ice accretion on collectors was measured with two methods. First, ice thickness was

measured in the field immediately following icing with digital calipers at multiple points along

the six dowel arms. Second, after ice thickness measurements were made in the field, each of

the six arms of the collectors were cut at the base with a reciprocating saw, being careful to

keep the ice on the dowel intact. Ice-coated dowels were placed individually in labeled zip lock

bags and transported back to HBEF Headquarters where the ice was melted at room tempera-

ture and the volume of meltwater from each dowel measured. The radial ice accretion equiva-

lent (Req) was calculated using the equation from [30]:

Req ¼ �
D
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
þ

V
priL

� �s

where D = diameter of the dowel (cm), L = length of the dowel (cm); V = volume of melted ice

(mL), and ρi = density of glaze ice (g cm-3).

Canopy throughfall volume and chemistry

Canopy throughfall volume was measured with 20 L (28.7 cm diameter) buckets placed on the

ground in the center of each subplot (eight per plot). Two of these buckets were acid washed

and designated for chemical analyses. After icing, buckets were retrieved, thawed, and the vol-

ume of canopy throughfall in each bucket was measured. Aliquots from the two acid-washed

buckets per plot were poured off, refrigerated, and analyzed for SO4, NO3, Cl, Ca, Mg, K, Na,

NH4, DOC, TDN and DON by the same methods as for the stream water aliquots. Total

throughfall flux for each element in each plot was calculated as the mean plot chemistry multi-

plied by the mean plot volume.
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Fine and coarse woody debris

Fine woody debris (i.e., woody material < 2 cm in diameter; hereafter FWD) and foliar litter

were collected in plastic baskets (52L×37W×27H cm) that were placed in the center of each of

seven subplots for all plots. Foliar litter was collected during the pre-treatment period 5

August, 2015 to 17 January, 2016. Fine woody debris was collected between two to four weeks

after icing treatments in 2016 and ten weeks after icing treatments in 2017 to allow all the

near-term broken branches to reach the ground. In instances where larger branches lay on the

litter baskets, twigs less than 2 cm were clipped around the perimeter of the basket and were

included as part of the sample. All foliar litter and FWD samples were oven dried at 60˚C to

constant weight, weighed, ground through a Wiley Mill1 #40 mesh sieve, and analyzed for

total carbon (C) and nitrogen (N) on a Thermo Flash1 EA 1112 Series CN Analyzer1 and for

total Ca, Mg, K, and phosphorus (P) by microwave digest and analysis on an ICP [32]at the

Fig 3. Diagram of the passive ice collector used for measuring ice thickness.

https://doi.org/10.1371/journal.pone.0239619.g003
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Louis C. Wyman Forest Sciences Laboratory, Durham, NH. Total mass of all elements was cal-

culated as total litter mass multiplied by element concentration.

Coarse woody debris (i.e., woody material �2 cm diameter; hereafter CWD) was collected

on a 2m×2m quadrat located within each of the three subplots designated for destructive mea-

surements on each of the main plots (Fig 1C). On November 16, 2015, prior to icing, all CWD

was collected from these quadrats. Post-treatment CWD was collected in July and November

of 2016 and 2017. Downed branches and tree boles that crossed quadrat boundaries were cut

on the border with a hand saw. Coarse woody debris was sorted into five decay classes as

described in Table 1 [after 33]. The wet weight of CWD for all categories was measured in the

field for each quadrat. A subsample comprised of approximately twenty percent of the total

wet weight of CWD for each category was brought back to the laboratory and oven-dried at

60˚C to a constant weight to obtain oven dry mass and a moisture correction factor. Samples

were ground and analyzed for nutrients by the same method as for FWD. Total mass of all ele-

ments was calculated as total litter mass multiplied by element concentration.

Tree canopy damage assessment

A qualitative tree canopy damage assessment was made pre- and post-treatment, following

methods used after the 1998 ice storm and the HBEF pilot ice storm experiment [34]. In this

method, all trees greater than 5.0 cm DBH were identified, tagged, measured (DBH, height),

and mapped. Basal area was calculated from tree diameter by species. All tagged trees were

assigned to an injury class value based on a visual inspection of the branches, using the follow-

ing crown injury classes: 1 = no visible damage; 2 = 1–49%; 3 = 50–75%; 4 = >75%; 5 = dead.

Damage assessments were made on May 12, 2015, August 9, 2016, August 16, 2017, August 7,

2018 and July 1, 2019.

Statistical analysis

Ice, throughfall and precipitation. A series of linear mixed effects models were used to

analyze throughfall ice accretion, water volumes and chemistry. Response variables included

ice accretion (mm), water volume (mm depth m-2) and mass (mg m-2) of 10 analytes (Ca2+,

Mg2+, K+, Na+, Cl-, SO4
2--S, NO3

--N, NH4
+-N, DON, DOC); explanatory variables included

treatment and a random effect for plot. The lme4 package in R was used to conduct mixed

effects analyses [35, 36]. As only one sample was collected per plot for precipitation, plot was

not used as a random effect for these data. The emmeans package in R was used to conduct

multiple comparisons testing and an α of 0.05 was used to assess significance for both

Table 1. Decay class designations for coarse woody debris [after 33].

Class Structural Integrity Texture Color Invading Roots Twigs + Branches

1 Sound Intact, no rot, conks on stem absent Original color Absent If branches present, fine twigs still attached

with tight bark

2 Sapwood somewhat decayed Mostly intact, sapwood partially

soft, cannot pull apart by hand

Original color Absent If branches present, many fine twigs gone,

fine twigs present have peeling bark

3 Sapwood decayed, log supports its

own weight

Large, hard pieces of sapwood can

be pulled apart by hand

Red-brown or

original color

Present in

sapwood only

Large branch stubs will not pull out

4 Heartwood rotten, does not

support weight, shape maintained

Soft, small, blocky pieces, metal pin

can push apart heartwood

Red-brown or

light brown

Present

throughout log

Large branch stubs pull out easily

5 No structural integrity, does not

maintain shape

Soft, powdery when dry Red-brown to

dark brown

Present

throughout log

Branch stubs and pitch pockets have rotted

away

https://doi.org/10.1371/journal.pone.0239619.t001
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throughfall and precipitation [37]. We calculated the amount of ice accretion retained in the

canopy as the volume of precipitation minus the volume of throughfall.

Fine and coarse woody debris. Linear mixed effect models were used to analyze FWD

and CWD total mass, C, N, P, Ca, Mg, and K mass. Response variables included FWD and

CWD total mass and nutrients; explanatory variables included treatment (for FWD and

CWD), sampling period (for CWD) and treatment × sampling period (for CWD). Plot was

incorporated as a random effect. An α of 0.05 was used to compare treatments (for FWD and

CWD) and sampling periods (for CWD). Cumulative link mixed models were used to assess

decay class as an ordered, categorical variable [38]. CWD mass was used as weights in the

decay class models. Differences among treatments were calculated in each sampling period,

using treatment as a fixed effect and plot as a random effect. Decay classes from the July 2016

and 2017 samples were compared for Mid×2 plots. Weighted means of decay classes are pre-

sented as numbers to illustrate differences among treatments.

Tree canopy damage assessment. Cumulative link mixed models were used to assess

damage as an ordered, categorical variable. Fixed effects were treatment × sampling

period × species; and tree was used as a random effect. Only trees within the inner 10×20 m

buffer were included in the analysis. Eight trees were excluded from analyses from one year of

sampling (n2017 = 2, n2018 = 6) because they were not found or were not assigned a damage

class. Multiple comparisons testing with an α of 0.05 were used to compare treatments and

sampling periods. We conducted three rounds of analyses: 1) all species including all treat-

ments, species was not included as a fixed effect in this model; 2) American beech, sugar

maple, and yellow birch including all treatments; and 3) American beech, red maple, sugar

maple, and yellow birch, including the Control, Mid, Mid×2, and High treatments as there

were no red maple trees in the Low treatment. Weighted means of damage classes are pre-

sented as numbers to illustrate differences among treatments, sampling periods and species.

Results

Weather conditions during icing

Air temperature and wind speed during the spray applications were generally within the target

range of < -4˚C and < 4.5 m/s (Table 2). Mean temperatures across the plots during spray

applications ranged from -12.1 to -5.3˚C, and mean wind speeds across the plots ranged from

0.23 to 1.2 m/s.

Water and chemical inputs

Because stream water used for the applications had greater concentrations of most chemical

constituents than ambient precipitation at Hubbard Brook, inputs of many chemicals (espe-

cially base cations, Cl and SO4) exceeded those of natural ice storms and comprised inputs

comparable in magnitude to annual precipitation inputs at the site (Table 3). Chemical inputs

generally increased with increased treatment applications. Throughfall water volume and

chemical constituent inputs were generally lower than those for precipitation water and chem-

ical constituent inputs (reflecting water and chemical retention in the canopy as ice) and fol-

lowed similar patterns to those described for precipitation volume and chemical constituents

(Table 3).

Canopy water retention and ice accretion

During the first winter of treatments (2016), 45 (Plot 3) to 68 (Plot 2) percent of the water

sprayed onto plots was retained by the canopy as ice (Table 1). During the second winter of

PLOS ONE Ice storm impacts

PLOS ONE | https://doi.org/10.1371/journal.pone.0239619 September 25, 2020 9 / 25

https://doi.org/10.1371/journal.pone.0239619


treatments (2017), 9 (Plot 1) and 42 (Plot 8) percent of the water sprayed onto plots was

retained by the canopy as ice (Table 1).

The two methods for measuring ice accretion were in close agreement for smaller treat-

ments (< 10 mm) with few icicles. Specifically, ice accretion measured by calipers was 111 and

Table 2. Weather conditions during spraying for 2016 and 2017 ice applications, and estimated amounts of water applied to plots retained in the canopy as ice.

Plot Start

Date

Start

Time

End

Date

End

Time

Mean Temp

(˚C)

Max Temp

(˚C)

Min Temp

(˚C)

Mean Wind

Speed (m/s)

Max Wind

Speed (m/s)

Min Wind

Speed (m/s)

Percent of Water Retained

in Canopy as Ice

1 1/18/

2016

14:46 1/18/

2016

17:20 -10.41 -10.01 -10.83 1.20 1.73 0.87 65%

2 2/11/

2016

11:10 2/11/

2016

12:15 -8.37 -7.51 -9.74 0.96 1.23 0.82 68%

3 1/27/

2016

21:06 1/28/

2016

1:16 -10.36 -7.45 -12.32 0.79 1.00 0.38 45%

5 1/28/

2016

1:45 1/28/

2017

5:28 -14.14 -12.65 -15.53 0.69 0.95 0.39 47%

6 2/11/

2016

9:00 2/11/

2016

10:03 -8.03 -7.84 -8.22 0.93 1.27 0.59 48%

8 1/18/

2016

18:25 1/18/

2016

20:25 -12.10 -11.36 -12.90 1.34 1.77 1.03 47%

9 1/28/

2016

20:22 1/29/

2016

0:55 -5.29 -3.72 -5.95 0.57 0.80 0.13 55%

10 1/29/

2016

1:29 1/29/

2016

3:49 -6.87 -6.46 -7.30 0.67 0.82 0.27 50%

1 1/14/

2017

16:03 1/14/

2017

19:03 -10.34 -9.12 -11.02 0.23 0.60 0.02 9%

8 1/14/

2017

20:33 1/14/

2017

23:20 -9.20 -6.79 -12.09 0.47 0.69 0.12 42%

Air temperatures are from sensors at the plots; wind speeds are from Hubbard Brook Experimental Forest weather station 1, approximately 5 km from the treatment

plots.

https://doi.org/10.1371/journal.pone.0239619.t002

Table 3. Volume (mm) and chemistry (mg m-2) of precipitation and throughfall for different levels of treatment in the ice storm experiment as compared to mean

annual precipitation (2012–2016) and the ice storm of 1998 in the reference watershed (W6) at the Hubbard Brook Experimental Forest.

Water Ca2+ Mg2+ K+ Na+ Cl- SO4
2--S NO3

--N NH4
+-N DON DOC

Measurement mm mg m-2

Precipitation
annual average 1350 100 23 73 192 260 203 196 131 82 1409

1998 ice storm 85 2 <1 1 2 4 16 13 3 <1 17

ISE (Low) 63 d 90 c 20 c 11 c 54 c 28 c 56 c 6 c <1 c 4 b 133 c

ISE (Mid) 125 bc 174 b 43 b 27 b 127 b 51 b 114 b 11 b <1 b 5 b 257 b

ISE (Midx2-yr 1) 110 c 124 bc 31 bc 20 b 107 b 49 b 95 b 8 bc <1 b 4 b 251 b

ISE (Midx2-yr 2) 158 b 141 bc 45 b 22 b 106 b 78 a 133 b 9 bc 1 a 10 a 469 a

ISE (High) 216 a 300 a 73 a 46 a 219 a 89 a 197 a 19 a 1 a 9 a 444 a

Throughfall
ISE (Low) 30 b 46 c 10 c 12 c 34 d 21 b 31 d 4 ab <1 ab 3 c 90 c

ISE (Mid) 66 b 116 bc 26 bc 29 ab 82 bc 38 b 75 bc 4 ab <1 ab 5 bc 232 bc

ISE (Midx2-yr 1) 37 b 54 c 12 c 15 bc 39 cd 18 b 36 cd 3 b <1 b 2 c 102 c

ISE (Midx2-yr 2) 119 a 128 ab 40 ab 32 a 88 b 68 a 110 ab 9 a 1 a 9 a 414 a

ISE (High) 116 a 193 a 46 a 42 a 147 a 67 a 129 a 6 ab 1 ab 8 ab 388 ab

Different letters indicate significant differences among the treatments (P < 0.05).

https://doi.org/10.1371/journal.pone.0239619.t003
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99 percent of ice accretion measured by melted water volume for the Low and Mid treatments,

respectively (Fig 4). However, when estimated ice accretion was >10 mm, and icicles were

more conspicuous, ice accretion measured by calipers was 75, 85 and 82 percent of ice accre-

tion measured by melted water volume for Mid×2-yr1, Mid×2-yr2 and High treatments,

respectively (Fig 4).

In general, the Low, Mid×2-yr1 and Mid×2-yr2 treatments were close to target levels (89 to

99 percent, 87 to 115 percent, and 89 to 104 percent of target values based on caliper and vol-

ume estimates, respectively), whereas the Mid and the High treatments were below targets (66

to 67 percent and 70 to 86 percent of target values for caliper and volume estimates, respec-

tively; Fig 4). Across all treatments, measured ice accretion showed a stepwise increase in val-

ues from Low- to Mid- to High ice accretion targets, resulting in a suite of experimental light

to moderate to severe ice storms (Fig 4).

Fine woody debris

Mean pre-treatment inputs of foliar litter across the treatments ranged from 1.67 to 310 g m-2

for total mass, 0.79 to 147 g m-2 for C, 0.01 to 4.61 g m-2 for N, 1.12 to 454 mg m-2 for P, 0.01

to 3.75 g m-2 for Ca, 1.49 to 659 mg m-2 for Mg and 5.20 to 1201 mg m-2 for K. There were no

significant pre-treatment differences in foliar litter mass and nutrients among treatments.

In February 2016, the first ice applications resulted in a general stepwise increase in the

FWD from the Control to the High treatment plots (Fig 5). Statistically, the amounts of FWD

deposited on the Mid and Mid×2 treatment plots were greater than the amount deposited on

the Control treatment plots; and the amount of FWD deposited on the High treatment plots

was greater than the amount deposited on the Low and Control treatment plots (Fig 5). In

2017, following the second ice applications on the Mid×2 treatment plots, significantly greater

FWD was deposited on the Mid×2 treatment plots compared to all other treatments (Fig 5).

Notably, the FWD deposited on the Mid×2 treatment plots was 2.1 times greater after the 2017

treatment compared to the 2016 treatment (P < 0.01).

The mass of FWD nutrients generally followed the same patterns as for total mass for both

years. (Table 4).

Fig 4. Measured ice thickness using calipers and water volume methods. Different letters denote significant

differences among treatments (P<0.05). Vertical lines are ±1 standard error.

https://doi.org/10.1371/journal.pone.0239619.g004
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Coarse woody debris

Total mass and element content of CWD removed from the plots in November 2015 was

highly variable, reflecting the localized history of inputs. Across all treatment plots, mean

CWD mass ranged from 475.08 to 1564.05 g m-2, mean C mass ranged from 225.79 to 750.79 g

m-2, mean N mass ranged from 1.48 to 2.72 g m-2, mean P mass ranged from 0.07 to 0.12 g

m-2, mean Ca mass ranged from 1.75 to 4.19 g m-2, mean Mg mass ranged from 0.12 to 0.36 g

m-2, and mean K mass ranged from 0.20 to 0.55 g m-2. No significant pre-treatment differences

were observed among the treatment plots for total mass or any of the elemental masses.

Weighted mean decay class across all treatment plots was 3.5, with no significant differences

among the treatments.

In July 2016, the first ice applications resulted in a general stepwise increase in CWD mass

from the Control to the High treatment plots (Fig 6). Significantly greater CWD mass was

deposited on the Mid treatment plots compared to the Control plots, and significantly greater

CWD mass was deposited on the High treatment plots compared to the other treatment plots

Fig 5. Post-icing FWD mass for winters 2016 and 2017. Different letters denote significant differences among

treatments (P<0.05) within a sampling period. Vertical lines are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0239619.g005

Table 4. Mass of fine woody debris nutrient elements during each sampling period in the winters of 2016 and 2017.

Nutrient Year Control Low Mid Midx2 High

C (g m-2) 2016 7.88 ± 3.2 (c) 30.54 ± 11.39 (bc) 69.86 ± 18.29 (ab) 66.98 ± 10.53 (b) 120.23 ± 33.81 (a)

C (g m-2) 2017 1.77 ± 0.45 (b) 5.09 ± 2.39 (b) 14 ± 5.45 (b) 144.92 ± 44.83 (a) 6.8 ± 2.64 (b)

N (g m-2) 2016 0.13 ± 0.06 (c) 0.26 ± 0.06 (bc) 0.99 ± 0.22 (b) 1.01 ± 0.17 (b) 1.92 ± 0.53 (a)

N (g m-2) 2017 0.03 ± 0.01 (b) 0.06 ± 0.02 (b) 0.19 ± 0.06 (b) 2.24 ± 0.82 (a) 0.12 ± 0.03 (b)

P (mg m-2) 2016 8.43 ± 3.57 (b) 14.51 ± 3.26 (b) 71.8 ± 19.54 (a) 69.65 ± 15.97 (a) 122.27 ± 33.91 (a)

P (mg m-2) 2017 1.71 ± 0.36 (b) 3.43 ± 1.38 (b) 9.19 ± 3.05 (b) 205.25 ± 78.67 (a) 5.74 ± 1.29 (b)

Ca (g m-2) 2016 0.09 ± 0.03 (c) 0.48 ± 0.16 (bc) 1.13 ± 0.25 (b) 1.15 ± 0.18 (b) 2.02 ± 0.57 (a)

Ca (g m-2) 2017 0.04 ± 0.02 (b) 0.05 ± 0.02 (b) 0.14 ± 0.05 (b) 1.97 ± 0.69 (a) 0.11 ± 0.04 (b)

Mg (mg m-2) 2016 8.97 ± 3.58 (c) 28.67 ± 7.45 (bc) 81.25 ± 19.64 (b) 85.17 ± 18.75 (ab) 149.7 ± 43.67 (a)

Mg (mg m-2) 2017 2.31 ± 0.57 (b) 4.38 ± 1.46 (b) 14.24 ± 5.99 (b) 179.7 ± 58.73 (a) 8.78 ± 2.3 (b)

K (mg m-2) 2016 21.13 ± 8.9 (c) 48.38 ± 13.85 (bc) 259.37 ± 85.65 (a) 212.86 ± 39.36 (ab) 368.95 ± 102.54 (a)

K (mg m-2) 2017 4.16 ± 1.15 (b) 12.51 ± 5.81 (b) 25.3 ± 9.78 (b) 698.85 ± 268.91 (a) 17.77 ± 4.25 (b)

Letters signify differences among treatments within a sampling period using P < 0.05.

https://doi.org/10.1371/journal.pone.0239619.t004
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(Fig 6). Mean decay classes differed significantly among treatments. Decay classes were lowest

(i.e., the wood was least decayed) for the High and Mid×2 treatment plots (weighted mean

decay classes = 1.3 for both), mid-range for the Mid treatment plots (weighted mean decay

class = 1.7), and highest for the Control and Low treatment plots (weighted mean decay clas-

ses = 2.3 and 2.6, respectively). Little additional CWD fell between July and November 2016

(Fig 6), and the sample size (only 12 quadrats total with measurable CWD) was too low for

meaningful statistical comparisons.

Following the second year of ice applications to the Mid×2 plots, a larger mass of CWD was

deposited on the Mid×2 plots compared to the other treatment plots (July 2017, Fig 6). This

amount was similar to the CWD mass deposited after the 2016 Mid and Mid×2 ice applica-

tions. Mean decay classes differed significantly among the treatments. Decay classes were

lower in the High, Mid×2 and Mid treatment plots (weighted mean decay classes = 2.6, 2.1,

and 2.4, respectively) compared to the Control and Low treatment plots (weighted mean decay

classes = 3.7 and 3.6, respectively). For the Mid×2 treatments, decay classes were greater for

CWD collected in July 2017 compared to CWD collected in July 2016 (weighted mean decay

class = 2.08 vs 1.27, respectively; P < 0.001). Little additional CWD fell between July and

November 2017 (Fig 6). Decay classes differed significantly among the treatments, with mean

decay class in Mid and Mid×2 treatment plots (weighted mean decay classes = 2.7 and 2.5,

respectively) lower than the Control plots (weighted mean decay class = 3.6). The Mid treat-

ment had a lower decay class than the High treatment plots as well (weighted mean decay clas-

ses = 2.7 and 3.6, respectively). Thus, nearly all the CWD resulting from the experimental ice

applications fell during and immediately after the applications, the CWD was generally less

decayed in the Mid, Mid×2 and High treatment plots compared to the Control and Low treat-

ment plots, and the CWD that fell in 2017 had a greater component of older, more decayed

wood than the CWD that fell in 2016.

Total mass of CWD nutrient elements generally followed those of total CWD mass

(Table 5).

Tree canopy damage assessments

For the damage assessments for all trees per plot combined, tree canopy damage indices were

not significantly different among the treatments prior to icing (May 2015). In August 2016, the

Fig 6. Post-icing coarse woody debris mass for July and November 2016 and 2017. Different letters denote

significant differences among treatments (P<0.05) within a sampling period. Vertical lines are 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0239619.g006
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combined mean tree canopy damage indices were significantly greater in the Mid and High

treatment plots compared to the Control and Low treatment plots, with the Mid×2 at an inter-

mediate value. In August 2017, the combined mean tree canopy damage indices were signifi-

cantly greater in the Mid×2 treatment plots compared to the Control plots (Fig 7). In August

2018, the combined mean tree canopy damage indices were significantly greater in the Mid,

Mid×2, and High treatment plots compared to the Controls, and by July 2019, the combined

mean tree canopy damage indices were significantly higher in all four treatments compared to

the Controls (Fig 7).

The combined mean canopy tree damage indices increased in all treatments, including the

Control, over the five years of the study, but the Mid, Mid×2 and High treatment plots showed

a greater increase in damage over time than the Control and Low treatment plots, which

resulted in the significantly higher damage indices for the assessments completed in the sum-

mers of 2018 and 2019 (Fig 7).

For individual species, American beech had numerically the lowest initial values for mean

canopy tree damage indices (1.2 in the Control treatment to 1.6 in the Mid treatment), fol-

lowed by yellow birch (1.2 in the Mid×2 treatment to 2.3 in the Mid treatment), red maple (1.3

in the Mid×2 treatment to 2.6 in the Control treatment), and then sugar maple (1.6 in the Mid

treatment to 2.6 in the Control treatment) (Fig 7).

Table 5. Mass of coarse woody debris nutrient elements during each sampling period.

Nutrient YR_M Control Low Mid Mid×2 High

C (g m-2) 2016_07 4.23 ± 2.13 (c) 23.6 ± 10.69 (bc) 141.58 ± 44.57 (b) 114.49 ± 67.76 (bc) 669.26 ± 181.09 (a)

C (g m-2) 2016_11 14.06 ± 7.75 (a) 32.21 ± 23.18 (a) 2.51 ± 1.87 (a) 0 ± 0 (a) 10.02 ± 4.57 (a)

C (g m-2) 2017_07 6.28 ± 2.79 (b) 10.61 ± 5.4 (b) 11.46 ± 5.99 (b) 182.62 ± 77.43 (a) 13.57 ± 5.73 (b)

C (g m-2) 2017_11 6.15 ± 3.58 (a) 0.94 ± 0.94 (a) 23.4 ± 13.05 (a) 36.48 ± 18.23 (a) 16.23 ± 11.13 (a)

N (g m-2) 2016_07 0.03 ± 0.01 (c) 0.17 ± 0.07 (c) 1.28 ± 0.4 (b) 0.98 ± 0.61 (bc) 4.98 ± 1.35 (a)

N (g m-2) 2016_11 0.06 ± 0.03 (a) 0.28 ± 0.23 (a) 0.02 ± 0.02 (a) 0 ± 0 (a) 0.06 ± 0.03 (a)

N (g m-2) 2017_07 0.04 ± 0.02 (b) 0.1 ± 0.06 (b) 0.1 ± 0.05 (b) 1.83 ± 0.75 (a) 0.11 ± 0.06 (b)

N (g m-2) 2017_11 0.04 ± 0.02 (a) 0.01 ± 0.01 (a) 0.15 ± 0.09 (a) 0.24 ± 0.12 (a) 0.11 ± 0.07 (a)

P (mg m-2) 2016_07 0.94 ± 0.47 (c) 6.42 ± 3.37 (bc) 73.72 ± 25.86 (b) 53.71 ± 30.91 (bc) 360.31 ± 105.62 (a)

P (mg m-2) 2016_11 2.7 ± 1.6 (a) 14.09 ± 9.66 (a) 1.49 ± 1.34 (a) 0 ± 0 (a) 3.5 ± 1.74 (a)

P (mg m-2) 2017_07 1.79 ± 0.92 (b) 4.35 ± 2.42 (b) 5.13 ± 3.11 (b) 131.72 ± 56.08 (a) 6.11 ± 3.4 (b)

P (mg m-2) 2017_11 2.1 ± 1.22 (a) 0.32 ± 0.32 (a) 7.99 ± 4.46 (a) 12.46 ± 6.23 (a) 5.54 ± 3.8 (a)

Ca (g m-2) 2016_07 0.06 ± 0.03 (c) 0.25 ± 0.09 (c) 2.52 ± 0.74 (b) 1.36 ± 0.69 (bc) 7.27 ± 2.33 (a)

Ca (g m-2) 2016_11 0.12 ± 0.06 (a) 0.54 ± 0.37 (a) 0.03 ± 0.03 (a) 0 ± 0 (a) 0.09 ± 0.04 (a)

Ca (g m-2) 2017_07 0.05 ± 0.02 (b) 0.16 ± 0.08 (b) 0.24 ± 0.16 (b) 3.22 ± 1.41 (a) 0.19 ± 0.08 (b)

Ca (g m-2) 2017_11 0.07 ± 0.04 (a) 0.01 ± 0.01 (a) 0.26 ± 0.14 (a) 0.4 ± 0.2 (a) 0.18 ± 0.12 (a)

Ca (g m-2) 2018_07 0.11 ± 0.07 (a) 1.26 ± 1.11 (a) 0.11 ± 0.08 (a) 1.02 ± 0.43 (a) 0.63 ± 0.28 (a)

Mg (mg m-2) 2016_07 3.43 ± 1.84 (c) 21.53 ± 9.03 (bc) 123.53 ± 39.28 (b) 96.39 ± 53.52 (bc) 564.36 ± 161.88 (a)

Mg (mg m-2) 2016_11 10.62 ± 5.8 (a) 51.71 ± 37.77 (a) 1.5 ± 1.33 (a) 0 ± 0 (a) 7.04 ± 3.28 (a)

Mg (mg m-2) 2017_07 2.73 ± 0.9 (b) 15.97 ± 11.56 (b) 16.45 ± 12.05 (b) 139.93 ± 58.71 (a) 12.85 ± 5.81 (b)

Mg (mg m-2) 2017_11 5.1 ± 2.97 (a) 0.78 ± 0.78 (a) 19.37 ± 10.81 (a) 30.2 ± 15.09 (a) 13.44 ± 9.22 (a)

K (mg m-2) 2016_07 5.06 ± 3.62 (b) 21.58 ± 10.11 (b) 284.05 ± 113.26 (b) 318.15 ± 223.18 (b) 1816.3 ± 703.73 (a)

K (mg m-2) 2016_11 18.33 ± 9.75 (a) 26.83 ± 17.91 (a) 7.16 ± 6.91 (a) 0 ± 0 (a) 16.61 ± 9.27 (a)

K (mg m-2) 2017_07 4.6 ± 2.03 (b) 16.37 ± 9.89 (b) 33.03 ± 24.91 (b) 541.95 ± 230.64 (a) 20.74 ± 10.83 (b)

K (mg m-2) 2017_11 9.12 ± 5.31 (a) 1.39 ± 1.39 (a) 34.68 ± 19.35 (a) 54.06 ± 27.02 (a) 24.05 ± 16.5 (a)

Letters signify differences among treatments within a sampling period using P < 0.05.

https://doi.org/10.1371/journal.pone.0239619.t005
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For American beech, no significant differences were observed in mean tree canopy damage

indices among treatments prior to icing (May 2015) (Fig 7). By August 2019, the mean tree

canopy damage index for American beech trees in the control plots had not changed whereas

values for the indices for the treated plots had increased by 46 to 74%. Initial mean tree damage

indices were more variable for yellow birch, sugar maple and red maple than for American

beech. By August 2019, mean tree canopy damage indices for the trees in the Control plots for

these three species showed only minor changes (0 to +18%), whereas values in treated plots

had changed by +38 to +133% for yellow birch, -3 to +67% for sugar maple and +50 to +140%

for red maple. The largest numerical increases in mean tree damage indices for each species

were in the most severe treatments, with mean indices increasing by 1 unit in the High treat-

ment for American beech, 2 units in the High treatment for yellow birch, 1.5 units in the High

treatment for sugar maple, and 1.7 units in the Mid×2 treatment for red maple. Overall, the

percent change in mean tree canopy damage indices over the four years of the study was

numerically greatest for red maple (in Mid×2 treatment), > yellow birch > American

beech > sugar maple; the increases in absolute values of mean tree canopy damage index were

numerically greater for yellow birch > red maple (in Mid×2 treatment) > sugar

maple > American beech.

Due to small sample size, few of the species year × treatment comparisons were statistically

significant (Table 6). Of the 24 possible year × treatment pair-wise comparisons prior to icing

(May 2015), 18 showed no significant pairwise differences, five showed tree canopy damage

indices greater in sugar maple (2), red maple (2) and yellow birch (1) than American beech,

Fig 7. Tree canopy damage assessments among treatments grouped by year. Different letters denote significant differences among treatments

(P<0.05) within a sampling period. Vertical lines are 1 standard error.

https://doi.org/10.1371/journal.pone.0239619.g007
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and one showed tree canopy damage index in red maple greater than yellow birch. By August

2019, of the 24 possible year × treatment pair-wise comparisons prior to icing, 20 showed no

significant pairwise differences, three showed tree canopy damage indices greater in sugar

maple (2) and red maple (1) than American beech, and one showed tree canopy damage index

in red maple greater than yellow birch.

Discussion

Our methods and results demonstrate the feasibility of (i) creating a gradient of experimental

ice storms and (ii) creating experimental ice storms in consecutive years. The treatment levels

were chosen to reflect the amount of ice accretion that triggers National Weather Service ice

storm warnings from the Mid-Atlantic to the New England and New York states (6.4 and 12.7

mm radial ice accretion), and then to extend this to a more extreme level (19.1 mm radial ice

accretion), and to include an extreme frequency (12.7 mm radial ice accretion in two consecu-

tive years). This initial work establishes the framework to evaluate the response to and recovery

from this experimental suite of ice storms for decades to come.

Ice accretion

Radial ice accretion was used as a measure of disturbance intensity. Ice accretion is difficult to

characterize and quantify as its buildup varies on surfaces of different materials, diameters,

shapes and inclinations [39]. Moreover, measurements in larger storms are dangerous. Pleas

for better measurements of ice accretion have been made since the early 1960s [40]. Here, a

passive ice collector was deployed to create a standardized, uniform and easily replicated col-

lection surface for ice accretion measurements. Ice accretion measured with calipers produced

similar values to measurements of water volume when estimated accretions were < 10 mm,

with few icicles visibly present. However, caliper ice measurements underestimated ice accre-

tion compared to the water volume measurements when estimated accretion was > 10 mm

and abundant icicle formation was observed. This result highlights the difficulty of measuring

ice loading with calipers when icicles are present. Combining both methods probably provided

the best metric of icing intensity on these experimental plots. More work is needed to develop

simple, low cost measurement protocols for ice accretion to standardize collection surfaces

and accretion angles and determine how to account for icicle formation.

Fine and coarse woody debris inputs

The most immediate ecological impact of ice storms on forests is creation of canopy gaps as

twigs, branches, tree tops and eventually entire trees break and snap under the load of the

accumulated ice. In a related paper on the canopy impacts of this ice experiment, Fahey et al.

[28] showed significant post-treatment declines in leaf area index of 27 to 37%, increases in

Table 6. Total numbers of significant (P<0.05) pair-wise comparisons for pre-treatment (2015) and post-treatment (2019) tree canopy damage assessments.

Results Total number 2015 pre-treatment 2019 Post-treatment

No differences 38 18 20

sugar maple > American beech 4 2 2

red maple > American beech 3 2 1

yellow birch > American beech 1 1 0

red maple > yellow birch 2 1 1

Total 48 24 24

https://doi.org/10.1371/journal.pone.0239619.t006
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gap light index of up to 200%, and shifts in the vertical structure of the canopy by the summer

of 2017 compared to pre-treatment values. They found that changes in canopy properties were

significantly related to both ice accretion as well as the annual total mass of FWD coupled with

fall foliar litterfall.

Results reported here complement the work of Fahey et al. [28] by quantifying the magni-

tude and timing of inputs of the FWD and CWD creating the changes in canopy structure fol-

lowing icing. Although these inputs were generally commensurate with treatments (Figs 5 and

6), it is noteworthy that the mass of FWD was significantly greater in the 2017 Mid×2-yr2

treatment compared to both the 2016 Mid and Mid×2-yr1, despite the same target icing (13

mm). Similarly, the mass of CWD was significantly greater and more decayed in the 2017

Mid×2-yr2 treatment compared to both the 2016 Mid and Mid×2-yr1. We propose five non-

exclusive explanations for this result: (i) the first year of mid-level icing did not break or dam-

age all the susceptible twigs and branches in the canopy; (ii) the first year of icing broke

branches that remained suspended in the canopy until they fell in response to the second year

of icing, (iii) the first year of icing weakened or damaged branches that were then more suscep-

tible to breaking during the second year of icing; (iv) the crown loss following the first year of

ice treatment opened up access for greater water penetration/ice buildup on remaining twigs

and branches, and reduced internal crown support that otherwise could have prevented the

excessive bending and additional breakage and loss of canopy components; and (v) for FWD,

the amount of time between icing and litter collection was greater in 2017 (70 days) than 2016

(13 to 37 days), although mean and maximum wind speeds between icing and collections were

comparable. In any case, these results demonstrate an interactive effect of ice storm frequency

and severity that would not be identified without our experimental approach.

Carbon inputs in FWD and CWD, in general, followed mass inputs, with step-wise

increases in input commensurate with icing in 2016 and a pulse of C input in the Mid×2-yr2

treatment plots in 2017. The FWD C inputs following the single events in this ice storm experi-

ment ranged from 18% of the average annual fine litter C inputs at HBEF in the Low treatment

to 82% of the average annual inputs in the Mid×2-yr2 treatment (Table 7). The CWD C flux

inputs following the single events in this experiment ranged from 16% of the average annual

CWD C inputs at HBEF in the Low treatment plots, to approximately equal to the average

annual CWD C inputs in the Mid, Midx2-yr1 and Midx2-yr 2 treatment plots, to almost five

times greater than the average annual CWD C inputs in the high treatment plots (Table 7).

These inputs, especially for the High treatment plots, represent a large transfer of C from the

canopy to the soil, and accordingly a large amount of organic debris to be managed by forest-

ers and local municipalities. As woody tissues typically have high C/N ratios and high lignin

concentrations [41] these inputs may take years to decades to decompose.

Experimental inputs of FWD C and CWD C can also be compared to inputs incurred at

HBEF during the natural ice storm of 1998 (Table 7). This storm severely impacted parts of the

south facing watersheds at the HBEF [5, 23]. The FWD C inputs in the Low treatment plots of

this experiment were roughly similar to those recorded at mid elevations at HBEF (31 vs 29 g

C/m2, respectively) (Table 7) after the 1998 ice storm, where the amounts of ice accretions

were similar (5.7 mm ice for experiment; 5.9 mm ice for natural storm). The FWD C inputs in

the Mid and High treatment plots were approximately two to four times the amount of FWD

C inputs at high elevations at HBEF after the 1998 ice storm where ice amounts were roughly

similar (8.5 to 16.4 mm ice for experiment and 9.4 mm ice for natural storm) (Table 7). The

CWD C inputs in the experimental plots with roughly equivalent icing to that of the natural

ice storm (Midx2-yr1, Midx2-yr2 and High) ranged from 27% to 155% the CWD C recorded

after the natural ice storm (Table 7).

PLOS ONE Ice storm impacts

PLOS ONE | https://doi.org/10.1371/journal.pone.0239619 September 25, 2020 17 / 25

https://doi.org/10.1371/journal.pone.0239619


This current experiment was designed after a pilot ice storm experiment conducted at

HBEF in 2012 at a similar elevation and forest type to this experiment [17]. Fine woody debris

C inputs for the Mid and Mid×2-yr1 treatments (which had the same target ice accretion as

the pilot study (12.7 mm)) were approximately half of the FWD C inputs of the pilot study;

FWD C inputs for the Mid×2-yr2 treatments (which has the same target ice accretion as the

pilot study but was applied in a second consecutive year) were approximately equal to the

FWD C inputs of the pilot study (Table 7). Coarse woody debris C inputs for the Mid and

Mid×2-yr1 treatments (which had the same target ice accretion as the pilot study (12.7 mm))

were 64 and 53 percent of the CWD C inputs of the pilot study, respectively; CWD C inputs

for the Mid×2-yr2 treatments (which had the same target ice accretion as the pilot study but

was applied in a second consecutive year) were 84 percent of the pilot study (Table 7).

Differences in FWD C and CWD C inputs among the several experimental and the natural

icing events at HBEF reflect the many factors that interact to influence forest response to ice

storms. These include natural variations in species composition, stand age, tree and stand

health, soils, and antecedent or postcedent event weather conditions, as well as experimental

artifacts such as the more rapid icing (~4 hours) during the experiments versus the natural

event (~3 days).

In addition to C inputs, fine and coarse woody debris play an important role in recycling

nutrients in northern forest ecosystems. Nitrogen, P and Ca can all be limiting in these forests

[43]. Additions of these elements in woody materials replenish forest floor nutrients and, as

they are slowly mineralized over time, stimulate future growth. Magnesium and K are also crit-

ical for tree health and to repair wounds following injury or insect infestation [44]. The simu-

lated ice storms in this study resulted in significant inputs of N, P, Ca, Mg and K to these forest

plots. The nutrient inputs reported here for the combined CWD and FWD measured in the

Control (2016 and 2017) and Low treatment plots in 2016 were less than or equal to the

amounts reported by Gosz et al. [45]for annual litter inputs in perennial tissues for a mixed

hardwood site at a comparable elevation at Hubbard Brook (Table 8). The nutrient inputs

reported here for the Mid, Mid×2-yr1 and High treatment plots in 2016 were 137 to1048%

higher than those reported by Gosz et al. (1972); and were 318 to 617% higher for the

Table 7. Comparison of estimated ice accretion, fine litter-C, and coarse woody debris-C for the Hubbard Brook Experimental Forest (HBEF) long term mean

annual input, ice storm of 1998, HBEF 2012 pilot ice storm experiment, and current ice storm experiment.

Estimated Ice Accretion (mm) Fine Litter Coarse Woody Debris

(g C m-2) (g C m-2)

Long Term Mean Annual Input at HBEF1 - - - 171 140

Ice Storm 1998 Mid Elevation (570–600 m)2 5.9 29.4±3.1 - - -

Ice Storm 1998 High Elevation (700–830 m)2 14.4 31.5 ±3.2 434±93

HBEF Pilot Ice Storm Experiment (560 m)3 9.35 142 ± 29 218 ±107

HBEF ISE Low (520 m)4 5.70 ± 0.22 31.1 ± 0.2 23.7 ± 10.8

HBEF Mid (520 m)4 8.51 ± 1.33 70.3 ± 21.6 138.3 ± 44.1

HBEF Mid×2-yr1 (520 m)4 14.62 ± 2.23 67.3 ± 13.5 115.3 ± 68.5

HBEF Mid×2-yr2 (520 m)4 13.18 ± 0.10 140.8 ± 18.1 181.7 ± 77.1

HBEF High (520 m)4 16.35 ± 1.95 120.9 ± 22.8 672.6 ± 182.2

Values are the mean ± SE.
1 FWD and CWD from Fahey et al. [42]. CWD is sum of coarse litterfall (20 g C m-2 yr-1) and coarse woody debris (120 g C m-2 yr-1).
21998 ice accretion from Rhoads et al. [8]; CWD from Fahey et al. [42]; FWD from Fahey (unpubl.) calculated from dry matter divided by 2.
3 FWD and CWD from Rustad and Campbell (17).
4ice accretion from volume measurements.

https://doi.org/10.1371/journal.pone.0239619.t007
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Mid×2_yr2 treatment plots in 2017. Thus the nutrient transfers in these single simulated

storm events were equivalent to up to 10 years of average annual nutrient inputs at this site.

Tree canopy damage

The results from the tree canopy damage assessments demonstrated that tree response to ice-

induced crown injury unfolds over a period of years. For all species combined, the indices of

canopy damage increased over time, with significant difference between Mid and High treat-

ment plots vs Control and Low treatment plots only emerging after two to three years follow-

ing icing (Fig 7). Similar trends were evident for the four individual deciduous species which

had representation in all the plots. It is still early in the recovery period, and despite the high

levels of icing and the increase in tree canopy damage indices, few trees were characterized as

class 4 (> 75% damage). Continued monitoring of these trees will be needed to reveal the full

extent of the damage over time. These results are consistent with the evolution of disease and

mortality following ice storms as observed by Shortle et al. [21] and Deschenes et al. [46].

Delayed, lagged and/or persistent declines in tree health following ice storm-induced crown

damage may be due to a combination of C starvation (due to loss of canopy foliage and

increased C requirements for wound closure and defense) and secondary attacks by insects,

pests and pathogens [21, 47].

Four deciduous species were present in all the treatments and provided limited evidence for

species-specific differences in response to icing. For example, red maple and yellow birch trees

showed the greatest change in tree canopy damage indices over the four years of the study. In

contrast, American beech had the lowest initial tree canopy damage indices for all the species,

and showed the smallest change in this index in response to the repeated ice applications. It is

notable that these responses are for the overstory American beech which were relatively

healthy, with little sign of beech bark disease, a major disease that impacts the health of Ameri-

can beech across its range [48]. Observationally, understory American beech trees were con-

siderably bent over by the weight of the ice, and stayed bowed over for the duration of the

study, contributing to the canopy affects described by Fahey et al. [49]. The sugar maple in

these stands had the highest initial tree canopy damage indices for all the species, and exhibited

only moderate increases in response to the treatments. These observations can be contrasted

to those reported by Shortle et al. [21]. In their study of 60–120 year old forest stands across

New England impacted by the 1998 ice storm, American beech sustained the most damage,

followed by yellow birch and then sugar maple. This discrepancy in the susceptibility of

Table 8. Combined input of Hubbard Brook ice storm experiment coarse and initial fine woody debris, and historic input of litter in perennial woody tissues repro-

duced from Gosz et al. [45].

Mass (g m-2) N (g m-2) P (mg m-2) Ca (g m-2) Mg (mg m-2) K (mg m-2)

Gosz 1972 217.40 1.18 90.00 1.28 110.00 2100.00

Control 2016 55.15 0.22 12.07 0.27 23.03 44.52

Control 2017 29.72 0.11 5.60 0.16 10.14 17.88

Low 2016 182.93 0.71 35.02 1.27 101.92 96.79

Low 2017 34.48 0.17 8.10 0.22 21.13 30.27

Mid 2016 459.76 2.30 147.00 3.69 206.28 550.58

Mid 2017 101.82 0.43 22.31 0.63 50.06 93.00

Midx2 2016 380.26 1.99 123.36 2.50 181.56 531.01

Midx2 2017 757.00 4.31 349.43 5.58 349.84 1294.86

High 2016 1660.59 6.96 485.84 9.38 720.60 2200.68

High 2017 76.50 0.34 17.39 0.47 35.07 62.56

https://doi.org/10.1371/journal.pone.0239619.t008
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American beech to icing between the two studies may be due to the relative lack of a pre-exist-

ing stressor such as beech bark disease, the shorter amount of time between the icing and the

sampling (as impacts evolve over time), and the small sample size in this study compared to

the more comprehensive review including a greater range of sites impacted by pre-existing

conditions, as presented by Shortle et al. [21].

Despite these patterns over time, few significant pair-wise species differences in tree canopy

damage emerged among the four deciduous species. This may be due, in part, to the small

sample size for most species, or to the fact that not all species were present in all treatments,

which precluded additional species in the pairwise comparisons. Notably, sample sizes for the

two coniferous species present in the plots—red spruce and balsam fir—were not robust

enough for pair-wise comparisons. Coniferous species are known to be more resilient to ice

storms than deciduous trees [50]. In order to answer the driving question of which species or

age classes of species are more or less susceptible to ice storm damage, more synoptic studies

of tree damage, likely following natural icing events, are needed.

Thresholds

Application of an experimental gradient approach to ice storm damage allowed for the identi-

fication of several thresholds for this forest stand. Light icing (i.e., target 6.4 mm ice) caused lit-

tle twig or branch breakage. Although this amount of icing causes slippery conditions on roads

and walkways, it had little impact on FWD and CWD in this forest, as reflected in the relatively

low amounts of FWD and CWD in the Low treatment plots, which were not significantly dif-

ferent than the Control plots (Figs 5 and 6). The first thresholds in this forest was observed

between 6.4- and 12.7-mm target ice accretions, when noticeable amounts of twigs and small

branches were observed to break and fall to the ground. This was reflected in the significantly

greater accumulations of FWD in the Mid and Mid×2-yr1 treatment plots compared to the

Control plots in 2016, and significantly greater accumulation of FWD in the Mid×2-yr2 treat-

ment plots compared to all other plots in 2017. It also contributed to the small increase in

CWD in the Mid and Mid×2-yr1 treatment plots compared to the Control and Low treatment

plots in 2016, and to the significant increase in CWD in the Mid×2-yr2 treatment plots com-

pared to all other plots in 2017. A second threshold was observed between 12.7- and 19.1-mm

target ice accretion, where whole tree tops bent under the weight of accumulated ice and were

beginning to snap at the stem. This observation was reflected in the significant pulse of CWD

in the High treatment plots compared to all other treatment plots in 2016. Similar tipping

points were reported by Lemon [40] in a synthesis of observations from a suite of ice storms

affecting forests in New York State, USA. Note that our experiment was conducted under calm

conditions (maximum wind speed 1.8 m/s). Wind accentuates forest canopy ice damage, and

the tipping points observed here could occur at lower ice accretions under higher wind

conditions.

Hydrologic and chemical artifacts of treatments

In conducting field-scale experiments, potential methodological artifacts that may confound

results must be considered. For icing experiments, an artifact can be collateral impacts on for-

est hydrologic and chemical budgets from the water used to generate ice treatments. Here, the

water source for icing was the nearby Hubbard Brook. The chemistry of this stream, studied

for over 50 years [51], is characterized as dilute [52] and thus was a good candidate as a water

source. Results showed that the amount of water applied to experimental plots was within the

range of a large precipitation event at Hubbard Brook (i.e., 5–16% of mean annual precipita-

tion), and similar in magnitude to the water input in the natural ice storm of 1998, with water
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input to the Low treatment plots being less than water inputs in the natural storm (74%) and

water inputs in the High treatment plots being more (254%) (Table 3). Measured throughfall

volume was lower than precipitation and ranged from 35 to 140% of the water input measured

for the 1998 ice storm.

Chemical inputs in the treatment were measurable but well below commercial forest fertili-

zation levels [53, 54]. Here, total N inputs (NO3
-+ NH4

+ + DON) for the High treatment repre-

sented 7% of the average annual precipitation inputs for the site; total base cations input

ranged from 63% (K+) to 300% (Ca2+) and 317% (Mg+) of the average annual precipitation

inputs (Table 3). All nutrient inputs were considerably higher than those in the naturally

occurring 1998 ice storm (Table 3), representing a possible experimental artifact that needs to

be accounted for in future interpretations of biologic and chemical responses to ice storm

treatments.

Conclusions

Currently, a knowledge gap exists on the short- to long-term ecological consequences of

extreme weather disturbances. These types of events are problematic to study because they are

heterogeneous in time and space, difficult to predict, and disrupt scientific and social infra-

structure when they occur, making access to experimental instruments and research sites chal-

lenging. Extreme event experiments can help fill this gap, but they can be difficult and even

risky to undertake.

Initial results from this study provide quantitative measurements of FWD and CWD mass

and nutrient transfers from forest canopies to soil in response to different intensities and fre-

quencies of canopy ice accretion. These metrics of response can help foresters, emergency

managers, town planners, electric power utilities, arborists, winter recreationists and others be

better prepared for the aftermath of ice storms. In particular, results suggest that mature north-

ern hardwood forests such as the one studied here will sustain little damage below 6.4 mm

radial ice accretion, moderate damage with up to 12.7 mm of accretion, and significant damage

to crowns with upwards of 19.1 mm of ice or more. Further, current ice storm warnings that

are issued by the National Weather Service in New York and New England for �12.7 mm

radial ice accretion may be too high because significant FWD and some CWD will likely have

already fallen at that level of icing and damage will have been done. The 6.4 mm ice storm

warnings as issued for the Mid-Atlantic states may provide a safer level to alert the public to

pending tree damage from ice storms. Results also suggest that first responders need to be pre-

pared for an equal or greater amount of organic debris inputs if large storms (here �12.7 mm

radial ice accretion) occur in back-to-back years. Our results suggest that damaged trees,

branches or whole trees that do not fall in the first year are more susceptible to further damage

in an ensuing year.

This experiment was the first of its kind in creating a suite of experimental ice storms of dif-

ferent intensities and frequencies in a forest ecosystem. Recommendations for future work

include: (i) increase intensity of icing to simulate a tipping point that marks a state change

characterized by long-lasting alterations of stand composition or structure; (ii) increase fre-

quency of icing within a single year and over a greater number of consecutive years to better

understand how resilient trees are to repeat ice storms and identify tipping points character-

ized by a state change; (iii) conduct a similar gradient of ice storms in different vegetation

types and age classes to better understand what vegetation types and age classes are more or

less susceptible to ice damage; (iv) conduct the experiment under different wind speeds, as

greater damage is likely with higher wind velocities; and (v) increase plot size to encompass

the complete canopies and root systems of a larger number of trees to minimize belowground
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interactions from adjacent non-iced trees. More work is also recommended to develop simple,

low cost measurement protocols for ice accretion, including a refined design for the passive

collector that optimizes collector surfaces, angles, and approaches to minimize icicle formation

(Campbell et al. in review). Such collectors would allow researchers and citizen scientists to

gather more standardized information on the intensity and frequency of icing events across

the landscape.

The most interesting results from this experiment are likely those that will evolve over time

as this forest ecosystem reorganizes and recovers from this suite of experimental ice storms.

This study provides an experimental framework to study the short- and long-term impacts of

these experimental ice storms on the structure and function of this northern hardwood forest

now [28, 55, 56] and in the decades to come.
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