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ABSTRACT. Ocean acidification (OA) research seeks to understand how marine
ecosystems and global elemental cycles will respond to changes in seawater

carbonate chemistry in combination with other environmental perturbations such

as warming, eutrophication, and deoxygenation. Here, we discuss the effectiveness

and limitations of current research approaches used to address this goal. A diverse

combination of approaches is essential to decipher the consequences of OA to marine

organisms, communities, and ecosystems. Consequently, the benefits and limitations

of each approach must be considered carefully. Major research challenges involve

experimentally addressing the effects of OA in the context of large natural variability

in seawater carbonate system parameters and other interactive variables, integrating

the results from different research approaches, and scaling results across different

temporal and spatial scales.

BACKGROUND: THE CHALLENGE
Since the beginning of the Industrial
Revolution, oceanic absorption of carbon
dioxide (CO,) originating from human
activity has increased surface seawater
acidity (as measured by the increase in
hydrogen ion concentration) by about
26% (Doney et al., 2009). This ocean acid-
ification (OA), which has been well docu-
mented at multiple open ocean locations
globally (Bates et al., 2014), is highly pre-
dictable from fundamental knowledge of
the carbonate chemistry of seawater that
controls pH. If CO, emissions continue to
increase at the present rate, model projec-
tions suggest that surface seawater acidity
will increase by an additional 100-150%
by the end of this century (Joos et al.,
2011; Orr et al,, 2005). There is no prec-
edent for this rate of change in seawater
acid-base chemistry in the entire geologi-
cal record (Honisch et al., 2012).

The projected changes in seawater pH
and speciation of dissolved inorganic car-
bon (DIC) portend significant conse-
quences for individual marine organisms,
communities, ecosystems, food webs, and
dependent human populations (Doney
et al,, 2009; Kroeker et al., 2013; Barton
et al., 2015, in this issue). Yet, many
questions about the effects on biologi-
cal systems, including the timing, scale,
and magnitude of the impacts, remain
unanswered. A better understanding is
essential for taking action to manage the
inevitable ecological and socioeconomic
consequences of OA.

Our initial understanding of the effects
of OA on marine organisms was based on

small-scale, short-term laboratory exper-
iments with single species. These early
studies on mainly calcifying organisms
suggested negative effects on growth, cal-
cification rate, and survival (e.g., Smith
and Roth, 1979; Smith and Buddemeier,
1992; Marubini and Atkinson, 1999).
Over the past decade, numerous investi-
gations using a range of approaches both
in the laboratory and in natural environ-
ments at different scales and durations
have mostly confirmed these initial find-
ings, but they have also highlighted that
the responses are more nuanced and vari-
able than indicated by early experiments
(e.g., Ries et al., 2009; McCulloch et al.,
2012). For example, elevated seawater
CO, stimulates the productivity of some
marine algae and seagrasses as well as ele-
vating nitrogen fixation by cyanobacteria
(Durako, 1993; Zimmerman et al., 1995;
Beer and Koch, 1996; Kiibler et al., 1999;
Gordillo et al,, 2001, Invers et al., 2001;
Hutchins et al., 2007; Mackey et al., 2015,
in this issue). Additionally, most OA stud-
ies are unable to account for the potential
for organisms to adapt and/or physiolog-
ically acclimatize to OA conditions and
the potential trade-offs involved (Kelly
and Hofmann, 2013; Collins et al., 2014;
Sunday et al, 2014). Throughout this
article, we define adaptation as increas-
ing fitness by evolving heritable genetic
changes, whereas acclimatization and
acclimation refer to changing phenotype
in response to environmental drivers and
experimental manipulations, respectively.

Similar to experimental results, the
geological record of OA events that have

occurred at various times during Earth’s
history (variously ascribed to a range of
potential causes, including volcanism,
destabilization of methane hydrates, oce-
anic anoxic events, and bolide impacts)
suggests that many marine organisms and
communities were negatively affected or
may have even been driven to extinction
by environmental changes associated with
these perturbations (Honisch et al., 2012).
However, in many of these instances, it has
not been possible to definitively attribute
biological impacts to acidification alone,
as pH shifts often occurred in concert
with warming and anoxia. Furthermore,
these events occurred over much longer
time scales and at slower rates than
anthropogenic OA (Zachos et al., 2005;
Honisch et al., 2012), which suggests that
the current acidification event may have
more severe outcomes than perturbations
observed in the geological record (Hoegh-
Guldberg et al., 2007; Pelejero et al., 2010).

Our
nature is based on a body of observa-

theoretical understanding of
tions, experiments, and models, some

mathematical and some conceptual
(Figure 1). Some aspects we understand
well, while others we do not. Although we
can accurately quantify what is observ-
able (e.g., community composition for
non-microbial organisms) and how this
might change in response to certain envi-
ronmental perturbations, in many cases
we lack understanding of the under-
lying causal mechanisms responsible for
the observed changes. In addition, we
are often limited in terms of the spatio-
temporal scales to which our results can be
extrapolated. Even with advancements in
imaging technologies and machine learn-
ing (Beijbom et al., 2012), the scales over
which we can quantify community com-
position and structure remain somewhat
limited. Building on the assumption that
we have a relatively robust understand-
ing of what the natural environment looks
like, we still may not fully understand why
it looks or functions the way it does.

The ultimate goal of contemporary OA
research is to project how marine eco-

systems will be affected by changes in
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seawater carbonate chemistry in combi-
nation with other perturbations, includ-
ing warming, deoxygenation, eutrophica-
tion, and overfishing (Figure 1; Breitburg
et al., 2015, in this issue). As new infor-
mation is gained, hypothesis testing
and validation refine our description of
mechanistic pathways, bringing us closer
to understanding nuances within the sys-
tem. The projected ecosystem impacts
and related socioeconomic consequences
may motivate policymakers to (1) address
the underlying problem (i.e., implement
mitigation strategies such as reducing
CO, emissions, pollution, overfishing, or
eutrophication), (2) prepare for the asso-
ciated changes (e.g., explore alternative
resources and/or protect certain ecosys-
tems), or (3) support research efforts to
enhance both the understanding of cur-
rent ecosystem status and function and
the ability to predict how the ecosystem
will respond to future changes so as to
better inform policy decisions (Figure 1;
Cooley et al., 2015, in this issue).

There is no doubt that ongoing anthro-
pogenic OA will cause changes to many
marine organisms and their communi-
ties. It also poses a challenge for scien-
tists to make accurate and timely projec-
tions and recommendations for decision

Experiments

. Models
Geological
record \
Theory ——=3
1
/ Observations
I
Vs
s

Current

True pathway

Predicted pathway * uncertainty

makers. To achieve these goals requires
scientists to synthesize and integrate what
we know from the geological record, lab-
oratory and in situ manipulative experi-
ments, studies in natural high CO, envi-
ronments, and modeling studies, and to
evaluate this information by consider-
ing the relevant rate of change and scale
of the problem. To this end, we focus this
article on the following questions:
1. What current OA research approaches
are effective?
2. What are some of the major research
challenges?
3. How can we improve our ability to
make better projections of how marine
ecosystems will change?

WHAT CURRENT OA RESEARCH

APPROACHES ARE EFFECTIVE?

Ocean acidification was not fully recog-
nized as a potential problem until about
the year 2000, when a number of sem-
inal papers highlighted the potential
consequences associated with declin-
ing ocean pH (e.g., Kleypas et al., 1999;
Caldeira and Wickett, 2003). Because
of the initial oversight, OA has been
referred to as the “other CO, problem,
with the “first CO, problem” being that of
global warming (Doney et al., 2009). The
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scientific community responded to the
recognition of OA by convening a num-
ber of workshops, meetings, and con-
ference sessions (e.g., High CO, World
Meeting; Royal Society, 2005; Kleypas
et al, 2006), organizing joint research
efforts and consortia (e.g., European
Project on OCean Acidification,
EPOCA; Gattuso et al.,, 2009), publish-
ing dedicated journal issues (e.g., Marine
Ecology Progress Series vol. 373, 2008;
Oceanography vol. 22(4), 2009, http://tos.
org/oceanography/archive/22-4.html),
and creating proposal opportunities by
national funding agencies targeting OA.
These early interdisciplinary efforts were
critical to advancing our understand-
ing of the impacts of OA and stimulating
the increase in global research devoted to
this problem. We now know much more
than we did 10 years ago, but we still need
to evaluate which research approaches
are most effective and which should be
changed in order to address the out-
standing questions.

OA Research Approaches

Researchers have employed multiple
approaches to study OA, including obser-
vations of natural environments experi-
encing different seawater CO, chemistry,

FIGURE 1. The current understand-
ing (blue cloud) of ecosystem sta-
tus and function is based on a range
of research approaches, which form
the foundation for predicting (blue
lines) the effects of environmental
perturbations such as acidification

and warming on ecosystems. Ideally,
the predicted pathway should equal
the true pathway of how ecosystems
will be affected by these perturba-
tions, but in reality, the predictions
are associated with an envelope

e

of uncertainty (gray shaded area).
Depending on the future predicted
function,

ecosystem status and

7 socioeconomic consequences may

s warrant that policymakers address

the underlying perturbations to
reduce their impacts or alternatively
allocate additional research funding
to increase our understanding and
improve future projections.
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experimental manipulations in the lab-
oratory and in the field, measurements
from the geological record, and numeri-
cal model simulations (Table 1, Figure 2).
Each of these approaches can be instruc-
tive in determining the potential conse-
quences of OA, but each has limitations
that must be recognized. Overall, this
multifaceted approach to studying OA
has enabled the research community to
make great strides in a relatively short
period of time. However, we believe that
maintaining this progress will require
increased interplay between approaches,
with each being used to test hypotheses
generated from the other approaches.
The strengths and weaknesses of indi-
vidual approaches are discussed below,
along with how each approach has helped
advance the field of OA research.

Observations from Natural Systems

To understand future effects of OA, it is
necessary to understand current con-
ditions, including natural controls and

variability of seawater CO, chemistry,
biogeochemical cycling, and environ-
mental and ecological controls on organ-
ismal success. Establishing contemporary
environmental conditions is necessary
to evaluate future changes and impacts,
and long-term time series are partic-
ularly useful in this regard. For exam-
ple, time series stations (e.g., the Hawaii
[HOT] and the
Bermuda Atlantic Time-series Station
[BATS]) and repeat basin-scale hydro-
graphic research programs (e.g., the

Ocean Time-series

World Ocean Circulation Experiment
[WOCE]) have been essential in detect-
ing the ongoing decline in pH in the open
ocean, but similar monitoring programs
have until recently been largely missing
from the coastal ocean. Understanding
current conditions and their natural vari-
ability is critical in designing experimen-
tal manipulations that better reproduce
the environmental ranges experienced
by an organism (Table 1). Seawater car-
bonate chemistry (including pH) also

vary naturally across temporal and spa-
tial scales; these environments can be uti-
lized to evaluate organismal and com-
munity functions across natural CO,
gradients (e.g., Manzello et al., 2008;
Hettinger et al., 2013). Some locations
experience extreme CO, conditions that
even exceed future levels expected from
anthropogenic OA, as a result of volcanic
CO, vents (e.g., Hall-Spencer et al., 2008;
Fabricius et al., 2011), groundwater seeps
(e.g., McGinnis et al., 2011; Crook et al,,
2012), temporal isolation or stratifica-
tion (e.g., Andersson et al., 2007, 2011),
or upwelling events (e.g., Feely et al,
2008). Increasingly, these high CO, sites
are being used for experimental studies to
provide potential analogues to conditions
in a future high CO, world.

The advantages of studies in natural sys-
tems are that they have the highest level of
realism. Such approaches arguably are the
best means for studying population and
community effects, chronic effects, indi-
rect effects, and ecological interactions.

TABLE 1. Relative strengths and limitations of different ocean acidification (OA) experimental approaches. Ratings are as follows:
1. —indicates the approach cannot be used for this purpose (as described in the Experimental Attributes column),
2. +indicates the approach can be used for this purpose and larger numbers of + signs indicate greater capacity to achieve the attribute,

with ++++ being the best,

3. —/+indicates that the approach is neutral, and

4. —/+++ or —/++++ indicates that the approach either cannot achieve the attribute or that it can depending on the experimental configuration.

Benthic Other
Aquarium In Situ FOCE Type Natural Long-Term
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Moreover, they can be good for studying
acclimatization and adaptation of sessile
organisms (Table 1). For both mobile and
sessile organisms with planktonic larvae,
it is more challenging to study adapta-
tion, as migration and immigration make
it difficult to determine exposure his-
tories and the conditions under which
organisms evolved. The major disadvan-
tages of natural studies are limited repli-
cation, lack of true controls, inability to
manipulate carbonate system parameters
and to distinguish between multiple driv-
ers, and the potential for seawater chem-
istry that is not representative of other
oceanic environments.

(A) Aquarium Studies

-

Experiments and Manipulations

Manipulating seawater CO, under con-
trolled conditions in the laboratory or
in the field is the only way to create and
evaluate the responses of organisms or
communities to specific conditions antic-
ipated for the future. It is also probably
the most viable approach to establish-
ing functional relationships (response
curves) for different organismal traits and
seawater CO, chemistry, which are essen-
tial for parameterizing numerical models.
A number of approaches have been used
to manipulate seawater carbonate chem-
istry, ranging from bubbling with CO, gas
to adding acid or bases to experimental

(H) Geological Records

setups (Gattuso and Lavigne, 2009). Most
experimental manipulations have been
conducted at relatively small scales with
individual species or micro communities,
while a smaller number of experiments
have been conducted in mesocosms with
larger representation of natural commu-
nities (Jokiel et al., 2008, Riebesell et al.,
2008, 2013; Dove et al, 2013; Tatters
et al,, 2013; Comeau et al., 2014). Some
of these mesocosms have been designed
and developed for deployment in the
natural environment (Yates and Halley,
2006; Riebesell et al., 2008). Recently, a
number of groups have developed ben-
thic Free Ocean Carbon Enrichment

(C) In Situ Mesocosms

(I) Numerical Models

Coral co.
Reef il 1
L

Net organism ‘ N ‘.
icification * -
cHeHeat®T v photo/Resp. &y \
o ' )
= i
Calcification
I
Inorganic —

FIGURE 2. Summary of experimental approaches used in ocean acidification research. Each experimental approach has strengths and limita-
tions (Table 1), and a combination of approaches at different spatial and temporal scales is needed to advance our understanding of molecular- to
ecosystem-level impacts. The image in (C) is courtesy of Signe Klavsen, GEOMAR, (E) from Fabricius et al. (2011) with permission from Nature Climate
Change, (H) courtesy of Curt Storlazzi, US Geological Survey, and () from Kleypas et al. (2006), courtesy of Joanie Kleypas, NCAR. All other images are

originals taken by one of the authors.
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(FOCE) systems to evaluate the effects of
OA in situ while maintaining tight con-
trol over carbonate chemistry condi-
tions (Kline et al., 2012; Barry et al.,, 2014;
Gattuso et al., 2014).

Each of the experimental approaches
has advantages and limitations. Small-
scale aquarium studies are effective
in allowing for high levels of replica-
tion and control over carbonate system
parameters (Table 1). They are ideal for
multiple-driver studies and are rela-
tively cost effective. They are excellent for
studying acute, chronic, or direct effects
of OA on individual species or mixed
microbial populations, and they are used
for adaptation and acclimation studies of
organisms with short generation times.
The major limitation of small-scale
studies are that they have reduced lev-
els of natural realism, as the organisms
are removed from the environment and
placed in a container filled with varying
volumes of seawater. Such approaches
are less useful for studying populations
and communities (depending on the
sizes of the organisms) or indirect effects.
Mesocosm studies have many of the
same strengths and weaknesses of small-
scale aquarium studies, but they have the
added advantage that communities at the
macro scale can be constructed within
them to enable studies of population/
community impacts. In situ mesocosms
such as the floating structures developed
by Riebesell et al. (2012) offer increased
realism that improves researchers’ ability
to study population/community impacts
as well as aspects of biogeochemistry,
like carbon flux. However, compared
to small-scale aquarium studies, these
experiments are more challenging and
more costly, and constitute a more diffi-
cult approach for achieving sufficient sta-
tistical replication and for studying mul-
tiple driver impacts. Benthic FOCE-style
studies similarly increase natural real-
ism, can be used to study population and
community effects under controlled car-
bonate chemistry conditions, and allow
assessment of both direct and indi-
rect effects. However, like use of in situ

mesocosms, this experimental approach
is elaborate and relatively costly and has
so far required high levels of funding and
collaboration for success.

Geological Record

The geological record may hold many
clues to the potential impacts of current
and future OA, as there have been sev-
eral CO, perturbation events through-
out Earth’s history. Data about past
conditions are obtained by recovering
sediment and ice cores through drilling.
Sediment samples that include the skel-
etons of microscopic animals are ana-
lyzed for species assemblages and ele-
mental isotopes. These data, as well as
many other proxies, provide informa-
tion about the environmental condi-
tions at the time the biota were depos-
ited. However, a suitable analogue to the
current human-driven decline in oce-
anic pH and carbonate saturation state
from the geological record needs to be
found. Unfortunately, the geological
record provides no evidence of an event
with a comparable rate of change as is
presently occurring, and high-resolution
(annual to decadal) records for much
of the geological record are not attain-
able.
Maximum (PETM) provides perhaps the

The Paleocene Eocene Thermal

best analogue to current OA. Occurring
55 million years ago, the PETM involved
the release of a quantity of CO, compara-
ble to that expected from anthropogenic
sources since the Industrial Revolution
and in the next centuries. Analysis of
sediment cores reveal that the PETM was
associated with the extinction of many
species of deep-sea foraminifera and
shoaling of the maximum depth where
CaCO; accumulated in the sediments
(Kump et al., 2009), features that are con-
sistent with a decrease in the carbonate
saturation state of the ocean at that time.
However, the PETM CO, event occurred
over a few thousand years, compared
to a few hundred years expected for the
current case (Zachos et al., 2005; Kump
et al., 2009), which limits its analogy to
the OA event happening today.

While still in its infancy, the use
of proxy records for reconstructing
paleo-pH and other carbonate parame-
ters (and corresponding response vari-
ables) from the geological record is
another approach to understanding
OA impacts (e.g., Dissard et al., 2012;
Liu et al,, 2014). As with the natural-
experimental approaches, it is challeng-
ing to disentangle the effects of mul-
tiple environmental variables that are
correlated, but a multi-proxy approach
could help in this regard (Levin et al,
2015, in this issue).

Numerical Model Simulations
Numerical modeling is vital for inte-
grating and conceptualizing our current
understanding of OA in order to gener-
ate predictions about future effects on
marine ecosystems. It is also import-
ant for testing hypotheses, evaluat-
ing the sensitivity of different param-
eters, identifying knowledge gaps, and
guiding observational and experimen-
tal studies. However, the accuracy of
any model prediction is dependent on
the accuracy of the input data and the
representative equations used to simu-
late processes. Hence, modeling efforts
are dependent upon, and limited by, the
quantity and quality of data generated
from experimental and natural studies.
Moreover, while validation of model pre-
dictions against independent observa-
tions is necessary to evaluate model per-
formance, it is not always possible. Some
examples of numerical modeling efforts
to date include predicting open ocean
pH and the depths of aragonite satura-
tion horizons under different CO, emis-
sion scenarios (Joos et al., 2011; Hauri
et al., 2013), hindcasting historical sea-
water chemistry (Ridgwell and Zeebe,
2005), evaluating future coral reef calci-
fication and accretion (Silverman et al.,
2009), examining acidification-mediated
climate feedback through changes in
trace gas emissions (Six et al., 2013), and
assessing the feasibility of ocean alkalin-
ization as a potential mitigation strategy
(Ilyina et al., 2013).
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RESEARCH CHALLENGES AND
THE WAY FORWARD

In spite of substantial efforts using a wide
range of research approaches, there are
still many outstanding knowledge gaps
and challenges that need to be overcome
to improve our projections of how eco-
systems will change in response to OA.
Some of these challenges involve evaluat-
ing the effect of OA in the context of large
natural variability in carbonate system
parameters and other interactive vari-
ables (Breitburg et al., 2015, in this issue),
integrating results from different research
approaches, and scaling results across dif-
ferent temporal and spatial scales.

Regional Changes and

Natural Variability

The effects of OA on marine communities
and ecosystems vary among geographic
regions owing to local climate, hydrogra-
phy, seawater chemistry, nutritional status,
proximity to land and human influences,
biodiversity, and the resistance and resil-
ience of ecosystems. So far, most research
has focused on the responses of organisms
to near constant pCO,, guided by IPCC
emission scenarios and pCO, values pre-
dicted for open-ocean surface water over
the next few centuries. Nearshore environ-
ments, however, are different from open-
ocean conditions, with large changes in
seawater chemistry on both diel and sea-
sonal time scales with extreme pCO, val-
ues often exceeding those predicted for
the open ocean by the end of the current
century (Hofmann et al., 2011; Andersson
and Mackenzie, 2012; Duarte et al., 2013;
Kline et al., in press). Emerging evidence
from a small number of experimental
studies suggests that diel and seasonal
variability can dramatically affect organ-
ismal responses to OA (e.g., Dufault et al.,
2012; Johnson et al., 2014). For exam-
ple, Johnson et al. (2014) exposed coral-
line algae to oscillating and elevated pCO,
treatments and showed that individuals
collected from a site with naturally high
variability maintained higher rates of cal-
cification compared to individuals col-
lected from a site of low variability. They

22 Ompzmﬂm/p/r)/ | Vol.28, No.2

proposed that individuals from the high
variability environment might already be
acclimatized to OA within the range of the
natural variability they experience. Thus,
the fact that many organisms experience
large diel and seasonal variability in car-
bonate chemistry raises several critical
questions including:

+ How do organisms and communities
respond to both large fluctuations and
episodic exposure to high pCO, and
low pH values?

o Are organisms from variable environ-
ments better adapted to respond to OA
compared to organisms living under
more stable conditions?

o Are there physiological and ecologi-
cal thresholds beyond which organ-
ismal and ecosystem susceptibility to
further OA is acute? If so, are the mag-
nitude and duration of these condi-
tions more important than their mean
in determining organismal responses
to OA? How can these thresholds
be identified?

o What is the potential for acclimatiza-
tion and adaptation to OA over the
next few centuries? Will current phys-
iological thresholds for organisms
change, if so, how fast, and to what
extent could these changes occur?

The large temporal and spatial variabil-
ity in OA conditions observed in near-
shore environments occurs as a result of
biological processes, including photo-
synthesis, respiration, calcification, and
calcium carbonate dissolution, as well as
inputs of carbon and other nutrients from
upwelling, terrestrial runoff, groundwater,
and rivers. To accurately predict future
changes in the coastal ocean as a result
of OA, we need to better understand the
range and variability of seawater carbon-
ate chemistry, the factors controlling this
variability, the extent to which it can be
attributed to natural versus anthropogenic
drivers, and co-variation with other envi-
ronmental variables (Duarte et al., 2013;
Reum et al., 2015). Importantly, we have
not unequivocally observed an anthro-
pogenic OA trend over time in coastal

environments. This is partly due to the
large natural variability in these environ-
ments and the lack of suitable instrumen-
tation to fully constrain seawater carbon-
ate chemistry. In addition, there have been
limited time-series observations of suffi-
ciently long duration to detect a coastal
OA trend as a result of rising atmospheric
CO,.
coastal ecosystems will require the incor-

Research and management of

poration of new monitoring technolo-
gies for regional and local efforts (Martz
et al,, 2015, in this issue) because ecosys-
tem metabolism and watershed processes
exert strong effects on coastal seawater
chemistry (Duarte et al., 2013).

OA will alter the mean carbonate
chemistry conditions in most marine
environments, but the observed natu-
ral variability of seawater pCO, and pH
will increase due to reduced buffering
capacity of the seawater carbonate system
under elevated pCO, conditions (assum-
ing total alkalinity remains constant;
Shaw et al., 2013). Due to the large vari-
ability in many natural systems, there is
a strong need for physiologists to ground
their experimental analyses in ecologi-
cally relevant conditions defined by the
natural range of pCO, and pH values,
as well as the temporal scale of natural
variation (Figure 3). More experiments
should use controls that mimic natu-
ral conditions and variability with treat-
ments established as offsets from these
conditions (e.g., Jokiel et al., 2008; Kline
et al., 2012; Dove et al., 2013). For some
environments (e.g., upwelling regions), it
is also important to consider co-variation
with other variables such as temperature
and oxygen (Reum et al,, 2015).

Integration of Results

Comparison and integration of results
are important because consistent agree-
ment between different or replicated
approaches improves our understand-
ing and confidence in the effects of OA
on marine ecosystems (assuming that the
various approaches are sufficiently diverse
that they do not contain a systematic
bias). Diverse experimental approaches



contribute different aspects of under-
standing and can provide additional guid-
ance for improving the design of other
approaches (Figure 1). For example,
small-scale experimental studies provide
information on organisms™ physiological
responses to different pH conditions that
can be incorporated as functional rela-
tionships in models. Observational field
studies document the natural variability
in carbonate chemistry conditions that
organisms currently experience, which is
essential for developing ecologically rele-
vant experimental treatments. Mesocosm
and FOCE studies bridge the gap between
small-scale lab experiments and field
observations where interpretations are
complicated by confounding factors.
Geological observations provide informa-
tion about past OA events and their con-
sequences, which can improve our under-
standing of experimental and modeling
predictions. Finally, numerical models
play an important role, as they provide
a means to integrate functional relation-
ships with both current and future condi-
tions to generate predicted outcomes that
can be used for the testing of hypothe-
ses and identification of knowledge gaps.
If we want to scale up to ecosystems, we
need to involve modelers early on and in
close collaboration with experimental and
observational efforts. It is also import-
ant that the strengths and limitations
of each experimental approach be con-
sidered when integrating results across
studies (Table 1). The limitations of each
approach should be critically evaluated
so that interpretation of data does not
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overreach, and so that results can be rea-
sonably scaled and extrapolated.

In cases of contradicting or radically
different outcomes between studies, sig-
nificant effort should be devoted to iden-
tifying the underlying reasons for these
discrepancies and whether they represent
true functional differences or experimen-
tal artifacts. Best practices in terms of the
characterization of the dominant physi-
cal, environmental, and chemical param-
eters and their variability are import-
ant to avoid discrepancies and confusion
arising from incompletely character-
ized systems (Figure 3). The same is true
for characterizing the response variables
in organisms and ecosystems (Riebesell
etal., 2010). Response variables should be
expressed as “common currency” units so
that results can be compared across stud-
ies. For example, expressing calcification
rates on a planar surface-area basis could
provide cross validation among func-
tional response experiments, whole-reef
metabolic measurements, and numerical
modeling studies.
data
reporting also facilitate meta-analysis,

Proper characterization and
which aims to evaluate the results from
multiple studies based on statistical meth-
ods. Several meta-analyses have been con-
ducted in the context of OA (Hendriks
et al., 2010; Kroeker et al., 2010; Liu et al,,
2010; Chan and Connolly, 2013; Kroeker
et al., 2013). By combining the results of
multiple studies, meta-analyses increase
the sample size and therefore the statisti-
cal power with which to test a particular
effect. However, they are limited by the

selection of studies used and the inher-
ent biases in this selection. The major
sources of bias include publication bias,
or the tendency to publish papers show-
ing conclusive results so that inconclusive
results rarely get published; search bias,
or the possibility that relevant studies are
excluded because they were overlooked
or reported data insufficiently; and selec-
tion bias, which can occur if the crite-
ria for including and excluding studies
are not well defined (Walker et al., 2008;
Gattuso et al., 2011).

Scalability of Results

One critical need of OA research is the
ability to apply experimental results to
natural systems and to link results and
processes operating at different tem-
poral and spatial scales. Many experi-
ments are limited in space and time, and
generally do not capture natural eco-
logical interactions (e.g., competition,
trophic feedback, synergistic and antag-
onistic effects). How can we account for
these ecological interactions and inte-
grate results from organizational scales
that range from cellular/molecular to
species/cultures to populations to eco-
systems and to global elemental cycles
(Figure 4)? How can results from these
seemingly disparate approaches be used
to conclude something about the effects
of OA on ecosystems and global elemen-
tal cycles? A combination of research
approaches can provide mechanistic
understanding at a range of scales. Care
must be taken when scaling results from
small to larger experiments, and the

FIGURE 3. Three examples of pH variation through time
(but it could be any environmental or chemical parameter).
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Black line indicates a constant pH, with no measurable vari-
ation through time. Red line indicates a periodic signal of
constant frequency and amplitude driven by a single oscilla-
tor (e.g., photoperiod) with the same mean as the black line.
Blue line indicates the combined effects of multiple oscilla-
tors (e.g., photoperiod, tide) producing a complex temporal
pattern with the same mean as the black line. It is critical that
experimental and observational studies consider the natu-

ral variability, as it will influence physiological and ecologi-

cal responses, as well as being critical for determining the

proper carbonate chemistry sampling regime.
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caveats should be rigorously considered
and reported. Especially in the early days
of OA research, results obtained from
small-scale aquaria were commonly used
to infer what might happen at the global
scale. For example, observed decreases
in calcification rates of corals, mussels,
and other calcifiers were extrapolated to
the global scale under projected pH con-
ditions (Andersson et al.,, 2005; Cooley
and Doney, 2009). However, the sum of
the parts is not necessarily equal to the
whole; for example, a 10% decrease in
the calcification of an adult coral colony
owing to a 0.1 unit decrease in pH does
not necessarily translate to a 10% reduc-
tion in coral community growth. Direct
extrapolation is often a first approach to
evaluating the global impact of a newly
discovered problem. While this can be
an effective start, it is most certainly not
an effective end, as it is unlikely that the
responses of organisms ex situ or the
responses of a few isolated species will
accurately reflect ecosystem responses on
a global scale (Figure 4).

Instead of a simplistic extrapolation,
more refined and integrative approaches
will be necessary. They involve the devel-
opment of a fundamental understand-
ing of how results at different scales are

A A
Ecosystem |+
o Community |+ Decadal
®  Species/ . Annulal
®  Strain i oona
Molecular/
Cellular } I >

linked and can be scaled to one another,
both from small to larger scales, and large
to smaller scales. These are not trivial
tasks, but several approaches are already
available for establishing rigorous links
between different scales of investiga-
tions. In general, striving for a mecha-
nistic understanding and addressing the
question of “why” a certain response was
observed at any given level is likely to
facilitate accurately scaled predictions.
For example, addressing why some corals
calcify more slowly than others at lower
seawater pH may be illuminated by con-
sidering molecular, cellular, and physio-
logical responses along with local envi-
ronmental and carbonate chemistry
conditions where the particular corals
live. Similarly, an observed decrease in
net community calcification in response
to lower pH may be due to decreased cal-
cification, increased CaCO, dissolution,
or a combination of both. In most cases,
striving for mechanistic understanding
requires elegant experimental designs
within hypothesis-driven frameworks
that facilitate analyses of multiple proper-
ties and organisms at various scales.

To scale up results to the level of eco-
systems, it is helpful to have access
and

to  physiological, ecological,

biogeochemical time series observa-
tions. The data essential for establishing
some of these time series are being col-
lected by HOT and BATS, Long Term
Ecological Research networks (LTERs),
the National Estuarine Research Reserve
(NERRS),
series monitoring programs, and they

System and other time-
may also be retrieved from historical
records. Although it may take decades
for important trends to become appar-
ent from such data sets, they are abso-
lutely critical to advancing our knowl-
edge in the long run. In this context, it
is particularly relevant to acknowledge
the lessons learned by Charles David
Keeling’s persistence in maintaining
long-term, high frequency observations
of atmospheric CO, (http://scrippsco2.
ucsd.edu/program_history/keeling_
curve_lessons.html). Furthermore, to
facilitate scaling to ecosystems, we argue
that using a collaborative laboratory-
field-modeling team approach has great
potential for success. This approach
facilitates focused and complemen-
tary research results that are likely to
advance the field. It will force research-
ers to focus on key limitations, includ-
ing critical species and ecological inter-
actions, and to attempt to fill those gaps.

FIGURE 4. (A) Representation of how multiple drivers, spatial scales, and
duration of exposure to stressors combine to determine the impacts of

OA. The width of the red arrows indicate the amount of current knowl-
edge about OA impacts and emphasize that we currently know the most
about single species/strains affected by one driver for an acute duration.
To better understand OA impacts, we need to move toward studying mul-
tiple drivers at a range of scales and a range of durations. Clearly, much

future work will be needed to integrate results that properly consider mul-
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tiple drivers at various spatial and temporal scales in order to better under-
stand mechanisms and ecosystem level impacts. (B) The challenge of
scale. These figures highlight the range of scales that must be considered
to study the impacts of ocean acidification on molecular to global scales.
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This will be spurred by dedicated oppor-
tunities that foster interdisciplinary and
integrative research efforts. To truly
advance the field, we need to develop
paradigms to link and integrate multi-
scale and multi-approach data, which
is critical for gaining synthetic capac-
ity. Otherwise, there is a danger of pro-
gressing further down a phenomeno-
logical road and accumulating facts
that cannot be assembled into a coher-
ent story. Theory is a critical piece of this
research puzzle, and its application will
be essential to developing hypothesis-
driven approaches that will be of use in
the next phase of OA research.

Building on Previous Knowledge
To ensure advancement in our under-
standing of the impacts of OA, we need
to avoid undue emphasis on reinventing
the wheel in terms of definitions, con-
cepts, and approaches. A lot of important
information and knowledge is available
to assist in addressing stress responses
of organisms to a variety of factors,
including information regarding ecotox-
icology issues from the 1980s that seem
very relevant to addressing OA effects
(Levin et al., 1989).

As an example, many core questions
relevant to understanding the effects
of OA on coral reefs (and other marine
ecosystems) fall in the domains of phys-
iology, molecular biology, community
metabolism, and oceanography. A deeper
understanding of the effects of OA on cal-
cification of reef corals requires knowl-
edge of cellular and subcellular processes
(i.e., physiological events) that medi-
ate the union of Ca*" and COj3 to sup-
port the deposition of aragonite skele-
tons (CaCOj;). At the most fundamental
level, these events are ultimately under
genetic control and their effects cascade
across functional levels to mediate the
gross calcification of the reef (i.e., com-
munity metabolism) through physical
and chemical interactions with the sur-
rounding seawater (i.e., oceanographic
processes). Scientists with classic train-
ing in these domains have the potential

to make rapid progress in answering fun-
damental questions of scientific and soci-
etal importance, and the same is true for
other important marine ecosystems.

Evaluating the structures and func-
tions of marine ecosystems in a warmer
and more acidic ocean requires forging
conceptual bridges to couple the infor-
mation from multiple research domains.
Identifying, codifying, and quantifying
these bridges is one of the most import-
ant challenges facing the community
of scientists engaged in OA research.
It is important that these efforts do not
neglect progress with similar objectives
in other areas of biological research.
There is, for instance, a very rich his-
tory of studying scale dependency in
physiological and ecological processes
(Levin, 1992), the causes and implica-
tions of community resilience and sta-
bility (Gunderson, 2000; Petraitis, 2013),
and the role of density feedback mecha-
nisms in mediating ecological processes
(Sale and Tolimieri, 2000).

Future OA research will require the
broad participation of scientists with
complementary skills to address emerg-
ing questions focusing on the profound
ways in which humans are perturbing
the natural environment (Yates et al.,
2015, in this issue). The research commu-
nity is learning a lot, but we are currently
limited in our ability to assess emergent
properties, to leverage important break-
throughs, and to promote insightful and
effective resource management. These
potential objectives are not mutually
exclusive, and it is safe to conclude that
most people do not want to oversee the
widespread demise of marine ecosystems.
Thus, it is important to explore poten-
tial solutions to OA as we seek to better
understand the problem.

CONCLUSIONS

o The effects of OA, in combination
with other environmental perturba-
tions (e.g., warming, eutrophication,
deoxygenation), on marine ecosys-
tems and elemental cycles are specific
to geographical regions, species, and

ecosystems. Future experiments need
to incorporate observed natural envi-
ronmental variability into experimen-
tal treatments to enhance the general-
ity of the results.

o No one research approach to address-
ing the effects of OA on marine eco-
systems is superior to others. Instead,
a diverse combination of approaches
is essential to address this problem, as
long as the limitations of each approach
are recognized and considered.

o Experiments need to be performed at
a range of spatial scales, from molecu-
lar to ecosystem, and at a range of tem-
poral scales, from minutes to decades.
The scalability of results is critical
to improving understanding of OA
impacts across larger temporal and
spatial scales (e.g., years to decades
to centuries, and community to eco-
system to global scales).

o We should aim to integrate results
and bridge between different scales
in order to build a stronger concep-
tual understanding of ocean acidifica-
tion. This involves collaborating across
different disciplines and striving to
develop mechanistic understanding of
the underlying processes.
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