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Abstract

A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into
the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the
past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwell-
ing-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-ser-
ies data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca
proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic
nutrient regimes is a linear function of seawater phosphate (PO4 SW) concentration. Further, high-resolution P/Ca records in
multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panamá
were strongly correlated to a contemporaneous time-series record of surface water PO4 SW at this site (r2 = 0.7–0.9). This
study supports application of the following multi-colony calibration equations to down-core records from comparable upwell-
ing sites, resulting in ±0.2 and ±0.1 lmol/kg uncertainties in PO4 SW reconstructions from P. lobata and P. gigantea,

respectively.
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Inter-colony agreement in P/Ca response to PO4 SW was good (±5–12% about mean calibration slope), suggesting that spe-
cies-specific calibration slopes can be applied to new coral P/Ca records to reconstruct past changes in surface ocean phos-
phate. However, offsets in the y-intercepts of calibration regressions among co-located individuals and taxa suggest that
biologically-regulated “vital effects” and/or skeletal extension rate may also affect skeletal P incorporation. Quantification
of the effect of skeletal extension rate on P/Ca could lead to corrected calibration equations and improved inter-colony P/
Ca agreement. Nevertheless, the efficacy of the P/Ca proxy is thus supported by both broad scale correlation to mean surface
water phosphate and regional calibration against documented local seawater phosphate variations.
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1. INTRODUCTION

An understanding of past tropical euphotic zone nutri-
ent dynamics would provide a critical link between climate
oscillations, biological carbon fixation, and surface ocean
nutrient supply (e.g. Sarmiento et al., 2004). The distribu-
tion of modern open ocean phosphate and nitrate measure-
ments is sparse both globally and temporally and a direct
proxy for these essential macronutrients has been an elusive
goal for the paleoceanographic community. Indirect coral-
line geochemical proxies (Cd/Ca, Ba/Ca and d13C) have
been used to reconstruct relative changes in seawater nutri-
ents and upwelling (Shen et al., 1987, 1992; Lea et al., 1989;
Felis et al., 1998). These proxies, however, are not cali-
brated quantitatively against surface water nitrate or phos-
phate, and variability among co-located colonies suggests
that records derived from a single coral may not yield accu-
rate nutrient reconstructions (Grottoli and Wellington,
1999; Grottoli, 2002; Montaggioni et al., 2006; Matthews
et al., 2008).

Recent work has indicated that hermatypic surface-
dwelling corals act as high-resolution recorders of surface
water phosphate. The skeletal element ratio P/Ca was
shown to track annual upwelling cycles in a single Pavona

gigantea coral over a 4-year record (LaVigne et al., 2008).
This study also revealed that �90% of coral skeleton P is
incorporated as an intracrystalline phase resistant to solu-
tion cleaning of finely ground coral aragonite. Of this intra-
crystalline P, however, >60% was not detectable by soluble
reactive phosphate analysis on acid-dissolved aragonite,
indicating that ionic substitution of orthophosphate for
carbonate is not the primary locus for skeletal P, and that
organic P phases may be involved, though the incorpora-
tion mechanism is not fully understood. Previous studies
have also suggested that Porites, Montastrea, and Diploria

corals record coastal phosphorus runoff and pollution as in-
creased P/Ca, incorporated in the skeleton as both inor-
ganic and organic P phases (Dodge et al., 1984; Shotyk
et al., 1995; Kumarsingh et al., 1998; Alibert et al., 2003).
In addition to these studies on surface corals, a deep-water
phosphate proxy calibration was published for the solitary
deep-sea coral Desmophyllum dianthus (Montagna et al.,
2006). While these studies have provided the initial proof
of concept for surface coral P/Ca as a PO4 SW recorder, fur-
ther efforts are needed to calibrate the proxy against con-
temporaneous seawater phosphate data. The natural
variability in P/Ca records among colonies and taxa must
be assessed carefully to determine the degree of reproduc-
ibility possible for reliable PO4 SW reconstructions. Recent
work on previously established hermatypic coral proxies
(d18O, Sr/Ca, and Cd/Ca) has shown that averaged multi-
colony records can yield more accurate reconstructions of
climate (DeLong et al., 2007; Goodkin et al., 2007; Linsley
et al., 2008; Matthews et al., 2008).

Further development of this promising phosphate proxy
is needed to provide the quantitative foundation for gener-
ation of sub-seasonal records that are crucial to under-
standing variations in oceanic nutrient and primary
production on decadal to centennial timescales, more di-
rectly than can be achieved using available paleo-SST/
upwelling proxies alone. In this study, we provide P/Ca re-
sults from broadly distributed corals, justifying further val-
idation of this emerging nutrient proxy, and present the first
P/Ca calibrations against contemporaneous ambient
PO4 SW concentration. These findings demonstrate inter-
colony reproducibility in P/Ca response to PO4 SW, support
further development and application of the P/Ca proxy,
and identify the possibility that species offsets, extension
rate or biological regulation of P incorporation (“vital
effects”) may be secondary influences on coralline P/Ca.

2. METHODS

2.1. Samples

2.1.1. Global P/Ca distribution

Surface coral samples collected from several distinct oce-
anic nutrient regimes were analyzed for P/Ca. Multi-year P/
Ca records were averaged to acquire mean skeletal P/Ca for
twoMontastrea faveolata (Biscayne National Park, FL; and
Martinique, Caribbean) and five Porites lutea (Gulf of Aqa-
ba/Eilat, Red Sea; Rarotonga and New Caledonia, South
Pacific; Christmas Island and Fanning Island, Central
Equatorial Pacific) colonies (Table 1; Linsley et al., 2000;
Desenfant, 2004 ; Nurhati et al., 2009). Since skeletal P
sampled below the organic tissue layer has been shown to
be resistant to rigorous chemical cleaning (LaVigne et al.,
2008), the powders extracted from distilled-water rinsed
slabs were not cleaned chemically prior to analysis for the
globally distributed samples. Mean P/Ca values for Mon-

tastrea sp. and Porites lutea corals were regressed against
mean PO4 SW concentration for each site to evaluate the
relationship between seawater and coralline phosphorus
(Table 1).

2.1.2. Local calibrations

An archived set of replicate coral colonies and a time-
series of in situ seawater samples from a previous study in
the Gulf of Panamá (Matthews et al., 2006, 2008; Mat-
thews, 2007) were analyzed to assess inter-colony P/Ca
reproducibility and to calibrate coral P/Ca with PO4 SW

concentration. Full details of the previous study methods
are available in Matthews et al. (2008). In short, we ana-
lyzed nine coral colonies (3 Porites lobata, 3 Pavona clavus,
and 3 Pavona gigantea) reared within meters of each other
at the same site (Isla Contadora, 1 m depth below mean low
tide) with corresponding in situ seawater samples collected
periodically through both upwelling (high PO4 SW) and
non-upwelling (low PO4 SW) intervals. At the start of the
experiment, all colonies were collected from �1 to 4 m
depth and cemented to the reef at 1 m depth for the dura-
tion of the experiment. The P. lobata and P. gigantea colo-
nies were collected within �15 m of the study site. Because
of the lack of individuals growing near the study site, the P.
clavus colonies used in this experiment were transplanted
from the North coast of Isla Contadora to the South coast
study site (a distance of 1.1 km). Sea surface temperature
(SST) was measured every 30 min from January to July
2003 at Isla Contadora with seawater samples collected at
1 m depth every 3 days, filtered, and acidified following



Table 1
Coral and seawater samples used to establish global P/Ca distribution (Fig. 1).

Location Coral P/Ca data Seawater phosphate data

Species Date
range
sampled

Number of
samples
averaged (n)

Mean
skeletal P/
Ca (lmol/
mol)

Skeletal P/Ca: Average
deviation from mean
(Fig. 1 error bars)

PO4 SW

data range
PO4 SW

mean
(lmol/
kg)

PO4 SW average
deviation from mean
(Fig. 1 error bars)

PO4 SW data source Number of
samples
averaged (n)

Gulf of Eilat
(Israel)

Porites lutea 2003–
2007

35 6.50 1.07 2003–2007 0.03 0.02 Israeli National
Monitoring
Program**

23

New Caledonia
(South Pacific)

Porites

lutea

1991–
1993

16 9.95 1.69 2005 0.15 0.02 World Ocean Atlas 2

Rarotonga
(South Pacific)

Porites

lutea

1996 4 9.02 1.54 2005 0.17 0.01 World Ocean Atlas 4

Fanning Island
(Central Eq. Pacific)

Porites

lutea

1994–
1999

70 12.27 2.16 August–
September
2005

0.20 0.02 Dinsdale et al.
(2008)

32

Christmas Island
(Central Eq. Pacific)

Porites

lutea

1979–
1993

240 14.64 8.56 August–
September
2005

0.30 0.04 Dinsdale et al.
(2008)

32

Biscayne National Park,
USA (Atlantic):
Time-series Maximum

Montastrea

faveolata

January–
March
2000

2 22.00 0.99 January–
March
2000

0.12 0.011 SERC-FIU Water
Quality
Monitoring
Network***

2

Biscayne National Park,
USA (Atlantic):
Time-series Minimum

Montastrea

faveolata

1998–
1999

4 13.49 0.28 1998–1999 0.02 0.003 SERC-FIU Water
Quality
Monitoring
Network***

4

Curacao
(Caribbean)*

Montastrea

annularis

1973–
1981

16 17.18 1.34 July–
October
1994

0.06 0.020 van Duyl et al.
(2002)

9

Martinique
(Caribbean)

Montastrea

faveolata

1998–
2000

14 15.44 1.91 April 1988
and May
1989

0.07 0.029 Littler et al. (1993),
Oxenford et al.
(1994)

16

* Data from 2 “control” corals from Dodge et al. (1984).
** Data were provided Y. Shaked, Israeli National Monitoring Program, The Interuniversity Institute, Eilat, Israel.
*** Data were provided by the SERC-FIU Water Quality Monitoring Network which is supported by SFWMD/SERC Cooperative Agreement #4600000352 as well as EPA Agreement #X7–
96410603-3.
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trace metal clean procedures (Field et al., 2007; Matthews
et al., 2008). The corals were stained in situ with Alizarin
Red on 31 January 2003, 15 April 2003, and 13 July 2003
(marking the beginning, middle, and end of the six-month
study period) and harvested in February 2004. Skeletal
extension was measured between the first and last stain line
using a micrometer, and divided by the study duration to
calculate the average skeletal extension rate of each colony.
The width of each stain was measured to determine whether
skeletal thickening, the deposition of new aragonite over
existing intra-skeletal structures, occurred in these corals
(Barnes et al., 1995). We analyzed the filtered seawater sam-
ples for both PO4 (soluble reactive phosphate (SRP)) and
total dissolved phosphorus (TDP) by standard colorimetric
(Koroleff, 1983) and ICP-MS methods (Field et al., 2007),
respectively. We calculated dissolved organic phosphorus
(DOP) by subtraction (DOPSW = TDPSW � PO4 SW).

Fifteen to twenty powdered samples (1–2 mg) were ex-
tracted from each colony at �1–2 mm sampling resolution.
Sample transects covered �1 year of growth starting
�6 months prior to the initial collection and including the
6 month study period, resulting in �2 to 3 week temporal
resolution. Samples collected below the first stain line were
used solely for age model reconciliation purposes (Sec-
tion 3.2.1) and were excluded from the P/Ca calibrations
since this skeletal material included carbonate deposited
prior to the experimental interval. The Gulf of Panamá pow-
ders were extracted from skeletal material near the surface
organic layer. An oxidative/reductive solution cleaning tech-
nique modified from Shen and Boyle (1988), was thus per-
formed on all drilled samples to remove residual organics
that could have overprinted the P signal incorporated into
the aragonite matrix given the proximity to the tissue layer.

2.2. Analyses

All sample preparation and analyses followed standard
laboratory protocols for trace element analysis under Class
100 conditions. All solutions were made with ultrapure re-
agents (OPTIMA grade, Seastar Chemicals Inc., BC, Can-
ada) and Milli-Q (18.2 MX-cm, Millipore, MA, USA)
water unless otherwise noted.

2.2.1. Sample preparation

In order to minimize differential plasma matrix effects
between samples during analysis (de Villiers et al., 1994;
Rosenthal et al., 1999), the dissolution volume for each
sample was individually adjusted to achieve 80 mM Ca
(±10%) in 1 N ultrapure HNO3, based on mass of drilled
powder prepared for dissolution. Samples were further di-
luted to 4 mM Ca and 1.5 mM Ca in 3% HNO3 for analysis
by ICP-MS (P/Ca) and ICP-OES (Sr/Ca), respectively.

Measurements of P/Ca were carried out on an Element-
XR (Thermo Scientific, Bremen, Germany) high-resolution
inductively coupled plasma mass spectrometer (HR-ICP-
MS) operated in both low and medium resolutions (M/
DM = 300 and 4000, respectively) and E-scan detection
mode (using a combination of magnet jumps and electro-
static peak scanning). Adapted from Rosenthal et al.
(1999), the sample introduction system consisted of a
microautosampler (SC-E2) connected to a self-aspirating
PFA MicroFlow nebulizer (PFA-100; <100 lL/min flow
rate), a PFA o-ring free PureCap endcap, and a PFA Pure-
Chamber spray chamber (Elemental Scientific Inc., NE,
USA). A grounded metal shield inserted between the load
coil and the torch was used to increase sensitivity. Extra
gas flows (Ar, 0.1–0.2 L/min and NH3, 0.071 L/min) were
added via a single additional gas port on the end cap of
the spray chamber to supplement the cool, auxiliary, and
sample gas flows required.

Samples were standardized against two separate stan-
dard curves: one multi-element standard addition curve
(including P) was made by spiking an in-house coral consis-
tency standard; a second single element standard curve for
Ca was made up in 3% HNO3. To optimize P/Ca accuracy,
we calculated elemental ratios offline using concentrations
determined from the two separate standard curves rather
than adopting the elemental ratio method developed for
the determination of precise Mg/Ca ratios in foraminifera
(Rosenthal et al., 1999). Indium, which was analyzed in
both medium and low resolutions, was used to monitor
and correct for instrument drift (typically �30 to 40%) in
the calculation of data. An in-house matrix-matched coral
consistency standard was analyzed as an unknown six times
through each analytical run to check reproducibility within
and between days (±2.0 lmol/mol external precision for P/
Ca, n = 26, corresponding to ±7% RSD precision for mean
sample P/Ca). The phosphorus blank subtracted from sam-
ple signals was typically <10%. Coral solutions ranged from
�1 to 7 ppb P, �10–100� the detection limit of 0.05–
0.1 ppb P (3� SD of blank acid).

For Sr/Ca analysis, a Vista-Pro CCD simultaneous radi-
ally viewed ICP-OES (Varian, Inc., CA, USA) was
equipped with a cyclonic quartz spray chamber and a
PFA MicroFlow 100 (100 lL/min) nebulizer (Elemental
Scientific Inc., NE, USA). The samples were introduced
into the plasma using an ASX-100 autosampler (CETAC,
NE, USA) in free aspiration mode. The emission line ratio
calculated for data interpretation was Sr407/Ca318 as deter-
mined optimal by Andreason et al. (2006). Separate Sr and
Ca matrix-matched standard curves, consistency standards,
and blanks were used, similar to the HR-ICP-MS method.
An internal standard of 100 ppb Y was used to correct for
instrument drift. Reproducibility of Sr/Ca for the consis-
tency standard was <0.3% RSD (n = 9).

2.2.2. Statistical analysis

The least squares method of linear regression was used
to assess the relationship between coral P/Ca and PO4 SW

concentration for both the global distribution samples (Sec-
tion 3.1) and for each colony analyzed from the Gulf of Pa-
namá (Section 3.2). Species-specific multi-colony regression
coefficients and associated errors were determined by calcu-
lating the average deviation about mean slopes and y-inter-
cepts for each of the triplicate P. lobata and P. gigantea

colonies. P-levels below 0.05 were considered statistically
significant. Regression analyses were performed using the
regression data analysis add-in feature of Microsoft Office
Excel 2003 Professional Edition for Windows (�1985–
2003 Microsoft Corporation).
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3. RESULTS AND DISCUSSION

3.1. Global P/Ca distribution

To test the global applicability of the P/Ca–PO4 SW

proxy, we compared mean skeletal P/Ca for globally—dis-
tributed Porites lutea and Montastrea sp. samples with
mean surface ocean phosphate for each location (Fig. 1; Ta-
ble 1). For both coral genera, we found that individuals
growing under naturally elevated PO4 SW conditions incor-
porate more skeletal phosphorus than those in low PO4 SW

environments. The strong linear relationship between
multi-year mean coralline P/Ca and mean PO4 SW concen-
tration (r2Porites lutea = 0.93; r2Montastrea sp. = 0.91), justifies
further development of this proxy in a broad range of oce-
anic nutrient regimes. Although linear regressions fit the
data well for both species, the calculated slopes and y-inter-
cepts for the two genera differ substantially suggesting that
taxonomic differences in skeleton formation or extension
rates likely influence P incorporation (P/CaPorites lutea =
31.9 (PO4 SW) + 5.12; P/CaMontastrea sp. = 84.8 (PO4 SW) +
11.6). These globally based equations present good first-or-
der estimates of the relationship between coral P/Ca and
PO4 SW concentration, but rigorous calibration of this rela-
tionship requires additional in situ time-series data before
the proxy can be applied down-core. As evidenced by the
range of PO4 SW and P/Cacoral averaged at each location,
there is considerable uncertainty in these regressions, likely
resulting from a lack of local PO4 SW data contemporane-
ous with the growth period sampled for each coral (Table 1).
The inter-genus difference in these regression equations
Fig. 1. Average coralline P/Ca for Porites lutea (grey circles) and
Montastrea sp. (black squares) plotted against mean local seawater
phosphate concentration (PO4 SW). Sources and date ranges of
seawater and coral data are summarized in Table 1. Each data
point represents average PO4 SW concentration for the site
indicated (x-axis) and a mean P/Ca value calculated from multi-
year P/Ca record (y-axis). Error bars represent deviation from
mean for seawater data (x) and the coral subsamples used to
calculate mean P/Ca (y) covering time periods indicated in Table 1
(n = 2–240, see Table 1; Florida min error bars are smaller than
symbol). Dashed grey and solid black lines represent linear
regressions of plotted data.
could be a result of (1) different P incorporation sensitivities
to ambient PO4 SW between the two genera or (2) possible
influence of additional forms of P in seawater (e.g., dis-
solved organic phosphorus (DOP), or particulate phospho-
rus (PP)) on skeletal P. The potential influences of seawater
P speciation, temperature, and extension rate on the P/Ca–
PO4 SW proxy are discussed in Section 3.4. While these
uncertainties justify further development of the P/Ca proxy
with local time-series calibrations, the global distribution
data show that bulk skeletal P/Ca in geographically distant
corals, growing under different phosphate regimes, broadly
reflect the PO4 content of ambient seawater.

3.2. Multi-colony P/Ca calibration with in situ PO4 SW

concentration

Sufficient evidence has now been presented both in global
distribution and down-core periodicity (LaVigne et al.,
2008) to warrant additional testing of the hermatypic coral
P/Ca–PO4 SW proxy. Natural P/Ca variability among co-lo-
cated coral colonies and species-specific calibrations with
contemporaneous seawater data was therefore assessed.
All six P. gigantea and P. lobata colonies at Isla Contadora
grew through the transition from upwelling to non-upwell-
ing conditions, and recorded the �0.6 lmol/kg PO4 SW de-
crease as an �10 lmol/mol drop in skeletal P/Ca (Figs. 2
and 3; Supplementary Fig. S1). This change in P/Ca with
upwelling is apparently smaller than that previously mea-
sured in a comparable coral record from Isla Contadora cov-
ering 1975–1979; which gave�30–50 lmol/mol P/Ca annual
change with upwelling (LaVigne et al., 2008). Without an
in situ PO4 SW time-series corresponding to the 1975–1979
coral sample, a rigorous comparison of P/Ca sensitivity to
PO4 SW was impossible for these samples, given the degree
of interannual variability in upwelled nutrient concentra-
tions at this site (D’Croz et al., 1991; D’Croz and Robertson,
1997; D’Croz and O’Dea, 2007). In contrast to P. gigantea

and P. lobata, we found that only one P. clavus coral re-
corded the change in upwelled PO4 SW concentration as a
change in P/Ca (Fig. 2). While it is possible that the lack
of P/Ca signal in the colonies analyzed in this study is a result
of physiological stress caused when the coral fragments were
transplanted prior to the experiment, it may also be that P.
clavus corals are unreliable P/Ca recorders. Given this uncer-
tainty, the P. clavus samples were not analyzed for Sr/Ca for
age model adjustment nor carried through further statistical
analysis or discussion.
3.2.1. Age model

While all P. gigantea and P. lobata colonies recorded
upwelling as a peak in both P/Ca (indicating seawater phos-
phate increase) and Sr/Ca (indicating SST decrease), the
corals recorded the geochemical signals of this �3 month
long upwelling period over �6 to 12 months of skeletal
growth (Figs. S2 and S3). This smoothed geochemical sig-
nal is similar in shape to the multi-year Sr/Ca and P/Ca cy-
cles for the 1975–1979 Isla Contadora P. gigantea coral
sampled both at higher resolution by laser ablation
(�0.42 mm/sample = 3 week resolution) and by bulk sam-
pling (drilling and solution analysis), indicating that the



Fig. 2. Coral P/Ca for Porites lutea (a–c), Pavona gigantea (d–f) and Pavona clavus (g–i) colonies plotted on mm-scale from growing surface.
Location of the upper edge of in situ stain lines shown as vertical lines (staining dates indicated).
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P/Ca smoothing effect is not a result of coarser resolution
sampling by the drilling method (�1 mm/ sample = �1 to
2 month resolution; LaVigne et al., 2008). Geochemical
smoothing was also observed in laser ablation Cd/Ca re-
cords of these corals (Matthews, 2007), and is most likely
a result of skeletal thickening, which is caused by calcifica-
tion throughout the coral tissue layer, extending into the
surface of the bulk skeleton (Barnes and Lough, 1993; Tay-
lor et al., 1993; Barnes et al., 1995; Matthews, 2007). Barnes
and Lough (1993) showed that the thickening of skeletal
structures can occur over several months of coral growth.
Models of this process have shown that skeletal thickening
can distort geochemical records of both annual and short
pulse environmental variations (Barnes et al., 1995; Taylor
et al., 1995), causing time discrepancies between forcing
functions and chronological markers such as density bands
(Barnes and Lough, 1996). Measurements of stain line
thickness in each sample used in this study showed that
the P. lobata and P. gigantea corals incorporated the 1-
day stain over an equivalent of 1–6 weeks and 2.5–3 months
of skeletal growth (0.5–1.4 mm and 1.9–2.4 mm), respec-
tively. Therefore, we suggest that skeletal thickening is
responsible for the apparent signal smoothing and timing
offset between the incorporated coral signals and the
in situ seawater records. Similar timing offsets have been
found in stained coral fragments, where Sr/Ca-SST chro-
nologies were used instead of stain-line derived dates (Swart
et al., 2002). We assumed that thickening affected both



Fig. 3. In situ PO4 SW concentration time-series (dotted line; y-axis
1) and contemporaneous timescale-adjusted coralline P/Ca results
(y-axis 2) for triplicate colonies of Porites lobata (a) and Pavona

gigantea (b) through the 2003 study period in the Gulf of Panamá.
Error bars on coral P/Ca data points represent mean standard
deviation of repeat measurements of coral consistency standard
(SD = 2 lmol/mol; n = 26). Tick marks on time axis are first day of
month.

Fig. 4. Local PO4 SW–P/Ca calibrations for Gulf of Panamá
Porites lobata (a) and Pavona gigantea (b) colonies. Linear
regression lines were calculated from local re-sampled PO4 SW

time-series (x-axis) and coral P/Ca (y-axis; see text). X and Y error
bars represent mean deviation for duplicate PO4 SW measurements
(n = 14 analytical duplicates; (mean deviation = ± 0.026 lmol/kg
PO4), and repeat measurements of coral consistency standard
(SD = 2 lmol/mol; n = 26), respectively. Solid black lines represent
linear regression equations calculated for each colony. The
extension rate of each colony along sampled growth axis is
indicated in the figure legend.
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Sr/Ca and P/Ca equally, and used a Sr/Ca-SST chronology
adjustment as an independent method of accounting for
the timing offset between the incorporated coral records
and in situ seawater records. The stain-line derived chronol-
ogy was adjusted to align the stretched Sr/Ca coral record
with the in situ seawater SST measurements. Dates were as-
signed to three inflection points in the coralline Sr/Ca re-
cords to adjust the chronology of each colony so that P/
Ca calibrations could be calculated appropriately
(Figs. S2 and S3). The P. gigantea corals required larger
age model corrections than the P. lobata colonies, corre-
sponding to the higher degree of thickening of P.gigantea
stain lines, and likely due to differences in skeletal structure
and degree of thickening between Porites and Pavona (Co-
hen and Thorrold, 2007).

The skeletal Sr/Ca-SST age model adjustment accounts
only for geochemical signal stretching caused by thickening.
We also expected the skeletal thickening process and sam-
pling integration to produce smoothed skeletal records rel-
ative to the high-resolution seawater signal (Cohen and
Thorrold, 2007). To compensate for this effect, PO4 SW data
were smoothed using a 3–7 day moving average before re-
sampling at the resolution of the coral data using the linear
integration interpolation function of the AnalySeries pro-
gram (Paillard et al., 1996). We identified the appropriate
PO4 SW smoothing window (from 3–7 days) for each colony
by optimizing the smoothed coral P/Ca-PO4 SW correlation
coefficients. The slopes and y-intercepts reported varied by
less than 10% and r2 values were greater than 0.6 for all tri-
als in the 3–7 day smoothing window range. Further inves-
tigations of P/Ca with finer resolution sampling of skeletal
microstructures could lead to a better understanding of
how skeletal thickening and smoothing affects incorporated
P signals. The calibrations reported here are, however,
appropriate to bulk sampling methods often employed in
paleo-proxy reconstructions.

3.2.2. Inter-colony calibration reproducibility

Regression analysis revealed a strong linear relationship
between PO4 SW and coral P/Ca for all six P. gigantea and
P. lobata colonies (r2 = 0.7–0.9; Fig. 4 and Table 2). The



Table 2
Linear regression analysis.

Slope y-intercept r2 p-value df Colony
extension rate
(mm/year)

Extension
during upwelling
(distance between
stain 1 and 2; mm)

Extension during
non-upwelling
(distance
between stain
2 and 3; mm)

Porites lobata

PL1 20.9 18.7 0.70 0.019 6 14.8 2.5 4.3
PL2 17.7 8.65 0.76 0.002 8 24.1 5.3 5.8
PL3 24.8 15.6 0.91 0.012 4 11.5 2 3.3
P. lobata mean 21.1 14.3
P. lobata average deviation
from mean (n = 3 colonies)

2.4 3.8

P. lobata inter-colony agreement
(avg % deviation from mean)

12% 26%

Pavona gigantea

PG1 27.1 33.4 0.85 0.009 5 10.4 2.5 2.3
PG2 30.4 29.3 0.78 0.048 4 10.0 3.3 1.3
PG3 30.0 37.4 0.90 0.204 2 8.3 1.3 2.5
P. gigantea mean 29.2 33.4
P. gigantea average deviation
from mean (n = 3 colonies)

1.4 2.7

P. gigantea inter-colony agreement
(avg % deviation from mean)

5% 8%
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regressions were statistically significant (p < 0.05), except
that of the PG3 colony, which had an insufficient number
of data points (p = 0.204; n = 3). The P. gigantea and P.

lobata colony regressions showed good inter-colony agree-
ment in calculated slopes (±5–12% average deviation about
mean) within each species. This confirms that most (70–
90%) of the variation in the P/Ca of an individual coral
can be explained by changes in PO4 SW. The remaining
10–30% variability in P/Ca could result from other factors
including biologically-regulated “vital effects”, extension
rate (de Villiers et al., 1995; Sinclair et al., 2006), or the
influence of additional seawater conditions on P incorpora-
tion (Section 3.4).

The mean slope and y-intercept, with average deviation
for both (n = 3 colonies per species), were calculated from
the individual colony regressions to create the following
multi-colony calibrations.

P=CaPorites lobata ðlmol=molÞ¼ð21:1�2:4ÞPO4SW ðlmol=kgÞ
þð14:3�3:8Þ

P=CaPavona gigantea ðlmol=molÞ¼ð29:2�1:4ÞPO4SW ðlmol=kgÞ
þð33:4�2:7Þ

Based on the Gulf of Panamá PO4 SW concentration
range (0.1–0.6 lmol/kg), the error associated with the
above multi-colony calibrations, and analytical error on
P/Ca (±2 lmol/mol), we calculated ±0.2 and ±0.1 lmol/
kg error on PO4 SW reconstructed from P. lobata and P.

gigantea P/Ca, respectively. The variability in slopes and
y-intercepts calculated for the P. lobata colonies is largely
a function of one individual (PL2) (Fig. 4a). The P. lobata

uncertainty on reconstructed PO4 SW improves to ±0.1 l
mol/kg if PL2 is excluded from the error calculation. The
factor of �2 higher extension rate of PL2 relative to the
other colonies indicates that extension rate may influence
skeletal P incorporation (Section 3.4.1). Nonetheless, in-
ter-colony slope and y-intercept agreement is good given
the relatively short study period, and encourages further
proxy development.

3.2.3. Inter-genus agreement

All P. gigantea and P. lobata colonies gave a combined
multi-genus calibration slope of 25.1 ± 4.0 (lmol/mol)
(lmol/kg)�1. The fact that all colonies recorded PO4 SW

changes with very similar sensitivity is encouraging for
the use of this proxy in other locations and species for
reconstruction of past surface water nutrient concentra-
tions. We do find, however, a difference between the two
genus-specific y-intercepts (mean y-interceptP. lobata =

14.3 ± 3.8 lmol/mol; mean y-interceptP. gigantea = 33.4 ±
2.7 lmol/mol; Table 2), similar to the inter-genus y-inter-
cept offsets observed in the global distribution analyses
(Section 3.1). This offset indicates that, similar to coralline
d18O (Erez, 1978; Juillet-Leclerc et al., 2009) and other trace
elements (Sinclair, 2005), biological “vital effects”, species
offsets and/or extension rate likely influence P incorpora-
tion, and require further investigation.

3.3. Global distribution versus local calibration

With these results, the global and local relationships be-
tween PO4 SW and P/Ca for Porites can be compared. Sig-
nificant differences are observed in both slope (31.9global vs.
21.1local) and y-intercept (5.12global vs. 14.3local). These off-
sets could be related to species-specific (P. lobata vs. P. lu-
tea) differences in P incorporation or levels of inherent
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skeletal P incorporation (inorganic or organic) upon which
the seawater phosphate sensitivity is built. These slopes and
y-intercept differences between the open ocean corals and
colonies grown at the coastal Gulf of Panamá upwelling
location, suggest that other environmental conditions such
as additional forms of SW phosphorus may influence skel-
etal P incorporation (Section 3.4.3). These offsets suggest a
need for additional down-core in situ calibrations in low
DOP environments and further constraints on the skeletal
P incorporation mechanism.

3.4. Other potential influences on P/Ca

3.4.1. Extension rate

We calculated similar slopes and y-intercepts for individ-
uals of both species used in this study with extension rates
of 8–15 mm/year (Table 2, Fig. 4). The P. lobata colony
with the highest extension rate (PL2; 24 mm/year), how-
ever, had a significantly lower slope and y-intercept than
the other two colonies of that species (Table 2, Fig. 4). This
suggests that fluctuations in extension rate could influence
P/Ca incorporation and thus down-core reconstructions
of PO4 SW concentration. Based on this result, absolute
PO4 SW concentration could be reconstructed with confi-
dence from upwelling corals with extension rates of 8–
15 mm/year. While this data set is insufficient to quantify
rigorously the extension rate effect, we argue that the sea-
sonal P/Ca response seen in the corals cannot be driven pri-
marily by increased extension rate during non-upwelling vs.
upwelling seasons. Skeletal extension was greater during the
non-upwelling season for four of the colonies (PL1, PL2,
PL3, PG3), and opposite for two colonies (PG1, PG2),
yet all six corals recorded the decrease in PO4 SW as de-
creased P/Ca (Table 2 and Fig. 2). We expect that further
work could lead to the addition of an extension-rate correc-
tion component to calibration equations and therefore im-
proved inter-colony P/Ca agreement, as has been found for
Sr/Ca (Goodkin et al., 2007; Saenger et al., 2008).

3.4.2. Temperature

A number of surface ocean properties vary with upwell-
ing intensity in the Gulf of Panamá. Sea surface tempera-
ture (SST), for example, is a known driver of
thermodynamically regulated incorporation of cations in
marine carbonates. Because P/Ca and Sr/Ca vary concom-
itantly with upwelling-driven PO4 SW concentration and
SST changes, the influence of SST on P/Ca incorporation
cannot be tested independently at this site. Although P/Ca
is negatively correlated with SST (r = �0.89), we do not
expect skeletal incorporation of P to be driven directly
by SST. First, although the P incorporation mechanism re-
mains uncertain, a significant component of skeletal P
apparently exists as an organic phase (LaVigne et al.,
2008), suggesting that traditional ionic substitution ther-
modynamics do not apply to this proxy. Second, data
from the Florida Montastrea faveolata coral included in
the global distribution analysis do not show a relationship
between P/Ca and SST for a location where large seasonal
variations in SST are independent of changes in PO4 SW

concentration.
3.4.3. Additional forms of seawater phosphorus

We find a strong linear relationship between P/Ca and
surface water PO4 SW concentration globally (Section 3.1)
and in local time-series (Section 3.2), supporting the hypoth-
esis that ambient seawater PO4 is the primary driver of P/Ca
variations in corals. However, while 90% of skeletal P has
been shown to be “intracrystalline”, skeletal orthophosphate
maynot be the primary formof skeletal P, andboth inorganic
and organic skeletal P phases may respond independently to
PO4 SW (Dodge et al., 1984; Shotyk et al., 1995; Kumarsingh
et al., 1998;LaVigne et al., 2008). Todetermine the variability
in P/Ca that could be attributed toDOPSWorTDPSW, rather
than PO4 SW, in the Gulf of Panamá corals, we compared r2

values calculated from linear regressions of P/Ca against
TDPSW andDOPSW records derived from the in situ seawater
samples.We found that a higher proportion of P/Ca variabil-
ity can be ascribed to PO4 SW than to DOPSW or TDPSW

variability (mean r2PO4 SW = 0.82; mean r2DOP SW = 0.18;
mean r2TDP SW = 0.75). This suggests that coralline P/Ca is
primarily a function of PO4 SW rather than DOPSW or the
combined TDPSW signal. However, the possibility that other
forms of P in seawater (such as DOP and PP) could also be
incorporated into coral skeleton, influencing the measured
P/Ca response to upwelling, cannot yet be ruled out.

Lacking a clear understanding of the skeletal P incorpo-
ration mechanism at present, we cannot identify how addi-
tional forms of seawater P could introduce the 5–26% inter-
colony variability in regression coefficients we calculated. It
is not surprising, however, that physiological processes
could influence skeletal P incorporation as biological “vital
effects” given that phosphate is an essential nutrient biolog-
ically, and uptake is carrier-mediated in both corals and
zooxanthellae (Godinot et al., 2009).

We can imagine, for example, that the degree of feeding,
heterotrophy vs. autotrophy, or internal nutrient cycling
could differ between colonies or genera and result in vari-
able proportions of PPSW, DOPSW, and PO4 SW incorpora-
tion (Porter, 1974; Falkowski et al., 1993; Palardy et al.,
2005). Nevertheless, given the good reproducibility in slope
among colonies at the same site, we expect that these influ-
ences affect the P/Ca response to PO4 SW similarly among
co-located colonies.

Based on these observed species and inter-colony offsets
and indication that both organic and inorganic forms of P
are likely present in coral skeleton, we can speculate upon
the source of two possible pools of skeletal P (Shotyk
et al., 1995; Kumarsingh et al., 1998; LaVigne et al.,
2008). We hypothesize that a background level of P is skel-
etally incorporated as an organic component inherent to
biocalcification and dictated by the organism’s species
and/or growth rate, thus setting the coral’s calibration y-
intercept, above which inorganic skeletal P varies consis-
tently in response to changes in PO4 SW (calibration slope).
Further work is needed to constrain the relative roles of
these potential influences, and variability on longer time-
scales. Until then, we must consider the uncertainty in slope
(±5–12%) and y-intercept (±8–26%) as natural variability
among specimens, and treat this as a source of error in cor-
al-based PO4 SW reconstructions. The possible influence of
additional forms of P (e.g., DOP, PP) on skeletal P/Ca adds
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uncertainty to the application of calibrations (particularly
the y-intercept) from the Gulf of Panamá (DOP = 0.3–
0.6 lmol/kg) to distinct nutrient environments such as
low DOP open ocean sites (typical DOP range = 0.075–
0.2 lmol/kg; (Case, 2001; Karl et al., 2001; Ammerman,
2003). Since we observed better agreement among individu-
als and species for calibration slopes than for y-intercepts,
we suggest that the mean species-specific slopes calculated
from the Gulf of Panamá corals can be used in future
down-core studies to reconstruct changes in PO4 SW. At dif-
ferent locations, measurements of modern coral P/Ca and
PO4 SW, and the genus-specific calibration slope determined
in this study, could be used to determine a site-specific y-
intercept for down-core PO4 SW. reconstructions.

We expect that continued efforts to evaluate multi-year
and multi-colony calibrations with contemporaneous sea-
water PO4 data for additional species, locations, and indi-
viduals will further reduce the level of uncertainty in
future down-core records.

4. CONCLUSIONS

The data presented here show that P/Ca acts as a paleo-
phosphate proxy with only moderate inter-colony variabil-
ity. The skeletal phosphorus content of multiple coral gen-
era and species is linearly related to ambient seawater
phosphate concentrations in both local time-series and glo-
bal temporal-mean distributions. Triplicate Porites lobata

and Pavona gigantea P/Ca records from corals grown at
the same site were highly correlated with variations in sea-
water phosphate caused by seasonal upwelling (r2 = 0.7–
0.9), with good agreement among colony regressions
(±5–12% agreement in slope).

Mean slopes, y-intercepts, and inter-colony error calcu-
lated from multi-colony linear regressions can now be ap-
plied to down-core P. lobata and P. gigantea P/Ca
records in comparable coastal upwelling regimes. The local
reproducibility and global linearity of P/Ca demonstrated
in this study strongly encourages further development and
application of this novel proxy. Additional work construct-
ing longer term calibrations for distinct nutrient regimes,
constraining the skeletal P incorporation mechanism, and
quantifying the sensitivity of P/Ca to biological “vital
effects”, variations in extension rate, and potential incorpo-
ration of other forms of seawater phosphorus will likely
lead to robust species-specific calibrations and the broad
application of this proxy to open ocean sites.
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océaniques en Atlantique Nord Subtropical à partir d’enregistre-
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