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A B S T R A C T

Information and communication technology supply chains present risks that are complex and difficult for or-
ganizations to manage. The cost and benefit of proposed security controls must be assessed to best match an
organizational risk tolerance and direct the use of security resources. In this paper, we present integer and
stochastic optimization models for selecting a portfolio of security controls within an organizational budget. We
consider two objectives: to maximize the risk reduction across all potential attacks and to maximize the number
of attacks whose risk levels are lower than a risk threshold after security controls are applied. Deterministic and
stochastic bi-objective budgeted difficulty-threshold control selection problems are formulated for selecting
mitigating controls to reflect an organization’s risk preference. In the stochastic problem, we consider un-
certainty as to whether the selected controls can reduce the risks associated with attacks. We demonstrate
through a computational study that the trade-off between the two objectives is important to consider for certain
risk preferences and budgets. We demonstrate the value of the stochastic model when a relatively high number
of attacks are desired to be secured past a risk threshold and show the deterministic solution provides near
optimal solutions otherwise. We provide an analysis of model solutions.

1. Introduction

Reliance on information and communication systems is ubiquitous
in both private and public sectors. The high complexity of and resources
required to maintain information and communication technology (ICT),
or “cyber”, systems create risk that are difficult to manage. ICT systems
are continuously at risk of attacks by individuals, organizations, and
foreign governments [36]. Organizations wishing to secure their ICT
infrastructure must continually make strategic supply chain security
investments [3,30]. Estimates suggest that up to 80% of cyber breaches
originate in the supply chain and are not due to attacks on local net-
works [40]. Supply chain security initiatives protect organizations
against risk associated with their suppliers or purchasers, especially
those with access to sensitive information of their organizations [40].
According to the National Institute of Standards and Technology
(NIST), ICT supply chain risks include insertion of counterfeit equip-
ment, unauthorized production, tampering, theft, insertion of malicious
software and hardware, poor manufacturing and development practices
in the ICT supply chain, and other methods [34]. Both adversarial and
non-adversarial risks must be addressed by an organization [3] since
ICT systems are also at risk to accidental data loss, accidental access to

confidential data, weather related disasters, or flawed component de-
sign [34]. Risk to ICT systems can be reduced by selecting from pro-
posed security controls to secure vulnerabilities while considering one’s
risk preference and the costs and benefits of the proposed controls
[3,30]. Since it is impossible to eliminate all risk, an organization
should aim to reduce risk to an acceptable level or threshold [3]. To do
so, NIST recommends managing supply chain risks with a structured
approach that uses well-defined goals and scope to represent threat
scenarios.

Securing ICT infrastructure requires multiple levels of planning and
multiple processes in place that span protection, detection, response,
and recovery [16,30]. This paper is concerned with a planning problem
to identify a cost-effective set of security controls to protect ICT infra-
structure systems against risks. This planning problem addresses a long-
term phased rollout to support supply chain risk management over a
time horizon of, say, one year. We contribute optimization models
based on integer and stochastic programming that serve as a tool to
plan investment into ICT infrastructure security using the guidelines
proposed by NIST. In these models, we consider two objectives. The
first is to maximize the security against all potential attacks on the
system. The second is to maximize the weighted number of attacks
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secured past a risk threshold. The models we present can be used to
select a portfolio of security controls subject to a budget constraint.
With the bi-objective structure of our models, organizations can in-
vestigate the trade-off between increasing the total difficulty to carry-
out the attacks and securing threats past a predefined risk-threshold
while tailoring the firm’s security portfolio to match its risk preference.

1.1. Background

ICT supply chains are complex networks with both physical and
virtual vulnerabilities. They are a networks of end-users, policy makers,
procurement specialists, systems integrators, network provider, and
software/hardware vendors [25]. Disruptions, intentional or uninten-
tional, within the ICT supply chain have the potential to significantly
impact traditional supply chains and normal business operations due to
organizational reliance on ICT systems. Threats can be intentional or
unintentional, and both types can be grouped into three categories:
information, systematic, and cyber threats [25]. Information threats
include access to view or tamper with information within the supply
chain, data theft, or data loss. Systematic threats result from limited
visibility within the supply chain leading to malicious or noncompliant
introduction of hardware or software. Cyber threats include traditional
network attacks.

Supply chain risk management for ICT security has been a problem
of national concern for nearly a decade [1], and in 2019 a national
emergency was declared to secure the ICT critical infrastructure supply
chain in the United States due to growing threats [44]. As ICT supply
chain risks are impossible to remove completely, strategic decisions
must be made by policy makers, including enterprise security and
supply chain risk management teams [3,4]. Strategic decisions re-
garding supply chain risk management require the elicitation of policy
maker risk attitudes. Risk attitudes have been learned and modeled
using a variety of techniques such as reference lotteries [6], expected
utility theory [6], cumulative prospect theory [6], multicriteria deci-
sion analysis [11], and loss exceedance curves [12].

Supply chain risk management is a sensitive topic, and organiza-
tions do not always share their practices with the public [4]. As a result,
current trends in supply chain risk management are often difficult to
identify. A 2015 report by SANS [40] describes best practices in com-
bating cyber risks in the supply chain. They highlight the need to create
a vendor management policy, ensure network isolation and segmenta-
tion, and internal audits for appropriate access and processes by em-
ployees [40]. NIST has published guidelines for managing ICT risk but
does not recommend tools to decide which security investments to
make [2]. NIST describes the need collaborate with suppliers and in-
clude key suppliers in resiliency decisions to manage ICT supply chain
risk. For example, Microsoft has adopted a supply chain risk manage-
ment approach founded on gaining visibility into their supply chain,
assessing risk on supplier level by constructing a supplier risk profiling
model, and then working with suppliers to improve security against
vulnerabilities [31,32]. NIST reports a variety of approaches used by
firms with respects organizational management, supplier management,
and supplier risk based on a series of interviews with various sized
organizations [4]. NIST reports that organizations rarely monitor for
risk and have not adopted security measures that comprehensively
protect supply chains, and additional guidance and methods are needed
to support organizations, especially less mature organizations [4].
These documents suggest that the state of the art practice is, generally,
to develop methods to describing their risk (e.g. supplier risk scores),
guide their supply chain in building security, and adopt simple heuristic
policies that address risk associated with globalized ICT supply chains
(e.g., regulate items purchased from a “foreign adversary” [44]).

Protecting critical ICT infrastructure using a structured approach is
an emerging area of research. Cost benefit analysis is a commonly
proposed approach to selecting security controls [8,16,47], and more
specific approaches, such as advanced component traceability, have

been proposed [5]. For optimization-based approaches, we refer the
reader to a review paper by Enayaty et al. [9] that surveys literature for
research that study how to protect critical cyberinfrastructure, in-
cluding ICT supply chains. They note that some papers discusses
methods using a derivative of attack graphs for a structured approach to
reduce critical infrastructure risk [9]; we describe this approach in
detail as we employ it in this paper.

Attack graphs and attack trees have been widely used to model the
steps required to carry out an attack in a structured way for applications
extending beyond supply chains [19,27]. Attack graphs and trees
characterize the possible attacks against a system and identify protec-
tions against such attacks. A stream of papers in the literature seeks to
identify defenses uses the attack graph paradigm. Jha et al. [14] and
Sheyner et al. [41] investigate how to identify attack graph structures
and identify cost-effective methods to improve security of these graphs.
Kordy and Widel [20] formulate a novel attack-defense tree (ADTree)
problem. Information describing potential attacks and controls are ex-
tracted from an ADTree and an exact algorithm for selecting controls is
presented. Kordy and Widel further their analysis with ADTrees to
present a bottom-up evaluation method for quantifying the trees [21].
Fei et al. present quantifiable ADTrees, which can be used to determine
the priority of defense nodes [10].

Recent research has examined how to identify a portfolio of security
controls that reduce risk while employing attack graph models. The
motivation to solve a portfolio problem to manage ICT supply chain risk
is introduced and motivated by Kao et al. [15] and Edwards et al. [8].
They describe the need for a decision analytics framework and tools
that consider the supply chain holistically to support supply chain risk
management [8,15]. Within the framework, there is a identified need
for optimization to select a subset of security controls for supply chain
risk [8,15]. Working from this initial framework, Zheng et al. [51]
formulate integer and stochastic programming models using budgeted
maximal multiple coverage formulations applied to ICT supply chain
security. They adapt network security attack graphs to model an attack
as a group of steps through vulnerable components of an infrastructure,
where a step of an attack is a node in the attack graph. They consider
security controls that cover a step, or a node, of an attack. Each covered
node of an attack increases security (reduces risk) against the attack at a
marginally decreasing value as more nodes in the path are covered. The
models are used to select the optimal set of controls such that the total
cost does not exceed the organizational budget. The results yield a set of
cost-effective security controls that improve the overall security the
most on average, however, some of the some attack paths may not be
protected. This may be unacceptable in certain circumstances. Zheng
and Albert [50] address this issue by proposing alternative models that
consider different robust methods to protect against worst case risks,
including models that maximize the worst case coverage, minimize the
worst case regret, and maximize the average coverage in the (1 )
worst cases (the conditional value at risk). In these models, the worst-
case performance is evaluated over scenarios, and therefore, some at-
tack paths may still be unprotected in the optimal solutions. Li et al.
[24] present a multiobjective optimization framework to select security
measures to maximize the security, system, and state benefit against the
“most dangerous” attacks using the idea of a risk tolerance threshold.

Several papers account for adaptive adversaries by formulating
defender-attacker models that capture worst-case performance. Nandi
et al. [33] study how to interdict attack graphs by deploying security
counter measures subject to a budget using a two-stage Stackelberg
game model between a defender and an attacker. They formulate the
problem as a min-max bi-level mixed-integer linear program and de-
velop an exact algorithm for finding a subset of arcs to interdict on an
attack graph. Letchford and Vorobeychik [23] solve a different Stack-
elberg game problem in which a defender chooses a set of controls that
interdict adversarial attack actions while the attacker is capable of
executing an optimal attack plan. Zheng and Albert [49] consider how
to defend against attacks originating from multiple adversaries, each of
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which finds a critical path through an attack surface. The goal is to
delay the completion time of these attacks by selecting a cost-effective
set of controls. They present new deterministic and stochastic Stackel-
berg game models to interdict multiple adversaries’ attack projects, and
they develop a Lagrangian heuristic that identifies near-optimal solu-
tions efficiently.

1.2. Contribution

Previous research on budgeted maximal multiple coverage models
[50,51] focuses on how to reduce overall risk under a budget con-
straint, but not how to systematically reduce risk to an acceptable level
for as many potential attacks as possible (i.e., implementation of a risk
threshold). Moreover, the previous research generally focuses on a
single objective. This paper seeks to fill this knowledge gap by in-
troducing a methodology for selecting a set of controls to reduce the
risk to ICT systems posed by supply chains by formulating new bi-ob-
jective integer programming models to select investments into ICT
supply chain security that consider competing goals. The first model we
present in this paper is a budgeted difficulty-threshold control selection
(BDTCS) bi-objective model. The first objective considered captures an
organization’s goal to minimize the risk to all attacks by maximizing the
weighted difficulty of attack steps. However, the risk reduction may not
be adequate for mitigating the risk associated with some of the poten-
tial attacks. To address this issue, we consider a second objective that
captures an organization’s goal to increase the difficulty of each attack
until it is at an acceptable level of risk as defined by a risk threshold.
The second objective maximizes the weighted number of attacks past a
risk threshold. The objectives represent two aspects decision-makers
may consider when selecting security controls to manage risk.

The second model we present, the expected-value budgeted diffi-
culty-threshold control selection (EBDTCS) bi-objective model, is a
stochastic variant of the first model. In this model, we consider un-
certainty as to whether the security controls are effective in increasing
the difficulty of a step in the attack tree. Analagously to the BDTCS
problem, the objective is to maximize the expected weighted risk re-
duction and expected weighted number of attacks past a risk threshold.
By considering stochasticity, we are able to understand the implications
of uncertain information about vulnerabilities on system security and
security control selection.

These models provide methods to identify security control portfolios
that increase the security of an ICT supply chain while considering the
trade-offs across two criteria. Computational studies are conducted to
investigate insights and trade-offs presented by the bi-objective for-
mulation. We investigate the deterministic model and then retro-
spectively compare the results to those of the stochastic programming
model. These computational studies highlight benefits of using the
models to reduce the risks of attacks on cyber security supply chains
and provide insights for practice.

In Section 2, we define the problem and present our deterministic
and stochastic formulations. In Section 3, we conduct computational
studies to investigate the results of these models. Section 4 concludes
the paper.

2. Problem description

In this section, we introduce two optimization models for selecting
controls to support ICT supply chain risk management. In both models,
we formalize a collection of possible supply chain attacks, P, that re-
present systematic risks to supply chains. Each attack p ∈ P is defined by
the steps required to complete it; these steps comprise a set of vulner-
ability nodes, N. The collection of steps that make up an attack, Np⊆N, is
an attack path, which is an abstraction of an attack graph [35,51]. In this
paper, “attack” describes both adversarial and non-adversarial threats,
although we do not explicitly model adaptive adversarial behavior.

We consider a set of security controls, M, each of which has an

investment of cost bm, m ∈ M, and covers a subset of nodes if deployed.
Coverage of a node increases the difficulty of an attack step, δn, from its
current difficulty level, dn, and thus provides a level of protection
against the attack. The increase in difficulty, δn, does not depend on the
security control covering it, since we assume different security controls
exploit the same mechanism when covering the same node [51]. Nodes
can be defined with a level of granularity such that the security controls
either exploit the same mechanism at that node or change the char-
acteristics of the node in such a similar way that the difference in dif-
ficulty change between the mitigations is practically insignificant [51].
The model can be trivially adapted to lift this assumption as follows. If
two security controls apply different mechanisms to the same node, we
can create a copy of the node with each security control separately
covering one of the two node copies. Supply chain attack paths and
their associated parameter values can be enumerated by subject matter
experts (SMEs), generated automatically for well defined supply chains,
or learned through risk assessment studies [8,12,41,46].

The models’ objective functions present two ways to reduce the risk
presented by these attack paths. The first objective is to maximize the
total change in difficulty of all attack paths by covering nodes that
make up the attack paths. It reflects the goal to reduce overall risk and
increase expected difficulty of completing any of the attacks. This ob-
jective is called the difficulty objective (BDTCS) for the deterministic
model or expected-difficulty objective (EBDTCS) for the stochastic pro-
gramming model for the remainder of the paper. The second objective
has the goal of ensuring that the risk associated with attack paths are at
an acceptable level. We introduce a “consumer grade” or “military
grade” risk threshold, Tp, for the difficulty of attack p ∈ P. Risk man-
agement literature supports the approach of a risk threshold to define
an organization’s acceptable level of risk [3,7]. The goal is to select
security controls to increase the weighted number of attacks whose
difficulties are past their thresholds. This objective is called the
threshold objective (BDTCS) for the deterministic model or expected-
threshold objective (EBDTCS) for the stochastic programming model for
the remainder of the paper.

To an extent, the objectives are mutually beneficial as they both aim
to increase the difficulty of the attacks. However, there is a trade-off for
how this difficulty increase is realized. The difficulty objective in-
centivizes covering steps of paths most likely to increase in overall
difficulty, while the threshold objective targets covering steps in the
some paths to increase the path’s difficulty past the threshold, and no
further, within the given budget, B. It is possible for the solution to be
the same irrespective of the importance placed on each objective
function (i.e., objectives are aligned) in specific problems. However, in
general this is not the case (i.e., objectives are conflicting).

We can explore the alignment or conflict between the objectives
more closely through an example. Fig. 1 provides two simple examples,
where the objectives are either conflicting (Fig. 1(a)) or aligned
(Fig. 1(b)). Both examples consist of two attack paths composed of a
single node and two security controls. Each blue circle ( ) represents
an equally weighted attack, and its placement on the x-axis represents
its unmitigated difficulty level. Each attack has a single, unique security
control that acts on it. Let the orange circles ( ) represent the difficulty
of the associated attack if the security control acting on it is selected,
and the increase in difficulty is labeled by the number above the line
( ), either 0.2 or 0.9. This value is also the contribution to the dif-
ficulty objective. The vertical red dashed lines ( ) represent the se-
curity threshold for both attacks. If an attack is past the threshold, then
the threshold objective increases by one; otherwise the threshold ob-
jective is zero. The budget allows us to select one of the two security
controls in each example.

In Fig. 1(a), there are two potential solutions—selecting the first or
second security control—and neither solution dominates the other in a
multi-criteria optimization sense. The security control that protects
against the first attack is selected when a high importance is placed on
securing attacks past a threshold as it moves one attack past the
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threshold. However, this security control only increases the overall
difficulty of attacks by 0.2, and thus when the importance of securing
attacks past a threshold is low, the security control that protects against
the second attack is selected as it adds a difficulty of 0.9. The example
in Fig. 1(b) has the same two potential solutions. The security control
that protects against the first attack is always selected because it in-
creases the difficulty by 0.9 and moves 1 attack past path the threshold.
This solution dominates the solution of selecting the second security
control. When the objectives are conflicting, as in Fig. 1(a), it is im-
portant to consider both objectives and strategically select the im-
portance of each objective; this is generally the case in practice. The
degree to which the objectives are conflicting or aligned is a property of
the problem (e.g., mitigations, attacks, budget) not only the functions.
We investigate the trade-off between the two objectives during the
computational experiments in a later section.

2.1. Deterministic model

In this subsection, we present the deterministic model. Table 1 re-
ports the sets, parameters, and variables to be used in the models. We
begin by introducing the objective functions.

The difficulty objective function captures the weighted difficulty
change of all attack paths where ap is a weight on each path. We define
the difficulty objective function as

=f z a z( )D
p P n N

p n n
p

The goal is to maximize the weighted change in difficulty across all
potential attacks, which captures overall risk reduction. We define the
threshold objective function as

=f t a t( )T
p P

p p

to capture the weighted number of paths whose difficulty levels are past
their thresholds. The weight, ap, captures the importance of securing
against the attack p ∈ P. Organizations wishing to ensure protection
against certain attacks should place high weights on those attacks. The
weight could represent, for example, the expected consequences or
expected financial cost of a successful attack, for example.

The weights can be obtained through subject matter expert solici-
tation [13], multicriteria decision analysis [11], and structured expert
judgment methods [37].

The budgeted difficulty-threshold control selection (BDTCS) pro-
blem is formulated as a bi-objective, 0–1 integer program as follows:

= =f z a z f t a t

BDTCS:

max ( ) , ( )D
p P n N

p n n T
p P

p p
p (1)

z x n Ns.t. n
m M

m
n (2)

+t T d z p Pp p
n N

n n n
p (3)

+ +t A T d z p Pp p
n N

n n n
p (4)

b x B
m M

m m
(5)

x z t m M n N p P, , {0, 1} , ,m n p (6)

The objectives (1) are to maximize the weighted difficulty change of all
the paths, fD(z), and maximize the weighted number of paths past their
thresholds, fT(t). Constraint set (2) determines if a node is covered by at
least one selected control. Constraint set (3) requires each attack’s
difficulty (starting difficulty plus any difficulty changes after im-
plementing controls) to meet the threshold if the variable tp equals to 1
(i.e., the attack is past the threshold). Constraint set (4) forces the
threshold variable tp to be 1 if the attack’s difficulty is greater than the
threshold, where A is a large value. Constraint (5) is the budget con-
straint on selected controls. Constraint set (6) restricts the xm, zn, and tp
variables to be binary.

A single unique solution is not guaranteed to maximize both

Fig. 1. Examples where the objective functions
are (a) conflicting and (b) aligned. Both (a) and
(b) consist of two attack paths, each composed
of a single node and with a unique security
control. Each blue circle ( ) represents an
equally weighted attack. Its placement on the
x-axis represents its unmitigated difficulty
level. The orange circles ( ) represent the dif-
ficulty of the associated attack if secured
against, and the increase in difficulty is labeled
by the number above the line ( ), either 0.2
or 0.9. This value is also the contribution to the

difficulty objective. The vertical red dashed lines ( ) represent the security threshold for both attacks. If an attack is past the threshold, then the threshold
objective increases by one; otherwise the threshold objective is zero. The budget allows us to select one of the two security controls in each example. In (a), neither
security control is dominated and the solution will change based on the importance of each objective function. In (b), the security control which protects against the
top attack dominates the other and will always be the optimal solution. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Table 1
Notation used in the optimization models.

Sets
P set of all attacks
N set of the supply chain vulnerability nodes
Np subset of vulnerability nodes in attack path p ∈ P representing the steps

required to carry out the attack, Np⊆N
M set of available controls
Mn subset of controls that cover vulnerability node n, n ∈ N, Mn⊆M
Parameters
dn unmitigated difficulty of node n that represents the difficulty associated

with completing node n.
δn increase in the difficulty of node n if a selected control impacts it, n ∈ N
ap weight of attack p representing the relative importance of protection

against it, p ∈ P
bm implementation cost for control m, m ∈ M
B total control budget of the organization
Tp threshold value for attack p, p ∈ P
Decision variables

=xm m m M1control is selected,
0otherwise

=zn n n N1if node is covered by a selected control,
0otherwise

=tp p p P1if attack is past the threshold,
0otherwise
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objective functions. Instead we use the ε-constraint method to ap-
proximate the complete Pareto set of this problem for a posteriori de-
cision by decision makers. The ε-constraint method reformulates the
problem to maximize a single objective function, (7), and bounds all
other objective function values (OFVs) using additional constraints, (8),
as defined below. The bounds on the objective functions are then varied
and the model is solved to enumerate solutions in the Pareto optimal
set. Our problem is subsequently reformulated as:

f zmax ( )D n (7)

f ts.t. ( )
Constraints (2) (6)

T p

(8)

The ε-constraint method allows the budget constraint (5) to be con-
sidered as a third objective function to be minimized. This becomes
particularly useful to organizations without a fixed budget at the time
of planning who wish to investigate the implications of various budget
levels. We explore this issue in Section 3.

2.2. Stochastic model

In the BDTCS problem, we assume a node’s difficulty can be in-
creased by a control with certainty. However, the effect of these con-
trols may be uncertain in reality due to unknown characteristics of a
given step of an attack or interactions between steps of a specific attack
(e.g., a supplier fails to complete a security training). Modeling prob-
ability distributions, uncertainty intervals, and stochastic scenarios, as
opposed to point estimates and expected values, is widely used to guide
cybersecurity risk management decisions [12,37,39]. Modeling un-
certainty with respect to the effect of the controls on the nodes’ diffi-
culty levels is particularly important for the threshold objective, since
knowing that a set of controls may not move a path’s difficulty level
past its threshold with certainty may affect a decision-maker’s will-
ingness to invest in those controls. This motivates the need for a sto-
chastic programming extension to the BDTCS problem. Moreover,
Zheng et al. [51] note that stochastic programming models offer sub-
stantial value to decision makers over equivalent deterministic models.
For these reasons, it is necessary to formulate and investigate a sto-
chastic variant of the deterministic problem.

The computational results presented in Section 3 highlight the
practical importance of using a stochastic model in certain situations for
our problem.

In this section, we present an extension to the BDTCS problem that
considers this uncertainty. We introduce a stochastic program that
considers the ineffectiveness of all controls in the covering set, Mn, on
node n, n ∈ N, when the node s in attack p, p ∈ P. This models the
situation in which if one control in the set is ineffective again a node in
a path, all controls in the covering set will also be ineffective since we
assume controls exploit the same mechanism. When the control set is
ineffective, the difficulty of the node cannot be increased. Under these
uncertainties, there is a natural incentive to cover multiple nodes in the
path. There are multiple alternative ways to represent uncertainty in
our problem. Certain controls in the covering set could be ineffective
against a node [51] or the change in difficulty could be a random
variable [49]. We selected the method presented in this paper because
it has not been researched in depth in a comparable situation, and it is
believed to have a large impact on solutions with our threshold for-
mulation.

We introduce a finite-scenario set = { , = …{1, 2, , | |}}, to
represent the uncertainty in the model. Each scenario ξω, ω ∈ Ω, occurs
with probability ρω with = 1. Each scenario is comprised of
parameters pn that take on the value 1 if node n, n ∈ N, is vulnerable to
its control set in attack p, p ∈ P, and 0 otherwise. We consider the
function fD(x, ξ) which represents the difficulty objective value, and
fT(x, ξ) which represents the threshold objective value based on the

controls selected, x, and the scenarios of the scenario set ξ. These
functions take the same form as in the BDTCS problem except they
consider the uncertainty within the model formulation. The intent is to
study how to improve the expected security of the supply chain,

f x f xE E[ [ ( , )], [ ( , )] ],D T under analogous constraints as BDTCS in a
future section.

The expected-threshold and expected-difficulty objective functions
of the expected-value of the finite-scenario BDTCS problem (EBDTCS)
respectively are:

=

=

f x p f z

f x p f t

E

E

[ ( , )] ( , )

[ ( , ) ] ( , )

D D

T T

Notation and variables in EBDTCS are extended from the deterministic
model in a straightforward manner. Variables indexed by superscript
ω ∈ Ω have the same meaning as those in Table 1 except that they are
defined and valued for each scenario ξω, ω ∈ Ω. The finite-scenario
EBDTCS problem is presented as a stochastic bi-objective integer pro-
gramming model below.

=

=

EBDTCS
f x f z f x

f t

E E
:

max [ [ ( , )] ( , ), [ ( , ) ]

( , ) ]
D D T

T (9)

z x n Ns.t. ,n
m M

m
n (10)

+t T d z p P,p p
n N

n n pn n
p (11)

+ +t A T d z p P,p p
n N

n n pn n
p (12)

b x B
m M

m m
(13)

x z t m M n N p P, , {0, 1} , , ,m n p (14)

The objective (9) maximizes the expected weighted difficulty and the
expected weighted number of paths past the threshold given the finite-
scenario set. Constraint set (10) determines if a node for scenario ξω,
ω ∈ Ω is covered by a selected control. Constraint set (11) requires the
attack p to be past the threshold for scenario ξω, ω ∈ Ω to realize the
gains in the threshold objective function. Constraint set (12) forces tp to
be 1 if the path difficulty is greater than the threshold for scenario ξω,
ω ∈ Ω where A is a large value. The knapsack budget constraint is re-
presented in constraint (13) and constraints (14) are binary variable
constraints.

Similar to the deterministic model, we can reformulate EBDTCS
using the ε-constraint method to ensure all non-dominated solution can
be found by varying ε.

f zmax ( , )D
(15)

f ts.t. ( , )

Constraints (10) (14)

T

(16)

The ε-constraint method maximizes the value of the expected-difficulty
function, Eq. (15), and constrains the value of the expected-threshold
function in (16). Without loss of generality, functions f xE [ ( , )]D and

f xE [ ( , )]T can be exchanged in (15) and (16).
The finite-scenario sets can be large in general. When this occurs,

we can instead solve an approximate stochastic problem using sample
average approximation [17]. In sample average approximation, we take
a finite set of samples of ξ and approximate the expected value function
with a sample average. We take this approach when solving the models
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in the computational results section.

2.3. Solution methods

A multi-objective optimization can be approached using either
priori, interactive, and posteriori methods [45]. We employ the pos-
teriori method as it requires no initial decision maker input and pro-
vides a set of “optimal” solutions that either fully enumerates or ap-
proximates the optimal solution set. The set of “optimal” solutions
provided by posteriori methods is called the non-dominated, Pareto
optimal, efficient, or non-inferior solution set.

Algorithms can employ the ε-constraint method to approximate the
Pareto frontier by solving for a given number of solutions [22,28] or for
a complete enumeration of the Pareto set [29,48]. In this paper, we
approximate the Pareto set using a fixed number of solution points. To
determine the range of ε’s considered in the BDTCS problem, we cal-
culate the maximum and minimum attainable OFVs in a non-dominated
solution set, while fixing the budget. To determine the minimal at-
tainable threshold OFV, we solve the instance of the BDTCS problem
with = 0 and retrospectively calculate the threshold OFV under this
solution, setting = f (·)Tmin . We then solve the instance of the BDTCS
problem to determine the maximum attainable threshold OFV, and let
ɛmax equal this maximal threshold OFV. The parameters ɛmin and ɛmax

define the range for ε in the Pareto set. We use an analogous approach
for the EBDTCS problem.

The most common posteriori solution approach in multi-objective
optimization is to use the weighted sum of objectives method; however,
for mixed-integer multi-objective optimization problems, this method is
not guaranteed to provide the complete set of non-dominated solutions
[28]. Heuristic algorithms, such as evolutionary and genetic algorithms,
have been heavily studied as multi-objective optimization solution
methods to approximate the Pareto frontier without any guarantees on
Pareto efficiency [18,43]. Dynamic programming and lexicographic
optimization are other methods that have been used to solve multi-
objective optimization problems [26,38]. We focus on the ε-constraint
method, since it can easily be used to control which solutions on the
Pareto frontier are obtained from a problem instance and can provide
the complete set of non-dominated solutions [29,48].

3. Computational results

In this section, we illustrate solutions to the deterministic and sto-
chastic models for optimal control selection to protect against potential
attacks in an ICT supply chain. This section contains three subsections:
(1) case studies, (2) deterministic model results, and (3) stochastic
model results. The results provide insight into the model solutions and
the tradeoffs between the multiple objectives. The models were pro-
grammed and run with 64 bit Python 2.7.15 and were solved using
Gurobi 8.1.0. The tests were run on an Intel® Core™ i5-7500U CPU at
3.40 GHz with 16 GB of RAM.

3.1. Case studies

To test and evaluate the proposed models, we formulate realistic
data with varying sizes and values in conjunction with information
provided by collaborators at Sandia National Laboratories and in-
formation provided in relevant literature. Real data are sensitive and
not available for release, and therefore, collaborators at Sandia
National Laboratories developed a model of attack path vulnerabilities
suitable for this and similar optimization research that would be in-
formative to their decision-making processes. We used their models to
construct hypothetical yet realistic data sets for our computational ex-
periment, and we note that our analysis using hypothetical data sets
may have natural limitations for interpretability and reliability of in-
sights.

A detailed explanation of the data used for the computational

studies is provided below. A summary of the data regarding the size of
six data sets used for the computational study are provided in Table 2.
There are two small, two medium, and two large data sets.

We generate the sample data using a pseudo-random number gen-
erator and adopt the following logic. Controls are unlikely to impact a
large number of nodes as they are generally specific in scope and im-
pact. Thus, we specify an upper bound of three on the number of nodes
a control can affect and a lower bound of one. Also, it is unlikely a
single node will be impacted by many controls, therefore we specify the
upper bound on the number of controls that can affect each node to be
three with no lower bound. For each control, we randomly select a
subset of nodes that the control covers under these restrictions.

Similarly, we set a lower bound of 5 and an upper bound of 10 on
the number of nodes in a path. Based on the information received from
our collaborators, there are relatively few access points for successful
control of supply chain vulnerabilities. We randomly sample from the
set of nodes N to generate a subset of nodes Np in an attack path p ∈ P.
We define a node in the path to be the end node that represents the final
step of the attack and determines the attack consequence, cp, p ∈ P. In
this computational study, we let =a cp p. Paths can and are likely to
share nodes. This allows multiple attacks to have the same “goal” and
consequence but with different steps as is likely to be seen in practice.
The consequence of each node is uniformly selected over a nominal
range [0,1].

We randomly generate the current state difficulty of each node, dn,
n ∈ N, to be negatively correlated to the number of controls covering it.
It is likely that nodes that can be covered by more controls are currently
more vulnerable and are less difficult to complete. For each dn, we
generate a random number between [0,4] and divide it by the number
of controls covering it; if no control covers the node, we divide by one
instead of zero. To generate various changes in difficulties, δn, n ∈ N, we
uniformly generate a number in the range [0,4]. The difficulty and
difficulty change can be determined by various risk analyses, including
subject matter expert elicitations [12]. One approach would be to cal-
culate the difficulty, dn, and difficulty change, δn, of an attack from the
conditional probability of success if the step is attempted [47]. The
difficulty could then be the negative logarithm of the success prob-
ability of completing a step. In this case, [0,1] represents the multiplier
by which the probability of success for a step decreases with added
security.

We randomly generate control costs, bm,m ∈ M, to be positively
correlated to the difficulty change of the nodes impacted by that con-
trol; if a control has a large impact on many nodes, it is likely to cost
more than a control that has a small impact on a few nodes. For each
control, we generate a random value from the range [0,5] and multiply
the value by the summation of δn values of its covered nodes. Letting

=a c ,p p the difficulty objective function becomes
=f z c z( )D p P n N p n np

and the threshold function becomes
=f t c t( )T p p. This captures the idea that attacks with higher con-

sequence are more important to protected against. We define
= +T c4 15p p

2 which is scaled to the data and provide a meaningful
investigation. The quadratic form represents a need for more security,
or higher difficulty, for high consequence attacks to be considered se-
cure. We selected the scaling values so most paths are short of the
threshold but a small number are already past before any controls are

Table 2
Data set sizes of the case studies.

Data set |M| |N| |P|

s1 50 50 10
s2 100 100 20
m1 500 500 100
m2 500 500 75
ℓ1 1000 1000 200
ℓ2 2000 1000 200
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implemented, as is likely to be seen in practice.
In the EBDTCS problem, for each scenario and attack path, we

randomly determine if the control set Mn is effective in mitigating a
node n ∈ N in attack path p ∈ P with the probability of 0.9:

= = = =Pr Pr( 1) 0.9; ( 0) 0.1,pn pn ω ∈ Ω. We let the probability of
each scenario be = 1

| | for ω ∈ Ω, where |Ω| is the cardinality of
scenario set.

3.2. Deterministic results

In this subsection, we report the results of the deterministic bi-ob-
jective problem and perform a sensitivity analysis on select parameters
of the BDTCS problem. Solution times associated with solving BDTCS
problem instances presented in this paper are less than three minutes.

We start by investigating the competing objectives. With a fixed
budget equal to 10% of the cost of all controls, we determine the OFVs
for solutions on the BDTCS Pareto frontier. Table 3 provides Pareto
optimal solution values to three different instances of the model for
each data set. Each solution corresponds to a different ε value:
ɛmin, ɛmid, and ɛmax. A solution to an instance with ɛmin only has an ex-
plicit incentive to increase fD(z). A solution to an instance with ɛmax

only has an explicit incentive to increase fT(t). A solution to an instance
with εmid represents one solution near the mid point on the Pareto
frontier. From Table 3, we can see the trade-off between the optimal
threshold objective, f * (·),T and the optimal difficulty objective, f * (·),D to
different ε-valued instances of BDTCS is significant for each data set. As
ε is increased for each data set, the optimal difficulty objective value
decreases as the optimal threshold objective value is forced to increase.

Fig. 2 provides 15 solution OFVs on the Pareto frontier for data set
ℓ1 with a budget set to 10% of the total control costs in the data set. The
points marked with a box ( ) correspond to the solutions from Table 3.
Under a static budget, it is apparent from our computational analysis
that not all optimal solutions on the Pareto frontier achieve the same
goal. Maximizing just one of these objectives results in a significantly
lower OFV of the other. These results indicate the importance of con-
sidering both model objectives as the trade-off is nontrivial. Organiza-
tions can use available information about the trade-off to match their
control selection to their risk preference.

Further investigation suggests certain controls are more important
than others. Solutions to data sets s2 and ℓ1 with =B 10% of total
control costs can be seen in Tables 4 and 5, respectively. In Tables 4 and
5, each column represents the solution to the ε-valued BDTCS instance.
Each control selected in at least one solution can be seen in the rows of
the tables. Controls selected in the solution to a ε-valued instance are

indicated with an “x” in the corresponding cell. In all of the data sets
studied, there were subsets of controls selected in all studied ε-valued
BDTCS instances considered. For example, Table 4 shows that 13 of the
36 controls are selected across all possible values of ε. This suggests
there is a subset of controls that are the most critical to implement
across all values of the organizational risk tolerance. The difference in
OFVs tends to arise from tailored additions to this subset. The model
solutions also indicate that nodes are rarely covered two or more times
by the selected controls as there is no incentive in BDTCS to do so.

Next, we directly investigate the consequence, difficulty, and cov-
erage of the attack paths under different Pareto optimal solutions. Fig. 3
provides a comparison of paths under different optimal solutions for
data set ℓ1 with budget set to 10% of all control costs. The solutions
provided in Fig. 3 correspond to the solution OFVs provided in Table 3
and solutions in Table 4. Each mark (+) is a path plotted by its con-
sequence and difficulty. Fig. 3(a) shows the initial position of each at-
tack path in comparison to the risk threshold ( ) generated for the ℓ1
data set. Fig. 3(b)–(d) show the path consequence and difficulty levels
after deploying security controls. The implementation of controls
moves the difficulty level of the paths horizontally to the right.
Fig. 3(b)–(d) shows difficulty of paths compared to the threshold under
various ε values. When ε is low ( = 61.44), as shown in Fig. 3(b), the
solution is to select cost effective controls without consideration of the
threshold. This results in some path difficulties much larger than the
threshold and thus potentially ineffective use of the budget if an or-
ganization believes they do not need to protect against attacks past the
threshold. In contrast, when ε is high ( = 78.32), as shown in Fig. 3(d),
the model selects controls that cover nodes in paths whose difficulty can
be larger than the threshold. This leaves some paths uncovered and at a
very low difficulty. The difficulty of most paths are just past the
threshold with only a few path significantly past from its threshold. This
trade-off again highlights the need to understand the trade-off between
both objectives and to set meaningful thresholds.

Lastly, we investigate the impact of the budget on the tradeoff be-
tween the OFVs. Fig. 4 shows results of the trade-off between the two
objective functions considering varying level of the budget for data set
ℓ1. Fig. 4(a) shows the range of the difficulty OFV on the Pareto fron-
tier. At a given budget, the difficulty OFV for any ε-valued instance is
bounded by the OFV of each curve. The realized OFV is found within
the shaded region and depends on ε. The difficulty OFV is maximal
when = min and minimal when = max . Fig. 4(b) analogously shows
the range of the threshold OFV on the Pareto frontier with the OFV
being optimal when = max and minimal when = min . For a low
budget, the selected controls are similar between a difficulty-driven
model (small ε) and a threshold-driven model (large ε). Therefore the
range for both OFVs is small, and any solution in this range will be near-
optimal for both objectives. This highlights that, to an extent, these
objectives are mutually beneficial and a subset of controls achieve near
maximal function values for both objectives with low budget. However,
as the budget increases, the range of both OFVs become larger because
the model has the budget to tailor controls to the ε-valued instance. In
this range, careful selection of the appropriate risk tolerance is critical.
As the budget continues to grow, the range of both OFVs become
smaller and the curves level off as most meaningful controls inM can be
selected with a smaller budget and the objectives are mutually bene-
ficial. This computational study of the deterministic BDTCS problem
shows the importance of considering both the threshold objective and
difficulty objective, as well as the budget, when approaching IT supply
chain security problems. Therefore, defining an organizations risk
preference and selecting appropriate security controls is a critical and
non-trivial task.

3.3. Stochastic results

In this subsection, we investigate the results of the stochastic pro-
blem and retrospectively compare results of the deterministic solution

Fig. 2. The Pareto frontier of the difficulty OFVs and threshold OFVs to the
BDTCS problem for data set ℓ1. Budget was set to 10% of total control costs.
OFV’s indicated by are solutions from Table 3 (ɛmin, ɛmid, ɛmax), and the
controls selected in these solutions are provided in Fig. 5.
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to understand solution differences. We generate for each scenario ξω,
ω ∈ Ω a sample set which captures the uncertainty that the control set
Mn is effective in mitigating the node n ∈ N in attack path p ∈ P. For
each data set, we solve instances with =| | 5, 25, 100 while using the
same base parameter values as the deterministic model, except for ε. We
investigate these sizes of Ω to understand the impact of the number of
uncertainty scenarios on solution results and interpretation. When
comparing models, however, the BDTCS objective function value
cannot be directly compared to values of the EBDTCS problem as the
results are not to the same problem. Thus, we retrospectively evaluate
control selections of the BDTCS problem and determine the expected-
difficulty and expected-threshold OFVs under the same uncertainty
scenarios considered in the EBDTCS problem. We can then directly
compare the solutions. We define the value of the stochastic solution
(VSS) as follows: when fixing a value of the expected-threshold

objective value and budget, the VSS is the difference between the
EBDTCS expected-difficulty OFV and BDTCS retrospective expected-
difficulty OFV.

Solution times to EBDTCS rapidly increase even for moderately
sized scenarios, as shown in Table 6. Investigation into these solution
times indicate significantly larger solution times when = max for most
data sets, some of which did not solve in 2 h. A smaller scenario set for
the stochastic problem may be sufficient for some applications as even a
small number of scenarios provide improved model accuracy compared
to the deterministic solution.

Fig. 5 plots the deterministic BDTCS solutions’ retrospective OFVs (
) against the stochastic Pareto optimal frontier ( ) for data set m2,

=| | 25, and =B 10% of all control costs. Insights can be gained from
this comparison. A BDTCS solution does not achieve a solution beyond
the stochastic Pareto frontier, otherwise the same solution would be

Table 3
Optimal OFV’s, f * (·)T and f * (·),D for BDTCS instances with ɛmin, ɛmid, and ɛmax for each data set. Budget was set to 10% of total control costs for each data set.

Data set ɛmin ɛmid ɛmax

ɛmin f * (·)T f * (·)D ɛmid f * (·)T f * (·)D ɛmax f * (·)T f * (·)D

s1 2.71 2.71 52.94 3.32 3.56 50.04 3.56 3.56 38.91
s2 3.89 3.89 88.16 5.34 5.47 81.29 5.92 5.92 69.61
m1 27.91 27.91 452.17 32.84 32.94 443.51 34.80 34.80 363.82
m2 19.46 19.46 332.68 23.03 23.03 328.09 24.45 24.45 296.89
ℓ1 61.44 61.44 983.19 73.49 73.50 946.02 78.32 78.32 797.95
ℓ2 56.37 56.37 632.64 66.89 66.93 596.51 71.10 71.10 431.85

Table 4
Controls selected in 15 solutions on the Pareto frontier for data set s2. An (x) indicates that the control was selected in the solution to the ε-valued instance. Controls
not shown in the figure were not selected in any of the solutions. Budget was set to 10% of total control costs.

ε

Control 3.89 4.03 4.18 4.32 4.47 4.62 4.76 4.91 5.05 5.20 5.34 5.49 5.63 5.78 5.92

M1 x x x x x x x x x x x x x x x
M5 x x x x x x x
M6 x x x x x x x x x x x x x x x
M11 x x x x x x
M12 x
M21 x x x x x x x x x x x x x x x
M29 x x x x
M30 x x x x x
M32 x x x x x
M33 x x x x x x x x x x x
M37 x x x x x x x x x x x x x x x
M42 x x x x x x x x x x x x x x x
M43 x x x x x x x x x x x x
M46 x x x x x x x x x x x x x x x
M49 x x x x x x x x x x x x x x
M50 x x x x x x x
M51 x x x x x x x x x x x x x x x
M52 x
M53 x x x x x x x x x x x x x x x
M54 x
M57 x x x x x x x x x x x x x x x
M58 x x x x x x x x x x x x x x x
M61 x x x x x x
M63 x
M65 x x x x x x x x x x
M67 x x x x x x x x x x x x x x
M68 x x x x x x x x x x x x x x
M73 x x x x x x x x x x
M74 x x x x x x x x x x x x x x
M75 x x x x x x x x x x
M77 x x x x x x x x x x x x x x
M80 x x x x x x x x x x x x x x x
M82 x x x x x x x x x x x x x x x
M83 x x x x x x x x x x x x x x x
M85 x
M95 x x x x x x x
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chosen by the stochastic problem. The vertical differences between the
BDTCS solution and the optimal EBDTCS solution in Fig. 5 represents
the value of the stochastic solution. Empirically, the VSS is negligible
for a low expected-threshold OFV, and there is an ε value for the
EBDTCS problem above which it becomes valuable to consider the
uncertainty in the model. This occurs because the threshold function is
a binary outcome; the model either realizes all value from a path being
past the threshold or it gets no added benefit. Empirically, the high-ε
BDTCS instances incentivize control selection resulting in paths just
past the threshold and little further—see Fig. 3(d). Thus a loss of cov-
erage on one node can significantly change the path’s relation to the
threshold. These empirical results suggest that stochasticity is im-
portant to consider in threshold driven solutions. The deterministic
model suffices in difficulty driven situations and can be solved in sig-
nificantly less computational time. Further investigation into the solu-
tions highlights the extent of similarity between controls selected in the

BDTCS and EBDTCS solutions. Over all sample data sets and |Ω|, we
observe that the deterministic and stochastic models select many of the
same controls, with an average fraction of 0.914 of the controls selected
in the EBDTCS solution also selected comparable BDTCS solutions. We
provide a comparison of BDTCS and EBDTCS solutions for three dif-
ferent data sets in Table 7(a)–(c). Table 7(a) presents comparisons for
data set s1 with =| | 100. Table 7(b) presents comparisons for data set
m2 with =| | 100. Table 7(c) presents comparisons for data set ℓ1 with

=| | 100. Each row in each table presents a BDTCS solution and a
corresponding EBDTCS solution. To find corresponding solutions, we
took an optimal solution to an BDTCS problem instance, computed the
retrospective expected-threshold OFV, Retro-ft( · ), and solved an in-
stance of EBDTCS with = Retro f (·)t . This allows us to directly com-
pare BDTCS and EBDTCS solutions. Rows with a low reference number
in Table 7(a)–(c) correspond to BDTCS instances with relatively low ε
values. Rows with a high reference number in Table 7(a)–(c)

Fig. 3. Characteristics of attack paths
under various solutions to the BDTCS.
Attack paths are plotted (+) in relation
to the risk threshold ( ) before se-
lecting any controls, (a), and three op-
timal solutions to the BDTCS problem,
(b)–(d), in dataset ℓ1. Budget was set to
10% of total control costs.

Fig. 4. Range of each OFV on the Pareto
frontier for a variable budget with data set ℓ1.
The ( ) represents a budget of 10% of the all
control costs. Subfigure (a) represents the
range of the optimal difficulty OFVs con-
sidering all possible ε values for different
budgets. The line ( ) indicates the max-
imum difficulty OFV across all ε values for a
given budget; ( ) represents the minimum.
Subfigure (b) represents the range of the op-
timal threshold OFVs considering all possible ε
values for different budgets. The line ( )
indicates the maximum threshold OFV across
all ε values for a given budget; ( ) re-
presents the minimum.
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correspond to BDTCS instances with relatively high ε values. We ob-
serve that solutions to BDTCS and EBDTCS instances with low reference
numbers select a larger fraction of the same controls than solutions with
high reference numbers and have a smaller value of the stochastic so-
lution (VSS). Across all data sets and |Ω| we find that 0.982 of the
EBDTCS controls are also selected in the BDTCS problem in the lowest
reference number solutions. This fraction decreases to 0.677 in the
highest reference number solutions, on average.

This computational study investigates and highlights the benefit of
the stochastic solution compared the deterministic solution and quan-
tifies the differences between the BDTCS and EBDTCS solutions. In
cases where high importance is placed on securing attacks to an ac-
ceptable level of risk, organizations can and should use the stochastic
model to make better decisions when they can identify and quantify the
gaps in their knowledge.

4. Discussion and conclusion

In this paper, we present integer and stochastic programming
models to select an optimal portfolio of security controls to reduce the
risk of an information and communication technology supply chain. We
do so by presenting a novel bi-objective programming model for se-
lecting mitigating controls to simultaneously maximize the number of
attacks past a risk-threshold and maximize the total difficulty increase
among all potential attacks. We introduce a stochastic programming
model variant to capture uncertainty in a control’s effectiveness. We
investigate the deterministic and stochastic model solutions. We find
that under most budgets, it is necessary to set meaningful thresholds to
match the control portfolio to an organization’s risk tolerance. We also
find the stochasticity of the problem should be considered in cases
where high importance is placed on securing attacks past a threshold;

otherwise, the deterministic model suffices to provide near-optimal
solutions to the stochastic problem.

The models we present in this paper provide a structured approach
to composing a portfolio of security controls that is effective with re-
spect to cost and multiple objectives related to risk reduction. The
analysis of the computational examples indicates that finding the right
balance across multiple objectives is non-trivial, demonstrating the
importance of including multiple criteria and the value of the optimi-
zation-based approach over approaches used in practice that rely on
simple heuristics [44] and ranking based on a cost/benefit analysis
[12,42]. Moreover, the analysis indicates that uncertainty regarding
mitigation effectiveness is important for guiding portfolio composition
decisions and should be included in the risk management processes if
applicable.

This approach can be used as one method in a suite of supply chain
risk management tools to aid managerial decision-making [16]. Im-
plementing the approach presented in this paper may create several
challenges for organizations; we highlight two. First, organizations
must develop or have a framework to identify vulnerabilities, attack
paths, security controls, difficulty measures, and weights using, for
example, “red-teams,” subject matter expert solicitations, structured
risk assessments, or a combination of these methods. Second, many
organizations currently lack visibility into aspects of their supply chains
leading to missing or inaccurate data [8,16]; this a key reason to em-
ploy the proposed stochastic programming approach. Organizations
have also worked with suppliers to increase visibility of their supply
chain, which could remove the uncertainties and allow for use of the
deterministic model [2,31,32].

Information technology supply chain risk is complex and requires
significant mathematical modeling to reduce that risk. As the current
information and communication technology literature is limited, there
is opportunity for future investigation into additional models for re-
duction of information and communication technology supply chain
risk. Some of these opportunities are as follows. First, non-linear opti-
mization can capture controls which increase path difficulties and de-
crease the consequence of attacks. Second, multi-period models can aid
organizations with yearly budgets and controls costs which may be able
to be split among budget periods. Third, game-theoretic models can be
used to defend against strategic, adversarial attacks and to consider
coordination among multiple attackers.
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