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It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic
encoding, reaction networks of diverse small chemicals might have manifested key properties of life,
namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics
of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea
that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals,
we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a
solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversi-
ble, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chem-
icals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an
instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to
show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations
just like biological species. Furthermore, when there is stochasticity in the environment, particularly in
the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble
evolution. The evolutionary character is especially clear when the network architecture results in ecolog-
ical precedence, which makes a system'’s trajectory historically contingent on the order in which cycles
are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evo-
lution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attri-
butes such as thermodynamic irreversibility and genetic encoding.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Empirical and theoretical analyses during the past few decades
have converged on the view that the origin of life might entail
spontaneous, life-like behavior emerging in networks of relatively
simple chemical reactions (Hordijk et al., 2010; Kauffman, 1986;
Liu and Sumpter, 2018; Ruiz-Mirazo et al., 2014; Shapiro, 2006;
Walker and Davies, 2013). However, despite a growing body of the-
ory, it is still unclear how simple chemical rules can give rise to
systems manifesting the basic properties of life, namely self-
propagation and the capacity for adaptive evolution (Joyce, 1994;
Luisi, 1998). While abstract models have shown that autocatalysis,
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the chemical equivalent of self-propagation, is likely to be a com-
mon feature of chemical networks underlying the origin of life
(Hordijk et al., 2012; Hordijk and Steel, 2016, 2004; Virgo et al.,
2016; Virgo and Ikegami, 2013; Xavier et al., 2020), these models
have, by-and-large, lacked realistic chemical kinetics, making it
difficult to connect their theory of autocatalysis to plausible prebi-
otic settings. Furthermore, although autocatalytic reaction net-
works are shown to have some level of “evolvability” without
linear polymers for genetic information storage (Goldford and
Segré, 2018; Hordijk, 2016; Hordijk et al., 2012; Hordijk and
Steel, 2014; Vasas et al., 2012, 2010), it is largely unclear whether,
how, and under what conditions such evolvability can lead to sys-
tems that sustain, grow and evolve similarly to known life. Addi-
tionally, these models, depending on their primary foci, interpret
autocatalysis in different ways and thus sometimes induce ambi-
guities (Hordijk, 2017).
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Among the first attempts to bring ecological thinking to the ori-
gin of life problem was by Odum (Odum, 1971), who articulated
the view that life began as an ecosystem of cooperating molecular
components that collectively exploited energy fluxes, and only
later gave rise to cells and genetic systems. An ecosystem-first
view of life was also adopted by subsequent authors (Baum,
2018; Baum and Vetsigian, 2017; Fiscus, 2002; Gatti et al., 2017,
Hunding et al., 2006; Lee et al., 1997; Wieczorek, 2012), but has
yet to provide explicit models to explain how chemical ecosystems
could form and complexify to yield systems as complex as cellular
life. Here we attempt to formalize the notion of a chemical ecosys-
tem as a set of actively interacting autocatalytic subsystems
(cycles), and use tools from ecological theory (e.g., Ulanowicz,
1997) to explain how these ecosystems maintain themselves using
chemical disequilibria and how they change over time as a func-
tion of their internal dynamics, stochastic perturbation, and envi-
ronmental filtering. Although, we only analyze the earliest stages
of self-organization, with small numbers of potentially interacting
autocatalytic subsystems, we believe that this basic model of pre-
biotic chemical ecosystems can be readily expanded to include
polymers, specific catalysts, and other characteristic features of life
as we know it.

In this paper, we develop a model of autocatalytic chemical
reaction networks that differs from most existing models in the
origin-of-life field (Hordijk and Steel, 2016, 2004; Kauffman,
1993, 1986; Segré et al., 1998; Steel, 2000; Vasas et al., 2012) by
assuming that all reactions are reversible and by following conven-
tional mass-action chemical kinetics, without a need for specific
catalysts (though this factor can easily be incorporated into our
model). Also, unlike most prior theories, our approach gives expli-
cit and careful attention to the stoichiometric properties of auto-
catalytic processes. Using this model, we show that a single
autocatalytic cycle exhibits dynamics similar to the population
dynamics of a single biological species. Furthermore, the interac-
tions between multiple autocatalytic cycles can be described in
the framework of community ecology though anaologies to com-
petitive, predator-prey, and mutualistic interactions. Finally, we
show that rare stochastic perturbations can permanently alter
the trajectory of a chemical ecosystem, meaning that the state of
a system can be said to manifest a memory of environments past,
as noted by Ulanowicz (Ulanowicz, 2009), a likely prerequisite for
adaptive processes to result in divergent evolution.

2. Results
2.1. The basic model of an autocatalytic cycle

The concept of autocatalysis was introduced by Wilhelm Ost-
wald to describe the phenomenon that the rates of some reactions
accelerate over time (Laidler, 1985; Plasson et al., 2011; Schuster,
2019). The term implies that the rates of these reactions are
increased (‘“-catalysis”) by the presence of some of the products
of the reactions (“auto-"). Although autocatalysis was originally
ascribed to single reactions, it has long been appreciated that a
set of reactions can be viewed as autocatalytic insofar as there
are some chemicals that (a) raise the rate of the reaction set, and
(b) are present in the products of the reaction set. In this manu-
script, we define autocatalysis based only on stoichiometry. For
a chemical in a reaction system, if there exists a sequence of ele-
mentary reactions where this chemical is present in both the reac-
tants and products but with a smaller stoichiometric coefficient on
the reactant side, then we say the sequence of reactions is an auto-
catalytic process and the chemical is a member chemical (or
briefly, a member) of this autocatalytic process (Fig. 1A, M). Among
other chemicals, those with larger stoichiometric coefficients on

the reactant side will be referred to as food (Fig. 1A, F), and those
only present in the products will be referred to as waste (Fig. 1A,
W).! Thus, autocatalytic systems consume food to produce more
members (and, perhaps, waste). Under this stoichiometry-based def-
inition of autocatalysis, any autocatalytic process will have some
cyclical organization within its reaction network, because there
must be at least one chemical that is present in both the reactants
and products of the system as a whole.

Under the assumption, standard in chemistry, that all reactions
are reversible, the reverse of an autocatalytic process consumes
members and waste to produce more food. To avoid ambiguity,
we define the “food” and “waste” based on the direction of auto-
catalysis, even though the “waste” for autocatalysis could be
viewed as the “food” for reverse autocatalysis. We will use the food
and waste designations in reference only to a specified autocat-
alytic process. Thus, we allow that the waste of one autocatalytic
process could serve as the food of another autocatalytic process
in the same ecosystem. To distinguish food provided at the ecosys-
tem level from food generated within the ecosystem, we will call
the former input food.

We need to emphasize that our definitions of autocatalysis and
food chemicals are not equivalent to those of some other models,
such as the theory developed for reflexively autocatalytic food-
generated (RAF) sets (Hordijk, 2017; Hordijk et al., 2010). Here,
we are primarily interested in the intrinsic link between autocatal-
ysis, a chemical phenomenon, and growth, a necessary property of
early life, and less concerned with whether a reaction is catalyzed
and whether a reaction network can be fully generated from a
given set of “food” chemicals. Nevertheless, it can be shown that
RAF sets that do not depend on catalysts in the food set contain
autocatalytic cycles, by our criteria, because reflexive catalysis
entails a catalyzed reaction R generating a product that is ulti-
mately converted into the catalyst (by reactions other than the
reverse reaction of R), and this catalyst is not “used up” when it
catalyzes R. This equivalence is illustrated in Fig. S1 and in Supple-
mental Materials, Section 1.

In this paper, we have opted to focus on autocatalytic processes
that consist of one or more reversible second-order elementary
reactions with a cyclical organization such that one member of
the cycle is capable of doubling with each iteration. For example,
we will analyze M + F <~ 2 M, butnot2 M+ F«~ 3 Mor M +F
«— 2 M + 2 W (the latter type is, however, considered by some prior
autocatalytic models (Field and Noyes, 1974; Prigogine and
Lefever, 1968)). The autocatalytic processes we will consider can
be represented by a cycle with one branching reaction (Fig. 1B,
R;) and one reunion member (Fig. 1B, M;). Whereas more compli-
cated, multi-branched cycles are possible according to our
stoichiometry-based definition of autocatalysis, given the require-
ment for a cyclical structure we presume that they will show sim-
ilar overall dynamics to the simple cases studied here. These
single-branched cycles only rely on second-order elementary reac-
tions, which are the most widely studied (Chang, 2005, pp. 325-
328), and resemble some experimentally studied autocatalytic
cycles (Boutlerow, 1861; Breslow, 1959; Morowitz et al., 2000;
Muchowska et al., 2017; Orgel, 2000).

A single-branched cycle has two key nodes: the branching reac-
tion, where, in the autocatalytic direction, one member is a reac-

1 A complication arises if there are multiple chemicals present in both the reactants
and products, but with different stoichiometric asymmetries. For example, for a
reversible reaction X + 2Y < 2X +Y, which chemical is a member and which is food?
According to our definitions, either X or Y can be the member chemical. If X is
regarded as the member, then Y is the food, and vice versa. This example shows that
the roles of member, food, and waste depend on specified stoichiometric asymmetry.
Nevertheless, in the following analyses we have ignored this since our goal is to use
simple examples to clarify general principles. Thus, we will only consider cases where
the food chemicals are only present on the reactant side of an autocatalytic process.
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Fig. 1. Autocatalytic cycle and flow reactor. (A) Overall reaction constituting autocatalysis and reverse autocatalysis. a’s and b’s are stoichiometric coefficients of chemicals
on the two sides of a reaction or a sequence of reactions. An autocatalytic process is characterized by at least one chemical (M) being present on both sides and its
stoichiometric coefficient on the reactant side being smaller than that on the product side (i.e., ay < by). The black arrow indicates autocatalysis; the grey arrow indicates
reverse autocatalysis. (B) The topological structure of a simple autocatalytic cycle. Black arrows indicate the autocatalytic direction, and grey arrows indicate the reverse
autocatalytic direction. Arrows accompanied by black and grey boxes represent a pair of reversible reactions, where the rate constant of a reaction indicated by arrows with a
specific color is shown in the box with the same color. Arrows with an empty box (labelled p, 7, or 7;) represent sequences of potential intermediate reactions. R; is the
branching reaction, where, in the autocatalytic direction, one member M; is on the reactant side and two members M;.; and M;., are on the product side. M; is the reunion
member chemical, which is generated by both paths that split at R;. Labels p, 7y, and 7, denote the number of reactions on the three different paths: p for the path from M; to
Rj, m; for the shorter path from R; to M, and 7, for the longer path from R; to M;. (C) Flow reactor settings. An input food solution constantly flows into the reactor through
entrance I while the solution in the reactor constantly flows out through exit O. The dilution rate is k,. Other chemicals can be added through an additional port, P, as might be
needed. Inside the reactor, the set of members of an autocatalytic cycle is represented by a single circle; the triangle-headed arrow leads from food (F) to members, and the

angle-headed arrow leads from members to waste (W).

tant and two members are products (Fig. 1B, R;); and the reunion
member, which is a shared product of two reaction paths
(Fig. 1B, My). Thus, the topological structure of a simple autocat-
alytic cycle can be characterized by three parameters: p (signifying
“road”), the number of reactions between the reunion member and
the reactant member of the branching reaction; m; (signifying
“path 1”), the number of reactions between a product member of
the branching reaction and the reunion member along the shorter
branch; and 7, (signifying “path 2”), the number of such reactions
along the longer (or equal-length) branch. Table S1 (Supplemental
Materials, Section 2) shows the examples of 0-0-0, 1-0-0, 1-1-2, 2-
0-0, 2-0-1, and 2-1-1 cycles. Note that the 0-0-0 cycle is a simple
reversible autocatalytic reaction.

We model autocatalytic systems in a continuously stirred flow
reactor (Fig. 1C). The source solution of the food is constantly
added into the inflow port (I) and the solution in the reactor is con-
stantly removed via the outflow port (O). The rates of addition, k,,
and removal are the same, meaning that k, is the dilution rate
(Fig. 1C), which is defined as the volume of the solution flowing
into (or out from) the reactor per unit time divided by the volume
of the solution in the reactor. To understand how such a reactor
may model the prebiotic environment, we might view it as a small,
well-mixed pool in a hydrothermal field receiving a constant flux
of liquid from an uphill volcano and simultaneously losing a simi-
lar amount through a downhill outlet (Damer and Deame, 2015).
Alternatively, we can view the reactor as a small patch of mineral

at the bottom of the ocean, with chemicals held in the “reactor” by
adsorption onto the mineral surface, and the “flow” representing
adsorption/desorption occurring at the interface between the min-
eral and an ocean rich in food and poor in waste or member chem-
icals (Wdchtershduser, 1988).

In our models, the reactor has an additional entrance (P) for
introducing additional chemicals. Such an entrance represents
occasional introduction of new chemicals into the system, as might
occur from rare geological events such as meteoritic impacts, long-
distance import of chemicals from other chemical environments,
or the occurrence of rare chemical reactions. In this paper, before
adding member chemicals through entrance P, the concentration
of input food in the reactor is assumed to already be the same as
that of the input solution. All chemicals in these models are
assumed to be soluble at all concentrations considered.

It is worth noting that although our model only considers auto-
catalytic processes consisting of chemical reactions, there is no rea-
son to assume that autocatalytic cycles consist only of the breakage
and formation of covalent bonds. One or more of the steps in an
autocatalytic cycle can entail physical or chemical interactions that
do not affect covalent bonds, such as adsorption or the formation of
non-covalent supramolecular complexes (as is often involved in
catalysis). Nevertheless, the mathematical treatments in this paper
only apply to systems where all reactions follow rate laws, which
means that some of our quantitative conclusions will not apply
to all autocatalytic cycles.
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2.2. The dynamics of a single autocatalytic cycle can be approximated
by logistic growth model

In population ecology, the logistic growth model is widely used
to describe how population size changes over time when resources
are limited. The basic logistic growth model is formalized by the
differential equation:

dN K-N
E:rN<7K ) (1)

where N is the population size, t is time, r is the intrinsic growth
rate, and K is the carrying capacity. This equation shows that N will
finally become stable near K, and that the speed with which N
approaches K is governed by r.

In this section, we will show that the dynamics of a single auto-
catalytic cycle can be approximated by the logistic model. Further-
more, we determine that there are intrinsic connections between
chemical kinetic parameters such as rate constants and ecological
parameters such as the intrinsic growth rate.

2.2.1. The logistic growth of the 0-0-0 cycle
First, we analyze the 0-0-0 cycle:

M+ F% oM @
MM+ F

where M is the sole member, F is the food, k, and k; are rate con-
stants of the forward (autocatalytic) and reverse (reverse autocat-
alytic) reactions, respectively. When this reaction system is put in
a flow reactor where the dilution rate is k, and the concentration
of food in the source solution is f, the input and output processes
of the reactor are described by:

ky,
ol F
ky
FY% o 3)
ky
M—= &
where @ denotes the environment outside the reactor. It can be
shown that if the initial concentration of M is much smaller than
f, the dynamics of [M] (i.e., the concentration of M over time) can

be approximated by the logistic model (see Supplemental Materials,
Section 3):

dM]_ Ky — M)
ar [M] ( Ky ) 4)
by defining:
v =kof —ky
K, 5
ity >

This implies that, provided that k.f is greater than k,, seeding
the reactor with a tiny amount of M will result in logistic growth
of [M] (Fig. 2). This conclusion is not surprising and was already
reported in the literature (Lloyd, 1967). Although the intrinsic
growth rate and carrying capacity seem to be independent con-
stants in the logistic equation (Eq. (1)), we can see that ry and
Ky are non-independent because they are linked directly to the
underlying rate constants. Lowering the rate constant of the
reverse reaction, k,, which amounts to making the net reaction
more thermodynamically favorable, raises Kj; without altering ry,.
In contrast, adding a catalyst, which raises both k, and kj, without
changing their ratio, increases both ry; and Ky, (for details see Sup-
plemental Materials, Sections 4 and 5).

5

4.5

4

3.5

3

25

M]

0 20 40 60 80 100 120 140 160 180 200

Simulation step

Fig. 2. The logistic growth of a 0-0-0 cycle. This logistic growth curve of a 0-0-0
cycle was generated by setting k, = 0.01, k,= 0.01, k, = 0.01, f= 10, and the initial
concentration of [M]o = 0.001.

While increasing the dilution rate k, can increase the amount of
food flowing into the reactor per unit time, it actually decreases ry;
and K); because it also increases the loss rate of M. We can also see
that maximum growth rate and carrying capacity are reached
when k, approaches zero, which corresponds to the case of a closed
reactor. This shows that there is a “cost” to openness: when the
rate of member production and dilution balance out, there will
be more unused food in the reactor than in the case that the system
had reached equilibrium without flow. However, from a chemical
point of view, openness seems inevitable and necessary. This is
because: (a) all systems on the planet, and even the planet itself,
are open systems receiving a flux of free energies in different
forms; (b) only open systems have the potential for complex,
long-term dynamical changes (Wagner et al, 2019); and (c)
although an autocatalytic system may achieve maximum growth
and system size locally in one closed reactor, its success would
not be replicable in other environments. Indeed, if the member
chemicals flowing out from a reactor can later flow into new reac-
tors, increasing k, could be beneficial for the autocatalytic system
to maximize global dispersal. Since the amount of M flowing out
from a reactor per unit time is proportional to k,[M], which can
be defined as a dispersal index, it is easy to show that maximum
dispersal will be achieved when k,/k, = f|2 (see Supplemental
Materials, Section 6).

2.2.2. The logistic growth of the 1-0-0 cycle
Now we proceed to the 1-0-0 cycle (Fig. 3). By making the
substitutions:
S=[Mi] + [Mz] + [W]
M;] = 6,S
[My] = 6,5
W] =(1-01-02)S

(6)

it can be shown that the dynamics of S can be approximated by
the logistic model (see Supplemental Materials, Section 7):

ds Ks—S
afr55< K ) (7)
by defining:

I's = klaelf + k2a92f - kv
Ko — kighf-+haqtaf ks (8)
S Kual +aal+kip (1-01 —0) 12
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Fig. 3. The topological structure of the 1-0-0 cycle. (A). List of reactions. (B).
Graphical representation. Black arrows point in the autocatalytic (forward) direc-
tion, whereas grey arrows point in the direction of reverse autocatalysis. The
reaction boxes containing forward and reverse rate constants are color coded black
and grey, respectively. The two forward arrows leaving the branching reaction
(with the rate constant ky,) indicate a stoichiometric doubling.

Because 0, and 0, are not necessarily constants, rs and Ks may
vary with 60; and 0, across different stages of the growth dynamics.
This suggests that the [M;]-to-[M;] ratio of the initially added
members may have a significant impact on the growth dynamics,
at least initially. On the other hand, numerical simulations show
that 0; and 0, are nearly constant after the early stage of growth
(Fig. 4B), so we can approximately treat rs, Ks, 01, and 60, as con-
stants. Thus, according to Egs. (6) and (7), each of the growth
dynamics of [M;], [M;], and [W] can also be approximated by a
logistic model (Fig. 4A). In addition, the fact that rs and Ks are
related to 0 values shows that the growth dynamics of an autocat-
alytic cycle will be affected by the choice of members to seed the
cycle. Indeed, numerical simulations show that the seed choice
does impact the initial growth rate, but without affecting the car-
rying capacity (see Supplemental Materials, Section 8). The initial
growth rate is the highest if the seed member is the reactant of
the branching reaction, and the lowest if it is the reactant of the
first reaction on the 7, branch (Fig. S3).

Following the same logic, the growth dynamics of other auto-
catalytic cycles of this basic form in a flow reactor are likely to
be approximated by logistic models provided that the starting
concentrations of members are much smaller than the food

A 35 r
3t —n,
s=*r /7 M,
S 2t w
T
815
c
o
O 1
05
0 t—
0 100 200 300 400 500
B 1
0.8 | —,
----- 6
0.6 2
@
0.4
0.2 ™~
0 1 1 1 1 J
0 100 200 300 400 500

Simulation step

Fig. 4. Logistic growth dynamics of the 1-0-0 cycle. (A) The dynamics of waste
(W) and members (M; and M,). (B) The dynamics of 0 values. 0; is the proportion of
member V; in the total concentration of waste and all members. This simulation
was run by setting reaction rate constants to 0.01, f= 10, k, = 0.01, [M;], = 0.001,
and [M]o = 0.

concentration, and/or the starting ratios of the members’ concen-
trations are close to the ratio that they will attain at steady state.
This general logistic form supports a general analogy between an
autocatalytic cycle and a population of organisms. To link the
two together, we may imagine that the chemical cycle represents
the life cycle of a single individual. For example, a 1-0-0 cycle
can be seen as an egg becoming an adult and that adult producing
two eggs and dying, with food needed to convert an egg into an
adult and an adult into two new eggs. There are, of course, major
differences between autocatalytic chemical cycles and biological
organisms, most notably the reversibility of the former. You cannot
feed organisms waste and see them shrink while spitting out food!
We will return to biological irreversibility in the Discussion.

2.3. Numerical analyses of more complicated cycles

Although analytical treatment can generate exact descriptions
of the growth dynamics, it is not always feasible to obtain such
solutions, especially when the autocatalytic cycle consists of more
chemicals and reactions. Thus, hereafter, we use numerical simula-
tions to explore factors that affect the dynamics of more compli-
cated cycles and chemical ecosystems containing more than one
autocatalytic cycle. First, we use numerical analyses to examine
how chemical kinetic parameters affect the growth dynamics of
single autocatalytic cycles.

We considered the 2-0-0, 2-0-1, and 2-1-1 cycles (Table S1,
Fig. S4-6) and ran multiple simulations with the same (symmetri-
cal) rate constants (0.01), but different k, and f. This allowed us to
explore the relationship between the parameters determining food
flux, namely the dilution rate k, and the input food concentration f,
and the parameters describing growth (the intrinsic growth rate



6 Z. Peng et al./Journal of Theoretical Biology 507 (2020) 110451

ry, the carrying capacity Ky) and maximal potential dispersal
(k,Kpr). We explored k, € [0, 0.012] and f < [0, 4] (Fig. S7).

Not surprisingly, for the same combinations of f and k,, net-
works with more members have lower values of ry, (Fig. S7A, D,
G), Ky (Fig. S7B, E, H), and k,Ky; (Fig. S7C, F, I). This follows since
a larger cycle requires more food for each iteration of the full cycle.
It is also intuitive that larger cycles have a higher threshold flux
rate (f |/ k,) needed for the cycle to grow and sustain itself (i.e.,
Ky exceeding the tiny initial concentration of members). In addi-
tion, if we define the threshold of f | k, as #, then for f | k, > n, ryy
and Ky are generally positively correlated to (f —nk,)/\/1 + y?
(see Supplemental Materials, Section 9, Fig. S8). Concerning the
potential dispersal, for a given f, the maximal k,Ky; is achieved
when k, is approximately f/ (24) (Fig. S7C, F, I), which is consistent
with the well-known principle that the maximum sustainable
yield of a logistically growing population is achieved when the
population size is half its carrying capacity.

2.4. Chemical interactions between autocatalytic cycles mimic
ecological interactions between biological species

The prior sections showed that an autocatalytic cycle in a flow
reactor has many similarities to a population of organisms. This
suggests that if multiple autocatalytic cycles can chemically inter-
act within a flow reactor, their dynamics might be similar to those
of ecological interactions between populations. To investigate this
explicitly, we examined different types of interactions between

A B

Reactions Annotation
M+F < 2M M cycle F
H+F o 2p M cycle \
)\
VMo
~ 4

Fig. 5. A possible reaction network underlying competition of two 0-0-0 cycles.
(A) Reactions in the network. See Figure S9 for graphical representation. (B)
Summary diagram of the interaction between M (shown by the solid circle) and p
(shown by the dashed circle). M and p compete for the same food F.

pairs of autocatalytic cycles. The scenarios examined below are
only a subset of the possible interactions among autocatalytic
cycles. Also, the mechanisms shown below are only a subset of
all possible mechanisms underlying the examined ecological inter-
actions; for example, we will show that recycled waste can medi-
ate mutualisms, but mutualisms may also be mediated by reflexive
catalysis.

2.4.1. Competition

In ecology, competition arises when multiple species compete
for the same resources and those resources are limited (Neill
et al.,, 2009; Passarge et al., 2006; Sommer, 1999). For example,
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Fig. 6. Simulations of competition. (A) Competitive coexistence. (B) Competitive exclusion. Parameters used to generate the dynamics are shown next to the dynamics. In

both cases, M was seeded at the beginning and p was seeded at the 2000th step.
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Fig. 7. Sample reaction networks underlying mutualism. (A)(B) Facultative mutualism or unidirectionally obligate mutualism. (C)(D) Reciprocally obligate mutualism.
(A)(C) List of reactions and verbal summary. See Figure S10 for graphical depictions. (B)(D) Summary diagrams with the M and p cycles shown in circles. Input of food is
shown with triangle-headed arrows whereas output of waste is shown with angle-headed arrows.

plants compete for sunlight and predators compete for prey. In
ecology, in cases where at least one of the species is viable in a cer-
tain ecosystem, possible results of pairwise competition are: (a)
competitive coexistence, where competitors exist in the same
environment and (b) competitive exclusion, where one competitor
survives and one goes extinct. Using two simple 0-0-0 cycles that
share the same food (Fig. 5, Fig. S9), it can be shown that there
are three possible steady states (see Supplemental Materials, Sec-
tion 10), one corresponding to coexistence and two to exclusion,
as follows.

M) = kakpf —ky (Ka+ky—ka)

kakg+kokp+kpks (9)
ko kpf—ky(ka+kp—ks
(1) =
M) = kaf —ky
M] =0 a
= e )

To visually present the dynamics of competition, we numeri-
cally simulated two representative scenarios (Fig. 6). For both sce-
narios, the M cycle is assumed to have lower rate constants than
the p cycle, making p a better competitor. In each scenario, M
was introduced at the beginning, with p introduced later. When
the rate constants are close in magnitude, competitive coexistence
occurs, where p suppresses M but M can still persist (Fig. 6A). In
contrast, when the competitive ability of u relative to M exceeds
a threshold, competitive exclusion occurs, where the introduction
of pn results in M declining towards zero concentration (Fig. 6B).

In the scenarios shown in Fig. 6, the ratio between the rate con-
stants of the forward and reverse reactions is kept constant. There-
fore, these results illustrate that catalyzing reactions in one
autocatalytic cycle increases the competitiveness of that cycle rel-
ative to other cycles, even though catalysis accelerates both the
forward and reverse reactions. This implies that cycles that happen
to be able to utilize environmental chemicals (e.g., metal ions) as
their catalysts, are more likely to persist than equivalent cycles
that do not have such an ability. In addition, if the reaction network
is more complex such that the members or waste of a cycle can be
converted into the catalysts of the cycle, the network as a whole is
likely to have higher competitiveness.

It is worth noting that when an ecosystem is taken over by a
better competitor with higher rate constants, the efficiency with
which the food flux is exploited generally increases, as seen by a
significant decline in the concentration of food in the reactor
(Fig. 6A,B). Although the decline in [F] is not strictly monotonic
since matter stored in M may be converted back to food as . estab-
lishes (Fig. 6A,B), the food concentration in the M-dominating
phase is markedly higher than in the p-dominating stage. This
aligns with the intuition that there is a tendency for chemical
ecosystems to become progressively better at exploiting food over
time. However, this only follows when both cycles have similar
standard Gibbs energy changes and when there is no disturbance.
It is easy to imagine (and confirm by simulation) that in cases
where there is frequent disturbance or forced dispersal, a rapidly
growing but thermodynamically less favored autocatalytic cycle
can outcompete a slower growing but thermodynamically more
favored cycle.

In the case of competition between larger autocatalytic cycles, it
is possible for competition to be for food, or waste, or both. This
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follows because the accumulation of waste can facilitate reverse
autocatalysis, which means that for an autocatalytic cycle, if there
are other competitor cycles generating the same waste, its growth
will be suppressed. Numerical simulations (not shown) confirmed
that the range of possible outcomes is the same when competition
is for waste rather than food.

2.4.2. Mutualism

Since metabolic networks of living organisms consist of a large
number of chemicals and reactions that appear to cooperate, “co-
operation” between chemicals and reactions has long been consid-
ered as an important factor in the origin of life (Ehrenfreund et al.,
2006; Herschy et al., 2014; Lanier et al., 2017; Mathis et al., 2017;
Pereira et al., 2012; Vaidya et al., 2012). Before the origin of meta-
bolic control via the encoded production of specific catalysts,
cofactors, and inhibitors, mutualistic interactions among autocat-
alytic systems could explain the emergence of metabolic complex-
ity (Gatti et al., 2017). Indeed, it has been shown that a replicating
system of cooperating molecules can outcompete “selfish” replica-
tors (Hordijk and Steel, 2013), suggesting that mutualistic interac-
tions are important drivers of the complexification. In facultative
mutualism, different species can survive without each other but
nonetheless gain a benefit from each other’s presence. For exam-
ple, many insect pollinators can exploit multiple alternative food
sources, and plants can utilize multiple different pollinators. In
obligate mutualism, cooperating species require one another for
survival or reproduction. For example, figs and fig wasps form
reciprocally obligate mutualism, as figs require fig wasps to repro-
duce and vice versa. In this section, we will show how the interac-
tions between two 2-0-0 cycles can generate the dynamics of
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facultative mutualism, unidirectionally obligate mutualism, and
reciprocally obligate mutualism.

Facultative and obligate mutualisms can be generated between
the cycles where the food of one is the waste of the other (Fig. 7,
Fig. S10). In our model of facultative mutualism (Fig. 7A,B,
Fig. 8A-C), when reactions are initiated just by M; (Fig. 8A) or
(Fig. 8B), the M cycle or u cycle, respectively, can survive in the
reactor. However, the carrying capacities of both cycles are higher
when both cycles are initiated (Fig. 8C). This is because the produc-
tion of Fy by the p cycle provides additional food for the M cycle
and the consumption of Fy by the M cycle helps remove waste
from the p cycle, promoting reactions in the autocatalytic direc-
tion. Therefore, the interaction between these two cycles is a facul-
tative mutualism.

To model unidirectionally obligate mutualism, the only modifi-
cation needed is to no longer add Fy; through the entrance I as
input food (Fig. 1C) such that fy; = 0. Thus, the M cycle completely
relies on the Fy produced by the p cycle, whereas the p cycle can
survive without the M cycle. In this case, if the reactions are initi-
ated by both M; and p, the M cycle can survive as the u cycle pro-
duces Fy (Fig. 8D). Furthermore, the p cycle achieves a higher
carrying capacity as its waste is consumed by the M cycle
(Fig. 8D). In this scenario, the presence of the p cycle is necessary
for the survival of the M cycle. However, the presence of p is not
sufficient to guarantee that M persists: f,, could be low enough that
it can support the growth of p but results in the production of too
little Fy to support the growth of M.

To increase the benefits of cooperation still further, we can
consider a case where the waste of one cycle is an indispens-
able food (i.e., one not provided from the external sources) for
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Fig. 8. Simulations of facultative and unidirectionally obligate mutualisms due to recycled waste. The vertical axis shows the total concentration of members for the M
and/or p cycles. All rate constants are 0.02, and k, = 0.001. (A-C) correspond to facultative mutualism because food for both cycles is provided (fyy = f, = 5), whereas (D)
corresponds to unidirectionally obligate mutualism because only F, is provided (fy = 0; f, = 5). Simulations A-C differ in whether they are seeded with M only (A:[M;]o =

0.001), pu only (B:[1t4]o = 0.001), or both (C:[M;]o = [p1]o = 0.001).
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Fig. 9. Simulation of reciprocally obligate mutualism due to recycled waste. (A) The dynamics of the total concentration of members for the M and p cycles. The
concentration of M and p members follow the same trajectory. (B) A zoomed-in view of the growth phase of the dynamics shown in A. The simulation was run by setting all
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Fig. 10. Possible reaction network underlying predation. (A) Reactions in the network. Figure S11 provides a graphical representation. (B) Summary diagram of the
interaction between M and p. The p cycle consumes the members of the M cycle as food. Input of food is shown with triangle-headed arrows whereas output of waste is

shown with angle-headed arrows.

the other, and vice versa (Fig. 7C,D). Such a strong, reciprocally
obligate mutualism ties the two cycle’s fate together closely
(Fig. 9). In these conditions, the growth curves (Fig. 9) differ
from a typical logistic curve (e.g., Fig. 2) in that there is a long
waiting time before the onset of fast simultaneous growth of
[M] and [p].

Mutualisms allow autocatalytic cycles to exploit food chemicals
that they cannot directly use. Thus, in these examples, the M cycle
has access to the energy stored in F,, (Fig. 7B,D), and the p cycle has
access to the energy stored in Fy; (Fig. 7D), allowing each cycle to
more efficiently use energy sources and achieve higher carrying
capacity in the presence of the mutualist (Figs. 8, 9). This feature
of mutualism underlies the centripetality of a chemical ecosystem,
which is also an important property of biological ecosystems
(Ulanowicz, 1997).

2.4.3. Predation

Predation, in which predators kill and feed on prey species, is a
common way for many organisms to obtain food. Pathogenesis and
parasitism are similar to predation; pathogens and parasites also
feed on host species but usually consume only part of the host,
not killing the host immediately. Classically, the population
dynamics of predator-prey systems is modelled using the Lotka-
Volterra equations (Lotka, 1927, 1920; Volterra, 1927, 1926),
which allow that predation may lead to diverse dynamics, includ-
ing stable oscillation, damped oscillation, and establishment of a
steady state without oscillation. In this section, we will show that
if the members of one 2-0-0 cycle are the food of another (Fig. 10,
Fig. S11), dynamics resemble the Lotka-Volterra model.

In numerical simulations, the parameters of the prey cycle, M
(Fig. 10), were held constant, with equal forward and reverse rate
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Fig. 11. Alternative outcomes of simulations of predation. The dynamics of the total concentration of members for the M and p cycles, when the M cycle is the prey cycle
and the p cycle is the predator cycle. The parameters specific to a simulation are shown to the left of panels A-D, while panel E shows parameters shared by all simulations.
(A) Extinction of the predator cycle. (B) Steady state coexistence of the prey and predator cycle. (C) Damped oscillation of the prey and predator cycles. (D) Stable oscillation of

the prey and predator cycles.

constants (Fig. 11E), and we examined how the dynamics varied
with different rate constants for the predator cycle, p (Figs. 10,
11A-D). If the predator rate constants are the same as the prey rate
constants, the predator cycle cannot survive in the reactor
(Fig. 11A). If the predator rate constants are larger but equal in
the forward (autocatalytic) and reverse directions, the predator
cycle can survive in the reactor at steady state (Fig. 11B). When
the predator’s rate constants for autocatalysis exceeds those of
reverse autocatalysis, resulting in what we might think of as a
higher predation efficiency, the dynamics can display damped
(Fig. 11C) or stable oscillations (Fig. 11D). However, higher preda-
tion efficiency decreases the concentrations of both the predators
and prey in the reactor (Fig. 11B-D).

2.5. Ecosystem dynamics and the transition to evolution
We have shown that individual autocatalytic cycles show

behavior similar to populations of individual species in an ecosys-
tem and that pairs of cycles can exhibit interactions similar to

those previously studied in ecology. How might our understanding
of the origins of life, and especially the origins of adaptive evolu-
tion, be clarified by such a chemical ecosystems perspective? We
will attempt to show here that the dynamical behavior of even
simple ecosystems can come to resemble evolution in two ways.
First, long-term dynamical patterns can be observed. Second, the
order in which different potential autocatalytic cycles become
actualized can be sensitive to the history of seeding, which can
result in historical contingency. We will not attempt, here, to
extend the model to include transitional steps towards more famil-
iar genetics-based evolution, though we believe that this is quite
feasible within a chemical ecosystem ecology framework.

In ecology, succession refers to changes in species composition
within a geographical range over time (Connell and Slatyer, 1977;
Morin, pp. 319-339, 2011; Prach and Walker, 2011). Although such
changes are gradual, the entire process can sometimes be sepa-
rated into distinct stages, each with different dominating species
(Morin, 2011, pp. 319-339). Insofar as these changes are autogenic,
driven by the properties of the species in the ecosystem rather than
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Fig. 12. A possible reaction network underlying occupancy advantage. (A) Reactions in the network (see Figure S12 for a graphical representation). The waste of each cycle
reacts with the food of the other cycle to form a compound that cannot be directly utilized by either cycle. (B) Summary of the interaction. Input of food is shown with
triangle-headed arrows, output of waste is shown with angle-headed arrows, and inhibitory reactions are indicated with flat-ended double lines (the double lines reflect that

the ratio of the food stoichiometric coefficient to that of waste is 2:1 in this model).

changes in the external environment itself, which is commonly the
case (Connell and Slatyer, 1977), the changes have an evolutionary
character. The current state of an ecosystem in a particular area is a
heritable phenotype because that state is self-sustained for at least
a period of time due to constant regeneration of the species pre-
sent. While not sufficient for adaptive evolution, the heritability
of a successional stage, rather similar to the epigenetic mainte-
nance of cell type during the development of multicellular organ-
isms, provides the first necessary ingredient for evolution.

Successional dynamics have two key components: a delay in
the invasion of late successional species and (perhaps) the decline
and/or eventual extinction of early successional species. The for-
mer feature could involve early successional species facilitating
the later establishment of late successional species. Of these poten-
tial mechanisms, we have already described some of the possible
mechanisms. Trophic level climbing applies when the establish-
ment of early successional prey can support the later establish-
ment of a predator. Unidirectional, obligate mutualism, where an
early successional cycle/species produces waste that serves as
essential food for a late successional cycle/species, can also
explain this pattern. Similarly, although we have not modelled it
here, it should be obvious that niche amelioration can occur, in
which an early successional cycle/species removes an inhibitory
factor from the environment that would otherwise make the late
successional cycle/species inviable. Putting these together it
seems clear that networks composed of many potential
autocatalytic cycles have the potential to show long-term
dynamical changes.

Succession-like dynamics could result from deterministic fac-
tors, such as earlier-activated cycles facilitating later cycles and
more competitive cycles tending to drive less-competitive cycles
to extinction. In biological ecosystems, while the trajectory of suc-
cession is influenced by stochastic factors such as the arrival of
seeds or other propagules, deterministic factors can dominate late
in succession as communities converge to more predictable com-
positions (Mdren et al., 2018). This contrasts with long-term evolu-
tionary dynamics, which are subject to historical contingency,
where chance events alter the potential for further evolution. This
allows for the amplification of differences over time such that
evolving lineages can diverge almost indefinitely. Could such his-
torical contingency also come in to play in chemical ecosystems?

The obvious place to look for historical contingency is occu-
pancy advantage, in which an established occupant of an environ-
ment has an advantage over potential invaders merely by virtue of
having established first (Wright and Vetsigian, 2016). Such a “sur-
vival of the first” or “priority effect” phenomenon is important to
explore because it establishes cases in which, depending on which
cycles are actualized by rare seeding events first, different trajecto-
ries can be established. Or, to put it another way, an ecosystem can
be said to remember prior chemical exposures, at least for a time.
In this section, we will show how the mutual inhibition of two 2-0-
0 cycles can result in occupancy advantage (Fig. 12, Fig. S12). The
inhibition is mediated by the waste of one cycle reacting with
the food of the other cycle to form a compound, X or Y, that cannot
be directly utilized by either cycle.

In our simulations we assumed that each cycle has equal rate
constants for forward and reverse reactions, but the p cycle has
10% higher rate constants than the M cycle. Nonetheless, if the M
cycle is the first occupant, it can still dominate the reactor and pre-
vent establishment of the p cycle (Fig. 13A). Only if the amount of
introduced 1, is higher than a threshold can the p cycle take over
the reactor (Fig. 13B). In other words, the reaction network
described in Fig. 12 specifies a bistable system, where the non-
trivial steady states are either M-dominated or p-dominated, and
the switch between the steady states requires a large-enough trig-
ger. The same holds when the p cycle is the occupant and the M
cycle is the invader (Fig. 13C,D), but the threshold amount of M;
for switching the state is much higher.

In some cases, when the seeding is rare and stochastic, ecosys-
tems can “remember” whether they were first seeded by M or p.
Suppose that a reactor starts to run without any of the members,
with occasional seeding events bringing in either the M; or p;.
Depending on the frequency and magnitude of the seeding events,
the outcome would be different. In a case where one cycle (p) has a
higher carrying capacity and can more efficiently utilize the envi-
ronment and suppress the other (Fig. 13, Ky =~ 1.42, K, ~ 1.49),
and the magnitude of each seeding event is below the threshold
for switching the M-dominated state to the p-dominated state,
the extent of historical contingency is determined by the frequency
of seeding events. If seeding events are frequent enough, the sys-
tem will tend to end up p-dominated because p will eventually
accumulate enough members to trigger the M-to-p switch, but if
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Fig. 13. Simulations of occupancy advantage due to mutual inhibition. (A)(B) The dynamics of the total concentration of members for the M and p cycles, when the M
cycle is the occupant and the i cycle is the invader. If the amount of 1; introduced at the 2000th timestep is below the threshold then it cannot invade (A), but if it is above the
threshold, it can (B). (C)(D) The dynamics of the total concentration of members for the M and p cycles, when the L cycle is the occupant and the M cycle is the invader. In this
case the concentration of M; needed to supersede the p cycle (C, D) is about ten times higher than that of |1; to supersede the M cycle (A, B). (E) Parameters shared by all

simulations (variable parameters provided in panels A-D).

seeding is very rare, the system will converge to whichever state
was triggered by the first seeding event (Fig. S13).? This shows that
the ability of a system to capture information about history (which
seeding event happened first) depends on the system’s dynamics.

3. Discussion

3.1. An ecological perspective clarifies the expected dynamics of
autocatalytic chemical systems

It has long been appreciated that there are parallels between
chemical reaction systems and ecology (Lloyd, 1967). Flux balance
analysis, a method designed for studying metabolic pathways
(Khandelwal et al., 2013), and the RAF theory (Gatti et al., 2017)
have both been applied to ecological communities. Here we have
explored these parallels in more detail, focusing on one particular
chemical motif, the autocatalytic cycle.

We show that simple autocatalytic cycles exhibit logistic
growth in a flow reactor when the reactor is seeded with a small
quantity of a member and the ratio of the food concentration to
the dilution rate is above a threshold. In such cases, the growth rate
and carrying capacity can be connected back to flow parameters
and reaction kinetics. This result demonstrates that individual
autocatalytic cycles have conceptual equivalence to populations
of individual species and implies that chemical reaction networks
composed of multiple autocatalytic cycles that are actualized in a
specific environment can be equated with a chemical ecosystem.

Diverse interactions among autocatalytic cycles, combined with
the potential for rare seeding of previously inactive cycles, allow
chemical ecosystem to show complex, long-term dynamics.

2 When the magnitude of seeding events is larger, the resulting dynamics will be
less affected by the frequency of seeding events. If the magnitude is between the
threshold for the M—to-p switch and that of the p-to-M switch, the system tends to
end up p-dominated because the p cycle can always invade the M—dominated state
but not vice versa. If the magnitude is higher than the threshold for the pi-to-M switch,
the system tends to keep switching between the M—dominated and p-dominated
states because the p cycle can always invade the M—dominated state and vice versa.

Among other patterns, it is possible for a chemical ecosystem to
transition between a series of transiently steady states, each char-
acterized by a different set of active and viable cycles (together
with their peripheral reactions). We would argue that this phe-
nomenon, which is driven by both stochastic and deterministic
forces, can validly be equated with ecological succession and exhi-
bits some evolutionary features.

Using a series of numerical simulations, we have demonstrated
that autocatalytic cycles can negatively affect one another, via pre-
dation on member chemicals, production of cross-inhibitors, or
competition for food or waste. Likewise, autocatalytic cycles can
form reciprocal mutualisms, for example by cross-feeding or
removal of waste. Indeed, sets of cooperating autocatalytic cycles
can be seen to show autocatalysis at a higher hierarchical level in
much the same way that biological ecosystems can show auto-
catalysis among multiple individual species (Gatti et al., 2017;
Ulanowicz, 1997). Consequently, our results suggest the possibility
of using ecological theory to help model and understand the
behavior of complex chemical reaction networks, such as those
seen in cellular metabolism. If a network includes multiple discrete
autocatalytic cycles whose pairwise positive and negative interac-
tions can be quantified, it may be possible to predict ecosystem
behavior using approaches from ecosystem ecology, where each
autocatalytic cycle is treated as a species. For example, one can
use ecosystem matrix methods (Delmas et al., 2019; Ulanowicz,
2004) at a coarse-grained level and apply concepts such as trophic
levels, food webs, and guilds. This might be a useful approach for
studying chemical reaction networks in cases where the rate con-
stants of individual reactions are largely unknown.

A complication that would likely arise in a coarse-graining pro-
cedure is the existence of more complex architectures than the
simple, single-branched autocatalytic cycles that we investigated
in this paper. Autocatalytic cycles can overlap (Fig. S1), for exam-
ple, when there are multiple alternative branching reactions,
reunion members, and reaction paths. In much the same way that
it can be unclear whether to treat obligate mutualists, such as an
endosymbiont and its host, as one composite species or two, it
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can also be ambiguous whether mutualistic cycles ought to be
treated as a set of cooperating cycles or as a single, larger autocat-
alytic cycle. Further work is needed to understand the diversity of
autocatalytic motifs in real chemical reaction systems and to eval-
uate the extent of applicability of ecological methods.

The development of models of network autocatalysis is not only
of theoretical importance but is needed to guide the development
of experimental strategies for detecting autocatalysis (Baum and
Vetsigian, 2017; Semenov et al., 2016; Vincent et al., 2019). A char-
acteristic of all the ACs studied here is periods during which chem-
ical concentrations show exponential growth or decline. However,
further work with more complex networks is needed to under-
stand whether this feature can serve as a failsafe indicator of auto-
catalytic processes.

3.2. During the origin of life, chemical ecosystems evolved adaptively
before the emergence of polymer-based digital genetics

A key challenge in origin-of-life research is that most evolution-
ary models require genetic polymers, but such chemicals are ener-
getically expensive, unlikely to form by chance, and seem to
require the simultaneous existence of metabolic systems for the
continuous formation of their constituent monomers. An emerging
view is that heritability in early life was encoded by chemical con-
centrations, or analog inheritance, with a later transition to
sequence-based encoding in linear polymers, or digital inheritance
(Walker and Davies, 2013). The framework developed here con-
firms prior work supporting the plausibility of analog inheritance
and adaptive evolution before digital genetic encoding (Goldford
and Segré, 2018; Hordijk, 2016; Hordijk et al., 2012; Hordijk and
Steel, 2014; Liu and Sumpter, 2018; Vasas et al., 2012, 2010).

Our model focuses on simple autocatalytic cycles, which are
numerous in extant metabolism (Sousa et al., 2015; Xavier et al.,
2020), known in experimental organic chemistry (Boutlerow,
1861; Breslow, 1959), common in random chemical networks
(Liu and Sumpter, 2018; Virgo and Ikegami, 2013), and, thus, likely
to have been seeded spontaneously in chemically diverse environ-
ments like the early Earth. Unlike some previous frameworks, we
model these cycles using rate laws and standard, reversible chem-
ical reactions. Our model confirms that an autocatalytic cycle con-
sisting of reversible reactions can be triggered by import or local
production of one of its members, a seed, and then show logistic
growth of member and waste chemicals, and a corresponding
decline in food chemical, bringing the ecosystem as a whole to a
new transiently steady state. At this quasi-steady state, the ecosys-
tem can be said to manifest heritability in that the flux out of a
reactor, which can be thought of as the ecosystem’s offspring, have
the same concentrations of member chemicals as the reactor itself
and would be expected, therefore, to convert downstream reactors
to a similar state.

In addition to the deterministic forces which cause chemical
ecosystems to manifest heritability, stochastic phenomena have
the potential to alter a reactor’s trajectory. Seeding of a new auto-
catalytic cycle, which might establish a new transient steady state
(Kreyssig et al., 2012), can be triggered by even a single molecule of
a member chemical, which means that the activation of a new
cycle might be rare and highly unpredictable. In this regard, as
noted by Vasas et al. (Vasas et al., 2012), the seeding of new auto-
catalytic cycles resembles mutation. Moreover, some of these
chemical mutations can irreversibly change future dynamics. For
example, our model of occupancy advantage shows that whichever
of two mutually inhibitory cycles is seeded first can suppress the
other cycle indefinitely (if seeds are small enough and rare
enough). This is significant because, depending on which cycle is
established, alternative future paths could become more or less
discoverable, resulting in a tendency for alternative ecosystems

to diverge over time by constantly opening new “adjacent possi-
bles” (Kauffman, 2014).

This conceptual framework suggests that chemical ecosystems
receiving an ongoing flux of potential input food would be
expected to show dynamics that are basically identical to evolution
despite lacking any digitally encoded genetic information. A chem-
ical ecosystem would presumably spend most time at quasi-steady
states, where deterministic forces tend to keep all the activated
autocatalytic cycles at carrying capacity. However, over longer
periods, systems will tend to explore the local chemical space
due to stochastic fluctuations and seeding events, resulting, occa-
sionally, in a transition to a new quasi-steady state. These may
include the addition of new autocatalytic cycles that are able to
coexist with the old cycles, for example through mutualistic or
competitive or predatory coexistence. Alternatively, new cycles
can snuff out preexisting cycles, for example through competitive
or predatory exclusion, or inhibition.

In an actual spatial environment, rather than the idealized well-
mixed reactors modelled here, we believe that long-term ecosys-
tem dynamics deserve to be viewed through the lens of evolution.
If there were multiple spatial locations housing loosely connected
reactor-analogs, for example a network of pores in a rock matrix or
a cluster of mineral grains to which member chemicals are
adsorbed, then different ecosystems could readily compete for
invasion of new space. While much more work and spatially expli-
cit models are needed, our simple simulations here suggest some
of the factors that might shape such adaptive evolution.

Although we were able to show that a sufficient flux of food can
drive a system out of equilibrium regardless of the standard Gibbs
energy change of the chemical reactions, we also observed that
autocatalytic systems that are thermodynamically favored, having
higher rate constants in the autocatalytic direction, tend to grow
faster and achieve higher carrying capacity, resulting in a compet-
itive advantage. This implies that, if competing cycles were seeded
over time, and those cycles could exploit different food and/or gen-
erate different waste chemicals, the cycles that persist will tend to
be those that are most thermodynamically favored, using food that
is further from thermodynamic equilibrium and producing lower-
energy waste. We would go so far as to speculate that the irre-
versibility of modern life is not an indication that the life state re-
quires truly irreversible chemistry but that there has been a
persistent tendency for less and less reversible cycles to have
become enriched in metabolic systems over the eons due to adap-
tive evolution.

We also show that, regardless of thermodynamics, autocatalytic
cycles with overall higher rate constants are favored. Since cata-
lysts, by definition, raise reaction rate constants, this implies that
catalyzed cycles will also tend to predominate. Catalysts may be
obtained directly from the environment (i.e., environmental cata-
lysts, such as metal ions) or derived from members or waste of
autocatalytic cycles. Our framework suggests that, all things being
equal, an autocatalytic cycle that is catalyzed will outcompete one
that is not, implying that selection will favor cycles that are better
able to synthesize and utilize catalysts. This insight may shed some
light on how and why digital genetic encoding evolved in chemical
ecosystems on the path to life.

The precursors of both amino acids and nucleobases can be
derived from members of the reductive citric acid cycle
(Morowitz et al., 2000), an autocatalytic cycle whose reactions
can, to some degree, proceed with transition metal catalysts rather
than the enzymes used in modern life (Muchowska et al., 2017).
Generally, we would expect polymers to behave like predators or
parasites of monomer-producing cycle(s) since they would siphon
off member chemicals and reduce growth. However, if some poly-
mers provided a benefit to the monomer-producing cycle through
catalysis, the polymers and the monomer-producing cycle could
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both increase in abundance, making them collectively more com-
petitive and more extinction-resistant. It is even possible to imag-
ine that selection would favor ecosystems producing a second kind
of polymer that aided the ecosystem by promoting the production
of catalytic sequences of the first polymer type, for example by
promoting template-guided synthesis. Thus, while much more
work is needed, there are reasons to suspect that adaptive evolu-
tion could begin in analog chemical ecosystems and gradually tran-
sition to a polymer-based digital genetic system such as that seen
in cellular life.
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Materials and methods
Simulation algorithm

For a chemical «, its concentration in the reactor is [kx]. The
instantaneous change in [x] may be due to three processes: addi-
tion, dilution, and reaction.

If k is added constantly through the entrance I (Fig. 1C), we have

d[x]

dt = kvfic (12)

addition,]

where k, is the dilution rate and f, is the concentration of x in the
source solution.
If k is added through the port P (Fig. 1C) at time t’, we have

dx]

i =1, (13)

addition,P;t=t'

where I, is the instantaneous growth rate of [x] only due to the
addition of x through the entrance P at t"

As k is constantly diluted and removed from the reactor
through the exit O (Fig. 1C), we have

% dilutiont=t' —ko[Kly (14)

Also, k is constantly produced and consumed by chemical reac-
tions. For a reversible reaction R; consisting of the forward reaction
Rjq and the reverse reaction R;j,, we have

d[x]

dt = Vjget (_wjﬂ-K + wijC) + Vjpe—t (_wfb-K + wfﬂ»“) (15)

'
Rjst=t

where 7, and vy, are respectively the reaction rates of Rj; and Ry, cal-
culated according to rate laws, wjq, and wjp, , are respectively the
stoichiometric coefficients of x on the reactant and product sides
of Rj. Specifically, if x is only on the reactant side of Rj,, then wj,
« = 0; if x is only on the product side of Rj, then wjq, = 0; if k is
not involved in Rjq, then wjq, = wjp, = 0.

Thus, for the flow reactor where there are Z possible reversible
reactions, the instantaneous change rate in [k] at t’ is given by

dief|  _dx] dix] dix]
dt t=t’ de addition, [ de addition,P;t=t’ dt dilution;t=t’
z
d
+Z¥ (16)
=1 t Rjit=t'

Equation (16) needs to be applied to every chemical involved in
at least one of the Z reversible reactions.

To run numerical simulations, the instantaneous change in [x]
from ¢; to t;. is approximated by

_ a4 (17)

A[K}[iﬂtpr] dt
t=t;

where the time step size At = t;.; — t;. For simplification, in all the
simulations reported in this paper, At = 1.

The simplification that At = 1 would cause errors when d[k]/dt
is too large. When such an error was detected, we decreased the
rate constants and dilution rates proportionally to circumvent
the error.

The Python code that we used to perform the simulations is in
Supplemental Materials.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jtbi.2020.110451.
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