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Abstract

Traditionally, the monolayer (two-dimensional) cell cultures are used for initial evalu-
ation of the effectiveness of anticancer drugs. In particular, these experiments provide
the ICsg curves that determine drug concentration that can inhibit growth of a tumor
colony by half when compared to the cells grown with no exposure to the drug. Low
ICsp value means that the drug is effective at low concentrations, and thus will show
lower systemic toxicity when administered to the patient. However, in these exper-
iments cells are grown in a monolayer, all well exposed to the drug, while in vivo
tumors expand as three-dimensional multicellular masses, where inner cells have a
limited access to the drug. Therefore, we performed computational studies to compare
the IC5q curves for cells grown as a two-dimensional monolayer and a cross section
through a three-dimensional spheroid. Our results identified conditions (drug diffu-
sivity, drug action mechanisms and cell proliferation capabilities) under which these
ICsp curves differ significantly. This will help experimentalists to better determine
drug dosage for future in vivo experiments and clinical trials.

Keywords Drugs efficacy - ICsq values - Monolayer versus spheroid cell cultures

Mathematics Subject Classification 92-08 - 92B05 - 92C50

1 Introduction

In general, drug—dose response curves are used to measure and analyze the relationship
between a drug’s inhibitory capabilities associated with its respective concentrations.
Inhibitory concentration curves denoted IC, are dose response curves that allow for
determining the drug concentration required to reduce a population of viable cells by
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Fig. 1 Schematics of 2D and 3D cell cultures and their mathematical analogues. a A schematics of the
2D monolayer cell culture, a corresponding fluorescent microscopy image of a part of the Petri dish, and a
snapshot from our in silico analogue model of the 2D cell culture. b A schematics of the 3D multicellular
spheroid culture, a corresponding bright field microscopy image of a part of the well plate, and a snapshot
from our in silico analogue model of the cross section through the 3D spheroid. The background color
represents drug concentration to illustrate local drug gradients from high concentration (yellow) to low
concentration (blue). Experimental images courtesy of the Moffitt Analytic Microscopy Core (Color figure
online)

x%, when compared to the cells grown with no exposure to the drug (Chou 2006). This
change in cell population size could be a result of increased cell death or suppressed
cell proliferation. Drug discovery and pharmacology studies use the ICsq values to
determine drug effectiveness (potency). Low ICsg value means that the drug is potent
at low concentrations, and thus will show lower systemic toxicity when administered
to the patient. The drug—dose response curves are also used to identify synergistic
combination therapies and drug interactions mechanisms (Yu et al. 2015; Tallarida
2011; Chevereau and Bollenbach 2015).

However, the typical experiments to determine the ICsy curves are performed in
two-dimensional (2D) monolayer cell cultures in Petri dishes (Fig. 1a). The cells are
covered with a medium of uniform drug concentration and grown for 72 h which is a
timeframe long enough for cells to divide 1-2 times and to observe drug effects without
cells reaching confluence (Turner and Charlton 2005; Hafner et al. 2016). In contrast,
in vivo tumors develop as three-dimensional (3D) masses of tightly packed tumor
cells, and thus, their response to therapeutic interventions may be different than in 2D
experiments. To test drug potency in vitro in a way to preserve geometry of typical in
vivo tumors, the 3D cultures of multicellular spheroids were developed (Pampaloni
et al. 2007; Laurent et al. 2013; Weiswald et al. 2015). In these experiments, the
3D spheroids are first formed either by proliferation from single seeded cells or by
aggregation of individual cells seeded together (Weiswald et al. 2015; Rodrigues et al.
2018). The spheroids are then covered with a medium with a uniformly dissolved
drug (Fig. 1b); similar like it is done in the 2D experiments. However, a significantly
different culture geometry results in a limited access to the drug inside the spheroid,
and thus, in a different overall response when compared to results from 2D cell cultures.
While several studies addressed drug efficacy in 2D versus 3D experiments (Eichler
et al. 2015; Imamura et al. 2015; Fontoura et al. 2020), each used a different seeding
protocol and assessment method making result cross-examination difficult. Therefore,
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we designed computational models as in silico analogues of the 2D monolayer and a
cross section through the 3D multicellular spheroid cell cultures (Fig. 1) to compare
side-by-side how identical cells respond to identical drugs in these two settings starting
with the same number of cells. To our knowledge, this is the first comprehensive
computational comparison between drug efficacy simulated using analogues of 2D
and 3D cell cultures.

In this paper, we first describe a mathematical framework used to model the 2D
monolayer cell culture and the cross section through a 3D multicellular spheroid
culture (Sect. 2). Numerical implementation of these models is described in “Appendix
1”. These two models are then used to test conditions (drug diffusivity, drug action
mechanisms and cell proliferation capabilities) under which the ICsq values are either
similar or significantly different between 2D and 3D cultures. The method of fitting
the ICsq curves to simulated data is presented in Sect. 3. The analysis of results for
cytotoxic drugs is presented in Sect. 4.1, and for anti-mitotic drugs in Sect. 4.2. We
summarize our results with the discussion in Sect. 5.

2 The Mathematical Model

From a mathematical modeling perspective of tumor cell populations, the models can
be classified into two types: continuous or discrete. Continuous models treat the pop-
ulation of tumor cells as a continuous density distribution, which usually is described
by a system of ordinary or partial differential equations. On the other hand, in dis-
crete models each cell in the population is represented by a discrete object (an agent)
that follows a set of prescribed rules. Thus, these models are often referred as agent-
based models (ABMs). Depending on the research question, the one or the other
mathematical modeling approach is considered though both have their strengths and
weaknesses. For a review on the comparison of the two types of models, see Schaller
and Meyer-Hermann (2006). A continuous model is relatively easier to analyze analyt-
ically and computationally, but it fails to capture the individual cell-to-cell interactions
and cellular heterogeneity. On the other hand, the ABM models focus on interactions
between the individual cells, but are not easy to analyze analytically, if not impossible,
and the computation time increases significantly with the number of cells involved.
Recently, researchers have been focusing on developing hybrid discrete-continuous
models which combine both approaches with the goal of maximizing their advantages
and minimizing their drawbacks. More information on the hybrid discrete-continuous
models can be found in Chamseddine and Rejniak (2020).

Here, we use a hybrid discrete-continuous model in which tumor cells interact phys-
ically with one another and react to a drug dissolved in a surrounding medium. The
cells are modeled as individual off-lattice agents, and drug concentration is described
by the continuous partial differential equation. We previously used a similar math-
ematical framework to model in vivo tumors and the emergence of drug-induced
resistance (Gevertz et al. 2015; Perez-Velazquez et al. 2016; Shah et al. 2016; Karolak
et al. 2019a; Perez-Velazquez and Rejniak 2020). Here, we adjusted this framework
to model in vitro cell cultures, both the 2D monolayer and the cross section through
the 3D spheroid. In addition to different culture geometry, we also extended the previ-
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ous work by considering different mechanisms of drug action, i.e., the cytotoxic and
anti-mitotic drugs. Below, we provide all model equations and spatial setups of all
performed computational experiments.

2.1 Discrete Description of Tumor Cells

Each cell in our model is treated as a separate entity characterized by several indi-
vidually regulated properties. The position of kth cell is denoted by Xy (¢), current
cell age by C,ige (), cell maturation age, which is the age when the cell is ready to
divide, by C,’f‘“, the number of nearby neighboring cells, C,?Clgh (1), and a level of
the drug accumulated inside the cell by C ,1/ (t). For simplicity, we assume that all

cells have the same diameter Rp. The state of the kth cell at time ¢ is denoted by
Cit) = {xk (1), C (1), Cmat, c™®ih ) 7 (z)}. The initial state of the kth cell is

Cr(0) = {X4(0), 0. €™, ¢ (0), 0.

Note that the cell maturation age, C ,rcnat, is the only cell feature that does not depend

on time ¢, and it is assigned explicitly upon cell birth. However, to avoid cell synchro-
nized divisions, we impose up to 15% of differences in the duration of the cell cycle
(Tyson et al. 2012). Thus, we set

C]l;l’lat — Amat Fo, (])

where A™ is the average maturation age for the whole cell population, and w is
randomly chosen from a uniform distribution from [0, 2.5] h.

The cell C; is considered to be a neighbor of cell Cy at time ¢, if it is located within
the neighborhood radius Ryeigh from cell Cy, that is:

Xk (@) = Xi (Dl < Rueigh- @)

We consider here the neighborhood radius equal to two cell diameters (Rpeigh = 2Rp)
which accounts for two layers around the host cell (as in Perez-Velazquez et al. 2016;
Karolak et al. 2019b). The initial number of neighboring cells, C,?elgh (0), depends on
the initial cell configuration (see Sect. 2.3). As the cells divide, die or move around,

the number of neighboring cells, C,I:eigh (1), varies with time.
The cell spatial dynamics is modeled by Newton’s second law of motion:

d2Xk z vis
mqﬁ=§hﬁF, 3)

where fi; is the interaction force between two neighboring cells Cx and C;, F, ,2’ is
denotes the force against viscosity of the surrounding medium, and 1y, is the mass of
the kth cell. Newton’s second law of motion has been used to address the dynamics
of cell-to-cell interactions, see the review in Murray et al. (2009) and the references
therein.
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The cell interaction forces arise when two neighboring cells, Cy and C;, come
into too close contact. If the distance between the cells’ centers is smaller than the
cell diameter Rp, the repulsive Hooke’s forces fi; and f; x = — fx.; are exerted to
preserve cells’ volumes:

F (Rp — Xk — X D=y if Xk — Xill < Rop

Jei = { 0 otherwise, @
where F is the constant spring stiffness, and the spring resting length is equal to cell
diameter Rp. Since the cell can be exposed to interactions with multiple neighbors, the
total force acting on the kth cell is the sum of all repulsive forces fi 1+ fk2+ - -+ fi.m
between the kth cell and its M neighbors.

Cell dynamics is thus governed by the equations of motion where the connecting
springs are overdamped and system returns to equilibrium without oscillations. Hence,

d2Xy
ka2

=0. 5)

The viscous force, F is_of the kth cell is modeled as proportional to its velocity. That
is,
dX
FVIS = v _k (6)
dr’

where v denotes the media viscosity coefficient. Then, substituting (5) and (6) in (3),
we obtain that the cell motion is determined by

dXy
kal—v——o. )
i#k
Clearly, cell’s age progresses at the same rate as time progresses; hence,

e
dt -

®)

This equation has an exact solution nge ) =t-— C,?, where C,? is the time at which
the cell was born. However, we will keep the differential equation form for consistency
with other equations in numerical implementation described in “Appendix 1”.

When the kth cell reaches its maturation age, C}/ mat it will divide unless it is over-

crowded. The overcrowding means that the number of neighboring cells, Cnelgh(t),
located within the neighborhood radius, Ryeigh, exceeds the prescribed threshold Nmax-
If the cell is overcrowded, its proliferation is suppressed until the space becomes avail-
able. Here, the overcrowding threshold was determined computationally to be equal
to 10 cells.

Upon division of the kth cell, two daughter cells Cy, (¢) and Cy,(7) are created
instantaneously. They are placed symmetrically near the mother cell in the random
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direction 0 chosen from a uniform discrete distribution [0,277]. The locations of the
daughter cells are defined by

X, (t) = Xk (1) — 0.5 - Rp (cos(8), sin(8)) , ©)
X, (t) = Xk (1) +0.5 - Rp (cos(8), sin(f)) .
Since they are placed at the distance smaller than cell diameter, the repulsive forces
between daughter cells are activated. Furthermore, this may also result in daughter
cell placement near other cells. Therefore, multiple repulsive forces will be applied to
resolve potential cell overlap, and the cells will be pushed away until the whole cell
cluster reaches an equilibrium configuration.
The age of each newly born daughter cell is initialized to zero,

Ci(0) = CX(0) = 0. (10)

The cell maturation age is inherited from its mother cell; however, a small noise
term is added to avoid synchronization of the cell cycles,

=™+, for i=1,2, (11)

where w; is randomly chosen from a uniform distribution [0,2.5] h.
The level of drug accumulated by the mother cell is divided equally between the
two daughter cells
c{l (1) = C}(’Z (t)=0.5-Cl(). (12)

The overall rate of change in drug accumulated by the kth cell is modeled in the
most simple way as absorption at a constant rate o,

ac; ;3

a Py - (13)
This equations has an exact solution: CZ (t) = pyt, provided that drug concentrations
at the locations visited by the cell are not lower that cell’s demand. Thus, special
precautions will be taken in the numerical implementation described in “Appendix 17
to account for these situations.

We model here two different mechanisms of drug action. In the case of a cytotoxic
drug, the cell dies immediately after accumulation of a lethal dose of the drug y™*. In
the case of an anti-mitotic drug, the cell dies when it attempts to divide (in the mitotic
phase of the cell cycle) after accumulated drug exceeds the lethal dose y™#*. The dead
cells are removed from the system.

2.2 Continuous Description of Drug Kinetics

The change in drug concentration y (X, t) at location x = (x, y) within the domain
€2, depends on drug diffusivity and on the uptake by the tumor cells located nearby.
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The partial differential equation (PDE) describing the spatiotemporal drug dynamics

is given by:
N

=D, Ay(x, )= py Y x(Xi(0), %), (14)
— k=1

Iy (x,1)
ot

diffusion

cellular uptake

where D,, is the drug diffusion coefficient, p,, is the cellular uptake rate, N is the total
number of cells located in the neighborhood of radius R, defined by the indicator

function x:
L it Ix = Xk@Il < Ry,

X X (1), %) = { 0, otherwise. (13

We assume that there is no loss or gain of the drug along the domain boundaries
d%2. Hence, we impose Neumann-type boundary conditions

3y (x,1)/on = 0,

where x € €2, where n is the inward pointing normal.

The drug is supplied only once, at the beginning of the simulation and its concen-
tration in the extracellular space, that is in the space outside the cells (€2 \ | Cx), at
time ¢ = 0 is uniform,

y(x,0) =y, for xeQ\|JCr.

2.3 Initial Cellular Configurations

Since our goal is to compare the ICs( values achieved in the computational analogues
of the 2D and 3D cell cultures when the same cells are exposed to the same drug,
we consider two different initial configurations that correspond to these laboratory
experiments. In both cases, we start with the same initial number of cells (315) that was
determined computationally to ensure that the cells will not grow to confluence during
the simulated 72 h. This is consistent with laboratory experiments. We reproduced the
cell monolayer culture (Fig. 2a) and the cross section though the cell spheroid culture
(Fig. 2b), respectively.

Modeling the monolayer cell culture

The two-dimensional computational model is designed to reproduce the evolution of
cells seeded sparsely in the domain filled with a dissolved drug. This is an analogue of
a 2D cell monolayer culture in the Petri dish where all cells are exposed to the drug dis-
solved in the surrounding medium (Chou 2006; Yu et al. 2015). Each simulation starts
with 315 cells that are randomly distributed within a domain. The cells are monitored
for 72 h, and the final number of viable cells is recorded. During this computational
experiment, the cells are allowed to divide, absorb the drug and die. Upon division,
the daughter cells are placed randomly nearby the mother cell and the repulsive forces
are applied between overlapping cells until the new stable configuration is achieved.

@ Springer



68 Page8of23 C.Berrouet et al.

A500 (i). .. .

[microns]

B % i) o i) (iii)

[microns]
o

500 3D
-500 0 500 -500 0 500 -500 0 500

[microns]
Fig.2 Tumor growth in 2D and 3D cell cultures with no drug (the control case). a A computational model
of the monolayer cell culture with sparsely seeded initial 315 cells (i), the daughter cells divide and spread
throughout the domain (ii) for 72 h of the simulated time reaching 4516 cells (iii). b A computational model

of the cross section though the spheroid cell culture with initial cluster of 315 cells (i), the non-overcrowded
cells divide and expand (ii) for 72 h of the simulated time reaching 3183 cells (iii)

The cells could also become growth-arrested due to contact inhibition if their config-
uration reached confluence. Upon death, the cells are removed from the system which
could create free space and initiate new cell divisions. Figure 2a(i)—(iii) shows three
snapshots from a monolayer simulation with no drug.

Modeling a cross section of the multicellular spheroid culture

The two-dimensional computational model is designed to reproduce the central cross
section of 3D multicellular spheroid culture. In these laboratory experiments, the cells
are first grown in the dish until they form a packed sphere and then are embedded into
the medium mixed with adrug (Adcock et al. 2015; Friedrich et al. 2009). We reproduce
this experimental design by starting each simulation with 315 cells that formed a
circular cell cluster. The cells are then monitored for 72 h and are allowed to proliferate,
absorb the drug or die, as in the monolayer case. However, the difference in initial
configurations between these two computational models results in distinct population
dynamics. In the spheroid model, the cells inside the cluster are overcrowded and
thus stop proliferating due to cellular contact inhibition. Figure 2b(i)—(iii) shows three
snapshots from a multicellular spheroid simulation with no drug.

Drug initial distribution in the monolayer and spheroid models
The initial drug concentration y (X, ty) = yp is uniform throughout the extracellular

space outside the cells, that is in € \ | C. Since in the monolayer cell culture model
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Table 1 Physical and computational model parameters

Cellular and microenvironmental parameters

Cell diameter

Spring stiffness

Mass viscosity

Neighborhood radius

Overcrowding cell number

Average maturation age

Drug parameters

Diffusion coefficient

Drug uptake radius
Baseline drug concentration

Initial drug concentration

Rp = 10 wm, cell radius R = S5pum

F =50png/pm - s2

v=250pg/pm-s
Rpeigh = 2Rp =20 pm

Nmax = 10 cells
Amat — 18 30,50 h

Dy =1,1072,107% um?/s
Ry =5pm

y = 1mM

yp vary from 0 to 103 mM

Shashni et al. (2018), NCI-60
Human Tumor Cell Lines
Screen [Internet] (2015)

Baumgartner and
Drenckhahn (2002),
Rejniak and Dillon (2007)

Kane et al. (2018)

Perez-Velazquez et al. (2016),
Karolak et al. (2019b)

estimated

Hafner et al. (2016), Mehrara
et al. (2007)

Schmidt and Wittrup (2009)
Cell radius

Fallahi-Sichani et al. (2013)

Cellular uptake rate py =5 X% 10-8 ng/um3s 0.1y /s
Cellular death threshold ymaX =2 % 10~% ng/pum3 2y

Numerical parameters

Domain size [—500, 500] wm x [—500, 500] pwm

Mesh width Ax = Ay =5pm Cell radius
Time step At =355 FTCS stability

the cells are located sparsely inside the domain, drug concentration yy is imposed uni-
formly in the whole domain (and on each grid point in the numerical implementation).
In contrast, in the spheroid experiments, the drug is initially present outside the 3D
culture only. To mimic the lack of the drug inside the spheroid in numerical imple-
mentation, the grid points inside the spheroid are left with no drug and drug diffusion
occurs at the border of the cell cluster in the medium. However, in both computational
models, drug absorption by the cells leads to local depletion of the drug (see the last
column in Fig. 1). All physical and computational model parameters are summarized
in Table 1.

3 Fitting the Inhibitory Concentration (IC5¢) Curves
The inhibitory concentration curve (called also the drug response curve or the ICsg

curve) is described by the following Hill equation (Gardner 2000; Levasseur et al.
1998):
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Fig. 3 Drug potency and efficacy reflected in ICsq curves. The shape of the ICs( curve depends on the
control effect ( f(), variability of cell population response (slope 8), drug potency (ICsq value), and drug
efficacy (background effect foo)

fO - foo
1 * )’
*(icx)

where fj is the control effect (the plateau observed for low drug concentrations), fso
is the background effect (the plateau observed for large drug concentrations), 8 is the
curve slope, and ICsg value is the curve inflection point at which the drug maximal
effect (fo — foo) decreases by 50%. The curve slope § is a measure of variability in
drug response—the steeper the slope is, the more homogeneous the drug response.
The value of f describes drug efficacy—the lower the f, the higher the beneficial
effect (often denoted by Eax, maximal effect). The ICsq value is correlated with drug
potency, i.e., the amount of drug necessary to produce the effect—the lower the ICsg
value, the more potent the drug (Meyer et al. 2019). The relationship between drug
potency, drug efficacy and the ICsq curve shape is shown in Fig. 3.

To draw the inhibitory concentration curves and determine the half-inhibitory con-
centration value ICsp, we perform computational experiments for the monolayer and
spheroid cultures with initial drug concentrations varied from y9=0 to 103> mM. Each
simulation starts with 315 cells arranged either in the monolayer or spheroid config-
uration. The total number of cells that remained after 72 h of the simulated time is
recorded. For each drug concentration, we repeat the simulation 3 times to determine
the average number of viable cells. These numbers were normalized using the average
count of cells grown with no drug. With this process, we obtained the normalized cell
counts f(yp) for each tested drug concentration y. For simplicity, we focus on drugs
that have high efficacy, foo = 0 and assume that 100% of viable cells remained at end
of control experiment, i.e., fy = 100. Thus, we consider the following simplified Hill
function:

J@) = fo + (16)
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100
-B
Yo
1 -
* (ICSO )

where yy is the drug concentration and f(yp) is the normalized cell count for drug
concentration ). The Hill coefficient § and the half-inhibitory concentration value
1C50 were determined by fitting the Hill function Eq. (17) to the simulated data using
the MATLAB built-in function £it that minimizes

S = , (17)

n

. 2
min Y, — i),
B.ICs i ( l f()/(),z))

where {Y;}7_, are the simulated normalized cell count data at the tested drug concen-
trations yp ; and { f (o, l-)}f’:1 are the normalized cell counts given by the Hill function
Eq. (17).

4 Results

Our main goal is to examine under which conditions the ICs( values calculated from
2D monolayer and 3D spheroid culture data are similar, and under which conditions
they are distinct. This will allow us to determine, whether the typical 2D cell culture
experiments are sufficient in assessing efficacy of the anti-cancer drugs, or if the
experiments should be carried using the 3D spheroid cultures. In particular, we are
interested how the ICsq values depend on drug mechanism of action, on drug diffusivity
and on vital properties of the tumor cells. We consider here three cell lines that differ in
their doubling times and span division ages consistent with reported experimental data
(Hafner et al. 2016; Leander et al. 2014). We perform simulations for three distinct
drug diffusivity values that correspond to therapeutic compounds used in the clinic,
such as small molecule drugs, nanoparticles or antibodies, as reported in the literature
(Schmidt and Wittrup 2009; Karolak et al. 2018). We also take into consideration
two distinct killing mechanisms characteristic for clinically applicable drugs (Lipp
and Hartmann 2008; Kustermann et al. 2013): the cytotoxic drugs (Sect. 4.1) and the
anti-mitotic drugs (Sect. 4.2). In order to cross-examine the results for both drugs, we
assume that each drug is absorbed by the cells at the same constant rate and the same
drug concentration is lethal for the cells.

4.1 Cytotoxic Anti-Cancer Drugs

In the case of cytotoxic drugs, cell survival is regulated only by the level of the absorbed
drug, and the cell dies if the amount of the accumulated drug exceeds the predefined
threshold. We first examined whether the ICsq values for the 2D and 3D cultures
depend on how fast the drug is diffusing within each cell culture. Next, we examine
whether the drug-induced cell death depends on how fast the cells are dividing.
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The impact of drug diffusivity on 1 Cso values in 2D and 3D cell cultures

We considered three distinct diffusion coefficients: D), = 1, 102,10~ me2/s. Ineach
case, we perform several computational simulations using initial drug concentrations
Yo between 0 and 10° mM for both a monolayer and a spheroid cultures. These results
are summarized in Fig. 4a—c.

For each drug diffusivity, the simulations are repeated 3 times, and the average
number of viable cells is used to calculate the ICso curves, separately for the 2D
monolayer cultures (blue curves) and 3D multicellular spheroid cultures (red curves).
All ICs curves have quite similar shapes, and the corresponding ICsp values are of
the same order of magnitude with less than 20% of difference. It can be observed that
with the diminishing diffusion coefficients, the ICso values for the spheroid cultures
are slightly higher than for the 2D cultures, that is, consistent with the fact that slowly
diffusing drugs are not able to effectively penetrate the tightly packed cell clusters.
Therefore, the cells in the 3D spheroids could survive better the drug insult. This
is also confirmed by the final cellular configurations shown in the insets in Fig. 4.
For higher concentrations of slowly diffusing drugs, some cells in the 3D spheroids
have survived after 72 h of exposure to the drug, while no cells remained in the 2D
cell cultures exposed to the same drug concentrations. For example, when cells were
exposed to the initial drug concentration of yp = 10 mM, there were no cell remaining
in both 2D and 3D experiments for the highest diffusion case of 1pum?/s (Fig. 4a),
while 105 and 315 cells remained in the 3D spheroid model for diffusion of 10~2m?/s
(Fig. 4b) and 10~*um?/s (Fig. 4c).

In summary, slower drug diffusion resulted in more pronounced changes in the ICsq
values for the spheroid model in comparison with the ICsg values for the monolayer
model, which were not significantly different.

The impact of cell maturation ages on I Csq values in 2D and 3D cell cultures

Since the amount of the absorbed drug depends on how long the cell is exposed to it,
we examined the relationship between the ICsg curves as the average cell maturation
age A™ increases from 18, to 30, to 50 h, while all other parameters were kept fixed.
These results are shown in Fig. 5a—c.

For each maturation time, we perform simulations for both the monolayer (top row
in Fig. 5) and spheroid (bottom row) cultures. We consider three diffusion coefficients:
D, = lumzls (blue curves), D, = 10_2um2/s (red curves) and D), = 10_4um2/s
(magenta curves). The corresponding ICs( values for all simulated cases are summa-
rized in Table 2. These results indicate that in the monolayer model cell maturation
time and drug diffusivity do not effect the ICs( curves, and thus have insignificant role
in inhibiting growth of the whole cell population. On the other hand, in the spheroid
model, the changes in the ICs( values are more pronounced. For a fixed cell maturation
age, the ICs( values differ at lease twofold between the fastest and the slowest diffus-
ing drug. Moreover, in the case of slowly proliferating cells, this difference is almost
fivefold. For faster diffusing drugs, the ICsg values are similar despite the differences
in cell maturation ages, but in the cases of slower spreading drugs, the corresponding
1Cs values increase with the increased maturation.
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Fig. 4 Comparison of ICsq curves and values for cytotoxic drugs. ICsq curves for monolayer cultures
(blue curves) and cross sections though spheroid cultures (red curves) and their corresponding ICs( values
are shown for the following diffusivity values: a D), = 1m?2 /s; 1C50=4.2675 for 2D and 3.9644 for
3D cultures; b D, =10"2pum?/s; 1C50=4.2706 for 2D and 5.0965 for 3D cultures; ¢ D, =10"*pm?/s;
1C50=4.2913 for 2D and 5.1837 for 3D cultures. The vertical lines show standard deviation values. Insets
show final cell configurations for the selected drug concentrations. Cell colors indicate the level of absorbed
drug (low-pink, high-black). Background colors indicate the level of the remaining drug (high-yellow,
medium-green, low-blue). The drug was supplied uniformly only once, at the beginning of each simulation.
The cell maturation time for these simulations was 18 h (Color figure online)
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Fig.5 Comparison of ICs( curves for three cell lines of different maturation ages. IC5q curves and values for
drugs with diffusion coefficients of D, = lumz/s (blue), 10*2um2/s (red), and 10*4um2/s (magenta)
in the monolayer culture model (top) and the cross section though the spheroid culture model (bottom) for
the maturation times of a A™3 = 18 h, b AM& = 30 h, and ¢ A™3" = 50 h. All data are presented after 72
h of the simulated time (Color figure online)

Table 2 ICs values for cytotoxic drug diffusion coefficients D, and cell maturation ages AMt_for both
monolayer and spheroid in silico cultures

Dy pum?/s Amat — 18 h Amat — 30 b Amat — 50

Summary of 1Csq values in the monolayer model

1 4.2675 3.2892 2.7924
1072 4.2706 3.2876 2.7966
1074 4.2913 3.2962 2.8088
Summary of 1Csq values in the cross section spheroid model

1 3.9644 3.2315 2.9875
1072 5.0965 5.2505 4.9565
1074 5.1837 6.6280 9.5846

In summary, the 2D monolayer model is not able to differentiate between the
inhibitory effects of cytotoxic drugs of different diffusivity for a range of tumor cells
with diverse proliferation dynamics. This is because all cells in the monolayer culture
are equally exposed to the drug. On the other hand, in the 3D spheroid culture model,
both factors: drug diffusivity and frequency of cell proliferation affect the ICs( values
noticeably, with values increasing for slower diffusing drugs and for slower proliferat-
ing cells. This is an effect of a more realistic tumor geometry in which tightly packed

cells are more difficult to penetrate by the drug dissolved in the surrounding external
medium.
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4.2 Anti-mitotic Anti-cancer Drug

The anti-mitotic drugs are designed to interfere with microtubule functions which are
essential in the cell division process. Cells exposed to these drugs cannot progress
to the mitotic phase of the cell cycle and die. Therefore, cells’ survival depends on
both the level of the accumulated drug and the current cell cycle phase. In particular,
if the absorbed drug exceeds the predefined threshold, the cell remains viable until
it attempts to divide. For the anti-mitotic drugs, we first examined whether the ICsg
values for the 2D and 3D cultures depend on drug diffusivity within the 2D and 3D
cell cultures. Next, we tested whether the drug-induced cell death depends on cell
maturation age, that is on how fast the cells are dividing.

The impact of drug diffusivity on 1Csg values in 2D and 3D cell cultures

As in the previous case, we considered three different drug diffusion rates: D, = 1,
1072, 10~* wm?/s and performed several computational simulations using initial drug
concentrations yp between 0 and 103> mM. Each simulation is seeded with 315 cells
arranged either sparse in the domain (a monolayer culture) in a circular configuration
(a cross section through a spheroid culture). For each combination of parameters, we
perform 3 simulations and the average data are used to generate the ICsg curves for
the 2D monolayer cultures (blue curves) and 3D multicellular spheroid cultures (red
curves). These results are presented in Fig. 6a—c.

Similarly, as in the cytotoxic drug case, the ICs( values for the 2D cell cultures do
not differ significantly despite distinct drug diffusivity. Moreover, for fast proliferating
cells, the ICsq curves for both 2D and 3D cultures are overlapping (Fig. 6a), while for
the slowly proliferating cells, the ICso curves for the spheroid cultures attain higher
half-inhibitory values (Fig. 6b, ¢). In contrast to the cytotoxic case, the 3D cell colonies
of cells exposed to higher concentrations of anti-mitotic drugs are less compact. This
is an effect of the delayed death of the cells located in the middle of the spheroid.
These cells have already absorbed a lethal level of the drug, but remain in the dormant
state due to overcrowding. Once the space for their division becomes available, these
cells make an attempt to divide and die due to the drug action. This, in turn, creates
space for division of other cells that might instead die if they accumulated a lethal
dose of the drug. This may create a domino effect that results in more cell death and
less compact spheroid structure. This effect may also take place in 2D cell cultures,
but because these cells are seeded more sparsely, it is not so apparent as in the 3D
spherical cultures.

The impact of cell maturation ages on 1Csg values in 2D and 3D cell cultures

Next, we focused on the relationship between the ICsq values for the anti-mitotic drugs
and cell maturation age. We considered again three cell lines characterized by distinct
maturation ages: AM = 18, 30 or 50 h, respectively. These results are summarized
in Fig. 7a—c where the ICsg curves for 2D monolayer culture are shown in red and
for the 3D spheroid culture in blue. The corresponding ICsg values are summarized
in Table 3.
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Fig. 6 Comparison of IC5q curves and values for anti-mitotic drugs. IC5q curves for monolayer cultures
(blue curves) and cross sections though spheroid cultures (red curves) and their corresponding ICs( values
are shown for the following diffusivity values: a D, = Ipnm?/s; 1C50=4.2988 for 2D and 3.8735 for
3D cultures; b DV:IO_Zumz/s; 1C50=4.3018 for 2D and 5.3333 for 3D cultures; ¢ Dy:10_4um2/s;
1C50=4.3037 for 2D and 4.8457 for 3D cultures. The vertical lines show standard deviation values. Insets
show final cell configurations for the selected drug concentrations. Cell colors indicate the level of absorbed
drug (low-pink, high-black). Background colors indicate the level of the remaining drug (high-yellow,
medium-green, low-blue). The drug was supplied uniformly only once, at the beginning of each simulation.
The cell maturation time for these simulations was 18 h (Color figure online)
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Fig. 7 Comparison of ICsq curves for three cell lines of different maturation ages. ICsq curves for drug
diffusion coefficient of D) = 10~%um? /s and cell maturation ages of a A™=18 h, b AM2'=30 h, and ¢
AMat=50) h, in 2D cell monolayer culture (blue) and 3D cell spheroid culture (red). All data are presented
after 72 h of the simulated time (Color figure online)

Table 3 ICs( values for
anti-mitotic drug diffusion
coefficients Dy, and cell
maturation ages A™3, for both

Dy pm?/s AMat — 18 h AMat — 30 h AMat — 50

Summary of 1Cs values in the 2D model

monolayer and spheroid in silico 42988 3.3495 32190
cultures 1072 4.3018 3.3641 3.1989
1074 4.3037 3.3656 3.2361
Summary of 1Cs( values in the 3D model
1 3.8735 3.3896 3.4942
1072 5.3333 5.7667 7.4052
1074 4.8457 9.0081 18.148

We again observe the trend that ICsq values increase when drug diffusivity decreases
and cell maturation age increases for the 3D cell cultures; however, these differ-
ences between ICso values and curves are even more pronounced for anti-mitotic
drugs in comparison with cytotoxic drugs. In fact, for very slowly proliferating cells
(A™at — 50 h), there is an order of magnitude difference between ICsq values for
fast diffusing (D, = 1um?/s) and slowly diffusing (D), = 10~#1um? /s) anti-mitotic
drugs (red curves in Fig. 7a, c). This ICsq value is also an order of magnitude larger
than the corresponding value for the cytotoxic drugs. In case of the 2D cell monolayer
cultures, there is no significant difference in the ICsq values despite differences in
drug diffusivity and cell proliferation speed. This is similar to the case of the cytotoxic
drugs. For the anti-mitotic drug, we observe a non-monotone relationship between
drug diffusivity and ICsq values when the average maturation age of the cells is 18 h
(see Table 3, when A™ = 18 h). To confirm this non-monotone relationship, we
repeated the experiment for the anti-mitotic drug with drug diffusivity D, set to 1,
10~2 and 10~ pm?/s when A™ = 18 h. Results, not shown here, confirm our initial
observations.

In summary, the 2D monolayer model is again not able to distinguish between the
inhibitory effects of anti-mitotic drugs of different diffusivity for a range of tumor
cells with diverse proliferation dynamics. Again, this is attributed to the fact that
all cells in the 2D monolayer culture are equally exposed to the drug. In contrast,
in the 3D spheroid culture model, both drug diffusivity and cell proliferation time
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have noticeable effect on the ICsq values which increase for slowly diffusing drugs
and for slowly proliferating cells. While this trend is similar for cytotoxic and anti-
mitotic cells, the overall increase in ICsg values is larger for the anti-mitotic cells.
Actually, it is an order of magnitude larger for the extreme case (A™ = 50 h and
D, = 10~*wm?/s), showing the crucial role that the drug mechanism of cell killing
plays in determining the drug inhibitory effect.

5 Discussion

In this paper, we addressed an issue of comparing the potency of anti-cancer drugs
using 2D monolayer and 3D spheroid cell cultures. Traditionally, the monolayer cul-
tures are used for evaluation of how a given drug effects growth dynamics of a given
cell line or malignant cells derived from a patient’s tumor. These experiments provide
information about whether the drug exerts the expected effect and what is the minimal
drug concentration needed to observe this effect. The drugs can be then compared
to one another using the ICsg values which indicate drug concentration that inhibits
growth of tumor cell colony by half. By comparing ICs( values for different drugs,
one can assess which of them is effective at lower concentrations.

However, it has been shown experimentally that the 2D cell cultures do not recreate
tumor features observed in vivo, such as tumor morphology, cell phenotypes and cell-
cell interactions, tumor heterogeneity, and the composition of tumor microenvironment
(Pampaloni et al. 2007; Hoarau-Vechot et al. 2018; Belgodere et al. 2018). Therefore,
tumor cells’ response to anti-cancer drugs and drug penetration through the tumor tis-
sue might not be faithfully captured in the monolayer cultures. To test this hypothesis,
we performed computational studies to compare the ICs( curves generated from the
analogues of the two-dimensional cell monolayer culture and the three-dimensional
multicellular spheroid culture, when the same cells are exposed to the same drugs
for the same period of time. We considered hypothetical drugs of various sizes (and
thus different diffusivity) and different cell killing mechanisms (cytotoxic and anti-
mitotic). Our results indicated that in simulations of 2D cell cultures the ICsq values
were similar, indicating the same drug potency despite different drug characteristics
and cell properties. However, in the simulations of 3D multicellular spheroid cultures,
both classes of drugs showed significant differences in the the ICs( values for different
drug diffusivity and cells of different cell cycles. This strongly suggest that 2D cell
cultures are not able to differentiate the half-inhibitory effects for distinct drugs, and
the 3D multicellular spheroid cultures should be rather used to assess effective drug
concentrations in laboratory experiments.

While in this manuscript, we consider hypothetical drugs of biologically relevant
properties, our ultimate goal for our future work is to apply these analyses to specific
drugs and specific cell lines/tumors for which we can provide experimental validation.
Certain assumptions of our model can also be refined in the future. For example, some
cytotoxic drugs can induce cell necrosis, while others result in cell lysis. In the former
case, cells will remain in the system, though they would stop absorbing the drug. In
the latter case, dying cells may release toxins that have a direct impact on neighboring
cells’ survival. The process of dead cell clearance may also be modeled in a more
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realistic way by using additional time lag, in contrast to instantaneous cell removal,
as it is modeled in the current version. Moreover, we observed in our simulations
that anti-mitotic drugs may result in less compact spheroid structure due to sudden
death of inner cells. This took place when some inner dying cells created space for
their immediate neighbors to divide, but the cells died instead when they entered into
mitotic phase of their cell cycle. It is observed that some in vivo tumors, such as
melanomas, are less dense and contain more interstitial fluid that would suggest more
intratumoral death. However, further studies are needed to confirm if the mechanism
suggested by our simulations faithfully explains empirical observations.

In summary, to our knowledge, this work is the first comprehensive computational
study comparing drug efficacy in analogues of the 2D and 3D cell cultures. Our
simulations indicate that monolayer cell cultures may provide misleading results, since
the produced ICsq values were almost identical for several cases for which spheroid
cultures resulted in significantly distinct ICsq values. Thus, our main message from this
study is to advocate for using the 3D cell cultures as a standard for testing drug efficacy,
which is not currently practiced by the experimental laboratories and pharmacology
industry.

Acknowledgements This project was initiated as a part of the Preparation for Industrial Careers in Math-
ematical Sciences (PIC-Math) Award (to NT) from Mathematical Association of America (MAA) and
Society of Industrial and Applied Mathematics (STAM). Support was provided by the National Science
Foundation, NSF Grant DMS 1345499 (to NT as PIC-Math Faculty). Author NT would like to acknowl-
edge the support of NSF Grant DMS 1515442. This work was supported by the National Institutes of
Health National Cancer Institute Grant NIH/NCI U01-CA202229 (to KAR). This work was supported in
part by the Shared Resources at the H. Lee Moffitt Cancer Center and Research Institute, an NCI designated
Comprehensive Cancer Center through the National Institutes of Health Grant P30-CA076292.

Appendix A: Numerical Implementation of Model Equations

Our computational model combines the off-lattice individual cells with the continuous
PDE for the drug concentration. The drug concentration equation Eq. (14) is numeri-
cally solved on the regular Cartesian grid x = (x, y), while cells’ positions are defined
off-lattice {Xk},ivzl. The exchange of information between these two computational
structures takes advantage of the indicator function Eq. (15).

A finite difference scheme is used to approximate the solution of the differential
equations modeling cell relocation and drug kinetics. Let Az denote the time step,
and let cell velocity be discretized by the first-order difference equation, then the cell
motion Eq. (7) is discretized as

S g KD —X)

AL 0 (18)

ik

Thus, the location of the kth cell at the next time step (¢ + Atf) can be determined by

1
Xp(t + A =Xe(t) + =AY fii. (19)
v ik
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Using the same finite difference approximation for Eq. (8), the age of the kth cell at
the next time step is given by

CE(t+ A = CE (1) + At (20)

Similarly, let the rate of change of the drug accumulated in the kth cell be discretized
by the first-order finite difference scheme, then Eq. (13) becomes,

Cl(t+ At) = C(t) + py At, (21)
However, if there is not enough drug in cell vicinity (within the cell radius Rp) to

be absorbed by the kth cell, then the cell would uptake all the drug available nearby.
Hence, the drug accumulated by the kth cell at time (+ + Ar) will be computed by

Cl(t+ At) = C) (t) +min (p, At, y(x, 1) - x Xk (1), X)), (22)

uptake

The domain €2 is discretized into a square grid with equal spacing between grid
points Ax = Ay. Solution of the reaction-diffusion equation Eq. (14) modeling drug
concentration in the domain is then approximated using a forward finite-difference
approximation in time and centered finite-difference approximation in space. Thus,
an approximation of the solution of Eq. (14) is obtained by the following numerical
method:

D, At
(Ax)?
— 4y D +Y Y AL D+ YE = A YD) 3

v,y t + Aty =y, y, 1)+

(V(x +Ax,y, 1) +y(x,y+ Ay, 1)

N
— min (p),At, y(x,y, t)) ZX(Xk(f), x,y)
k=1

Numerical stability of this forward in time centered in space (FTCS) method is ensured
by satisfying the following condition:

D, At/Ax* < 1/4,

which is satisfied for the maximum diffusion value considered in this study (see Table
1 for parameter values), and the chosen time step and grid size. Thus, the numerical
method FTCS for all parameter values is stable.

Other numerical methods could be used to approximate Eq. (14), such as an uncon-
ditionally stable fully implicit method or an IMEX method that implicit—explicit
combines an implicit scheme for diffusion with an explicit scheme for the reaction
terms (Ascher et al. 1995; Madzvamuse 2006). This, however, would impose higher
computation costs.
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In the case, when cell’s demand for drug absorption is higher than the drug available
in the medium, all available drug will be depleted; thus, the cellular uptake component
is equal to the minimum between the drug demanded by the cells and the drug available:

D, At
v, y, 1+ A =y(x,y, 1)+ (AV—X)QQ/(X +Ax,y,0)+y&,y+ Ay, 1)
—4dy @y, D) +y@,y — Ay, 1) +yx — Ax, y, t)) (24)
N
—min(y(x, y,1), py At Z x Xk (), x,)).
k=1
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