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Capacities and Optimal Input Distributions for
Particle-Intensity Channels
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Abstract—This work introduces the particle-intensity channel
(PIC) as a new model for molecular communication systems
that includes imperfections at both transmitter and receiver and
provides a new characterization of the capacity limits as well
as properties of the optimal (capacity-achieving) input distri-
butions for such channels. In the PIC, the transmitter encodes
information, in symbols of a given duration, based on the proba-
bility of particle release, and the receiver detects and decodes the
message based on the number of particles detected during the
symbol interval. In this channel, the transmitter may be unable
to control precisely the probability of particle release, and the
receiver may not detect all the particles that arrive. We model this
channel using a generalization of the binomial channel and show
that the capacity-achieving input distribution for this channel
always has mass points at probabilities of particle release of zero
and one. To find the capacity-achieving input distributions, we
develop a novel and efficient algorithm we call dynamic assign-
ment Blahut-Arimoto (DAB). For diffusive particle transport, we
also derive the conditions under which the input with two mass
points is capacity-achieving.

Index Terms—Molecular communication, particle intensity
channel, channel models, channel capacity, optimal input,
optimization.
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I. INTRODUCTION

N MOLECULAR communication (MC) transmitters con-
I vey information by releasing small particles, typically from
nanometers to tens of micrometers in diameter. Information
may be contained in the number or type of released parti-
cles or in the time of release [3], [4]. These particles travel to
the receiver where they are detected and the message decoded.
The stochastic nature of the transport process introduces uncer-
tainty about the time of particle release and even the number
of particles released during a given symbol interval.

One approach to understanding the capacity limits of molec-
ular channels investigated in prior work assumes information
is encoded in the time instants at which particle(s) are released.
Such channels are called molecular timing channels (MTCs).
In particular, the additive inverse Gaussian noise channel
is presented in [5], [6], and upper and lower bounds on
capacity are derived. These works assume a system where
information is encoded in the release time of a single particle.
Molecular timing channels where information is encoded via
the release times of multiple particles are considered in [7],
which presents upper and lower bounds on capacity, and [§]
introduces a MTC where particles decay after a finite interval
and derives upper and lower bounds on the associated capacity.

Another approach to MC encodes information through the
number of particles released at the transmitter and decodes
based on the number of particles that arrive at the receiver dur-
ing the symbol interval. We focus on this type of modulation
scheme and call it particle-intensity modulation (PIM).!

In [9], [10], this concentration-based channel is considered
with a receiver equipped with ligand receptors. The process
of molecule reception of a ligand receptor is modeled as a
Markov chain and the capacity in bits per channel use is ana-
lyzed. The results are extended to multiple access channels
in [11]. In [12], a binomial distribution is used to model a
system where the transmitter can perfectly control the release
of particles and the receiver can perfectly detect the number
of particles that arrive. It is assumed that the channel has finite
memory and particle transport is assisted by flow. Using this

IThis is related to the concentration-shift-keying or the amplitude-
modulation in previous work. However, the channel input X for concentration-
shift-keying or amplitude modulation is an integer while for the PIM, X is a
real number between zero and 1, i.e., a probability.
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model, bounds on the capacity are derived, and the capac-
ity for different memory lengths is analyzed. Reference [13]
assumes that the channel input is the rate of particle release.
The channel is represented as a Poisson channel with finite
memory, and upper and lower bounds on capacity per channel
use are presented. Finally, different channel coding schemes
are compared for MC systems that employ PIM in [14].

This article extends our conference papers in [1], [2] where
we considered molecular channels with imperfect PIM and
imperfect detection. We call this channel the particle-intensity
channel (PIC). Specifically, in the PIC the sender releases par-
ticles independently and probabilistically (i.e., information is
encoded in the release probability), and the destination may not
detect all the particles that arrive. Note that this is a different
formulation than [1] in that the channel input is continuous as
opposed to discrete. We assume that the duration of the symbol
is long enough that particles from one symbol have a negligible
effect on future symbols. This model is reasonable if particles
diffuse beyond the receptor or disappear in some other fashion,
for instance through degradation [15]. Under this assumption,
the PIC is memoryless. Finally, we assume that particles can be
generated at a constant fixed rate at the transmitter.

For this model, we show that the PIC can be represented
with a channel model similar to the binomial channel [16]
where the input is the probability of success and the output is
the number of successes in a fixed number of Bernoulli trials.
Like the binomial channel, the PIC channel input (probabil-
ity of particle release) is continuous over the interval [0, 1].
However, unlike the original binomial channel, the probability
of success (i.e., of the particle being detected by the receiver)
is smaller than channel input so that the maximum probabil-
ity of success is less than 1. This introduces asymmetry in the
behavior induced by the extreme channel inputs; a zero induces
a deterministic result at the receiver but a one does not.

Another difference from the original binomial channel is the
introduction of a symbol duration. The number of trials in the
PIC, which is the maximum number of particles that can be
released by the transmitter, changes as a function of symbol
duration because particles are generated at a constant rate at
the transmitter.

Our contributions in this work are as follows.

o This article defines the capacity of the PIC channel in bits
per second and as a function of symbol duration. We show
that this channel is related to the binomial channel. To the
best of our knowledge this is the first time that a chan-
nel model for molecular communication is presented that
includes imperfections at both transmitter and receiver.

o This article demonstrates that the optimal input distribu-
tion for the PIC channel, for any symbol duration, always
has mass points at the two extremes O and 1. We also
derive an expression for the capacity when the input is
binary, and present the conditions under which binary
input achieves capacity.

o This article presents the dynamic assignment Blahut-
Arimoto (DAB) algorithm as a new algorithm for find-
ing the capacity and the optimal finite-support input
distribution for many channels with continuous input
alphabets, including the PIC channel. This algorithm

converges much faster than the ellipsoid method and
finds the minimum-cardinality capacity-achieving input
distribution. Using DAB, this article calculates the capac-
ities and minimum-cardinality capacity-achieving input
distributions for a wide range of channel parameters.

o Although the binary input distribution (i.e., on-off-
keying) is capacity-achieving for a large class of PICs
based on diffusive particle transport, this article shows
that the capacity-achieving input distribution has more
than two mass points when the probability of particle
arrival is sufficiently high.

The rest of this article is organized as follows. In Section II
we present the PIC. Then in Section III, we formulate the
capacity, investigate characteristics of the optimal input dis-
tribution, and derive the capacity of the binary input PIC.
Section IV presents the ellipsoid method for finding the
optimal input distribution for the binomial channel, while
in Section V, the DAB algorithm is developed. We present
numerical results in Sections VI, and in Section VII we discuss
the concluding remarks.

II. THE PARTICLE INTENSITY CHANNEL (PIC)

The PIC is an MC channel in which information is communi-
cated through PIM, i.e., the channel input X is the probability of
particle release by the transmitter. The transmitter controls the
intensity of the released particles by controlling this probability.
The particles themselves are assumed to be identical and indis-
tinguishable at the receiver, and no other properties (such as the
time-of-release) are used for encoding information. The receiver
then counts the number of particles that arrive during the symbol
duration to produce the channel output Y. The particles released
by the transmitter travel to the receiver through a propagation
mechanism (e.g., diffusion). We assume that the particles travel
independently of each other, and are detected independently of
each other. This model is used in many previous works [3].

According to the PIC model, particles are released instantly
and simultaneously at the beginning of the symbol interval.
Particles are released independently of each other, and the
transmitter’s intended probability of release is X, which is the
channel input. The transmitter controls the number of parti-
cles that are released by changing X, e.g., by controlling the
degree of opening in a nozzle or porous membrane. Therefore,
the channel input is continuous over the interval X € [0, 1].

Figure 1 shows the stochastic release, arrival, and detection
of a single particle. We define the probability of release failure
to be 1 —a where 0 < o < 1. Thus the actual probability that
each particle is released is auz, when the transmitter wants to
transmit with probability x.

We now consider the stochastic particle transport. Each
released particle will arrive at the receiver at some indepen-
dent identically distributed random time T ~ fr(-). Let fp(t)
denote the PDF of the time the particle arrives, and Fp(t)
denote its corresponding CDF. Then the probability that a
released particle arrives during a symbol duration 7 is given by

p:FT(T)? (1)

and the probability that it never arrives (and is by assumption
never detected) is 1 — p.
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Fig. 1. The stochastic transmission (T), propagation (P) and reception (R)
of a single particle. At the transmitter, particles are selected to be released
with probability x. A selected particle is actually released with probability
«. Through propagation, a released particle arrives at the receiver within the
symbol duration with probability p. A particle that arrives at the receiver is
detected with probability 3. Thus, a particle selected for release is detected
at the receiver with probability 6, = apf3.

In the PIC model, each particle that arrives at the receiver is
detected with probability 5. This detection process is i.i.d. In
this way, the PIC model incorporates the receiver’s inability to
perfectly detect the particles that arrive, owing to sensitivity
or uncertainty in the detection process.

Thus, as shown in Figure 1 a particle selected for release
is detected at the receiver with probability , = apf. Let ¥
be the number of particles that are actually detected during
the corresponding symbol duration. The end-to-end chan-
nel between the input X and the output Y is the binomial
B (mp, 20,):

P(Y =y|X =u)= (?) (20p)" (1 = 26,)™"", @

where % (n, p) indicates the binomial distribution with param-
eters n and p, and m,, is the number of particles available for
release, which we now discuss.

The channel is used in a time-slotted fashion, where 7 is the
symbol duration. We define a parameter A as a constant fixed
rate at which the transmitter can generate particles. We assume
that m, = | \7] particles are available to be released by the
transmitter at the beginning of each time slot, and the transmit-
ter releases each with channel input probability X. Note that
in this model, the number of particles that can be released at
the beginning of each time slot can change with the symbol
duration 7.

If we assume Fp(t) is strictly monotone, the symbol dura-
tion 7 can be obtained from p by using the inverse CDF
(iCDF) function, i.e., 7 = F 1(p). Using the iCDF, we can
also rewrite m, as a function of p:

m, = P\Ffl(p)J. 3)

Particles that neither arrive at the receiver nor dissipate
over the symbol duration could interfere with detection during
future channel uses. Such intersymbol interference (ISI) should
be incorporated into deriving the channel capacity. While such
ISI represents an interesting area for future investigation, in
this article we assume that particles with transit times exceed-
ing 7 dissipate or are otherwise inactivated. That is, particles
are assumed to have a finite lifetime of duration 7. This
assumption seems reasonable since particles could be rendered
undetectable either naturally or by design (via denaturing or
gettering/enzyme reactions [15]). Under this assumption, chan-
nel uses are independent and the maximum mutual information

between input and output during a single channel use defines
the channel capacity.

The PIC channel is an accurate model for certain molec-
ular communication channels. Specifically, the transmitter in
the PIC can represent a large class of transmitters that control
the particle-intensity through gated opening(s) on the surface
of the transmitter. One example of such transmitters is the
ion-pump transmitter discussed in [17]. In addition, the mem-
oryless characteristic of the PIC channel is an accurate model
for relatively large symbol durations using a single particle
type, when different particle types are released during consec-
utive channel uses [18], or when enzymes in the environment
degrade the particles that do not arrive at the receiver by the
end of the symbol duration [19]. The PIC receiver also accu-
rately models, at a high level, the ligand receptors on the
surface of a synthetic cell [20].

An important observation here is that p and m, change as a
function of the symbol duration 7. In this work, we incorporate
the optimization of the symbol duration into the formulation
of capacity to determine the channel capacity of the memory-
less PIC in bits per second. This is one important distinction
between this and previous work such as [5], [6], [12], [13],
where the channel capacity is typically defined in bits per
channel use.

For the case when m,, is large and 0, is small, the system
can be well approximated by the Poisson distribution [21]

Y _xz0,m
P(Yzy‘X:a:)z (Iepmpzl'e P P. @
We write this as P(y|z;p) ~ & (x0,m,), where & (a)
indicates the Poisson distribution with parameter a.

Remark 1: Using the Poisson approximation, the PIC in
MC systems can be viewed as a more general formulation
of the discrete-time Poisson channel used to model opti-
cal intensity channels [22]-[24]. Because a finite number of
particles are released, particle arrival rate does not increase
linearly with time and thus neither does the capacity. This
is in contrast to the discrete-time Poisson channel in optical
communications, where photon arrival rate increases linearly
with the symbol duration [24]. PIC symbol durations that are
too long can reduce the information rate, as demonstrated in
Section VI. Note that although we do not consider interfering
particles, they can be introduced to the Poisson model in (4)
by adding an extra term similar to the dark current in optical
communications [22]-[24].

III. CHANNEL CAPACITY AND OPTIMAL INPUT

We now characterize the channel capacity of the PIC. Let
fx (z) be the channel input PDF and let F be the set of all
valid input PDFs. Then the capacity of the channel in (2) as a
function of the particle arrival probability p and having units
of [bits per second] is defined as

I(X;Y]|p)

C =
(°) fxr(rﬁ)e(}' F;l(p)

(&)

where F ;1 (+) is the iCDF of the particle detection time. Since
the channel changes as a function of the symbol duration, the
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fundamental limit of this channel is then
C* = max C(p). (6)
P

We now investigate the characteristics of the optimal
input distribution, determine capacity under a binary input
constraint, and investigate settings for which the capacity-
achieving distribution is binary. First, observe that although
the input distribution is over a finite interval, the capacity-
achieving input distribution has finite support, requiring at
most my, + 1 mass points for the PIC in (2). This was proven
in [25] using Dubin’s theorem [26]. See also [27, Corollary 3
in Ch. 4.5].

Throughout the paper we will use a tilde over a letter to
indicate that this is an ordered set or vector whose cardinal-
ity is equal to the number of mass points being used by the
associated input distribution. Let X = {zp,z1,..., Zm .} be
the location of the m, + 1 mass points with 0 < 75 < 71 <
oo < T, < 1. Let P = {pay, Pay» - - ,pmmp} be the probabil-
ities corresponding to each mass point. Then the corresponding
input distribution is given by

fx(@) =) pud(z — ). (7)
1=0

The optimal input distribution always has the form of (7). We
now show that the optimal input always has non-zero mass
points at the two extremes of X = 0 and X = 1.

Theorem 1: For a given symbol duration 7, and hence a
given p, the mutual information given in (5) is maximized by
a PDF f5 (x), where pj > 0 and p > 0.

Proof: The first inequality p; > 0 can be proved by
using [24, Lemma 1] and the second inequality pj > 0 can
be proved using [24, Lemma 3]. |

We now derive the capacity in (5) as a function of
p for binary input PIC (i.e., a system that is limited to
on-off-keying). Note that conveniently for the PIC in (2),
on-off-keying is equivalent to X = 1 or X = 0.

Theorem 2: Let X = {0,1} be the selected input alphabet
for the PIC in (2) with p; = P(X = 1), and ¢, = (1 —
6,)™°. The optimal input distribution p; under this binary
input constraint is given by

P = %, ®)
o5 —ept1
and the capacity of (5), in bits per second, is given by

1 1%)
bgc+{1—¢@%ﬁw>. ©)
(p)

Cb(p) ]
FT

Proof: Define Y1 as the indicator function
Yt =1(Y >0). (10)

YT is a sufficient statistic of ¥ for X [28] so that the binary-
input PIC is equivalent to a Z channel [29]. Thus, the mutual
information in (5) can be written as a function of p; using

1,(X%5Y) = L(p) an
= H(p1(1=p)) —mH(pp).  (12)

Setting the derivative of 1,(p1) with respect to p; equal to
zero yields (8). Substituting (8) into (12) and using (5) we
obtain the capacity expression in (9). |

An interesting question arises here as to when the binary
input alphabet X is optimal for the PIC. In the following
proposition, we provide a guideline for the optimality of the
binary input for a subclass of PICs.

Proposition 1: For the PIC in (2) where m,, is large and 0,
is small such that the Poisson approximation in (4) is accurate,
the binary input distribution given in (8) is optimal if m,0, <
3.3679.

Proof: Using the same technique presented in [22] for
the optical channels, the proposition can be proved. See
[22, Sec. 3] for a detailed derivation of this result. [ |

Note that this condition may be satisfied in many practical
systems where the radius of the receiver is much smaller than
the distance between the transmitter and the receiver, hence the
probability of particles arriving is small. Upper bounds on the
total variation between binomial and Poisson distributions can
be used to show that this variation is small for small ¢, [21].

IV. COMPUTING CAPACITY OF THE BINOMIAL CHANNEL

The previous section provides an expression for the capac-
ity when the optimal input distribution is binary. This section
and the next address how to compute the capacity of the
PIC channel when the optimal input is not binary. Several
papers have addressed similar capacity computations includ-
ing [16], [30], [31], [24], [32], [33], [34], [35], [36], and [37].

This section lays the foundation for Section V to introduce
the DAB algorithm as a general solution technique for comput-
ing the capacity and optimal finite-support input distribution
for channels with continuous input alphabets. Section IV-A
introduces the binomial channel, which is a corner case of
the PIC channel. Section IV-B formulates the binomial chan-
nel capacity problem as a convex optimization problem, and
presents its dual. Section IV-C explores the Ellipsoid method
as one technique to solve the dual problem.

A. The Binomial Channel

To simplify our initial development, we focus on the corner
case of the PIC channel (2) where 6, = 1. In this case the
PIC channel is the binomial channel (of parameter n = m,)
and has a channel law defined by the binomial probability dis-
tribution of order n [16]. For each channel use, the input X
is the probability of success of a Bernoulli trial. The chan-
nel output Y is the number of successes observed during n
Bernoulli trials. Thus the channel transition probability law is
described as

PPtole) = (7)a¥(1 -2

where the possible y values are the integers zero through n.
The channel output could also be the ordered list of Bernoulli
trial outcomes, but since Y is a sufficient statistic [38] of those
outcomes for estimating X, the capacity is the same.

Figure 2 shows these finite-support capacity-achieving dis-
tributions for 1 < n < 50, with the area of the circle indicating

13)
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Capacity-Achieving Input Distributions for the Binomial Channel
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Fig. 2. Capacity-achieving input distributions for the binomial channel with
1 < n < 50 obtained by the Dynamic Assignment Blahut-Arimoto algorithm
described in Section V.

the probability of the mass point. For n = 1, the mass points
are at zero and one, resulting in a noiseless binary channel.
At n = 2, a mass point is introduced at 0.5, growing in prob-
ability as n increases, until at n = 5 that mass point splits into
two. As n increases, these two mass points move away from
0.5, and when, at n = 9, they are far enough away, a new
mass point is born at 0.5.

B. A Convex Optimization Problem and Its Dual

Despite the fact that finite-support distributions achieve
capacity of the PIC, direct application of the Blahut-Arimoto
algorithm [39] is complicated because the locations of the sup-
port points within the unit interval are not known. Reasonable
approximations can be obtained by applying Blahut-Arimoto
with mass points closely spaced along the entire unit interval,
with most of these having zero probability. However, we
are interested in algorithms that identify the capacity more
precisely and that explicitly identify the mass points of the
capacity-achieving distribution.

In [16], the capacity of the binomial channel is computed by
first formulating the problem as a convex optimization problem
and then solving it by using the Ellipsoid method. Assuming
that X has discrete support, capacity Cj, is

Cn=max I[(X;Y) (14)
fx (z)
=H(Y)-H(Y|X) (15)
= maX{ / fx(@)H(Y[X = z)fx (2)d }
Ix (z)
(16)

Despite the fact that the capacity-achieving distribution on
X has at most n + 1 mass points, the distribution on X is
expressed as a density function fy(z) (and an integral is
used in (16)) because the positions of the support points are
located anywhere in the uncountable set of the unit interval.

Thus, fx (z) consists of a countable number of delta functions
located anywhere in the unit interval.

The optimization problem of (16) can be formulated as a
convex optimization problem in a vector space with uncount-
ably infinite dimension. For more mathematical precision,
replace fx (z)dz with dF(x) where F(x) is the cumulative
distribution. We allow dF(xz) € F, the set of signed mea-
sures on the unit interval and include additional constraints to
force dF(x) to be a valid probability distribution. Introducing
the additional variables ¢, for y € {0,1,...,n} and appro-
priate equality constraints that force the g, values to be the
output probability distribution Py (y) induced by the input
distribution yields the following convex optimization primal
problem:

minimize Z qy log qy + / fx(@)H(Y|X = z)dF(x)

y=0
subject to —dF(z) <0, Vz € [0,1]

/:OdF(x)—lzo

1
o= [ PYhla)dr) o
y€40,...,n}.

The infinite dimensional dF(x) makes the problem
intractable. We create a Lagrangian dual problem that can
be solved with traditional methods. We introduce Lagrange
multipliers p, 29, 21, . . . , 2n, for the equality constraints and the
measurable mapping v(x) of [0, 1] to the one-dimensional real
space R for the inequality constraint producing Lagrangian
L(q, dF (z),v(z),z, u) [40]:

L= qulogqy / H(Y|X = z)dF (z)
y=0

— /10 v(z)dF (x) +M(/:0
1

dF (z) — 1)

which is the cost function augmented with the weighted sum
of the constraints. Minimizing L(q, dF(z),v(x),z, ) with
respect to primal variables q and dF(x) gives the dual function
g(v(z),z, ) as follows:

n 1

qu(zy—l-logqy) —u+/

y=0 =

V(@)dF (z) o,
0

= inf
q,dF (z)

where

= H(Y|X = 2) = o(z) +p— 3 2 PYx (o).
y=0

v(z)
(17)

Because dF(x) is an unconstrained unsigned measure,
g(v(z),z,u) = —oo unless y(z) > 0 for all z € [0,1], in
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which case we have

n

9(v(2),2, 1) = inf > ay(zy +loggy) — (18)

y=0
Setting d/dgy of the summation in (18) to zero yields the
minimizing value of ¢, = ? so that

g(v(z), 2, 1) =

19)

—loge L
2 %y
= p
y=0

The dual problem for our primal problem maximizes this
g(v(z),z, ) subject to constraints on the slack variables:

—loge "
27 %y —
D SR

y=0
subject to v(z) >0 Vz €0,1],
H(Y|X = 2) —v(x) +
n
=Y &PV (yla) = 0.

maximize

Combining these two constraints eliminates the cumbersome
infinite-dimensional v(x) producing

e

minimize Z 27 4 i
og e

y=0
n

2

subject to H(Y|X = x) Y|X (y|z) >

Vz € [0,1].

Minimizing the objective function requires the minimum
possible value of p that satisfies

=Y zyng‘)X(ylw) -

y=0

H(Y|X =z) Yz e[0,1] (20)

which leads to the final formulation of the dual problem, in
which only the variables 2z, remain:

274 1
max
e log e z€[0,1]

n

min
z
y=0

X Z zyng‘X ylz) —

The dual problem is a finite variable convex optimization
problem over the vector z, which can be solved using a variety
of techniques.

Once the minimizing z vector is obtained, complementary
slackness indicates that the capacity-achieving mass points are
the x values that maximize ZZ:O zyngn')X(yM) — H(Y|z).
The output distribution is recovered using Py (y) = ¢y =
2:”, and the probability P% () associated with each mass
point can be found by solving the equations:

ZPY|X YP(z) Vy € {0,...

z€A

H(Y|z)

;n}, (21

where A is the set of maximizing x values. The mutual
information induced by this Py is also the capacity.

C. The Ellipsoid Method

n [16], the ellipsoid method was used to solve the dual
problem identified in Section IV-B. The ellipsoid method was
developed by Shor, Nemirovski, and Yudin in the 1970’s and
used by Khachiyan [41] in 1979 to show the polynomial solv-
ability of linear programs. See [42] for an excellent survey.
One conclusion of [42] is that the ellipsoid method, while of
academic interest, is often not the fastest way to solve a con-
vex problem and can have stability issues as well. However,
it is straightforward to program.

The method begins with an initial ellipsoid & 0) ¢ RN

centered at a point zy , which is defined as
0 = {z eRY : (z—2) P (z—2) < 1} (22)

and is known to contain the optimizing point z*. At the
k™ iteration, the point z; is at the center of the ellipsoid

e = {2 RV : (s - 5) TP (s - m) <1} @3)

To compute the £ (k+1) we need the subgradient g;41 € RN
which is a vector that satisfies ngH(z* — z) <0, so that

e k) n {z : 913;-1(2 2;) < 0}.

The following computations create a new ellipsoid that con-
tains the half-ellipsoid described above:

(24)

-1
Jk+1 = (\/ngHPkng) Ik+1 (25)
1
=z — ——PL7 26
Al = % T oy PRIk (26)
N? 2 . .

Pi1y = 21 <Pk N1 1Pkgk+1gk+1pk>~ (27
The ellipsoid method stopping criterion computes

A : g];F Ppg;. which is an upper bound on the error in
the objective function. To apply the ellipsoid algorithm to the
dual problem of Section IV-B, N = n + 1 and the subgradient
is the vector with elements

27% — ePy|x (ylz¥)

- (28)
log e
where z* is any value of x that maximizes
-~ p)
ZzyPYnIX(yh:) — H(Y|z) (29)
y=0

for the current set of 2, values. Also needed are zy and Py
that create an initial ellipse that contains z*. The simplest
approach is to select the origin for 2y and choose Py to be
the identity scaled by a value that is larger than the square of
the optimizing z*. Figure 3 shows for the first 25 values of n
these squared distances, which grow to over 350 by n = 25.
However, there is a difficulty in knowing what the squared
distance is before the problem has been solved. This problem
is avoided by selecting the initial z vector for the (n-+1)%? case
by using the solution obtained for the n't case as follows:

Z PY|X ylz)P

z€eA

qg(/n—&-l,initlal 7‘L ) (l’) Vyeo,...,n
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Fig. 4. Number of iterations and computation time in seconds (on a
2.5 GHz MacBook Pro purchased in 2014) running the Ellipsoid and Dynamic
Assignment Blahut-Arimoto (DAB) algorithms implemented in MATLAB to
compute the binomial channel capacity: Ellipsoid method with initial point
at the origin (green triangles), Ellipsoid method with initial point at posi-
tion indicated by the solution for the previous n (blue dots), and the DAB
algorithm with initialization as described in Section V-A (red diamonds).

(n+1,initial)

n~+1,initial
2y = —log eqé ).

In this case, as shown in Figure 3, P can often be the unscaled
identity (or the identity scaled by a value less than one). With
such a close starting value, one would expect that the ellip-
soid method would converge much more quickly. However, as
shown in Figure 4, initializing the z vector to the previously
optimal point does not significantly improve performance,
highlighting the slow convergence of the ellipsoid algorithm
even when initialized to a favorable point.

V. DYNAMIC ASSIGNMENT BLAHUT-ARIMOTO

This section introduces the Dynamic Assignment Blahut-
Arimoto (DAB) algorithm, which computes the capacity
and associated capacity-achieving distribution when the input

alphabet is continuous but a capacity-achieving (or capacity-
approaching) distribution is known to have finite support.

The DAB approach alternates between a Blahut-Arimoto
step that optimizes the allocation of probability to a fixed set of
mass points and a second step that adjusts the placement (and
possibly the number) of mass points given the PMF identified
by the previous Blahut-Arimoto step.

Algorithm 1 summarizes DAB. This iterative algorithm
starts by initializing the number of mass points N (1) and
their locations X(1). DAB can increase the number of mass
points if necessary. During the k™ iteration of the algorithm,
first X(%) is used with Blahut-Arimoto algorithm to maximize
MI and find the corresponding maximizing distribution Pk,
This provides a lower bound on capacity. Then, the distribu-
tion p(y) induced by X®) and P*) are used to compute an
upper bound on capacity. If these bounds are within a speci-
fied threshold, then DAB has found the capacity (to a specified
level of precision) and the associated capacity-achieving (or
capacity-approaching) input distribution. Otherwise the loca-
tion of the mass points and/or the number of mass points needs
to be updated. These updates occur in steps 4, 5, and 6 of
Algorithm 1. The subsections that follow explore specific steps
of Algorithm 1 in more detail.

A. Initialization

Unlike the Ellipsoid method, proper initialization can dra-
matically reduce computation time for DAB. Consider again
Figure 2. The mass points often move only slightly as n pro-
gresses; significant changes occur only when the mass point
at x = 1/2 splits or when a new mass point is born at x = %
Notice that the gentle evolution of the capacity-achieving dis-
tribution as a function of n is such that the number of mass
points never increases by more than one.

DAB allows this behavior to be exploited. A clever approach
to initialization uses the previously computed capacity-
achieving distribution of a channel in the same “family” with a
slightly lower capacity as a starting point for its optimization.
For the binomial channel, the starting distribution X' 1) may
be selected as the capacity-achieving distribution for the bino-
mial channel with one fewer Bernoulli trial. Figure 4 shows
how this initialization approach (and the general efficiency of
DAB) lead to dramatically smaller values for run times and
required iterations as compared to the Ellipsoid method.

B. Upper Bound via Csiszar’s Min-Max Capacity Theorem

Step 2 of DAB relies on Csiszar’'s Min-Max Capacity
Theorem [43, Th. 3.4], which states:

C= min maxD(p(y|lz) [ p(y)) (32)

p(y)e{Py} ©
where { Py } is the set of distributions on Y that can be induced
by a valid input distribution. In fact, we can restate the dual
problem found in Section I'V-B in terms of Csiszar’s Min-Max
Capacity Theorem as follows:

min?d > Py (y) — L+ max D(p(ylz) | p(y)) ¢ (33)
p(y) | 5 z
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Algorithm 1 Dynamic Assignment Blahut Arimoto

Initialization: Select X(1) = [9:1 Ty v xN(l)], the vector
specifying the N (1) mass point locations in increasing order.
Select the tolerance e controlling the accuracy of the final
capacity. Set k = 1.
Iterations: Determination of the optimal X*, P*, and the
capacity C (within e bits) proceeds as follows:
1) Given X (k), use Blahut-Arimoto to compute the MI-
maximizing distribution P*) and the corresponding MI
I(k), which is a lower bound on C.
2) Use the distribution p(y) induced by X ) and P*) to
compute the capacity upper bound

(k) _
Diax = rmneaj(cD(p(ylw) Ip(y))-

3) If Dr(ngx — Ik) < ¢ conclude by reporting X* = )E(k),
P* = PK) and ¢ = I%), Otherwise continue.

4) Determine whether N(k"‘l) = N®) or N(¥) 4+ 1 and
if the latter, update X (k+1) to include the additional
location.

5) Determine direction vector D* to adjust X.

6) Compute

)E(k—i-l) _

X)L Dk (30)

where

A= argm}a\xx[()\?(k) + )\ﬁk,’ﬁ(k)) , (3D
and I(X,P) is the mutual information that results from
an input distribution with mass points whose loca-
tions are described by the vector X' with corresponding
probabilities are described by the vector P.

T k=k+ 1.

8) Go to 1.

An upper bound on capacity follows directly from (32): For
any valid output distribution on ),

C< mng(Py|X:$||Py). (34)

C. Determining Direction Vector Dk

In this step of DAB (step 5 of Alg. 1), a direction is selected
along which X% will be varied in step 6 to increase the mutual
information 1 (z’f’ ,P). This article considers two approaches to
selecting the direction: moving a single mass point (or sym-
metric mass-point pair) and moving all points by setting the
direction to be the relevant gradient.

1) Moving a Single Mass Point (or a Symmetric Pair): The
technique considered in the original DAB [2] was to select and
move a single mass point so that D¥ which the vector
with all elements set to zero except the jtﬂ element, which is
set to one. When the capacity-achieving distribution is known
to have symmetry about its center, DF should be selected as
a symmetric pair of mass points so that

D* = ¢j + ey (35)

The binomial channel is an example where X* is symmetric
(about 1/2) so that a symmetric pair of mass point locations are
set to 1 to form DF. The PIC does not have such symmetry.
a) Proximity t0 Tygy: In [2], motivated by reducing the upper
bound of (34), for the spe(:1ﬁc case of the binomial channel,
the original DAB sets Dk = = ¢; where the mass point z; is the
point in the interval bounded by zyax and 1/2 that is closest
t0 Tmax, Where
zhax = argmax D(p(y]a) | p()). (36)
b) Maximum derivative: In this article we also consider the
alternative where DAB selects the mass point z; to maximizes
the partial derivative

o1 ()ﬂ’f), 75(’“)

_0D(p(ylz) | p(y))
8xj P :

- 3%‘

(37)

¢) Round robin: As a third alternative DAB could select
the mass points (or symmetric pairs) in a round robin fashion.
This is a conservative approach that makes sure that every pair
gets a chance to adjust its position.

2) Moving Along the Gradient: Considering (37), rather
than selecting any single mass point Dk = ej, this approach
sets DF to the gradient:

o1(F®) P

0z _
AI(X®) Pk))
F=v a1 = o2z (38)
p1(TH P4)
oxrn

When optimizing along the direction of the gradient, the value
of scalar A in (30) is limited so that the mass point locations
cannot cross each other. Figure 5 compares values for the run-
ning time and the number of iterations required to calculate the
capacity and the optimal input distribution for the Binomial
channel in Figure 2 based on methods 1b) and 2. As can be
seen moving a single mass point tends to result in faster con-
vergence. Therefore, in the rest of the paper we will use this
method for numerical evaluations.

D. Determining \ to Maximize ](22,75)

A line search routine (such as fminbd in MATLAB) deter-
mines the value of A that maximizes I(X,P) in step 6 of
Algorithm 1. Since mutual information is a concave function
of the input distribution [28], this line search is guaranteed to
find the globally optimal point. As the number of mass points
grows, fully optimizing A to maximize [ (?E , 75) provides more
consistent performance than the approach in [2] of moving the
mass point in the direction of zy,ax using a step size d.

E. Determining When to Increment N (k)

There are three possible approaches to deciding when to
increment N (%) in step 4 of Algorithm 1.
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Fig. 5. Number of iterations and computation time in seconds (on a 2.5
GHz MacBook Pro purchased in 2018) running the Dynamic Assignment
Blahut-Arimoto (DAB) algorithms implemented in MATLAB to compute the
binomial channel capacity with the single-derivative (SD) DAB described in
Section V-C1 and the Gradient (G) DAB described in Section V-C2 Overall,
SD-DAB proves to be superior to G-DAB in computational speed and number
of iterations.

1) “Missing Mass Point” Approach: When applying
approach la of Sec V-C for the binomial channel, an addi-
tional mass point is added whenever none of the mass points
in X(*) lies in the interval bounded by Zyayx and 1/2. If N (*)
is even, a new point is added at 1/2. If N () s odd, a new
point is added by splitting the point at 1/2 into two points that
will then be pulled away from 1/2 by the line search of step 7.

2) Minimum Derivative Test: When applying approaches
1b or 2 of Sec V-C, additional mass point is added whenever
the largest derivative is small enough that further improvement
requires an additional mass point. The test in step 4 reveals
when further mutual information increase is possible. When
the derivatives all become too small to allow the potential
improvement identified in step 4, this is a clear indication that
an additional mass point is needed. If N (k) is odd, a new point
is added by splitting the central point. If N (k) is even, a new
point is added in between the two central points.

3) Negligible Rate of Change of I'®): When applying any
of the approaches of Section V-C, simply tracking the increase
in mutual information can be an effective way to determine
when an additional mass point is needed. If the [ (k) _ p(k=1)
becomes negligible, then a new mass point is added. As above,
it N%) is odd, a new point is added by splitting the central
point. If N (k) is even, a new point is added in between the
two central points.

VI. NUMERICAL EVALUATIONS

This section uses DAB to evaluate the capacity and the
optimal input distribution for several instances of the PIC.
The assumed mechanism for particle transport is diffusion with
coefficient d from a point-source transmitter to the surface of a
spherical receiver with radius r. Let £ be the shortest distance
between the point source and the receiver surface. Under this

10

Symbol duration 7 (s)

0 . .
0 0.05 0.1

Probability that a particle arrives p

0.15

Fig. 6. Plot of the iCDF of the X Lévy-distribution for ¢ = 1 and n = 0.2.

model, the motion of each particle can be represented using a
random Brownian path in 3D space.

Since we assume that the particles are either detected when
they arrive at the receiver or they are never detectable, the
time of arrival is given by the first time the particle reaches
the receiver. For Brownian motion in 3D space, the first arrival
time 7 to the spherical receiver is a scaled Lévy-distributed
random variable where the scale constant is n = K—I—Lr [44].
This means that there is a non-zero probability that a particle
never arrives at the receiver. Note that for Brownian motion
in 1D space, n = 1. Using the iCDF of the scaled Lévy
distribution, we obtain

C

T="Fr'(p) (39)

B 2erfeinv?(p/n)

where ¢ = % and erfcinv(.) is the inverse of the comple-
mentary error function erfc(.). We call a channel that relies
on this diffusive transport the diffusion-based PIC (DBPIC).

Remark 2: Substituting (39) into (5), we observe that the
diffusion coefficient d has no effect on the optimal input dis-
tribution and the optimal p. This is despite the fact that the
capacity increases linearly with d. This means that if the type
of particle is changed, so long as the distance between the
transmitter and the receiver is the same, and the receiver has
the same radius, the optimal distribution and the optimal p
values will remain the same. Note that the change in capacity
is due to the fact that a shorter or a longer symbol duration is
required to achieve the same p value.

Remark 3: If we consider a 1D environment? (i.e., n=1),
we observe that the capacity decreases as l%’ and the distance
I does not affect the optimal input distribution and the optimal
p. For a 3D environment however, changing the distance [
and the radius r could affect the optimal p and P(x) values
through 7.

Figure 6 shows the iCDF of the scaled Lévy distribution
in (39) for ¢ = 1 and n = 0.2. Note that a small increase in
p can require a large increase in symbol duration. Therefore,
larger p values may not necessarily result in higher information
rate in bits per second. This effect is verified in Figure 7 where

2Note that a 1D environment is a good approximation if the system is
confined inside a very narrow and long physical channel.
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Fig. 8. Information rates and capacity-achieving input distributions as a
function of p for the PIC with ¢ = 1,7 = 0.2, = 0.9,58 = 0.9 and
A = 1000. Finite-support capacity-achieving distributions were obtained by
the algorithm described in Section V. To generate the results of this graph,
we use methods described in Sections V-Cl1b and V-E3.

the information rate is plotted for three different particle gen-
eration rates, A. The scaling factor for the Lévy distribution
is n = 0.2, which means the distance between the transmitter
and the receiver is four times the radius of the receiver.

The square markers indicate the maximum value of C?(p)
of (9) for the binary input distribution, and the x-markers
indicated C* in (6) for the optimal input distribution. For the
case of A = 1000, Figure 7 shows that the binary input distri-
bution does not maximize C*. The three vertical dashed lines
indicate, for each choice of A, the p value after which m,0,
in Proposition 1 is greater than 3.3676. We observe that for
the p values smaller than this critical value, the binary input
is the optimal input distribution.

DAB provides the capacity and optimal mass point loca-
tions for a sequence of p values for the PIC channel. Unlike
the binomial channel, there is no longer any assumption of
symmetry in the input distribution. Therefore, the new mass
points are introduced at a location between the two middle
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Fig. 9. Number of available particles vs. p and number of DAB iterations until
the information difference D(PY|X:1 |Py)—1I(X;Y)isbelow 1075 as
a function of p for the PIC with the same parameters and algorithm as in
Figure 8.

)

®

Information Rate [bits/sec]

I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06
Probability that a particle arrives p

o
@

o
)

)
i

o
o

)

Optimal Input Distribution Mass Points
©
Ny

0 0.01 0.02 0.03 0.04 0.05 0.06
Probability that a particle arrives p
Fig. 10. Information rates and capacity-achieving input distributions as a

function of p for the PIC with ¢ = 0.5,n = 0.3, = 0.95, 8 = 0.95 and
A = 5000. Finite-support capacity-achieving distributions were obtained by
the algorithm described in Section V. To generate the results of this graph,
we use methods described in Section V-C1b and V-E3.

mass points, or the middle mass point is split. Figures 8
and 9 summarize the results of application of DAB to the
PIC with parameters ¢ = 1,7 = 0.2, = 0.9, = 0.9
and A = 1000. Particularly, the top plot in Figure 8 shows
the channel capacity, and the bottom plot shows the capacity
achieving distribution corresponding to the each p value. The
black dashed line indicates the first p value for which binary
distribution is no longer capacity achieving, and the red dashed
line indicates the location of the p value that achieves the
largest information rate. Again we can verify that Proposition 1
holds, and that only 3 mass points are required to achieve the
highest information rate.

The top of Figure 9 plots the number of particles that
can be released by the transmitter as a function of p.
The bottom shows the number of iterations required until
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D(Py|x—y||Py)—I(X;Y) is below 10~°. We observe that
even with multiple mass points, the number of iterations can be
quite small when no new mass point has been recently intro-
duced. As can be seen in Fig. 8, in these cases the new mass
point positions are small modifications to the previous mass
point positions, which were used to initialize DAB. However,
as the number of mass points increases the maximum num-
ber of iterations required by DAB (typically right after a mass
point is introduced) does increase.

To demonstrate that the input distribution that achieves
capacity can have more than 3 mass points, in Figure 10, we
consider a system with ¢ = 0.5,7 = 0.3, = 0.95,3 = 0.95
and A = 5000. Recall that the black dashed line indicates the
first p value for which binary distribution is no longer capacity
achieving, and the red dashed line indicates the location of the
p value that achieves the largest information rate. As can be
seen, for this system, the largest information rate is achieved
when the number of mass points is equal to 4. Again the results
verify that Proposition 1 holds.

VII. CONCLUSION

This article introduces the PIC and analyzes its capacity and
the associated capacity-achieving distribution. We show that
the optimal input distribution for this channel always has mass
points at probabilities of release having values of zero and
one. For diffusion-based propagation, the diffusion coefficient,
and hence the type of the particles used, does not affect the
optimal input distribution. We then derived capacity for the
binary input diffusion-based PIC and present conditions under
which a binary input is optimal for this channel.

This article also introduces DAB as an efficient algorithm
for finding the capacity and associated capacity-achieving
distribution when the input alphabet is continuous but a
capacity-achieving (or capacity-approaching) distribution is
known to have finite support. This article applies DAB to
the binomial channel and the PIC. DAB provides numerical
results illustrating that binary input is optimal for systems
where the transmitter cannot generate particles at rates that
satisfy Proposition 1. This can be thought of as the low SNR
regime. Future work on the PIC could explore the effect of
ISI. Future applications of DAB include a wide range of chan-
nels including peak and power limited additive white Gaussian
noise channels and optical channels.
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