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Abstract—Understanding the status of high-performance com-
puting platforms and correlating applications to resource usage
provide insight into the interactions among platform components.
A lot of efforts have been devoted into developing monitoring
solutions; however, a large-scale HPC system usually requires a
combination of methods/tools to successfully monitor all metrics,
which will lead to a huge effort in configuration and monitoring.
Besides, monitoring tools are often left behind in the procurement
of large-scale HPC systems. These challenges have motivated the
development of a next-generation out-of-the-box monitoring tool
that can be easily deployed without losing informative metrics.

In this work, we introduce MonSTer, an “out-of-the-box” moni-
toring tool for high-performance computing platforms. MonSTer
uses the evolving specification Redfish to retrieve sensor data
from Baseboard Management Controller (BMC), and resource
management tools such as Univa Grid Engine (UGE) or Slurm
to obtain application information and resource usage data. Addi-
tionally, it also uses a time-series database (e.g. InfluxDB) for data
storage. MonSTer correlates applications to resource usage and
reveals insightful knowledge without having additional overhead
on the application and computing nodes. This paper presents the
design and implementation of MonSTer, as well as experiences
gained through real-world deployment on the 467-node Quanah
cluster at Texas Tech University’s High Performance Computing
Center (HPCC) over the past year.

Index Terms—High Performance Computing, monitoring and
maintenance tool, visualization tool

I. INTRODUCTION

Monitoring is critical to the successful operation of complex

high performance computing (HPC) systems. Failures in HPC

not only affect the currently running jobs but also waste

scheduling and queuing time. Additionally, failures can result

in the loss of data that have already been processed. Therefore,

timely monitoring of the status and functionality of the HPC

system enables system administrators to adequately handle

potential problems to maintain the health of the system and to

provide stable computing services for HPC users.

Several different monitoring tools have been proposed over

the last decades. Each tool has its advantages and disad-

vantages. System administrators often select one or several

tools to form a dedicated monitoring infrastructure, depending

The data reported in this research were collected on Intel and Dell EMC
hardware platforms.

on monitoring needs. To ensure that these tools work as

expected, a lot of effort has been put into configuring and

customizing them to fit the platform being monitored and meet

specific monitoring requirements. Once the HPC infrastructure

is revamped, the monitoring tools need to be upgraded, which

requires extra effort to implement these changes. Given the

complexity of deploying a monitoring platform and timely

operation of the monitoring tool, it is desired for a next-

generation, out-of-the-box, and scalable monitoring tool.
Maintaining the “keep everything” methods seems to be

the safe way to drill down into problems. However, as the

HPC systems continue to grow and more metrics can be

collected and monitored, moving and saving a greater amount

of data than before becomes another challenge. We need to

rethink what we care about and keep data that are valuable

for detecting anomalies. We can cross-compare and correlate

the sub-components within the HPC system, such as jobs

data, resources usage and hardware status, so as to quickly

understand the system status, detect anomalies in time, and

provide guidance for finding and solving problems.
As the Redfish protocol [1] has evolved, many vendors have

adopted the Redfish protocol in their server products and ex-

pose an interface for accessing BMC information through the

Redfish API, which allows out-of-band retrieval of necessary

hardware information and sensor data, such as power usage,

temperature and fan speed. On the other hand, large-scale

production HPC clusters deploy resource managers to schedule

applications across computing resources. The resource man-

ager has the overall status of the computing resources and

can allocate appropriate resources to jobs submitted in the

queue to achieve effective scheduling. The status of computing

resources mainly includes CPU usage, memory allocation, and

I/O statistics. MonSTer leverages these existing techniques to

monitor the system by retrieving metrics from the provided

APIs. It correlates collected metrics and reveals insightful

knowledge of how platform components interact with each

other without having additional overhead on applications and

computing nodes.
The following summarizes the contributions of this work:

• We designed an “out-of-the-box” monitoring tool - which
we named MonSTer (i.e., Monitoring System Tool) - to

collect data from the resource manager and BMCs.
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• We proposed a middleware in MonSTer that processes
and aggregates the collected data. The middleware also

provides an API for data analysis.

• We developed a data analysis tool, HiperJobViz, which
gains insightful information by analyzing and visualizing

application data and device status.

• MonSTer largely eliminates the effort to develop cus-
tomized monitoring tools, allowing system administrators

to focus on higher-level tools that leverage the data

collected and delve into useful information.

The rest of the paper is as follows. We first describe the

background and motivation for developing MonSTer in Section

II. In Section III, we then discuss the monitoring architecture

and explain the design of each module. Next in Section IV,

we present performance overhead and experience gained from

a production deployment. Finally, we report related works in

Section V and conclude the paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background of this research

including the cluster being monitored, the Quanah cluster,
and its currently deployed monitoring infrastructures. We also

discuss the shortcomings of current solutions and present the

motivation for developing the next-generation and “out-of-the-

box” monitoring tool.

A. The Quanah Cluster

The Quanah cluster at High Performance Computing Center

(HPCC) of Texas Tech University [2] is commissioned in

early 2017 and expanded to its current size in 2019, which

is comprised of 467 nodes with Intel XEON processors

providing 36 cores per node. Quanah has a total of 16,812

cores with a benchmarked total computing power of 485

Teraflops/s and provides 2.5 petabytes storage capability. The

cluster is based on Dell EMC PowerEdge™ C6320 servers,

which are equipped with the integrated Dell Remote Access

Controller (iDRAC) [3] providing Redfish API [1] for access-

ing Baseboard Management Controller (BMC). The software

environment is based on CentOS 7 Linux, provisioned and

managed by OpenHPC, and has a fully non-blocking Omni-

Path 100 Gbps fabric for MPI communication. The cluster is

operated with Univa Grid Engine (UGE) [4], setting up with

multiple queues, with jobs sorted by projects to meet the needs

of research activities for many fields and disciplines.

B. Existing Monitoring Solutions

The initial motivation for monitoring was the desire to keep

track the running status at both hardware and software level.

To this end, our production data center, HPCC, deployed

an open-source monitoring framework Nagios [5] for HPC

infrastructure monitoring. We also used Univa Unisight [4]

to monitor and report job scheduler data and Grid Engine

environments.

Nagios is an open-source framework for monitoring sys-

tems and provides infrastructure failure detection. It alerts

administrators and performs automatic recovery mechanisms

when problems occur. Recently we developed a Redfish plugin

for Nagios [6]. The plugin integrates the Redfish API with

Nagios Core, communicates with HPC monitored entities

via the Redfish API, and populates node status to Nagios.

Additionally, Nagios provides an interactive web interface

that allows users to access monitoring details and modify

monitoring parameters including removing alerts, executing

service checks and more.

Univa Unisight is a robust monitoring and alerting system

for managing and analyzing resource usage across a monitored

cluster. It enables HPC administrators to control a comprehen-

sive and transparent data collection system and to generate

various reports across the cluster. Additionally, the pre-built

dashboard allows administrators to easily query and visualize

job-related metrics.

There are many other open-source monitoring tools focusing

on monitoring high performance computing cluster system.

Some tools are only capable of capturing node state which in-

cludes CARD [7], Parmon [8], Supermon [9] and Ganglia [10].

A few monitoring tools are capable of job-level monitoring

such as Ovis [11] and TACC Stats [12].

C. Motivation

The aforementioned tools used in the Quanah cluster and

other existing tools we have surveyed and investigated (dis-

cussed in more detail in Section V) do not meet the need for in-

depth understanding of systems and applications performance

for the following reasons. Nagios is designed for failure

detection and notification, and historical monitoring data are

collected and saved in text files, through which the accessing

and processing are difficult and time-consuming. Furthermore,

due to the department policy, the Unisight database is not

available to researchers other than HPCC staff. Additionally,

none of the existing monitoring tools is capable of analyzing

and visualizing user-level information and node-level health

status in real-time.

These shortcomings of current solutions have motivated

us to build a new monitoring tool on top of the existing

infrastructures, which is capable of analyzing systems and user

behaviors. The monitoring tool should be available “out-of-

the-box” (i.e. it should be easy to deploy, does not require

intervention in the running system, and should be scalable to

meet further monitoring needs). The tool should be architec-

ture agnostic too so that other HPC systems can adopt it.

III. ARCHITECTURE

In this section, we first provide a high-level overview

description of the MonSTer architecture. We then explain each

functional module in detail and discuss the design considera-

tions as well.

A. Overview

A high-level diagram of MonSTer is shown in Figure 1,

where solid arrows indicate the data flow, and dashed arrows

indicate the instructions flow. As shown in the diagram, there

are four main modules:
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Figure. 1. Diagram of MonSTer architecture (solid arrows indicate data flow;
dashed arrows indicate instructions flow.)

1) Metrics Collector, which captures interested data from
computing nodes and resource managers.

2) A measurement storage module, which consists of a set

of measurements for storing the collected data in a time-

series database.

3) Metrics Builder, which correlates and aggregates data
from multiple measurements, and exposes an API to

various consumers.

4) A data analysis tool, HiperJobViz, which visualizes and

analyzes application data and device status.

HiperJobViz represents a class of analysis tools that can utilize

the data provided by Metrics Builder API. We decouple data

analysis and data collection to improve the flexibility of the

system. Next, we will introduce each module in detail.

B. Collection

HPC monitoring covers a wide range of possible data

sources including computing nodes, resource managers, and

operating systems. Our monitoring system primarily utilizes

out-of-band measurements retrieved via BMCs and in-band

measurements accessed through the resource manager. In the

current implementation, we do not involve any other collection

tools. Figure 2 illustrates the collection components. A cen-

tralized collecting agent named Metrics Collector periodically

sends requests to the BMCs on computing nodes and UGE

on the head node at a pre-defined and configurable collection

interval. Metrics Collector then pre-processes, builds time

stamps, and writes data points into the storage component.

1) Querying BMC: As we have mentioned in Section II-A,
modern computing nodes in HPC systems are equipped with

BMCs (such as iDRACs in the Quanah cluster), which provide

Redfish API to read system telemetries. Communications

between Metrics Collector and BMCs take place over an

Figure. 2. Diagram of Metrics Collector

independent management network. Therefore, this approach

avoids perturbing ongoing computations across compute fabric

and allows status to be obtained even if the computing node

is down.

More specifically, the current version of iDRAC (model:

13G DCS, firmware version: “2.63.60.61”) supports four cat-

egories of telemetry data. Selective metrics are listed in table I.

Metrics in the same category are exposed as a Redfish API

query that can be accessed via a unique URL. For example, to

query the “Thermal” information from the node “10.101.1.1”,
the URL is "https://10.101.1.1/redfish/V1/C
hassis/System.Embedded.1/Thermal/". At each
collection interval, retrieving nine metrics from all 467 nodes

in these four categories requires Metrics Collector to build

a request pool with 1868 URLs. Metrics Collector sends all

requests asynchronously and waits for the responses.

TABLE I
SELECTIVE METRICS COLLECTED FROM BMC

Category Metrics
Manager BMC Health

System
Host Health

Processor Health
Memory Health

Thermal
CPU Temperature
Inlet Temperature

Fans Speed (Fan 1, Fan 2, Fan 3, Fan 4)

Power
Power Usage
Voltages

The current version of iDRAC has limited resources and

cannot handle a large number of requests. To improve the suc-

cess rate of querying, we implement the connection timeout,

read timeout, and retry mechanisms in Metrics Collector. In

our experience, a Redfish API request takes 4.29 seconds on

average. Asynchronous request for all metrics from all nodes

takes about 55 seconds.

2) Querying UGE: UGE [4] is a resource management

system previously forked from Sun Grid Engine (SGE) [13]. It
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Figure. 3. Univa Grid Engine components architecture

supports and operates in a heterogeneous network environment

and is used to manage distributed resources world widely.

Figure 3 shows the components of the UGE. Users submit jobs

through command-line utilities qsub, qrsh, etc. The qmaster
is the core component of UGE that accepts incoming jobs and

assigns a holding area where jobs wait to be executed. There

may be one or more shadow masters to take responsibility in
case of failure. The qmaster dispatches jobs with the highest

priority when computing resources are available to execute.

An execution daemon hosted on the available node receives
jobs from the qmaster and executes them locally. When a job

is completed, the execution daemon notifies the qmaster so

that the next job can be scheduled to the empty slot.

Qmaster receives continuous status (such as CPU or mem-

ory usage) from execution daemon at fixed intervals, with the

default being 40 seconds. If the qmaster fails to receive a

continuous status report, the qmaster labels the executing host

and its resources as no longer available, and the following jobs

are not assigned to this host. While we can set the reporting

time to a higher frequency, it may block the qmaster, especially

with a high number of execution hosts. Also, frequent load

updates are of little value because the load on the execution

node usually rises and falls smoothly [14].

As shown in the diagram, UGE also has a component called

ARCo, short for the Accounting and Reporting Console, which
is a web-based tool for accessing accounting information.

Metrics Collector uses ARCo to access computing resource

metrics and application details. Table II presents a selection of

metrics. In addition to collecting resource metrics from UGE,

Metrics Collector also supports query metrics from Slurm,
another widely used resource management and scheduling

system.

3) Pre-processing: Metrics Builder extracts metrics from
BMCs and UGE. However, these metrics are not passed

directly to the storage component. We pre-process metrics in

the collection phrase to obtain the following benefits.

Pre-processing the collected metrics has significantly re-

duced the amount of data. For example, instead of storing

all health information, we keep only abnormal status, such as

TABLE II
SELECTIVE METRICS COLLECTED FROM UGE

Category Metrics

Resource

CPU Usage
Average Load
Total Memory
Used Memory
Used Swap
Free Swap

Job

User Name
Job Name
Job ID

Job Submit Time
Job Start Time

Relationship Job List on Node

“Warning” or “Error”, to reduce redundancy, as the majority of

systems is usually healthy. This optimization reduces a large

amount of unnecessary, redundant health data in the system.

Additionally, we use binary integers to represent the state,

not as strings as in “Warning” or “Error”, which provides

a much more compact representation of data collected and

monitored. For time stamps, such as job submission time

and start time, the data collected from job schedulers are

also strings, representing human readable dates and time.

We convert these date strings to an integer epoch time, thus

achieving significant savings on storage as well. The use of

integers and binary data in general, instead of ASCII strings,

to represent state and time stamps also makes further analysis

easier to implement.

Through pre-processing, more insights can be gained from

job-related metrics. For example, based on the “Job List on

Node” information, we can summarize how many cores a

job uses and how many nodes a job takes up. In addition,

since UGE does not provide real-time job finish time, we

calculate finish time by comparing the difference between two

consecutive job lists. If a job is in the previous list, but not in

the current job list, then that job should be completed before

the current collection interval. This estimated finish time can

be updated when ARCo provides an accurate finish time.

Additionally, we calculate memory usage from total memory

and used memory to standardize resource usage metrics.

4) Collecting Interval: As discussed in section III-B1 and
section III-B2, the collection interval is limited by the response

time of the BMC and the job scheduler state update time,

which are 55 seconds and 40 seconds on our platform,

respectively. Therefore, it is not possible to obtain high-

resolution data in seconds or even milliseconds from the

existing infrastructures. However, even with high-resolution

data, system administrators generally do not respond at a

time scale of seconds [15]. Besides, it is challenging to

transmit and store high-resolution data points. Therefore, our

current implementation keeps the telemetry data collected at a

reasonable interval of 60 seconds to ensure that BMC metrics

are retrieved even when network fluctuations are encountered

and to collect resource manager metrics whenever possible.
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C. Storage

In our system, based on the collection interval and the

number of metrics obtained from BMCs and UGE, the Qua-

nah cluster generates approximately 1.4× 107 individual data
metrics per day. Traditional SQL databases are inadequate to

store and query such large amounts of time series data. On the

other hand, it is unacceptable to go through complex queries

that can take a lot of time to produce usable results. In order

to achieve high usability and scalability from storage module,

we choose the open-source time series database InfluxDB [16]

as the main storage component and conduct a number of

customized optimizations for HPC monitoring tool needs.

Moreover, InfluxDB contains a variety of features that can

be used to calculate aggregation, roll-ups, downsampling, etc.,

making the data visualization and data analysis more efficient.

The measurements in InfluxDB can be thought of as SQL

tables. We organize them by data sources and category. Cur-

rently, we have measurements like Health, Power, Thermal,
UGE, JobsInfo, and NodeJobs. The metrics are organized as
follows: Health measurement stores all health-related infor-
mation obtained from the BMC including BMC health and

system health. Power measurement is used to store power
usage at the node level and Thermal measurement stores CPU
temperature, inlet temperature, and fans’ speed. CPU usage

and memory usage obtained from the UGE are stored in

the UGE measurement. We use a specialized measurement,

JobsInfo, to store the details of the job, and NodeJobs to store
the correlation between the nodes and the job. Sample data

points are shown in Figures 4 and 5.

"time": 1583792296
"measurement": "Power"
"tags":

"NodeId": "10.101.1.1"
"Label": "NodePower"

"fields":
"Reading": 273.8

Figure. 4. Sample data point for storing node power usage of node
“10.101.1.1”. We add a “Label” in “tags” so that the power consumption
of other components can also be saved to the “Power” measurement.

"time": 1583892564
"measurement": "NodeJobs"
"tags":

"NodeId": "10.101.1.1"
"fields":

"JobList": "[‘1291784’, ‘1318962’,
‘1318307’, ‘1318324’]"

Figure. 5. Sample data point for storing jobs running on node 10.101.1.1.
UGE allows jobs to share the node. Therefore, multiple jobs might be running
on the same node at the same time. Data types in InfluxDB do not include
array; thus, we stringify the job list information.

Every 60 seconds, Metrics Collector builds data points from

the collected metrics based on the schemas. The total number

of data points generated within each interval is approximately

10,000, which is the ideal batch size for InfluxDB. Metrics

Collector then writes these data points into the database

in batches. This approach reduces the network overhead of

opening and closing HTTP links by transmitting more data at

once.

D. Aggregation

The data stored in the database is raw data, and analysis

tools usually digest long-term historical data with different

granularities. Querying directly from the database requires an

understanding of the precise database schemas and involves

additional programming to query and process the data. Ad-

ditionally, querying and transmitting long-term data requires

significant waiting time. To address these issues, we introduce

Metrics Builder, an aggregation module in MonSTer. Metrics

Builder hides the details of querying InfluxDB, speeds up

querying and transmitting, and provides a unified API for

data analysis consumers. Decoupling data acquisition and data

analysis through a time-series database greatly improves the

flexibility and structure of the system.

Metrics Builder acts as a middleware between the con-

sumers (i.e. analytic clients or tools) and the producers (i.e.

the databases). Its main workflow is as follows. First, it

receives requests from consumers. The request includes time

range, time interval and data type information. The time range

represents the window of time for the data that consumers want

to access. Time intervals and data types are used to aggregate

and downsample time series data. Second, Metrics Builder

generates the appropriate InfluxDB query strings based on the

information specified by the consumer and then sends queries

to InfluxDB and waits for responses. Third, Metrics Builder

then processes data returned from InfluxDB, builds the data

in JSON format, and sends them to the consumer.

We use an example to illustrate some more details. A data

analysis tool invokes Metrics Builder API with parameters

including a time range from “2020-04-20T12:00:00Z” to

“2020-04-21T12:00:00Z” with a time interval of “5m” and
a data type of “max”. These parameters indicate the data
collected between the time window will be downsampled

at a maximum of every five minutes. Metrics Builder then

generates a series of query strings. For example, to retrieve

the power usage of node “10.101.1.1”, the following Influx
query language string will be created:

"SELECT max(Reading) FROM Power
WHERE NodeId=‘10.101.1.1’
AND Label=‘NodePower’
AND time >=‘2020-04-20T12:00:00Z’
AND time < ‘2020-04-21T12:00:00Z’
GROUP BY(5m)"

Metrics Builder concurrently sends all query requests to

InfluxDB. InfluxDB’s built-in aggregate function finds the

maximum reading of node power of every 5 minutes and

returns the aggregated value to Metrics Builder. After all

responses are received, Metrics Builder aggregates all metrics

by the node ID. Compression is also used to reduce the amount
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Figure. 6. Timeline visualization of 1-day job scheduling of the Quanah
Cluster: Only a few representative users/jobs are shown in the figure.

of data in order to reduce the transmission time for long-term

data. Experimental results on compression performance can be

found in Section IV.

E. Data Analysis

The purpose of the data analysis component is to provide

administrators insights of the current status of computing

nodes and running jobs, as well as a long-term analysis

of historical data using an appropriate graphical representa-

tion [17]. For this purpose, we have developed a dedicated

data analysis tool, HiperJobViz [18], which invokes Metrics

Builder API to retrieve data on demand, tracks changes in

resource usage by users and jobs, and visualizes status metrics

of computing nodes using high-dimensional representations.

A full discussion of HiperJobViz is beyond the scope of this

paper. In this paper, we present two main visual components.

For those interested in its features, please visit the demo

page [19].

1) Job Scheduling Visualization: This component visual-
izes the status of submitted jobs (an example is shown in Fig-

ure 6). The gray bar indicates waiting time before execution,

and the green bar indicates running time. From the figure,

we can observe that some jobs start executing without any

queuing time after submission, while others wait for quite a

long time. In addition, the number of jobs submitted by a user

and the number of hosts used by the user are expressed in

numbers. For example, user “jieyao” submitted two jobs that

require 58 hosts at the same time, which indicates the user

is running MPI jobs. User “abdumal” submitted 997 jobs, but

only occupies 29 hosts. It is likely that these jobs are array

jobs that share 36 cores on each host.

Moreover, in order to correlate the job information with the

computing nodes, a hierarchical representation is developed, as

shown on the left of Figure 9. The running jobs are mapped

to these groups, revealing the correlation between the jobs

and the status of the computing nodes. The major host groups

on the left represent the nodes, which are clustered in seven

groups using the k-means clustering algorithm [20]. The blue

cluster (Group 7 on the top left corner) is the most popular
cluster, as this is the normal status of the computing nodes (the

Figure. 7. Radar representations for nine-dimensional metrics of two example
computing nodes: (left) Normal status (right) High CPU temperature and high
memory usage.

Figure. 8. Historical status change trends for node “1-31”. The background
colors highlight the operational states of node “1-31’ over particular time
intervals.

metric readings are in the middle ranges). We will discuss the

node status representation in Section III-E2.

2) Node Health Status Visualization: We use a radar chart
to visualize high-dimensional data of each node [21]. As

shown in Figure 7, it normalizes the health metrics, orga-

nizes them cyclically, and connects relevant values on each

dimension to represent the “morphology” of the data pro-

file [22]. Two sample radar charts in this example depict the

perceptional differences of two typical statuses in the system:

blue is for a normal operational state while orange is for a

critical status (high CPU and memory usage). In order to

characterize the primary health of the system, we perform a

modified k-means clustering of these nine health metrics for

the computing nodes. This results in the major host groups

that were discussed in Section III-E1.

A matrix of symmetric histograms summarizes the variance

of the readings of each user’s data per dimension shown on

the right of Figure 9, which provides a visual summary for

comparing resource usage across users. By clicking on the

attribute name, the histograms will be arranged in ascending or

descending order, from which we can easily find the specific

user that consumes the most resources. By clicking on the

radar chart of each computing node, the historical trend of the

metric over time can be shown for further investigation [23].

Figure 8 shows the temperatures, memory usage, and power
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Figure. 9. An example snapshot of the Quanah Cluster: Hierarchical structure of job scheduling data and multivariate health status of computing nodes.

consumption of node “1-31” collected between 12 am and 5

pm on April 26, 2019. The colors indicate the clustering group

that the status belongs to in a particular time window.

IV. EVALUATION AND EXPERIENCES

In this section, we examine the performance overhead intro-

duced by the monitoring system on a production cluster and

the experiences gained by optimizing the monitoring system

performance. We have deployed Metrics Collector service,

Storage service, and Metrics Builder service on different hosts.

Table III describes the hardware specifications of the hosts.

A. Evaluation

Performance overhead mainly consists of two parts: one

is intra-node overhead, such as CPU overhead and memory

footprint within each computing node; and the other is inter-

node overhead, which is the network traffic generated between

nodes.

As mentioned in Section III-B, out-of-band measurements

avoid interfering with ongoing computation fabric and com-

municate with Metrics Collector over an independent network,

thus querying node status from the BMC has no impact on the

computation. Moreover, no extra in-band measurement agents

(e.g. monitoring utilities running in an operating system) are

used within computing nodes. Therefore, MonSTer does not

incur intra-node overhead on the cluster.

TABLE III
HOST HARDWARE SPECIFICATIONS

Metrics Collector Host:
CPU: 2 x 4 cores Intel Xeon @ 2.53GHz
RAM: 23 GB DDR3

STORAGE: 2TB HDD
NETWORK: 1Gbit/s, Broadcom NetXtreme II

Storage Host:
CPU: 2 x 8 cores Intel Xeon @ 2.50GHz
RAM: 94 GB DDR3

STORAGE: 400GB SSD, 500GB HDD
NETWORK: 1Gbit/s, Broadcom NetXtreme

Metrics Builder Host:
CPU: 2 x 8 cores Intel Xeon @ 2.50GHz
RAM: 125 GB DDR3

STORAGE: 24TB HDD
NETWORK: 1Gbit/s, Broadcom NetXtreme

The inter-node overhead caused by MonSTer is querying job

scheduler accounting information, which is done only between

the host running Metrics Collector service and the cluster

headnode running the job scheduler (e.g. UGE qmaster). The

network bandwidth traffic is obtained by dividing the number

of bytes of accounting data by the UGE query interval (60

seconds). Each node and job information are about 19 KB

and 23 KB, respectively. Table IV summarizes the network

bandwidth consumed for the transmission of accounting in-

formation, which includes network traffic for 467 nodes and
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an average of 400 jobs information. Our measurements show

that the overall bit rate of the monitored data is negligible

compared to the speed of the management network, which is

usually an Ethernet network.

TABLE IV
NETWORK BANDWIDTH CONSUMED FOR TRANSMISSION OF ACCOUNTING

INFORMATION

Monitoring BW Monitoring BW/Node Monitoring BW/Job
298.43 KB/s 0.32 KB/s 0.38 KB/s

B. Experiences and Discussions

In this sub-section, we present our experiences in optimizing

the performance of the monitoring system. In our original

design and implementation, even though the data collection

module, Metrics Collector, worked well, Metrics Builder typ-

ically required an unacceptable waiting time to query and

process data from InfluxDB. Figure 10 shows the data query

performance at different time intervals over different time

ranges. In general, time increases along with the time range at

the same time interval. When the query interval is small, time

increases quickly. In our experiments, even the shortest time

was about 50 seconds, which indicates that Metrics Builder is

not a responsive service.

Figure. 10. Query and processing time at different time intervals over different
time ranges

To find out what is causing the poor performance, we

used cProfile to analyze the details of time consumption in
Metrics Builder. As shown in Figure 11, querying BMC-

related data points takes almost 80% of the total running time,

and querying UGE-related data points takes more than 10%

of the time. These queries account for about 90% of the total

running time. Therefore, if we can save querying time, we can

achieve significant performance improvement. To try to save

querying time, we have explored the following optimization

strategies.
1) Storing data on SSDs: The original InfluxDB service

resided on a host where data are stored on HDDs (hard disk

drives) with a disk bandwidth of 103MB/sec. To test out

the performance of using SSDs (solid state drives) without

affecting the collection process, we migrated the collected data

to a host with SSDs, which provides around 391 MB/sec of

Figure. 11. Time consumption for querying and processing data points from
InfluxDB

Figure. 12. Query and processing time using HDDs and SSDs

I/O bandwidth, nearly 4x faster than an HDD. As depicted

in Figure 12, even if we use faster storage, the performance

gains are limited, which is roughly 1.5x to 2.1x faster, and the
response time is still long.

2) Optimizing database schemas: Our next approach is to
redesign the time-series database schema. This optimization is

based on the knowledge that query performance scales with

series cardinality. In our original design and implementation,

we had two versions of the database schema. The first version

used different measurements to store different metrics. For

example, CPU temperature, fan speed, and job information

were all stored into different measurements. We also saved

metadata such as threshold information into fields. The second
version saved all metrics into a unified measurement and each

job information is stored into a dedicated measurement. Both

versions of the schema coexist in the same database, which

introduced a large series of cardinality.

In order to better manage the data, we proposed an op-

timized schema and converted all historical data into this

redesigned schema. We used binary integer epoch time instead

of date strings as described in Section III-C. The optimized

schema not only results in considerable performance improve-

ment but also reduces the total data volume. As shown in

Figure 13, the new schema has only 28.02% of the data

volume of the previous schema. We also gained a 1.6x to 1.76x
performance boost compared to using the previous schema

on the SSDs as depicted in Figure 14. These experiences

have shown that database schema plays a vital role in the

performance of the monitoring system.
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Figure. 13. Data volumes of using the previous schema and the optimized
schema. Data were collected between March 14, 2019 and April 10, 2020

Figure. 14. Query and processing time using SSD and new schema on SSD

3) Concurrent Querying: The next approach we have in-
vestigated to improve performance is to take advantage of

concurrent queries in InfluxDB, where data points in each

measurement are searched in a concurrent manner. Figure 15

shows the performance improvement compared to the se-

quential approach. We achieved 5.5x to 6.5x performance

improvement from concurrent querying, which shows that

concurrent querying is another vital technique and design

consideration in the monitoring system.

Figure 16 summaries the performance improvements using

the above approaches collectively. Overall, the proposed strate-

gies allow Metrics Builder to perform 17x to 25x faster than
the original implementation. The query and processing time

was as low as 3.78 seconds when querying 6 hours of data

and 12.9 seconds when querying 72 hours of data.

4) Transmitting compressed data: These optimization ap-
proaches we have discussed earlier collectively reduce the

waiting time to an acceptable range. However, when data

Figure. 15. Query and processing time using new schema on SSD and
concurrent query

Figure. 16. Performance achievements of different optimizations

Figure. 17. Query-processing and transmission time (on top) and time
distribution (at bottom)

analysis invokes Metrics Builder API remotely, the response

time is still long, especially when obtaining long-range data.

To further understand the reasons, we decompose the time con-

sumption into query-processing time and transmission time,

as depicted in Figure 17. From the figure, we can observe

that when querying long-range data, the transmission time

is much longer than the query-processing time, up to 1.65

times longer. This observation motivates another optimization

of compressing data points and transmitting compressed data

to reduce the transmission time.

As discussed in Section III-D, Metrics Builder API provides

JSON format data to data analysis. In our experiments, we

used zlib [24] library to compress JSON data into compressed
data format. Figure 18 illustrates the compression ratio. The

compressed data volume is only about 5% of the uncom-

pressed data volume. Figure 19 shows the total response

time (on top) and the total response time distribution (at

bottom) when using compressed data, compared against the

cases without compression. Attributing to the compression,

the transmission time is significantly shorter and the overall

performance is about 2x faster than transmitting uncompressed
data even though the query-processing time increases only

slightly.

V. RELATED WORK

There are a number of open-source and commercial tools

focusing on monitoring high performance computing cluster

systems. For instance, CARD designed by Anderson et. al. [7]
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Figure. 18. Data volumes of uncompressed data and compressed data

Figure. 19. Query-processing and transmission time for uncompressed and
compressed data (on top) and time distribution (at bottom)

is an early exploration of monitoring large-scale clusters. It

uses a relational database to store collected data. Parmon [8] is

a similar system that collects performance-related and system

health data from nodes. Supermon presented by Sottile et.

al. [9] is a set of tools for monitoring systems with high

speed and low impact. It introduces symbolic expressions to

represent data at various levels, making it composable and

hierarchical. The Ganglia proposed by Massie et. al. [10]

is another scalable distributed monitoring system. It uses

a multicast-based listen/announce protocol to monitor states

within clusters and aggregates status by creating a tree

of point-to-point connections between representative cluster

nodes. LDMS [25] allows various metrics such as memory

usage, network bandwidth to be collected at a very high

frequency.

A few monitoring tools are capable of job-level monitoring.

As an example, Ovis [11] collects job data from the scheduler

log file and provides statistical insights about applications. Del

Vento et. al. [26] proposed a method to associate floating-

point counters with jobs and identifies poorly performing jobs.

TACC Stats [12] is a component of the HPC systems analytic

project, SUPPeMM [27], that runs the data collector module

in the job scheduler prolog to collect resource usage data for

each job. However, TACC Stats writes the collected data into

a text file, which is then aggregated every 24 hours. Therefore,

it does not support real-time analysis and visualization of the

data.

Summary: MonSTer differs from these tools discovered

above in several ways. First, MonSTer uses a hybrid and

holistic approach to collect status data of the system without

introducing any new collection daemons on the computing

nodes. Second, MonSTer only causes a negligible network

overhead on the cluster headnode and incurs no overhead on

the computing nodes. Third, MonSTer correlates out-of-band

measurements and in-band measurements, which allows sta-

tistical analysis of resource usage information at the user-level

flexibly. Finally, MonSTer provides near real-time analysis and

visualization of user-level information and node-level health

status.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the architecture and design

details of an “out-of-the-box” monitoring tool that requires

minimal configurations. MonSTer utilizes the Redfish API

to retrieve sensor data from the BMC on each computing

node and the resource manager (i.e. the job scheduler) for

job information and resource usage data. It processes the

monitoring metrics and saves data points into a time-series

database, InfluxDB. A dedicated analysis and visualization

tool consumes data from the provided API and visualizes user-

level information and node-level metrics in near real-time,

providing insightful knowledge for system administrators and

users. Our experiences with the deployment on a production

467-node cluster have shown that well-designed schema can

reduce the amount of data collected without losing informative

metrics and using high-speed storage, concurrent processing,

and transmitting compressed data reduce data retrieval time

significantly and enable near real-time analysis and visualiza-

tion.

On the other hand, MonSTer relies heavily on existing

infrastructures and therefore, the metrics collected and the

frequency of monitoring are limited by the capabilities of

those infrastructures. MonSTer currently does not include file

system and network monitoring capabilities yet, and cannot

retrieve BMC metrics within seconds. In the near future, we

will collect more metrics by using additional tools and the

upcoming telemetry model. The data analysis tool can also be

upgraded to visualize new metrics.

Metrics Builder API and HiperJobViz are currently open to

researchers who are interested in testing and exploring these

features. For more information about Metrics Builder API,

please visit the webpage [28]. For HiperJobViz, please visit

the demo page [19].
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