2020 IEEE International Conference on Cluster Computing (CLUSTER)

MonSTer: An Out-of-the-Box Monitoring Tool for
High Performance Computing Systems

Jie Li*, Ghazanfar Ali*, Ngan Nguyen*, Jon HassT, Alan Sill*, Tommy Dang*, and Yong Chen*

* Texas Tech University, Lubbock, TX
Email: {jie.li, ghazanfar.ali, ngan.v.t.nguyen, alan.sill, tommy.dang, yong.chen} @ttu.edu

T Dell EMC, Inc., Austin, TX
Email: jon.hass@dell.com

Abstract—Understanding the status of high-performance com-
puting platforms and correlating applications to resource usage
provide insight into the interactions among platform components.
A lot of efforts have been devoted into developing monitoring
solutions; however, a large-scale HPC system usually requires a
combination of methods/tools to successfully monitor all metrics,
which will lead to a huge effort in configuration and monitoring.
Besides, monitoring tools are often left behind in the procurement
of large-scale HPC systems. These challenges have motivated the
development of a next-generation out-of-the-box monitoring tool
that can be easily deployed without losing informative metrics.

In this work, we introduce MonSTer, an “out-of-the-box” moni-
toring tool for high-performance computing platforms. MonSTer
uses the evolving specification Redfish to retrieve sensor data
from Baseboard Management Controller (BMC), and resource
management tools such as Univa Grid Engine (UGE) or Slurm
to obtain application information and resource usage data. Addi-
tionally, it also uses a time-series database (e.g. InfluxDB) for data
storage. MonSTer correlates applications to resource usage and
reveals insightful knowledge without having additional overhead
on the application and computing nodes. This paper presents the
design and implementation of MonSTer, as well as experiences
gained through real-world deployment on the 467-node Quanah
cluster at Texas Tech University’s High Performance Computing
Center (HPCC) over the past year.

Index Terms—High Performance Computing, monitoring and
maintenance tool, visualization tool

I. INTRODUCTION

Monitoring is critical to the successful operation of complex
high performance computing (HPC) systems. Failures in HPC
not only affect the currently running jobs but also waste
scheduling and queuing time. Additionally, failures can result
in the loss of data that have already been processed. Therefore,
timely monitoring of the status and functionality of the HPC
system enables system administrators to adequately handle
potential problems to maintain the health of the system and to
provide stable computing services for HPC users.

Several different monitoring tools have been proposed over
the last decades. Each tool has its advantages and disad-
vantages. System administrators often select one or several
tools to form a dedicated monitoring infrastructure, depending

The data reported in this research were collected on Intel and Dell EMC
hardware platforms.

on monitoring needs. To ensure that these tools work as
expected, a lot of effort has been put into configuring and
customizing them to fit the platform being monitored and meet
specific monitoring requirements. Once the HPC infrastructure
is revamped, the monitoring tools need to be upgraded, which
requires extra effort to implement these changes. Given the
complexity of deploying a monitoring platform and timely
operation of the monitoring tool, it is desired for a next-
generation, out-of-the-box, and scalable monitoring tool.

Maintaining the “keep everything” methods seems to be
the safe way to drill down into problems. However, as the
HPC systems continue to grow and more metrics can be
collected and monitored, moving and saving a greater amount
of data than before becomes another challenge. We need to
rethink what we care about and keep data that are valuable
for detecting anomalies. We can cross-compare and correlate
the sub-components within the HPC system, such as jobs
data, resources usage and hardware status, so as to quickly
understand the system status, detect anomalies in time, and
provide guidance for finding and solving problems.

As the Redfish protocol [1] has evolved, many vendors have
adopted the Redfish protocol in their server products and ex-
pose an interface for accessing BMC information through the
Redfish API, which allows out-of-band retrieval of necessary
hardware information and sensor data, such as power usage,
temperature and fan speed. On the other hand, large-scale
production HPC clusters deploy resource managers to schedule
applications across computing resources. The resource man-
ager has the overall status of the computing resources and
can allocate appropriate resources to jobs submitted in the
queue to achieve effective scheduling. The status of computing
resources mainly includes CPU usage, memory allocation, and
I/O statistics. MonSTer leverages these existing techniques to
monitor the system by retrieving metrics from the provided
APIs. It correlates collected metrics and reveals insightful
knowledge of how platform components interact with each
other without having additional overhead on applications and
computing nodes.

The following summarizes the contributions of this work:

o We designed an “out-of-the-box” monitoring tool - which

we named MonSTer (i.e., Monitoring System Tool) - to
collect data from the resource manager and BMCs.

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00022

119

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

e We proposed a middleware in MonSTer that processes
and aggregates the collected data. The middleware also
provides an API for data analysis.

We developed a data analysis tool, HiperJobViz, which
gains insightful information by analyzing and visualizing
application data and device status.

MonSTer largely eliminates the effort to develop cus-
tomized monitoring tools, allowing system administrators
to focus on higher-level tools that leverage the data
collected and delve into useful information.

The rest of the paper is as follows. We first describe the
background and motivation for developing MonSTer in Section
IL. In Section III, we then discuss the monitoring architecture
and explain the design of each module. Next in Section IV,
we present performance overhead and experience gained from
a production deployment. Finally, we report related works in
Section V and conclude the paper in Section VI

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background of this research
including the cluster being monitored, the Quanah cluster,
and its currently deployed monitoring infrastructures. We also
discuss the shortcomings of current solutions and present the
motivation for developing the next-generation and “out-of-the-
box” monitoring tool.

A. The Quanah Cluster

The Quanah cluster at High Performance Computing Center
(HPCC) of Texas Tech University [2] is commissioned in
early 2017 and expanded to its current size in 2019, which
is comprised of 467 nodes with Intel XEON processors
providing 36 cores per node. Quanah has a total of 16,812
cores with a benchmarked total computing power of 485
Teraflops/s and provides 2.5 petabytes storage capability. The
cluster is based on Dell EMC PowerEdge™ C6320 servers,
which are equipped with the integrated Dell Remote Access
Controller (iDRAC) [3] providing Redfish API [1] for access-
ing Baseboard Management Controller (BMC). The software
environment is based on CentOS 7 Linux, provisioned and
managed by OpenHPC, and has a fully non-blocking Omni-
Path 100 Gbps fabric for MPI communication. The cluster is
operated with Univa Grid Engine (UGE) [4], setting up with
multiple queues, with jobs sorted by projects to meet the needs
of research activities for many fields and disciplines.

B. Existing Monitoring Solutions

The initial motivation for monitoring was the desire to keep
track the running status at both hardware and software level.
To this end, our production data center, HPCC, deployed
an open-source monitoring framework Nagios [5] for HPC
infrastructure monitoring. We also used Univa Unisight [4]
to monitor and report job scheduler data and Grid Engine
environments.

Nagios is an open-source framework for monitoring sys-
tems and provides infrastructure failure detection. It alerts
administrators and performs automatic recovery mechanisms

120

when problems occur. Recently we developed a Redfish plugin
for Nagios [6]. The plugin integrates the Redfish API with
Nagios Core, communicates with HPC monitored entities
via the Redfish API, and populates node status to Nagios.
Additionally, Nagios provides an interactive web interface
that allows users to access monitoring details and modify
monitoring parameters including removing alerts, executing
service checks and more.

Univa Unisight is a robust monitoring and alerting system
for managing and analyzing resource usage across a monitored
cluster. It enables HPC administrators to control a comprehen-
sive and transparent data collection system and to generate
various reports across the cluster. Additionally, the pre-built
dashboard allows administrators to easily query and visualize
job-related metrics.

There are many other open-source monitoring tools focusing
on monitoring high performance computing cluster system.
Some tools are only capable of capturing node state which in-
cludes CARD [7], Parmon [8], Supermon [9] and Ganglia [10].
A few monitoring tools are capable of job-level monitoring
such as Ovis [11] and TACC Stats [12].

C. Motivation

The aforementioned tools used in the Quanah cluster and
other existing tools we have surveyed and investigated (dis-
cussed in more detail in Section V) do not meet the need for in-
depth understanding of systems and applications performance
for the following reasons. Nagios is designed for failure
detection and notification, and historical monitoring data are
collected and saved in text files, through which the accessing
and processing are difficult and time-consuming. Furthermore,
due to the department policy, the Unisight database is not
available to researchers other than HPCC staff. Additionally,
none of the existing monitoring tools is capable of analyzing
and visualizing user-level information and node-level health
status in real-time.

These shortcomings of current solutions have motivated
us to build a new monitoring tool on top of the existing
infrastructures, which is capable of analyzing systems and user
behaviors. The monitoring tool should be available “out-of-
the-box™ (i.e. it should be easy to deploy, does not require
intervention in the running system, and should be scalable to
meet further monitoring needs). The tool should be architec-
ture agnostic too so that other HPC systems can adopt it.

III. ARCHITECTURE

In this section, we first provide a high-level overview
description of the MonSTer architecture. We then explain each
functional module in detail and discuss the design considera-
tions as well.

A. Overview

A high-level diagram of MonSTer is shown in Figure 1,
where solid arrows indicate the data flow, and dashed arrows
indicate the instructions flow. As shown in the diagram, there
are four main modules:

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

HiperJobViz

.1

Analysis

c
o
= Metrics Builder
(o))
o
(2]
(2]
gl | Lo
N
° A
g Measurement]
]
oo
Metrics Collector
c
S e
©
2 |
o
o
’ Resource Manager ‘

Figure. 1. Diagram of MonSTer architecture (solid arrows indicate data flow;
dashed arrows indicate instructions flow.)

1) Metrics Collector, which captures interested data from
computing nodes and resource managers.

2) A measurement storage module, which consists of a set
of measurements for storing the collected data in a time-
series database.

3) Metrics Builder, which correlates and aggregates data
from multiple measurements, and exposes an API to
various consumers.

4) A data analysis tool, HiperJobViz, which visualizes and
analyzes application data and device status.

HiperJobViz represents a class of analysis tools that can utilize
the data provided by Metrics Builder API. We decouple data
analysis and data collection to improve the flexibility of the
system. Next, we will introduce each module in detail.

B. Collection

HPC monitoring covers a wide range of possible data
sources including computing nodes, resource managers, and
operating systems. Our monitoring system primarily utilizes
out-of-band measurements retrieved via BMCs and in-band
measurements accessed through the resource manager. In the
current implementation, we do not involve any other collection
tools. Figure 2 illustrates the collection components. A cen-
tralized collecting agent named Metrics Collector periodically
sends requests to the BMCs on computing nodes and UGE
on the head node at a pre-defined and configurable collection
interval. Metrics Collector then pre-processes, builds time
stamps, and writes data points into the storage component.

1) Querying BMC: As we have mentioned in Section II-A,
modern computing nodes in HPC systems are equipped with
BMC:s (such as iDRACs in the Quanah cluster), which provide
Redfish API to read system telemetries. Communications
between Metrics Collector and BMCs take place over an

121

Computing
Node

Computing
Node

BMC

Metrics Collector

Computing
Node

Quanah
Headnode

Figure. 2. Diagram of Metrics Collector

independent management network. Therefore, this approach
avoids perturbing ongoing computations across compute fabric
and allows status to be obtained even if the computing node
is down.

More specifically, the current version of iDRAC (model:
13G DCS, firmware version: “2.63.60.61”) supports four cat-
egories of telemetry data. Selective metrics are listed in table L.
Metrics in the same category are exposed as a Redfish API
query that can be accessed via a unique URL. For example, to
query the “Thermal” information from the node €“10.101.1.1”,
the URL is "https://10.101.1.1/redfish/V1/C
hassis/System.Embedded.1/Thermal/". At each
collection interval, retrieving nine metrics from all 467 nodes
in these four categories requires Metrics Collector to build
a request pool with 1868 URLs. Metrics Collector sends all
requests asynchronously and waits for the responses.

TABLE I
SELECTIVE METRICS COLLECTED FROM BMC
Category Metrics
Manager BMC Health
Host Health
System Processor Health
Memory Health
CPU Temperature
Thermal Inlet Temperature
Fans Speed (Fan_1, Fan_2, Fan_3, Fan_4)
Power Power Usage
Voltages

The current version of iDRAC has limited resources and
cannot handle a large number of requests. To improve the suc-
cess rate of querying, we implement the connection timeout,
read timeout, and retry mechanisms in Metrics Collector. In
our experience, a Redfish API request takes 4.29 seconds on
average. Asynchronous request for all metrics from all nodes
takes about 55 seconds.

2) Querying UGE: UGE [4] is a resource management
system previously forked from Sun Grid Engine (SGE) [13]. It

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

Execution
..............) Daemon
§ ARCo
Execution
gsub ! Daemon
©oqgrsh
2'%%: «—» QMaster
gtcsh :
I Execution
Daemon
Shadow
Master
""""""" Execution
Daemon

Figure. 3. Univa Grid Engine components architecture

supports and operates in a heterogeneous network environment
and is used to manage distributed resources world widely.
Figure 3 shows the components of the UGE. Users submit jobs
through command-line utilities gsub, grsh, etc. The gmaster
is the core component of UGE that accepts incoming jobs and
assigns a holding area where jobs wait to be executed. There
may be one or more shadow masters to take responsibility in
case of failure. The qmaster dispatches jobs with the highest
priority when computing resources are available to execute.
An execution daemon hosted on the available node receives
jobs from the gmaster and executes them locally. When a job
is completed, the execution daemon notifies the gmaster so
that the next job can be scheduled to the empty slot.

Qmaster receives continuous status (such as CPU or mem-
ory usage) from execution daemon at fixed intervals, with the
default being 40 seconds. If the gmaster fails to receive a
continuous status report, the qmaster labels the executing host
and its resources as no longer available, and the following jobs
are not assigned to this host. While we can set the reporting
time to a higher frequency, it may block the gmaster, especially
with a high number of execution hosts. Also, frequent load
updates are of little value because the load on the execution
node usually rises and falls smoothly [14].

As shown in the diagram, UGE also has a component called
ARCo, short for the Accounting and Reporting Console, which
is a web-based tool for accessing accounting information.
Metrics Collector uses ARCo to access computing resource
metrics and application details. Table II presents a selection of
metrics. In addition to collecting resource metrics from UGE,
Metrics Collector also supports query metrics from Slurm,
another widely used resource management and scheduling
system.

3) Pre-processing: Metrics Builder extracts metrics from
BMCs and UGE. However, these metrics are not passed
directly to the storage component. We pre-process metrics in
the collection phrase to obtain the following benefits.

Pre-processing the collected metrics has significantly re-
duced the amount of data. For example, instead of storing
all health information, we keep only abnormal status, such as

122

TABLE 11
SELECTIVE METRICS COLLECTED FROM UGE

Metrics
CPU Usage
Average Load
Total Memory
Used Memory
Used Swap
Free Swap
User Name
Job Name
Job ID
Job Submit Time
Job Start Time
Job List on Node

Category

Resource

Job

Relationship

“Warning” or “Error”, to reduce redundancy, as the majority of
systems is usually healthy. This optimization reduces a large
amount of unnecessary, redundant health data in the system.
Additionally, we use binary integers to represent the state,
not as strings as in “Warning” or “Error”, which provides
a much more compact representation of data collected and
monitored. For time stamps, such as job submission time
and start time, the data collected from job schedulers are
also strings, representing human readable dates and time.
We convert these date strings to an integer epoch time, thus
achieving significant savings on storage as well. The use of
integers and binary data in general, instead of ASCII strings,
to represent state and time stamps also makes further analysis
easier to implement.

Through pre-processing, more insights can be gained from
job-related metrics. For example, based on the “Job List on
Node” information, we can summarize how many cores a
job uses and how many nodes a job takes up. In addition,
since UGE does not provide real-time job finish time, we
calculate finish time by comparing the difference between two
consecutive job lists. If a job is in the previous list, but not in
the current job list, then that job should be completed before
the current collection interval. This estimated finish time can
be updated when ARCo provides an accurate finish time.
Additionally, we calculate memory usage from total memory
and used memory to standardize resource usage metrics.

4) Collecting Interval: As discussed in section III-B1 and
section III-B2, the collection interval is limited by the response
time of the BMC and the job scheduler state update time,
which are 55 seconds and 40 seconds on our platform,
respectively. Therefore, it is not possible to obtain high-
resolution data in seconds or even milliseconds from the
existing infrastructures. However, even with high-resolution
data, system administrators generally do not respond at a
time scale of seconds [15]. Besides, it is challenging to
transmit and store high-resolution data points. Therefore, our
current implementation keeps the telemetry data collected at a
reasonable interval of 60 seconds to ensure that BMC metrics
are retrieved even when network fluctuations are encountered
and to collect resource manager metrics whenever possible.

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

C. Storage

In our system, based on the collection interval and the
number of metrics obtained from BMCs and UGE, the Qua-
nah cluster generates approximately 1.4 x 107 individual data
metrics per day. Traditional SQL databases are inadequate to
store and query such large amounts of time series data. On the
other hand, it is unacceptable to go through complex queries
that can take a lot of time to produce usable results. In order
to achieve high usability and scalability from storage module,
we choose the open-source time series database InfluxDB [16]
as the main storage component and conduct a number of
customized optimizations for HPC monitoring tool needs.
Moreover, InfluxDB contains a variety of features that can
be used to calculate aggregation, roll-ups, downsampling, etc.,
making the data visualization and data analysis more efficient.

The measurements in InfluxDB can be thought of as SQL
tables. We organize them by data sources and category. Cur-
rently, we have measurements like Health, Power, Thermal,
UGE, JobsInfo, and NodeJobs. The metrics are organized as
follows: Health measurement stores all health-related infor-
mation obtained from the BMC including BMC health and
system health. Power measurement is used to store power
usage at the node level and Thermal measurement stores CPU
temperature, inlet temperature, and fans’ speed. CPU usage
and memory usage obtained from the UGE are stored in
the UGE measurement. We use a specialized measurement,
JobslInfo, to store the details of the job, and NodeJobs to store
the correlation between the nodes and the job. Sample data
points are shown in Figures 4 and 5.

"time": 1583792296
"measurement": "Power"
"tags":

"NodeId": "10.101.1.1"

"Label": "NodePower"
"fields":

"Reading": 273.8

Figure. 4. Sample data point for storing node power usage of node
“10.101.1.1”. We add a “Label” in “tags” so that the power consumption
of other components can also be saved to the “Power” measurement.

"time": 1583892564
"measurement": "NodeJobs"
"tags":
"NodeId": "10.101.1.1"
"fields":
"JobList": "['1291784’, ‘'1318962',

13183077, 1'13183247]1"

Figure. 5. Sample data point for storing jobs running on node 10.101.1.1.
UGE allows jobs to share the node. Therefore, multiple jobs might be running
on the same node at the same time. Data types in InfluxDB do not include
array; thus, we stringify the job list information.

Every 60 seconds, Metrics Collector builds data points from
the collected metrics based on the schemas. The total number
of data points generated within each interval is approximately

123

10,000, which is the ideal batch size for InfluxDB. Metrics
Collector then writes these data points into the database
in batches. This approach reduces the network overhead of
opening and closing HTTP links by transmitting more data at
once.

D. Aggregation

The data stored in the database is raw data, and analysis
tools usually digest long-term historical data with different
granularities. Querying directly from the database requires an
understanding of the precise database schemas and involves
additional programming to query and process the data. Ad-
ditionally, querying and transmitting long-term data requires
significant waiting time. To address these issues, we introduce
Metrics Builder, an aggregation module in MonSTer. Metrics
Builder hides the details of querying InfluxDB, speeds up
querying and transmitting, and provides a unified API for
data analysis consumers. Decoupling data acquisition and data
analysis through a time-series database greatly improves the
flexibility and structure of the system.

Metrics Builder acts as a middleware between the con-
sumers (i.e. analytic clients or tools) and the producers (i.e.
the databases). Its main workflow is as follows. First, it
receives requests from consumers. The request includes time
range, time interval and data type information. The time range
represents the window of time for the data that consumers want
to access. Time intervals and data types are used to aggregate
and downsample time series data. Second, Metrics Builder
generates the appropriate InfluxDB query strings based on the
information specified by the consumer and then sends queries
to InfluxDB and waits for responses. Third, Metrics Builder
then processes data returned from InfluxDB, builds the data
in JSON format, and sends them to the consumer.

We use an example to illustrate some more details. A data
analysis tool invokes Metrics Builder API with parameters
including a time range from ¢2020-04-20T12:00:00Z” to
€2020-04-21T12:00:00Z” with a time interval of “5m” and
a data type of “max”. These parameters indicate the data
collected between the time window will be downsampled
at a maximum of every five minutes. Metrics Builder then
generates a series of query strings. For example, to retrieve
the power usage of node “10.101.1.17, the following Influx
query language string will be created:

"SELECT max (Reading) FROM Power
WHERE NodeId='10.101.1.1"

AND Label=‘NodePower’

AND time >='2020-04-20T12:00:002"
AND time < ‘2020-04-21T12:00:002z’
GROUP BY (5m) "

Metrics Builder concurrently sends all query requests to
InfluxDB. InfluxDB’s built-in aggregate function finds the
maximum reading of node power of every 5 minutes and
returns the aggregated value to Metrics Builder. After all
responses are received, Metrics Builder aggregates all metrics
by the node ID. Compression is also used to reduce the amount

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

Job = started

Username #Jobs #Hosts Last update: 19:10:00 PM

jieyao 2 58 =

rafiisla 41 52 | :

pnourian 2 50 H

christan 30 30 ‘l

abdumali 997 29 F

srmani 3 9

Figure. 6. Timeline visualization of 1-day job scheduling of the Quanah
Cluster: Only a few representative users/jobs are shown in the figure.

of data in order to reduce the transmission time for long-term
data. Experimental results on compression performance can be
found in Section IV.

E. Data Analysis

The purpose of the data analysis component is to provide
administrators insights of the current status of computing
nodes and running jobs, as well as a long-term analysis
of historical data using an appropriate graphical representa-
tion [17]. For this purpose, we have developed a dedicated
data analysis tool, HiperJobViz [18], which invokes Metrics
Builder API to retrieve data on demand, tracks changes in
resource usage by users and jobs, and visualizes status metrics
of computing nodes using high-dimensional representations.
A full discussion of HiperJobViz is beyond the scope of this
paper. In this paper, we present two main visual components.
For those interested in its features, please visit the demo
page [19].

1) Job Scheduling Visualization: This component visual-
izes the status of submitted jobs (an example is shown in Fig-
ure 6). The gray bar indicates waiting time before execution,
and the green bar indicates running time. From the figure,
we can observe that some jobs start executing without any
queuing time after submission, while others wait for quite a
long time. In addition, the number of jobs submitted by a user
and the number of hosts used by the user are expressed in
numbers. For example, user “jieyao” submitted two jobs that
require 58 hosts at the same time, which indicates the user
is running MPI jobs. User “abdumal” submitted 997 jobs, but
only occupies 29 hosts. It is likely that these jobs are array
jobs that share 36 cores on each host.

Moreover, in order to correlate the job information with the
computing nodes, a hierarchical representation is developed, as
shown on the left of Figure 9. The running jobs are mapped
to these groups, revealing the correlation between the jobs
and the status of the computing nodes. The major host groups
on the left represent the nodes, which are clustered in seven
groups using the k-means clustering algorithm [20]. The blue
cluster (Group 7 on the top left corner) is the most popular
cluster, as this is the normal status of the computing nodes (the

124

CPU2 Temp CPU2 Temp

[®) o e} [® o 2) e}
s s
g H g £
3 E 3 E
g o o 2 £ 0 D 2
o c o c
5 g 5 g
H e H e
c c
%, O o @ %, O o @
OE[A 65\‘ 031‘ X
e o o & % o o &

% %
Po0ds gugy goats 0% Po0ds gug, goats 2%

Figure. 7. Radar representations for nine-dimensional metrics of two example
computing nodes: (left) Normal status (right) High CPU temperature and high
memory usage.

O scale value within range
#host: 1

[_ﬂ compute-1-31

CPUI Temp |

= compute-1-31

CPU2 Temp

compute-1-31

. j_——\, compute-1-31

Sower consumplior Mermory usage

O Apr 262019
12:30 1am

Figure. 8. Historical status change trends for node “1-31”. The background
colors highlight the operational states of node “1-31° over particular time
intervals.

metric readings are in the middle ranges). We will discuss the
node status representation in Section III-E2.

2) Node Health Status Visualization: We use a radar chart
to visualize high-dimensional data of each node [21]. As
shown in Figure 7, it normalizes the health metrics, orga-
nizes them cyclically, and connects relevant values on each
dimension to represent the “morphology” of the data pro-
file [22]. Two sample radar charts in this example depict the
perceptional differences of two typical statuses in the system:
blue is for a normal operational state while orange is for a
critical status (high CPU and memory usage). In order to
characterize the primary health of the system, we perform a
modified k-means clustering of these nine health metrics for
the computing nodes. This results in the major host groups
that were discussed in Section III-E1.

A matrix of symmetric histograms summarizes the variance
of the readings of each user’s data per dimension shown on
the right of Figure 9, which provides a visual summary for
comparing resource usage across users. By clicking on the
attribute name, the histograms will be arranged in ascending or
descending order, from which we can easily find the specific
user that consumes the most resources. By clicking on the
radar chart of each computing node, the historical trend of the
metric over time can be shown for further investigation [23].
Figure 8 shows the temperatures, memory usage, and power

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

Major host groups Running jobs

UserlD}
S s

—_— 14 rafiisla

Group 7
29
52
—(3) christan
—(Q)nge
_— 1 shahrahm 65
@ isarka 1
/14 pnourian 65
~(g) srmani 9
(Q) chesosos 48

/ @ imanthey 3
/‘ i jieyao 58

30

37
Group 4

Group 6: High CPU1 Temp.

johruska 2
/ @ dsundara
(i chrboyer 6
@ crock 2
@ andhingr 2
(§) ada9934s 2
{ 1 eisilva 2
@ sabaty 1
(g aschueth
@ mridley 3
@ root 1
@ caphilli 1
@ zhoyang 1
@ msanati 1

N
(Q) vozuguze 2

Group 2: 7 metric(s) undefined ™ 6

Group 30 3

Group 8: High Fan1 speed, High F.. 1 3

Group 1: 8 metric(s) undefined ~ 1

Summary 462

#Hosts] #Jobs]

997

121

CPU1 Te...]CPU2 Te...] Inlet Tem...; Memory ...[Fan1 spe...] Fan2 spe...| Fan3 spe.. Fan4 spe...] Power co...| kWh{

A U A S S
ol S S S e
i e e e s
. . . —i— — — —— —— 1600
:l H I: 1 ! I: :I 20
— e S w
- _+_' -' I 'P’ “P’ “k’ *+ | 255.0
i
.- 4 - ¥ 2300

14.0

287.0

8.0

Figure. 9. An example snapshot of the Quanah Cluster: Hierarchical structure of job scheduling data and multivariate health status of computing nodes.

consumption of node “1-31” collected between 12 am and 5
pm on April 26, 2019. The colors indicate the clustering group
that the status belongs to in a particular time window.

IV. EVALUATION AND EXPERIENCES

In this section, we examine the performance overhead intro-
duced by the monitoring system on a production cluster and
the experiences gained by optimizing the monitoring system
performance. We have deployed Metrics Collector service,
Storage service, and Metrics Builder service on different hosts.
Table III describes the hardware specifications of the hosts.

A. Evaluation

Performance overhead mainly consists of two parts: one
is intra-node overhead, such as CPU overhead and memory
footprint within each computing node; and the other is inter-
node overhead, which is the network traffic generated between
nodes.

As mentioned in Section III-B, out-of-band measurements
avoid interfering with ongoing computation fabric and com-
municate with Metrics Collector over an independent network,
thus querying node status from the BMC has no impact on the
computation. Moreover, no extra in-band measurement agents
(e.g. monitoring utilities running in an operating system) are
used within computing nodes. Therefore, MonSTer does not
incur intra-node overhead on the cluster.

125

TABLE III
HoOST HARDWARE SPECIFICATIONS

Metrics Collector Host:

CPU: 2 x 4 cores Intel Xeon @ 2.53GHz

RAM: 23 GB DDR3
STORAGE: 2TB HDD
NETWORK: 1Gbit/s, Broadcom NetXtreme II
Storage Host:

CPU: 2 x 8 cores Intel Xeon @ 2.50GHz

RAM: 94 GB DDR3
STORAGE: 400GB SSD, 500GB HDD
NETWORK: 1Gbit/s, Broadcom NetXtreme
Metrics Builder Host:

CPU: 2 x 8 cores Intel Xeon @ 2.50GHz

RAM: 125 GB DDR3
STORAGE: 24TB HDD
NETWORK: 1Gbit/s, Broadcom NetXtreme

The inter-node overhead caused by MonSTer is querying job
scheduler accounting information, which is done only between
the host running Metrics Collector service and the cluster
headnode running the job scheduler (e.g. UGE gmaster). The
network bandwidth traffic is obtained by dividing the number
of bytes of accounting data by the UGE query interval (60
seconds). Each node and job information are about 19 KB
and 23 KB, respectively. Table IV summarizes the network
bandwidth consumed for the transmission of accounting in-
formation, which includes network traffic for 467 nodes and

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

an average of 400 jobs information. Our measurements show
that the overall bit rate of the monitored data is negligible
compared to the speed of the management network, which is
usually an Ethernet network.

TABLE IV
NETWORK BANDWIDTH CONSUMED FOR TRANSMISSION OF ACCOUNTING
INFORMATION

Monitoring BW
298.43 KB/s

Monitoring BW/Node
0.32 KB/s

Monitoring BW/Job
0.38 KB/s

B. Experiences and Discussions

In this sub-section, we present our experiences in optimizing
the performance of the monitoring system. In our original
design and implementation, even though the data collection
module, Metrics Collector, worked well, Metrics Builder typ-
ically required an unacceptable waiting time to query and
process data from InfluxDB. Figure 10 shows the data query
performance at different time intervals over different time
ranges. In general, time increases along with the time range at
the same time interval. When the query interval is small, time
increases quickly. In our experiments, even the shortest time
was about 50 seconds, which indicates that Metrics Builder is
not a responsive service.

—— 5min
| 10 min
30 min
60 min
—— 120 min

N
a
o

200+

150

100

Query & Processing Time(sec)

a
o
1

1 2 3 4 5 6 7
Time Range (days)

Figure. 10. Query and processing time at different time intervals over different
time ranges

To find out what is causing the poor performance, we
used cProfile to analyze the details of time consumption in
Metrics Builder. As shown in Figure 11, querying BMC-
related data points takes almost 80% of the total running time,
and querying UGE-related data points takes more than 10%
of the time. These queries account for about 90% of the total
running time. Therefore, if we can save querying time, we can
achieve significant performance improvement. To try to save
querying time, we have explored the following optimization
strategies.

1) Storing data on SSDs: The original InfluxDB service
resided on a host where data are stored on HDDs (hard disk
drives) with a disk bandwidth of 103MB/sec. To test out
the performance of using SSDs (solid state drives) without
affecting the collection process, we migrated the collected data
to a host with SSDs, which provides around 391 MB/sec of

126

1.9%
6.9%

12.1%

79.1%

Query BMC Data Points
Query UGE Data Points
Process UGE Data Points
Others

Figure. 11. Time consumption for querying and processing data points from
InfluxDB

o
) 7777} HDD
gzoo SSD
5150—
2
§ 100+ 7
& ,‘ , §
L]
50 7
g § 7?!%
g Z w | 7

our 12—}1Iour 18—Hour 24—|l{our 48—Hour 72-Hour
Time range (with 5 min time interval)

6-H
Figure. 12. Query and processing time using HDDs and SSDs

I/0O bandwidth, nearly 4x faster than an HDD. As depicted
in Figure 12, even if we use faster storage, the performance
gains are limited, which is roughly 1.5x to 2.1x faster, and the
response time is still long.

2) Optimizing database schemas: Our next approach is to
redesign the time-series database schema. This optimization is
based on the knowledge that query performance scales with
series cardinality. In our original design and implementation,
we had two versions of the database schema. The first version
used different measurements to store different metrics. For
example, CPU temperature, fan speed, and job information
were all stored into different measurements. We also saved
metadata such as threshold information into fields. The second
version saved all metrics into a unified measurement and each
job information is stored into a dedicated measurement. Both
versions of the schema coexist in the same database, which
introduced a large series of cardinality.

In order to better manage the data, we proposed an op-
timized schema and converted all historical data into this
redesigned schema. We used binary integer epoch time instead
of date strings as described in Section III-C. The optimized
schema not only results in considerable performance improve-
ment but also reduces the total data volume. As shown in
Figure 13, the new schema has only 28.02% of the data
volume of the previous schema. We also gained a 1.6x to 1.76x
performance boost compared to using the previous schema
on the SSDs as depicted in Figure 14. These experiences
have shown that database schema plays a vital role in the
performance of the monitoring system.

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

80 Previous Schema
70 Optimized Schema
O 60
250
5
540
© 30
T
020

104

0
Figure. 13. Data volumes of using the previous schema and the optimized

schema. Data were collected between March 14, 2019 and April 10, 2020

3140 =

3 7772 $SD 7
“5’120— Optimized Schema on SSD Z

£ %
= 1001 %

£ | 1

g o0 % / N
S 60+ . 7 % 7

o Z A %
sl BN

12»Hour 18—Hour 24—Hour 48»ll|our 72-Hour
Time range (with 5 min time interval)

6»I—iour

Figure. 14. Query and processing time using SSD and new schema on SSD

3) Concurrent Querying: The next approach we have in-
vestigated to improve performance is to take advantage of
concurrent queries in InfluxDB, where data points in each
measurement are searched in a concurrent manner. Figure 15
shows the performance improvement compared to the se-
quential approach. We achieved 5.5x to 6.5x performance
improvement from concurrent querying, which shows that
concurrent querying is another vital technique and design
consideration in the monitoring system.

Figure 16 summaries the performance improvements using
the above approaches collectively. Overall, the proposed strate-
gies allow Metrics Builder to perform 17x to 25x faster than
the original implementation. The query and processing time
was as low as 3.78 seconds when querying 6 hours of data
and 12.9 seconds when querying 72 hours of data.

4) Transmitting compressed data: These optimization ap-
proaches we have discussed earlier collectively reduce the
waiting time to an acceptable range. However, when data

3 801 Optimized Schema on SSD 7
ig 704 Concurrent Query Using Optimized Schema on SSD /’/’
i= 60 oo
7
250 Z %
73 A 77
§ 40 Sis /) 7
2 30 7 v
S - % ,
%201 pA N7 7
z Z 7 Z) Z
101 77 % % 7 % @
¢ ol U 2NN % N v//«f'N Z
6-Hour 12-Hour 18-Hour 24-Hour 48-Hour 72-Hour
Time range (with 5 min time interval)
Figure. 15. Query and processing time using new schema on SSD and

concurrent query

127

o

2 ZZ) HDD 7
52007 =3 ssp

= Optimized Schema on SSD

2 150 Concurrent Query

173

3 v

g 100 7 g

£ N A

g S N 2 58
9 0 N N : ‘

12-llIour 18—I—I|our 2
Time range (with 5 min time interval)

6-Hour

Figure. 16. Performance achievements of different optimizations

o8 XXA Query & Processing
340922 Transmit
830- ,
F 10 4,
= B i &
T T T T
~ 100 v
< 80+ 7 z
[o2}
g 60 |
= KX
£
T T T T T T
6-Hour 12-Hour 18-Hour 24-Hour 48-Hour 72-Hour
Time range (with 5 min time interval)
Figure. 17. Query-processing and transmission time (on top) and time

distribution (at bottom)

analysis invokes Metrics Builder API remotely, the response
time is still long, especially when obtaining long-range data.
To further understand the reasons, we decompose the time con-
sumption into query-processing time and transmission time,
as depicted in Figure 17. From the figure, we can observe
that when querying long-range data, the transmission time
is much longer than the query-processing time, up to 1.65
times longer. This observation motivates another optimization
of compressing data points and transmitting compressed data
to reduce the transmission time.

As discussed in Section III-D, Metrics Builder API provides
JSON format data to data analysis. In our experiments, we
used zlib [24] library to compress JSON data into compressed
data format. Figure 18 illustrates the compression ratio. The
compressed data volume is only about 5% of the uncom-
pressed data volume. Figure 19 shows the total response
time (on top) and the total response time distribution (at
bottom) when using compressed data, compared against the
cases without compression. Attributing to the compression,
the transmission time is significantly shorter and the overall
performance is about 2x faster than transmitting uncompressed
data even though the query-processing time increases only
slightly.

V. RELATED WORK

There are a number of open-source and commercial tools
focusing on monitoring high performance computing cluster
systems. For instance, CARD designed by Anderson et. al. [7]

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

100-f===
7772 Uncompressed Data
g 804 Compressed Data
2 60
=
S 401 -
8 {
© 772 7/
o 20 = /
- Z %4
0L) v, P?’/'L IS /7]
6-Hour 12-Hour 18-Hour 24-Hour 48-Hour 72-Hour
Time range (with 5 min time interval)
Figure. 18. Data volumes of uncompressed data and compressed data
50 BSAd Query & Processing
Ty 404272 Transmit 7
@/ 30 Query & Processing Compressed Data /
g 20 Transmit Compressed Data z |
= 104 % Z
0 F{<X§| @ ::z:‘ T
=100 7
g %
& 80+ % % ?
g e0 117 % 7
5 40+ K % ‘
e 3 ‘
[} 000’4
o (XX
0 T T T

T T
6-Hour 12-Hour 18-Hour 24-Hour 48-Hour 72-Hour
Time range (with 5 min time interval)

Figure. 19. Query-processing and transmission time for uncompressed and
compressed data (on top) and time distribution (at bottom)

is an early exploration of monitoring large-scale clusters. It
uses a relational database to store collected data. Parmon [8] is
a similar system that collects performance-related and system
health data from nodes. Supermon presented by Sottile et.
al. [9] is a set of tools for monitoring systems with high
speed and low impact. It introduces symbolic expressions to
represent data at various levels, making it composable and
hierarchical. The Ganglia proposed by Massie et. al. [10]
is another scalable distributed monitoring system. It uses
a multicast-based listen/announce protocol to monitor states
within clusters and aggregates status by creating a tree
of point-to-point connections between representative cluster
nodes. LDMS [25] allows various metrics such as memory
usage, network bandwidth to be collected at a very high
frequency.

A few monitoring tools are capable of job-level monitoring.
As an example, Ovis [11] collects job data from the scheduler
log file and provides statistical insights about applications. Del
Vento et. al. [26] proposed a method to associate floating-
point counters with jobs and identifies poorly performing jobs.
TACC Stats [12] is a component of the HPC systems analytic
project, SUPPeMM [27], that runs the data collector module
in the job scheduler prolog to collect resource usage data for
each job. However, TACC Stats writes the collected data into
a text file, which is then aggregated every 24 hours. Therefore,
it does not support real-time analysis and visualization of the
data.

128

Summary: MonSTer differs from these tools discovered
above in several ways. First, MonSTer uses a hybrid and
holistic approach to collect status data of the system without
introducing any new collection daemons on the computing
nodes. Second, MonSTer only causes a negligible network
overhead on the cluster headnode and incurs no overhead on
the computing nodes. Third, MonSTer correlates out-of-band
measurements and in-band measurements, which allows sta-
tistical analysis of resource usage information at the user-level
flexibly. Finally, MonSTer provides near real-time analysis and
visualization of user-level information and node-level health
status.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the architecture and design
details of an “out-of-the-box” monitoring tool that requires
minimal configurations. MonSTer utilizes the Redfish API
to retrieve sensor data from the BMC on each computing
node and the resource manager (i.e. the job scheduler) for
job information and resource usage data. It processes the
monitoring metrics and saves data points into a time-series
database, InfluxDB. A dedicated analysis and visualization
tool consumes data from the provided API and visualizes user-
level information and node-level metrics in near real-time,
providing insightful knowledge for system administrators and
users. Our experiences with the deployment on a production
467-node cluster have shown that well-designed schema can
reduce the amount of data collected without losing informative
metrics and using high-speed storage, concurrent processing,
and transmitting compressed data reduce data retrieval time
significantly and enable near real-time analysis and visualiza-
tion.

On the other hand, MonSTer relies heavily on existing
infrastructures and therefore, the metrics collected and the
frequency of monitoring are limited by the capabilities of
those infrastructures. MonSTer currently does not include file
system and network monitoring capabilities yet, and cannot
retrieve BMC metrics within seconds. In the near future, we
will collect more metrics by using additional tools and the
upcoming telemetry model. The data analysis tool can also be
upgraded to visualize new metrics.

Metrics Builder API and HiperJobViz are currently open to
researchers who are interested in testing and exploring these
features. For more information about Metrics Builder API,
please visit the webpage [28]. For HiperJobViz, please visit
the demo page [19].

VII. ACKNOWLEDGEMENT

We are thankful to Dell EMC and Intel for their valuable
support of this project through the Cloud and Autonomic Com-
puting (CAC) Center membership at Texas Tech University
site. This research is supported in part by the National Sci-
ence Foundation under grants OAC-1835892, CNS-1817094,
and CNS-1939140. We are also very grateful to the High
Performance Computing Center of Texas Tech University for
providing HPC resources for this project.

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

[1]
[2

—

[3]

[4

=

[5

—

[6]

[71
[8]

9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

DMTE. (2020) DMTF’s Redfish®. [Online]. Available: https://www.
dmtf.org/standards/redfish

HPCC. (2020) High Performance Computing Center.
Available: http:www.depts.ttu.edu/hpce/

D. Technologies. (2020) Integrated Dell Remote Access Controller
(iDRAC). [Online]. Available: https://www.delltechnologies.com/en-us/
solutions/openmanage/idrac.htm

UGE. (2020) Univa Grid Engine. [Online]. Available: https://www.
univa.com/

Nagios. (2020) Nagios-The Industry Standard In IT Infrastructure
Monitoring. [Online]. Available: https://www.nagios.org/

G. Ali. (2018) Nagios Redfish API Integration:
band (BMC) based Monitoring. [Online]. Available:
//github.com/nsfcac/Nagios-Redfish- API-Integration

E. Anderson and D. A. Patterson, “Extensible, scalable monitoring for
clusters of computers.” in LISA, vol. 97, 1997, pp. 9-16.

R. Buyya, “Parmon: a portable and scalable monitoring system for
clusters,” Software: Practice and Experience, vol. 30, no. 7, pp. 723—
739, 2000.

M. J. Sottile and R. G. Minnich, “Supermon: A high-speed cluster
monitoring system,” in Proceedings. IEEE International Conference on
Cluster Computing. 1EEE, 2002, pp. 39-46.

M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817-840, 2004.

J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R. Mayo, P. P.
Pébay, D. Thompson, and M. H. Wong, “Ovis-2: A robust distributed
architecture for scalable ras,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing. 1EEE, 2008, pp. 1-8.

T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani,
S. M. Gallo, M. D. Jones, and A. K. Patra, “Comprehensive resource use
monitoring for hpc systems with tacc stats,” in 2014 First International
Workshop on HPC User Support Tools. 1EEE, 2014, pp. 13-21.

W. Gentzsch, “Sun grid engine: Towards creating a compute power grid,”
in Proceedings First IEEE/ACM International Symposium on Cluster
Computing and the Grid. 1EEE, 2001, pp. 35-36.

S. G. Engine. (2011) Grid Engine man pages-Grid Engine configuration
files. [Online]. Available: http://gridscheduler.sourceforge.net/htmlman/
htmlman5/sge_conf.html

J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa, a large-scale monitoring system,” in Proceedings of CCA,
vol. 8, 2008, pp. 1-5.

S. N. Z. Naqvi, S. Yfantidou, and E. Zimanyi, “Time series databases
and influxdb,” Studienarbeit, Université Libre de Bruxelles, 2017.

M. Ljubojevi¢, A. Baji¢, and D. Miji¢, “Centralized monitoring of
computer networks using zenoss open source platform,” in 2018 17th

[Online].

Out-of-
https:

129

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

International Symposium INFOTEH-JAHORINA (INFOTEH). 1EEE,
2018, pp. 1-5.

N. Nguyen, T. Dang, J. Hass, and Y. Chen, “Hiperjobviz: Visual-
izing resource allocations in high-performance computing center via
multivariate health-status data,” in 2019 IEEE/ACM Industry/University
Joint International Workshop on Data-center Automation, Analytics, and
Control (DAAC). 1EEE, 2019, pp. 19-24.

T. D. Ngan Nguyen. (2020) Time Radar. [Online].
https://idatavisualizationlab.github.io/HPCC/TimeRadar/

J. Hartigan, Clustering Algorithms. New York: John Wiley & Sons,
1975.

M. Meyer, T. Munzner, and H. Pfister, “Mizbee: A multiscale
synteny browser,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 897-904, Nov. 2009. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2009.167

D. Kammer, M. Keck, T. Griinder, A. Maasch, T. Thom, M. Kleinsteu-
ber, and R. Groh, “Glyphboard: Visual exploration of high-dimensional
data combining glyphs with dimensionality reduction,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 26, no. 4, pp. 1661—
1671, 2020.

D. A. Keim, “Information visualization and visual data mining,” IEEE
Transactions on Visualization & Computer Graphics, no. 1, pp. 1-8,
2002.

J.-1. G. Greg Roelofs and M. Adler. (2017) zlib, A Massively Spiffy
Yet Delicately Unobtrusive Compression Library. [Online]. Available:

https://zlib.net
A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-

tile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight
distributed metric service: a scalable infrastructure for continuous mon-
itoring of large scale computing systems and applications,” in SC’14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2014, pp. 154—
165.

D. Del Vento, D. L. Hart, T. Engel, R. Kelly, R. Valent, S. S. Ghosh,
and S. Liu, “System-level monitoring of floating-point performance to
improve effective system utilization,” in SC’11: Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2011, pp. 1-6.

J. C. Browne, R. L. DelLeon, C.-D. Lu, M. D. Jones, S. M. Gallo,
A. Ghadersohi, A. K. Patra, W. L. Barth, J. Hammond, T. R. Furlani
et al., “Enabling comprehensive data-driven system management for
large computational facilities,” in SC’13: Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2013, pp. 1-11.

J. Li. (2020) Metrics Builder API. [Online].
/finflux.ttu.edu:8080/ui/

Available:

Available: https:

Authorized licensed use limited to: Texas Tech University. Downloaded on November 21,2020 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

