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Abstract—Scheduling, visualizing, and balancing resource allo-
cations in High-Performance Computing Centers are complicated
tasks due to a large amount of data and the dynamic natures of
the job scheduling and resource allocation problem. This paper
introduces HiperJobViz, a visual analytic tool for visualizing the
resource allocations of data centers for jobs, users, and resource
usage statistics. The goals of this tool are: 1) to provide an
overview of the current resource usages, 2) to track changes
of resource usages by users, jobs, and hosts, and 3) to provide
a detailed view of the resource usage via multi-dimensional
representation of health metrics, such as CPU temperatures,
memory usage, and power consumption. To support these goals,
our visual analytics tool provides a full range of interactive
features, including details on demands, brushing and links,
filtering, and ordering. The visualization tool is demonstrated
on the HPC center of 467 computing nodes.

Index Terms—Multivariate analysis, Parallel Coordinates, Cus-
tomizable Radar Charts, Job Scheduling, Health Metrics, Power
Consumption, High-Performance Computing Centers

I. INTRODUCTION

Job scheduling and resource balancing are the fundamental
problems of efficiently managing High-Performance Comput-
ing (HPC) Centers [31]. These are challenging problems due
to several constraints: (1) Job scheduling needs maximize the
number of jobs/users to be served and minimize the waiting
time and (2) Resource allocations needs to be balanced to
avoid over-usage on some hosts while others are halted. The
requirements (1) and (2) are tightly connected. While the first
requirement comes from the users, the second requirement
tight to the system. Due to their complexities and multiple
constraints, there is no globally optimal solution for this
problem. Usually, heuristics are involved in trading-off user
expectations for simplicity. In other words, we can impose
a list of hard and soft constraints with priorities so that the
system can make the decisions of job scheduling and resource
allocation within a given amount of time [4]. This process
involves little human interference and usually not adaptive to
the dynamic nature of the problem [30].

This paper aims to make this process more transparent to
the users, especially to the system administrator who might be
able to interfere and modify the scheduling algorithm to adapt

to new requirements/changes. The contributions of this paper
are three-fold:

• We introduce a scalable prototype, called HiperJobViz,
for visualizing and monitoring resource allocations in
HPC centers. The visualization provides summary views
with respect to resource usage by users, jobs, and hosts
which can be expanded into detailed view via user
interactions with the system.

• We propose an approach to investigate and represent
multi-dimensional status of the computers in HPC cen-
ters. Using this characterization approach, we group com-
puting nodes into typical clusters to provide a system
status overview and track changes (switching from one
group to another) of computing node over its observed
intervals.

• We demonstrate our interactive interface on a medium-
size HPC center at a university. However, the work can
be scaled to larger systems as we provide summary views
of the major situation/system health status.

This paper is organized as follows: The next Section present
related research in job scheduling and resource allocations
in HPC centers. Section III presents our motivation, design
choices, system overview, and details on major components
of our system. A use case of HiperJobViz is demonstrated in
Section IV. Lastly, Section V concludes the paper and present
future direction for this work.

II. RELATED WORK

A. Job scheduling
Job scheduling plays an important role in managing HPC

centers, especially in heterogeneous distributed computing
systems [11]. There are many algorithm/efforts in this di-
rection [26]. A batch scheduler allows system users to use
resources without worrying about the node availability and the
interference of other jobs [6]. While there is no best scheduling
algorithm, each has different goals/priorities, such as maximize
the allocated users, minimize the average waiting time (before
the allocation), minimize the completion time [30], or consider
energy-efficient hardware [20].
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Zeno [28] apply machine learning methods to identify
and diagnose stragglers for jobs. Lu et al. [19] performed a
deep analysis of different types of imbalance in the Alibaba
Cloud: spatial imbalance, temporal imbalance, proportional
imbalance, and resource demand imbalance. Jiang et al. [16]
explored the characteristics of co-allocated online services
and batch jobs, revealing that half of the failed tasks are
halted, leading to waste of time and computing resources. In
distributed computing systems, Liu and Yu [18] found that co-
located online services and batch jobs are usually managed
by distinct schedulers which might have different scheduling
algorithms and priorities.

B. Resource monitoring

Nagios [3] is an industry tool for HPC infrastructure
monitoring, including hosts, associated hardware components,
networks, storages, and services. Nagios can have two modes:
active and passive. In an active mode, Nagios execute a
plugin and pass the node IP address. The plugin will then
check the operational state of the node or service and report
the results back to the Nagios daemon. In a passive mode,
passive checks are initiated and performed by external pro-
cesses, and results are submitted to Nagios for processing.
CHReME [22] is another a web-based interface for monitoring
HPC resources, focusing on basic visualizations similar to
Nagios web interface. Amazon CloudWatch [15] visualize log
data and allow users to define alarms on different metrics.
Similarly, Splunk [7] investigates log data in multiple formats
(e.g., csv, json) in real-time. However, Splunk experiences
slow performance on large datasets [14]. Grafana [12] standard
charts which can be easily adapted to visualize HPC data.
However, Grafana does not support more complicated high-
dimensional representations, such as parallel coordinates [25]
and scatterplot matrices [10].

In this paper, we apply the high-dimensional representations
to represent health metrics of computing nodes and abstract
them as different visual situations of the HPC centers [8]. This
provides system administrator a high-level of system status and
keeps track of jobs/nodes/system changes over time.

III. THE HiperJobViz APPROACH

The primary goal of HiperJobViz is to provide a high-level
view of current jobs and resource allocations in HPC centers.
The work aims for the following visualization tasks [1]:

• T1: to provide a comprehensive overview of the current
jobs, users, and their resource usages [29]

• T2: to track changes of resource usages by users, jobs,
and hosts [2]

• T3: to project the resource usage into system health met-
rics using multidimensional representation [17]. These
health metrics include CPU temperatures, memory usage,
fan speeds, and power consumption.

The data for our visual analytics tool comes from two
different sources:

• Job scheduling data: This data contains information on
who are the current users of the system, what are the jobs

associated with each user, and which are the computing
nodes allocated for each job.

• Multivariate status data: This data contains health metrics
of computing nodes in the HPC center.

In the next section, we explain in details how these data
have been collected and provide some visual examples of the
data. Data for this paper was obtained from a 467-node cluster
at a university.

A. Job scheduling data
This data contains information about users, allocated hosts,

and job scheduling collected via Univa Grid Engine (UGE).
A user may have submitted multiple job requests. Each job
requires multiple computing nodes (each has 36 cores). This
formulates a hierarchical structure of three levels. Besides
the hierarchical scheduling data, we also have the temporal
data on each job: when is the job submitted and when is
it started. Therefore, the hierarchical network of users, jobs,
and hosts changes overtime. Capturing the dynamic structure
is a daunting task [9], especially for large and complicated
networks.

Fig. 1. Schematic overview of our HiperJobViz visualization.

B. Multivariate status data
These node metrics are collected through Baseboard man-

agement controller (BMC) via Redfish API [24]. The data
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collection component performs three tasks: 1) queries and
collects data across the entire cluster being monitored by
leveraging multi-threading and parallelism; 2) builds metrics
after receiving the monitoring data, and 3) stores health
metrics in InfluxDB. The system currently supports a total
of nine measurements, including CPU1 temperatures, CPU2
temperatures, Inlet temperature, memory usage, fan1 speed,
fan2 speed, fan3 speed, fan4 speed, and power consumption.
While these readings on some computing nodes are pretty
stable, the others are highly dynamic. We want to be able
to capture this temporal behavior and explain the fluctuations
in the time series.

Figure 1 shows a conceptual overview of HiperJobViz
system. In particular, the first procedure scatters the monitoring
tasks evenly across the available CPU cores as a multi-
threaded code and gathers the responses. Each thread makes
use of “Fetch Metric Data” procedure to query and collect
monitoring data through Redfish-enabled BMC and UGE job
scheduler. After monitoring data is collected, metrics are
generated and written to InfluxDB for persistent storage. The
visualization component displays both job scheduling data and
health metrics of 467 computing nodes in the system retrieved
from InfluxDB via a REST API.

C. The HiperJobViz Visual Components

The visual design of HiperJobViz consists of two main
components for two types of data collected from the previous
section.

Job scheduling visualization
The job scheduling component allows a system administrator
to visualize when a job is submitted (orange mark) and when it
is started (green mark). Figure 2 shows an example snapshot of
the system. The gray bars indicate waiting periods while green
bars represent the running jobs. We can notice that for each
user, the number of hosts is usually higher than the number
of jobs. In other words, multiple computing nodes can be
allocated for performing a multi-threaded process in parallel.
However, this is not always true. For example, abdumali user
(highlighted in the red box of Figure 2) has 997 jobs, sharing
29 computing nodes. That is, most of his jobs use a single
core. The schedule on the right also indicates that the 997
jobs have been submitted and started at the same time without
any queuing time.

While the left-to-right layout in Figure 2 can clearly
represent the scheduling information of a large number of
computing nodes in a limited display, it can show neither the
hierarchical data nor multi-dimensional status of the comput-
ing nodes. We can alleviate this problem by converting the
linear layout to spiral charts and embedding them directly
into the hierarchical representation. The middle column of
Figure 3 shows the same scheduling data in Figure 2 where
the spirals grow outward, and a completed circle is one day.
Additionally, the radar charts representing the major multi-
dimensional health metrics of the allocated computing nodes in
the system are displayed on the left. Instead of displaying 467
radar charts, we select the 11 representative radars (or groups)

Fig. 2. Time series visualization for HPC job scheduling data: Gray horizontal
bars represent waiting periods while green bars are currently active jobs.

on the left using k-means clustering algorithm [13]. The links
between jobs and radars indicate the multi-dimensional node
status of these jobs. The link thickness is encoded by the
number of nodes in this status. The top-left radar is the most
popular status as there are many jobs using nodes imposing
these measurements. The same user abdumali is highlighted in
red in both figures. The multi-dimensional radar representation
will be discussed next.

Fig. 3. Hierarchical structure of the job scheduling in the HPC center for the
same users in Figure 2. The left radars are the 11 major statuses of nodes.
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Multivariate health status visualization
There are different approaches to visualize high-dimensional
data. Parallel coordinates [25], scatterplot matrices [33], and
Radar charts [23] are typical examples in this class. Due to a
large number of data entries (or computing nodes, which is 467
in this example data set), parallel coordinates and scatterplot
matrices are unsuitable choices since they require more screen
displays. The radar chart organizes health metrics in a circular
manner, and a closed curve travels through associated values
on each dimension representing the “morphology” of a data
profile for intuitive visual comparisons [27]. Similar to parallel
coordinates, the order of dimensions is significant in perceiv-
ing data profiles in radar layouts [21]. Therefore in this system,
we allow users to customize the radar configuration, such as
selecting, ordering, and positioning the data dimensions on
the circular layout. Figure 4 shows two examples of the same
summary data (representing min-max band on each dimension)
on two different user configurations. As depicted, the shapes
(or morphology) of two configurations (of the same data)
are very different and may carry distinct visual values to the
viewers.

Fig. 4. The same example summary data on two different radar configuration:
Users can drag the red circles to re-position variables on the radar layout.

Users customize the radar layout by directly dragging the
associate dimensions on the summary radar chart manually
selecting the angle in the table below. The second column in
Figure 5 shows the distribution summary of node measure-
ments on each dimension from the lower to higher thresholds.
For example, on the CPU temperature dimensions, the lower
threshold is 32°F, and the higher threshold is 98°F. The red
dots on each dimension are outliers determined by the Box
plot rule [32]. The last column in Figure 5 allows users
enable/disable the corresponding variables. This allows users
to focus the analysis on a subset of variables of interest. The
configured layout affects all radar representations in the main
view, as well as the k-means clustering results.

D. Multivariate clustering of computing nodes

To characterize the major health status of the system, we
perform a modified k-means clustering on the nine measure-
ments of computing nodes [13]. We modify the original k-
means algorithm by (1) starting at a random entry in the
high-dimensional space instead of a random position and

Fig. 5. The configuration table for nine measurements of the radar layout.
Users can use the green ticks to enable/disables variables.

(2) passing the whole collections of computing nodes only
one time (no refinement) to reduce the clustering time. This
modified clustering algorithm is similar to the Leader binning
discussed in Hartigan’s book [13], where each selective entry
is a leader for its group.

Since there are 467 nodes and 60 time steps, we have
totally 28,020 multivariate entries to perform clustering. Fig-
ure 6 shows eleven typical clusters for April 25, 2019, which
have distinct morphology. The orientation of variables on the
circular layout is displayed in Configuration 1 of Figure 4.
The first (red) group in the second row is unreachable nodes
(or undetermined status) at various timestamps which has null
values on all dimensions. There are 354 members (or temporal
multivariate statuses) in this group. The first cluster is the most
popular group while the last cluster only has 4 members of
high memory usage.

Fig. 6. The eleven clusters summarizing 28,020 multivariate entries of 60
time steps for the HPC center on April 25, 2019. Cluster sizes are displayed
underneath each radar group.
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Fig. 7. Visualizing job scheduling and multivariate health status at the HPC center at a university in the last 5 hours of April 25, 2019. The eleven radar
clusters are color-encoded and listed vertically on the left. The 26 HPC users are ordered by the total power usage on the right.

IV. USE CASES

Figure 7 shows a use case of our HiperJobViz for the HPC
center at a university on April 25, 2019. From this overview,
users can easily identify the users who use the most resources
or consume the most electric power in the system. HiperJobViz
supports a full range of interactive operations such as details
in demands, filtering, and ordering. For example, by ordering
the last column in Figure 7 descendingly, users can bring
the users consuming the most power to the top of the list.
The user yieyao consumes the most power on April 25,
2019. Similarly, by ordering memory usage, users can easily
identify the jobs/users consuming the most memory of the
HPC system. The symmetric histogram for each user on each
dimension summarizes the variance of the associated readings
overtime. This provides a visual summary for comparing the
resource usage by different users. The radar charts on the left
provide another abstraction level of the visual comparisons by
compressing multiple dimension into a single chart.

User interactions: Users can request for more details by
simply clicking on the summary histogram. Figure 8 shows
examples when users explore this option. In particular, the
top panel shows CPU1 temperature readings of 65 computing
nodes by the user shahrahm from 7:00 pm to 11:55 pm on
Thursday, April 25, 2019. The CPU1 temperatures are pretty
stable except one sudden drop and pump around 11:30 pm of
the compute-8-17 (in red). The bottom panel shows memory
usages of 35 computing nodes by the user hge during the same

time interval. The memory usage readings vary a lot within a
few hours. The two prominent examples are compute-1-28 and
compute-1-30. This might due to the allocated jobs for these
computing nodes have finished and stopped running around
21:30. We can confirm this fact by linking them back to the
scheduling charts in Figure 2.

Implementation: HiperJobViz is developed using
JavaScript and in particular the D3.js library [5]. The online
HiperJobViz prototype, source code, and more examples are
available on our Github repository at https://git.io/Je3Qa.

V. CONCLUSION AND FUTURE WORK

This paper presents a prototype HiperJobViz for visualizing
and analyzing the multivariate dynamic behaviors and job
scheduling information of HPC centers. The visualization has
two main components for visualizing the hierarchical job data
and multivariate health status of computing nodes using a
radar layout. The input radar layout and data dimensions can
be customized by the users, while the output representation
can also be organized based on user interests for system
overview and debugging purposes. The developed prototype
and its interactive features are demonstrated on a medium-
scale HPC center of 467 computing nodes at a university.
Leader clustering allows HiperJobViz to scale with the number
of data entries in a larger HPC centers. For future work, we
will investigate the correlation or causal relationships between
resource allocations/usages and job scheduling to maximize
the performance of HPC centers.
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Fig. 8. Details on mouse clicks: (top) CPU1 temperature readings of 65
computing nodes by shahrahm and (bottom) memory usages of 35 computing
nodes by hge. Each line chart represents a computing node.
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