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Nonconvex Matrix Factorization From

Rank-One Measurements
Yuanxin Li, Cong Ma, Yuxin Chen , Member, IEEE, and Yuejie Chi , Senior Member, IEEE

Abstract— We consider the problem of recovering low-rank
matrices from random rank-one measurements, which spans
numerous applications including covariance sketching, phase
retrieval, quantum state tomography, and learning shallow poly-
nomial neural networks, among others. Our approach is to
directly estimate the low-rank factor by minimizing a nonconvex
least-squares loss function via vanilla gradient descent, following
a tailored spectral initialization. When the true rank is bounded
by a constant, this algorithm is guaranteed to converge to
the ground truth (up to global ambiguity) with near-optimal
sample complexity and computational complexity. To the best
of our knowledge, this is the first guarantee that achieves near-
optimality in both metrics. In particular, the key enabler of near-
optimal computational guarantees is an implicit regularization
phenomenon: without explicit regularization, both spectral ini-
tialization and the gradient descent iterates automatically stay
within a region incoherent with the measurement vectors. This
feature allows one to employ much more aggressive step sizes
compared with the ones suggested in prior literature, without
the need of sample splitting.

Index Terms— Matrix factorization, rank-one measurements,
gradient descent, nonconvex optimization.

I. INTRODUCTION

T
HIS article is concerned with estimating a low-rank

positive semidefinite matrix M \ ∈ R
n×n from a few

rank-one measurements. Specifically, suppose that the matrix
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of interest can be factorized as

M \ = X\X\> ∈ R
n×n,

where X\ ∈ R
n×r (r � n) denotes the low-rank factor.

We collect m measurements {yi}m
i=1 about M \ taking the

form

yi = a>
i M \ai =

�
�a>

i X\
�
�

2

2
, i = 1, · · · , m,

where {ai ∈ R
n}m

i=1 represent the measurement vectors

known a priori. For instance, we will work with the Gaussian

design model (namely, ai ∼ N (0, In)) unless otherwise

noted. One can think of {aia
>
i }m

i=1 as a set of linear sensing

matrices (so that yi = haia
>
i , M \i), which are all rank-one.1

The goal is to recover M \, or equivalently, the low-rank factor

X\, from a limited number of rank-one measurements. This

problem spans a variety of important practical applications,

with a few examples listed below.

• Covariance sketching. Consider a zero-mean data stream

{xt}t∈T , whose covariance matrix M \ := E[xtx
>
t ]

is (approximately) low-rank. To estimate the covariance

matrix, one can collect m aggregated quadratic sketches

of the form

yi =
1

|T |
X

t∈T
(a>

i xt)
2,

which converges to E[(a>
i xt)

2] = a>
i M \ai as the

number of data instances grows. This quadratic covari-

ance sketching scheme can be performed under minimal

storage requirement and low sketching cost. See [2] for

detailed descriptions.

• Phase retrieval and mixed linear regression. This prob-

lem subsumes as a special case the phase retrieval prob-

lem [3], which aims to estimate an unknown signal x\ ∈
R

n from intensity measurements (which can often be

modeled or approximated by quadratic measurements of

the form yi = (a>
i x\)2). This problem has found numer-

ous applications in X-ray crystallography, optical imag-

ing, astronomy, etc. Another related problem in machine

learning is mixed linear regression with two components,

where the data one collects are generated from one of

two unknown regressors; see [4] for precise formulation.

• Quantum state tomography. Estimating the density

operator of a quantum system can be formulated as a

low-rank positive semidefinite matrix recovery problem

using rank-one measurements, when the density operator

is almost pure [5]. A problem of similar mathematical

1Given that yi is a quadratic function with respect to both X
\ and ai,

the measurement scheme is also referred to as quadratic sampling.
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formulation occurs in phase space tomography [6],

where the goal is to reconstruct the correlation function

of a wave field.

• Learning shallow polynomial neural networks. Taking

{ai, yi}m
i=1 as training data, our problem is equivalent

to learning a one-hidden-layer, fully-connected neural

network with a quadratic activation function [7]–[9],

where the output of the network is expressed as y =
Pr

i=1 σ(a>x
\
i) with X\ = [x\

1, x
\
2, · · · , x\

r] ∈ R
n×r

and the activation function σ(z) = z2.

A. Main Contributions

Due to the quadratic nature of the measurements, the natural

least-squares empirical risk formulation is highly nonconvex

and in general challenging to solve. To be more specific,

consider the following optimization problem:

min
X∈Rn×r

f (X) :=
1

4m

mX

i=1

�

yi −
�
�a>

i X
�
�

2

2

�2

, (1)

which aims to optimize a degree-4 polynomial in X and is NP

hard in general. The problem, however, may become tractable

under certain random designs, and may even be solvable using

simple methods like gradient descent. Our main finding is the

following: under i.i.d. Gaussian design (i.e. ai ∼ N (0, In)),
vanilla gradient descent combined with spectral initialization

achieves appealing performance guarantees both statistically

and computationally.

• Statistically, we show that gradient descent converges

exactly to the true factor X\ (modulo unrecoverable

global ambiguity), as soon as the number of measure-

ments exceeds the order of O(nr4κ7/2 log n). When r is

fixed independent of n, this sample complexity is near-

optimal up to some logarithmic factor with respect to n
and r.

• Computationally, to achieve �-accuracy, gradient descent

requires an iteration complexity of O(κ2 r2 log(1/�))
(up to logarithmic factors), with a per-iteration cost of

O(mnr). When r is fixed independent of m and n,

the computational complexity scales linearly with mn,

which is proportional to the time taken to read all data.

These findings significantly improve upon existing results

that require either resampling (which is not sample-

efficient and is not the algorithm one actually runs in

practice [9]–[11]), or high iteration complexity (which results

in high computation cost [12]). In particular, our work is most

related to [12] that also studied the effectiveness of gradient

descent. The results in [12] require a sample complexity on

the order of nr6 log2 n, as well as an iteration complexity

of O(n4r2 log(1/�)) (up to logarithmic factors) to attain

�-accuracy. In comparison, our theory improves the sam-

ple complexity to O(nr4 log n) and, perhaps more impor-

tantly, establishes a much lower iteration complexity of

O(r2 log(1/�)) (up to logarithmic factor). To the best of our

knowledge, this work is the first nonconvex method (without

resampling) that achieves both near-optimal statistical and

computational guarantees with respect to n.

B. Surprising Effectiveness of Gradient Descent

Recently, gradient descent has been widely employed to

address various nonconvex optimization problems due to its

appealing efficiency from both statistical and computational

perspectives. Despite the nonconvexity of (1), [12] showed

that within a local neighborhood of X\, where X satisfies

�
�X − X\

�
�

F
≤ 1

24

σ2
r

�

X\
�

�
�
�X\

�
�
�

F

, (2)

f(X) behaves like a strongly convex function, at least along

certain descending directions. However, this region itself is

not enough to guarantee computational efficiency, and conse-

quently, the smoothness parameter derived in [12] is as large as

n2 (even ignoring additional polynomial factors in r), leading

to a step size as small as O(1/n4) and an iteration complexity

of O(n4 log(1/�)). These are fairly pessimistic.

In order to improve computational guarantees, it might

be tempting to employ appropriately designed regularization

operations — such as truncation [13] and projection [14].

These explicit regularization operations are capable of stabiliz-

ing the search direction, and make sure the whole trajectory

is in a basin of attraction with benign curvatures surround-

ing the ground truth. However, such explicit regularizations

complicate algorithm implementations, as they introduce more

tuning parameters.

Our work is inspired by [15], which uncovers the “implicit

regularization” phenomenon of vanilla gradient descent for

nonconvex estimation problems such as phase retrieval and

low-rank matrix completion. In words, even without extra reg-

ularization operations, vanilla gradient descent always follows

a path within some region around the global optimum with

nice geometric structure, at least along certain directions. The

current paper demonstrates that a similar phenomenon persists

in low-rank matrix factorization from rank-one measurements.

To describe this phenomenon in a precise manner, we need

to specify which region enjoys the desired geometric proper-

ties. To this end, consider a local region around X\ where

X is “incoherent”2 with all sensing vectors in the following

sense:

max
1≤l≤m

�
�a>

l

(
X − X\

)�
�

2
≤ 1

24

p

log n ·
σ2

r

�

X\
�

kX\kF

. (3)

We term the intersection of (2) and (3) the Region of Inco-

herence and Contraction (RIC). The nice feature of the RIC

is this: within this region, the loss function f(X) enjoys

a smoothness parameter that scales as O(max{r, logn})
(namely, k∇2 f(x)k � max{r, logn}, which is much smaller

than O(n2) provided in [12]). As is well known, a region

enjoying a smaller smoothness parameter enables more aggres-

sive progression of gradient descent.

A key question remains as to how to prove that the trajectory

of gradient descent never leaves the RIC. This is, unfortu-

nately, not guaranteed by standard optimization theory, which

2This is called incoherent because if X is aligned (and hence coherent) with
the sensing vectors,

�
�a>

l

�
X −X

\
���

2
can be O(

√
n) times larger than the

right-hand side of (3).
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only ensures contraction of the Euclidean error. To address

this issue, we resort to the leave-one-out trick (which has been

adopted for a growing number of problems, e.g., [15]– [28])

that produces auxiliary trajectories of gradient descent that use

all but one sample. This allows us to establish the incoherence

condition by leveraging the statistical independence of the

leave-one-out trajectory w.r.t. the corresponding sensing vector

that has been left out. Our theory refines the leave-one-out

argument and further establishes linear contraction in terms of

the entry-wise prediction error.

C. Notations

We use boldface lowercase (resp. uppercase) letters to

represent vectors (resp. matrices). We denote by kxk2 the `2

norm of a vector x, and X>, kXk and kXk
F

the transpose,

the spectral norm and the Frobenius norm of a matrix X ,

respectively. The kth largest singular value of a matrix X

is denoted by σk (X). Moreover, the inner product between

two matrices X and Y is defined as hX, Y i = Tr
�

Y >X
�

,

where Tr (·) is the trace. We also use vec(V ) to denote vector-

ization of a matrix V . The notation f(n) � g(n) or f(n) =
O(g(n)) means that there exists a universal constant c > 0
such that |f(n)| ≤ c|g(n)|. In addition, we use c and C with

different subscripts to represent positive numerical constants,

whose values may change from line to line.

II. ALGORITHMS AND MAIN RESULTS

To begin with, we present the formal problem setup. Sup-

pose we are given a set of m rank-one measurements as

follows

yi =
�
�a>

i X\
�
�

2

2
, i = 1, · · · , m, (4)

where ai ∈ R
n is the ith sensing vector composed of

i.i.d. standard Gaussian entries, i.e. ai ∼ N (0, In), for

i = 1, · · · , m. The underlying ground truth X\ ∈ R
n×r

is assumed to have full column rank but not necessarily

having orthogonal columns. Define the condition number of

M \ = X\X\> as

κ =
σ2

1

�

X\
�

σ2
r

�

X\
� . (5)

Our goal is to recover X\, up to (unrecoverable) orthonormal

transformation, from the measurements y = {yi}m
i=1 in a

statistically and computationally efficient manner.

A. Vanilla Gradient Descent

The algorithm studied herein is a combination of vanilla

gradient descent and a judiciously designed spectral initializa-

tion. Specifically, consider minimizing the squared loss:

f (X) :=
1

4m

mX

i=1

�

yi −
�
�a>

i X
�
�

2

2

�2

, (6)

which is a nonconvex function. We attempt to optimize this

function iteratively via gradient descent

Xt+1 = Xt − µt∇f (Xt) , t = 0, 1, · · · , (7)

Algorithm 1 Gradient Descent With Spectral Initialization

Input: Measurements y = {yi}m
i=1, and sensing vectors

{ai}m
i=1.

Parameters: Step size µt, rank r, and number of

iterations T .

Initialization: Set X0 = Z0Λ
1/2
0 , where the columns of

Z0 ∈ R
n×r contain the normalized eigenvectors

corresponding to the r largest eigenvalues of the matrix

Y =
1

2m

mX

i=1

yiaia
>
i , (9)

and Λ0 is an r × r diagonal matrix, with the entries on

the diagonal given as

[Λ0]i = λi

(
Y
)
− λ, i = 1, · · · , r, (10)

where λ = 1
2m

Pm
i=1 yi and λi (Y ) is the ith largest

eigenvalue of Y .

Gradient loop: For t = 0 : 1 : T − 1, do

Xt+1 = Xt − µt ·
1

m

mX

i=1

��
�a>

i Xt

�
�

2

2
− yi

�

aia
>
i Xt.

(11)

Output: XT .

where Xt denotes the estimate in the tth iteration, µt is the

step size/learning rate, and the gradient ∇f(X) is given by

∇f (X) =
1

m

mX

i=1

��
�a>

i X
�
�

2

2
− yi

�

aia
>
i X. (8)

For initialization, similar to [12],3 we apply the spectral

method, which sets the columns of X0 as the top-r eigenvec-

tors — properly scaled — of a matrix Y as defined in (9).

The rationale is this: the mean of Y is given by

E [Y ] =
1

2

�
�X\

�
�

2

F
In + X\X\>,

and hence the principal components of Y form a reasonable

estimate of X\, provided that there are sufficiently many

samples. The full algorithm is described in Algorithm 1.

B. Performance Guarantees

Before proceeding to our main results, we specify the metric

used to assess the estimation error of the running iterates.

Since
�

X\P
��

X\P
�>

= X\X\> for any orthonormal

matrix P ∈ R
r×r, X\ is recoverable up to orthonormal

transforms. Hence, we define the error of the tth iterate Xt

as

dist
(
Xt, X

\
)

=
�
�XtQt − X\

�
�

F
, (12)

where Qt is given by

Qt := argmin
P∈Or×r

�
�XtP − X\

�
�

F
(13)

3Compared with [12], when setting the eigenvalues in (10), we use the
sample mean λ rather than λr+1 (Y ) to estimate 1

2
kX\k2

F
.
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with Or×r denoting the set of all r× r orthonormal matrices.

Accordingly, we have the following theoretical performance

guarantees of Algorithm 1.

Theorem 1: Fix X\ ∈ R
n×r. Suppose that we have yi =

ka>
i X\k2

2 for ai
i.i.d.∼ N (0, In) and 1 ≤ i ≤ m. Suppose

that m ≥ cnr3(r +
√

κ)κ3 log n with some large enough

constant c > 0, and that the step size obeys 0 < µt := µ =
c4

(rκ+log n)2σ2
r(X\)

. Then with probability at least 1−O(mn−7),

the iterates satisfy

dist
(
Xt, X

\
)
≤ c1

�

1 − 0.5µσ2
r(X\)

�t σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

, (14)

for all t ≥ 0. In addition,

max
1≤l≤m

�
�
�a

>
l

(
XtQt − X\

)
�
�
�

2
≤

c2

�

1 − 0.5µσ2
r(X\)

�t p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

, (15)

for all 0 ≤ t ≤ c3n
5. Here, c1, · · · , c4 are some universal

positive constants.

Remark 1: The precise expression of required sam-

ple complexity in Theorem 1 can be written as m ≥
c max



kX

\k
F

σr(X\)

√
r, κ

�
kX

\k5

F

σ5
r(X\)

n
√

r log (κn) with some large

enough constant c > 0. By adjusting constants, with probabil-

ity at least 1 − O(mn−7), (15) holds for 0 ≤ t ≤ O(nc5) in

any power c5 ≥ 1.

Theorem 1 has the following implications.

• Near-optimal sample complexity when r is fixed: The-

orem 1 suggests that spectrally-initialized vanilla gra-

dient descent succeeds as soon as m = O(nr4 log n).
When r = O(1), this leads to near-optimal sample

complexity up to logarithmic factor. In fact, once the

spectral initialization is finished, a sample complexity at

m = O(nr3 log n) can guarantee the linear convergence

to the global optima. To the best of our knowledge, this

outperforms all performance guarantees in the literature

obtained for any nonconvex method without requiring

resampling.

• Near-optimal computational complexity: In order

to achieve �-accuracy, i.e. dist
�

Xt, X
\
�

≤
�kX\kF, it suffices to run gradient descent for

T = O
(
r2poly log(n) log(1/�)

)
iterations. This

results in a total computational complexity of

O
(
mnr3poly log(n) log(1/�)

)
.

• Implicit regularization: Theorem 1 demonstrates

that both the spectral initialization and the gradient

descent updates provably control the entry-wise error

max1≤l≤m

�
�
�a>

l

(
XtQt − X\

)
�
�
�

2
, and the iterates

remain incoherent with respect to all the sensing vectors.

In fact, the entry-wise error decreases linearly as well,

which is not characterized in [15].

Theorem 1 is established using a fixed step size. According

to our theoretical analysis, the incoherence condition (15) has

a significant impact on the convergence rate. After a few

iterations, the incoherence condition can be bounded indepen-

dent of log n, which leads to a larger step size and faster

convergence. Specifically, we have the following corollary.

Corollary 1: Under the same setting of Theorem 1, after

Ta = c6 max{κ2r2 log n, log3 n} iterations, the step size can

be relaxed as 0 < µt := µ = c7

r2κ2σ2
r(X\)

, with some universal

constant c6, c7 > 0, then the iterates satisfy

dist
(
Xt, X

\
)
≤ c1

�

1 − 0.5µσ2
r(X\)

�t σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

, (16)

for all t ≥ Ta, with probability at least 1 − O(mn−7).

III. RELATED WORK

Instead of directly estimating X\, the problem of interest

can be also solved by estimating M \ = X\X\> in higher

dimension via nuclear norm minimization, which requires

O(nr) measurements for exact recovery [2], [5], [29], [30].

See also [31]–[34] for the phase retrieval problem. However,

nuclear norm minimization, often cast as the semidefinite

programming, is in general computationally expensive to deal

with large-scale data.

On the other hand, nonconvex approaches have drawn

intense attention in the past decade due to their abil-

ity to achieve computational and statistical efficiency all

at once [35]. Specifically, for the phase retrieval problem,

Wirtinger Flow (WF) and its variants [3], [13], [15], [36]–[40]

have been proposed. As a two-stage algorithm, it consists

of spectral initialization [41] and iterative gradient updates.

This strategy has found enormous success in solving other

problems such as low-rank matrix recovery and comple-

tion [14], [42]–[45], blind deconvolution [15], [46], [47],

and spectral compressed sensing [48]. We follow a similar

route but analyze a more general problem that includes phase

retrieval as a special case.

The paper [12] is most close to our work, which studied the

local convexity of the same loss function and developed per-

formance guarantees for gradient descent using a similar, but

different spectral initialization scheme. As discussed earlier,

due to the pessimistic estimate of the smoothness parameter,

they only allow a diminishing learning rate (or step size) of

O(1/n4), leading to a high iteration complexity. We not only

provide stronger computational guarantees, but also improve

the sample complexity, compared with [12].

In spirit, our paper is also similar to [15], which studies

the phase retrieval problem — a spectral case of the model

we consider herein. Compared with the phase retrieval case,

the extension from rank-one to rank-r case is highly nontrivial.

In fact, none of the theorems or technical lemmas herein can

be straightforwardly obtained without a significant amount of

technical efforts. For instance, in the rank-one case, local

strong convexity (cf. Lemma 1) holds uniformly within a

local region surrounding the global optimum. However, this

does not hold for the rank-r case, unless we restrict attention

to highly restricted directions. See the restrictions on V in

Lemma 1. This calls for more refined analysis in order to
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TABLE I

COMPARISONS WITH EXISTING RESULTS IN TERMS OF SAMPLE COMPLEXITY AND COMPUTATIONAL COMPLEXITY TO REACH �-ACCURACY. THE TOP

HALF OF THE TABLE IS CONCERNED WITH ALGORITHMS THAT REQUIRE RESAMPLING, WHILE THE BOTTOM HALF OF THE

TABLE COVERS ALGORITHMS WITHOUT RESAMPLING

Fig. 1. Performance of the proposed algorithm in regard to (a) relative estimation error, and (b) relative incoherence condition with respect to the iteration
count using different problem sizes, when m = 5nr.

establish the uniform lower bound. In addition, with regards to

spectral initialization, due to the non-uniform singular values,

the perturbation bounds for the eigenvectors are more delicate

to deal with. Last but not least, we also proved the linear

convergence of the sample-wise incoherence measure, which

has not been established even in the rank-one case in [15]; see

Equation (15).

Several other existing works have suggested different

approaches for low-rank matrix factorization from rank-one

measurements, of which the statistical and computational

guarantees to reach �-accuracy are summarized in Table I.

We note our guarantee is the only one that achieves simul-

taneous near-optimal sample complexity and computational

complexity. Iterative algorithms based on alternating mini-

mization or noisy power iterations [9]–[11] require a fresh set

of samples at every iteration, which is never executed in prac-

tice, and the sample complexity grows unbounded for exact

recovery.

Many nonconvex methods have been proposed and analyzed

recently to solve the phase retrieval problem, including the

Kaczmarz method [49]–[51] and approximate message pass-

ing [52]. In [53], the Kaczmarz method is generalized to

solve the problem studied in this article, but no theoretical

performance guarantees are provided.

The local geometry studied in our paper is in contrast

to [54], which studied the global landscape of phase retrieval,

and showed that there are no spurious local minima as soon

as the sample complexity is above O(n log3 n). It will be

interesting to study the landscape property of the generalized

model in our paper.

Our model is also related to learning shallow neural net-

works. [55], [56] studied the performance of gradient descent

with resampling and an initialization provided by the ten-

sor method for various activation functions, however their

analysis did not cover quadratic activations. For quadratic

activations, [7] adopts a greedy learning strategy, and can only

guarantee sublinear convergence rate. Moreover, [8] studied

the optimization landscape for an over-parameterized shallow

neural network with quadratic activation, where r is larger

than n.

IV. NUMERICAL EXPERIMENTS

In this section, we provide several numerical experiments

to validate the effective and efficient performance of the

proposed algorithm. During each experiment, given a pair of

(n, r), the ground truth X\ ∈ R
n×r is generated with i.i.d.

N (0, 1
n ) entries. We first examine the relative estimation error

dist
(
Xt, X

\
)
/kX\kF and the relative incoherence condition

max1≤l≤m ka>
l

(
XtQt − X\

)
k2/kX\kF with respect to the

iteration count using a constant step size µt = 0.03, where the

number of measurements set as m = 5nr. The convergence

rates in Figure 1 are approximately linear, validating our

theory.

We then examine the phase transitions of the proposed algo-

rithm with respect to the number of measurements. Multiple

Monte Carlo trials are conducted, and each trial is deemed a
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Fig. 2. The success rate of the proposed algorithm with respect to the number
of measurements m/(nr) using different problem sizes.

Fig. 3. Relative estimation error with respect to SNR in different numbers
of measurements, when n = 200 and r = 5.

success if the relative estimation error is less than 10−6 within

T = 1000 iterations. Figure 2 depicts the success rate over 20
trials, where the proposed algorithm successfully recovers the

ground truth as soon as the number of measurements is about 4
times above the degrees of freedom nr. These results suggest

that the required sample complexity scales linearly with the

degrees of freedom, and our theoretical guarantees are optimal

up to logarithmic factors.

Next, we numerically verify the stability of the proposed

algorithm against additive noise, where each measurement is

given as yi =
�
�a>

i X\
�
�

2

2
+ �i, where the noise �i is generated

i.i.d. from N (0, σ2). Figure 3 shows the estimation error

with respect to SNR in different numbers of measurements

when n = 200 and r = 5. As the noise variance σ2

increases, the performance of the proposed algorithm degener-

ates smoothly. Increasing the number of measurements helps

to improve the estimation accuracy.

Finally, we test the performance of the proposed algorithm

when the measurement vectors ai’s are i.i.d. generated from a

sub-Gaussian distribution under random initialization. Specif-

ically, we consider a case where each entry in ai is drawn

i.i.d. from a uniform distribution U [−1, 1]. We then implement

gradient descent with a constant step size µt = 0.5 starting

from a random initialization, whose entries are generated i.i.d.

following N (0, 1
n ). Figure 4 shows the appealing convergence

performance of the proposed algorithm.

V. OUTLINE OF THEORETICAL ANALYSIS

This section provides the proof sketch of the main results,

with the details deferred to the appendix. Our theoretical

analysis is inspired by the work of [15] for phase retrieval and

Fig. 4. Relative estimation error with respect to the iteration count
using different problem sizes when the sensing vectors are generated from
sub-Gaussian distributions and a random initialization is employed, when
m = 5nr.

follows the general recipe outlined in [15], while significant

changes and elaborate derivations are needed. We refine the

analysis to show that both the signal reconstruction error and

the entry-wise error contract linearly, where the latter is not

revealed by [15]. In below, we first characterize a region of

incoherence and contraction that enjoys both strong convexity

and smoothness along certain directions. We then demonstrate

— via an induction argument — that the iterates always stay

within this nice region. Finally, the proof is complete by

validating the desired properties of spectral initialization.

A. Local Geometry and Error Contraction

We start with characterizing a local region around X\,

within which the loss function enjoys desired restricted strong

convexity and smoothness properties. This requires exploring

the property of the Hessian of f(X), which is given by

∇2f(X) =
1

m

mX

i=1

h��
�a>

i X
�
�

2

2
− yi

�

Ir + 2X>aia
>
i X

i

⊗
(
aia

>
i

)
. (17)

Here, we use ⊗ to denote the Kronecker product and hence

∇2f(X) ∈ R
nr×nr. Now we are ready to state the following

lemma regarding this local region, which will be referred to

as the region of incoherence and contraction (RIC) throughout

this article. The proof is given in Appendix B.

Lemma 1: Suppose the sample size obeys m ≥
c

kX
\k4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant c > 0.

Then with probability at least 1−c1n
−12−me−1.5n−mn−12,

we have

vec (V )> ∇2f(X)vec (V ) ≥ 1.026σ2
r(X

\) kV k2
F
, (18)

and
�
�∇2f(X)

�
� ≤ 1.5σ2

r(X\) log n + 6
�
�X\

�
�

2

F
(19)

hold simultaneously for all matrices X and V satisfying the

following constraints:

�
�X − X\

�
�

F
≤ 1

24

σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

, (20a)

max
1≤l≤m

�
�
�a

>
l

(
X − X\

)
�
�
�

2
≤ 1

24

p

log n ·
σ2

r

�

X\
�

kX\kF

, (20b)
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and V = T 1QT − T 2 satisfying

�
�T 2 − X\

�
� ≤ 1

24

σ2
r

�

X\
�

�
�
�X

\
�
�
�

, (21)

where QT := argminP∈Or×r kT 1P − T 2kF
. Here, c1 is

some absolute positive constant.

The condition (20) on X formally characterizes the RIC,

which enjoys the claimed restricted strong convexity (see (18))

and smoothness (see (19)). With Lemma 1 in mind, it is easy

to see that if Xt lies within the RIC, the estimation error

shrinks in the presence of a properly chosen step size. This

is given in the lemma below whose proof can be found in

Appendix D.

Lemma 2: Suppose the sample size obeys m ≥
c

kX
\k4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant c > 0.

Then with probability at least 1−c1n
−12−me−1.5n−mn−12,

if Xt falls within the RIC as described in (20), we have

dist
(
Xt+1, X

\
)
≤
�

1 − 0.513µσ2
r(X

\)
�

dist
(
Xt, X

\
)
,

provided that the step size obeys 0 < µt ≡ µ ≤
1.026σ2

r(X
\)

(
1.5σ2

r(X\) log n+6kX\k2
F

)2 . Here, c1 > 0 is some universal

constant.

Assuming that the iterates {Xt}, stay within the RIC

(see (20)) for the first Tc iterations, according to Lemma 2,

we have, by induction, that

dist
(
XTc+1, X

\
)
≤
�

1 − 0.513µσ2
r(X

\)
�Tc+1

dist
(
X0, X

\
)

≤ 1

24
√

6
·
√

log n√
n

·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

as soon as

Tc ≥ c max







log2 n,

�
�
�X

\
�
�
�

4

F

σ4
r

�

X\
�







log n, (22)

for some large enough constant c. Notice that due to the high

probability nature of each induction step, the union bound can

only tolerate a polynomial number of induction steps, say Tc =
c3 n5. After t ≥ Tc, showing that Xt+1 stays in the RIC

is more immediate because the distance between X and X\

has decreased by enough so that the simple Cauchy-Schwarz

inequality suffices to prove. In particular, we have

max
1≤l≤m

�
�
�a

>
l

(
Xt+1Qt+1 − X\

)
�
�
�

2

≤ max
1≤l≤m

�
�al

�
�

2

�
�
�Xt+1Qt+1 − X\

�
�
�

≤
√

6n · 1

24
√

6
·
√

log n√
n

·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

(23)

=
1

24

p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

,

Algorithm 2 Leave-One-Out Versions

Input: Measurements {yi}i:i6=l, and sensing vectors

{ai}i:i6=l.

Parameters: Step size µt, rank r, and number of

iterations T .

Initialization: X
(l)
0 = Z

(l)
0 Λ

(l)1/2
0 , where the columns of

Z
(l)
0 ∈ R

n×r contain the normalized eigenvectors

corresponding to the r largest eigenvalues of the matrix

Y (l) =
1

2m

X

i:i6=l

yiaia
>
i , (25)

and Λ
(l)
0 is an r × r diagonal matrix, with the entries on

the diagonal given as
h

Λ
(l)
0

i

i
= λi

(
Y (l)

)
− λ(l), i = 1, · · · , r, (26)

where λ(l) = 1
2m

P

i:i6=l yi and λi

�

Y (l)
�

is the ith

largest eigenvalue of Y (l).

Gradient loop: For t = 0 : 1 : T − 1, do

X
(l)
t+1 = X

(l)
t −µt·

1

m

X

i:i6=l

��
�a>

i X
(l)
t

�
�

2

2
− yi

�

aia
>
i X

(l)
t .

(27)

Output: X
(l)
T .

where (23) follows from Lemma 10 for all t ≥ Tc. Conse-

quently, contraction of the estimation error dist
(
Xt, X

\
)

can

be guaranteed by Lemma 1 for all t ≥ Tc with probability at

least 1 − c1n
−12 − me−1.5n − mn−12.

B. Introducing Leave-One-Out Sequences

It has now become clear that the key remaining step is

to verify that the iterates {Xt} satisfy (20) for the first Tc

iterations, where Tc is on the order of (22). Verifying (20b)

is conceptually hard since the iterates {Xt} are statistically

dependent with all the sensing vectors {ai}m
i=1. To tackle this

problem, for each 1 ≤ l ≤ m, we introduce an auxiliary leave-

one-out sequence {X(l)
t }, which discards a single measure-

ment from consideration. Specifically, the sequence {X(l)
t } is

the gradient iterates operating on the following leave-one-out

function

f (l) (X) :=
1

4m

X

i:i6=l

�

yi −
�
�a>

i X
�
�

2

2

�2

. (24)

See Algorithm 2 for a formal definition of the leave-one-out

sequences. Again, we want to emphasize that Algorithm 2 is

just an auxiliary procedure useful for the theoretical analysis,

and it does not need to be implemented in practice.

C. Establishing Incoherence via Induction

Our proof is inductive in nature with the following induction

hypotheses:

�
�
�XtQt − X\

�
�
�

F

≤C1

�

1−0.5σ2
r

�

X\
�

µ
�t σ

2
r

�

X\
�

�
�
�X

\
�
�
�

F

,

(28a)
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max
1≤l≤m

�
�
�XtQt − X

(l)
t R

(l)
t

�
�
�

F

≤ C3

�

1 − 0.5σ2
r

�

X\
�

µ
�t

·
r

log n

n
·
σ2

r

�

X\
�

κ
�
�
�X

\
�
�
�

F

,

(28b)

max
1≤l≤m

�
�
�a

>
l

�

XtQt − X\
��
�
�

2
≤ C2

�

1 − 0.5σ2
r

�

X\
�

µ
�t

·
p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

, (28c)

where R
(l)
t = argmin

P∈Or×r

�
�XtQt − X

(l)
t P

�
�

F
, and the

positive constants C1, C2 and C3 satisfy

C1 + C3 ≤ 1

24
, C2 +

√
6C3 ≤ 1

24
,

5.86C1 + 5.86C3 +
√

6C3 ≤ C2. (29)

Furthermore, the step size µ is chosen as

µ =
c0σ

2
r

�

X\
�

(
σ2

r (X\) log n + kX\k2
F

)2 (30)

with appropriate universal constant c0 > 0.

Our goal is to show that if the tth iteration Xt satisfies

the induction hypotheses (28), then the (t + 1)th iteration

Xt+1 also satisfies (28). It is straightforward to see that the

hypothesis (28a) has already been established by Lemma 2,

and we are left with (28b) and (28c). We first establish (28b) in

the following lemma, which measures the proximity between

Xt and the leave-one-out versions X
(l)
t , whose proof is

provided in Appendix E.

Lemma 3: Suppose the sample size obeys m ≥
c

kX
\k4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant c > 0.

If the induction hypotheses (28) hold for the tth iteration, with

probability at least 1− c1n
−12 −me−1.5n −mn−12, we have

max
1≤l≤m

�
�
�Xt+1Qt+1 − X

(l)
t+1R

(l)
t+1

�
�
�

F

≤

C3

�

1 − 0.5σ2
r

�

X\
�

µ
�t+1

r

log n

n
·
σ2

r

�

X\
�

κ
�
�
�X

\
�
�
�

F

,

as long as the step size obeys (30). Here, c1 > 0 is some

absolute constant.

In addition, the incoherence property of X
(l)
t+1 with respect

to the lth sensing vector al is relatively easier to establish, due

to their statistical independence. Combined with the proximity

bound from Lemma 3, this allows us to justify the incoherence

property of the original iterates Xt+1, as summarized in the

lemma below, whose proof is given in Appendix F.

Lemma 4: Suppose the sample size obeys m ≥
c

kX
\k4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant c > 0.

If the induction hypotheses (28) hold for the tth iteration, with

probability exceeding 1 − c1n
−12 − me−1.5n − 2mn−12,

max
1≤l≤m

�
�
�a

>
l

�

Xt+1Qt+1 − X\
��
�
�

2
≤

C2

�

1 − 0.5σ2
r

�

X\
�

µ
�t+1 p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

holds as long as the step size satisfies (30). Here, c1 > 0 is

some universal constant.

D. Spectral Initialization

Finally, it remains to verify that the induction hypotheses

hold for the initialization, i.e. the base case when t = 0. This

is supplied by the following lemma, whose proof is given in

Appendix G.

Lemma 5: Suppose that the sample size exceeds

m ≥ c max



kX

\k
F

σr(X\)

√
r, κ

�
kX

\k5

F

σ5
r(X\)

n
√

r log n for some suf-

ficiently large constant c > 0. Then X0 satisfies (28) with

probability at least 1 − c1n
−12 − me−1.5n − 3mn−12, where

c1 is some absolute positive constant.

E. Putting Things Together

With Lemmata 1-5 in place, we are ready to put things

together and prove the desired result Theorem 1.

Proof of Theorem 1: Lemma 5 justifies (14) and (15) in

Theorem 1 for t = 0, i.e. spectral initialization. Given this base

case, Lemma 2, together with Lemmata 3-4 establishes (14)

and (15) in Theorem 1 for 1 ≤ t ≤ Tc in an inductive manner.

Further built upon these, the proof is complete by repeatedly

applying Lemma 2; see the paragraph after Lemma 2 for a

complete argument of this part.

VI. CONCLUSION

In this article, we have shown that low-rank positive

semidefinite matrices can be recovered from a near-minimal

number of random rank-one measurements, via the vanilla

gradient descent algorithm following spectral initialization.

Our results significantly improve upon existing results in

several ways, both computationally and statistically. In par-

ticular, our algorithm does not require resampling at every

iteration (and hence requires fewer samples). The gradient

iteration can provably employ a much more aggressive step

size than what was suggested in prior literature (e.g. [12]),

thus resulting in much smaller iteration complexity and hence

lower computational cost. All of this is enabled by establishing

the implicit regularization feature of gradient descent for

nonconvex statistical estimation, where the iterates remain

incoherent with the sensing vectors throughout the execution

of the whole algorithm.

There are several problems that are worth exploring in future

investigation. For example, our theory reveals the typical size

of the fitting error of Xt (i.e. yi −ka>
i Xtk2) in the presence

of noiseless data, which would serve as a helpful benchmark

when separating sparse outliers in the more realistic scenario.

Another direction is to explore whether implicit regularization

remains valid for learning shallow neural networks [55]. Since
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the current work can be viewed as learning a one-hidden-layer

fully-connected network with a quadratic activation function

σ(z) = z2, it would be of great interest to study if the

techniques utilized herein can be used to develop strong

guarantees when the activation function takes other forms.

Below we list a few further considerations that are worth

discussion.

• Random initialization. The current paper focuses on a

judiciously designed initialization scheme, namely spec-

tral initialization. It turns out that for fast convergence

of gradient descent, spectral initialization is not nec-

essary and random initialization suffices; see Figure 4

for the numerical evidence. However, establishing the

global convergence for gradient descent with random

initialization is challenging. For example, [57] proves this

for the case with r = 1. How to extend that to the general

rank case remains an interesting and challenging problem.

One roadblock is to construct appropriate sign-flipping

sequences as in [57] to decouple the dependency of the

gradient iterates on the data.

• Sample complexity w.r.t. r and κ. Last but not least, our

sample complexity (i.e. O(nr4)) is sub-optimal when the

rank r is allowed to grow with the problem dimension

n. Some of the difficulties stem from establishing the

local strong convexity of the nonconvex loss function

(cf. Lemma 1). Specifically, it is challenging to prove the

local strong convexity with near optimal sample com-

plexity O(nr). Improving the theoretical support under

optimal sample complexity O(nr) remains a challenging

problem.

• Universal recovery guarantees? Throughout the paper,

we have assumed that the signal X\ is fixed and inde-

pendent of the measurement vectors. One might naturally

wonder whether the recovery guarantees continue to hold

when we allow X\ to be arbitrary. This, however, might

be highly nontrivial. In particular, establishing the local

strong convexity and smoothness as shown in Lemma 1

is difficulty, if not impossible, when X\ is allowed to

be arbitrary. Here the Hessian matrix ∇2 f(X) does not

necessarily concentrate around its mean with very few

samples, which might preclude us from obtaining the

desired strong convexity and smoothness conditions for

the loss function.

APPENDIX A

TECHNICAL LEMMAS

In this section, we document a few useful lemmas that are

used throughout the proof.

Lemma 6 ([42, Lemma 5.4]): For any matrices X , U ∈
R

n×r, we have

�
�XX> − UU>��

F
≥
q

2(
√

2 − 1)σr (X) dist(X, U).

Lemma 7 (Covering Number for Low-Rank

Matrices [58, Lemma 3.1]): Let Sr = {X ∈
R

n1×n2 , rank(X) ≤ r, kXkF = 1}. Then there exists

an �-net S̄r ⊂ Sr with respect to the Frobenius norm obeying
�
�S̄r

�
� ≤ (9/�)(n1+n2+1)r.

Lemma 8 ( [3], [59]): Suppose x1, · · · , xm are i.i.d. real-

valued random variables obeying xi ≤ b for some determin-

istic number b > 0, E [xi] = 0, and E
�
x2

i

�
= d2. Setting

σ2 = m · max{b2, d2}, we have

P

�
mX

i=1

xi ≥ t

�

≤ min




exp

�

− t2

2σ2

�

, 25

�

1 − Φ

�
t

σ

���

,

where Φ(·) is the cumulative distribution function of a standard

Gaussian variable.

Lemma 9: [60, Theorem 5.39] Suppose the ai’s are

i.i.d. random vectors following ai ∼ N (0, In), i = 1, · · · , m.

Then for every t ≥ 0 and 0 < δ ≤ 1,
�
�
�
�
�
In − 1

m

mX

i=1

aia
>
i

�
�
�
�
�
≤ δ

holds with probability at least 1−2e−ct2, where δ = C
p

n
m +

t√
m

. On this event, for all W ∈ R
n×r, there exists

�
�
�
�
�

1

m

mX

i=1

�
�a>

i W
�
�

2

2
− kW k2

F

�
�
�
�
�
≤ δ kW k2

F
.

Lemma 10: [3] Suppose the ai’s are i.i.d. random vectors

following ai ∼ N (0, In), i = 1, · · · , m. Then with probabil-

ity at least 1 − me−1.5n, we have

max
1≤i≤m

kaik2 ≤
√

6n.

Lemma 11: Fix W ∈ R
n×r. Suppose the ai’s are i.i.d. ran-

dom vectors following ai ∼ N (0, In), i = 1, · · · , m. Then

with probability at least 1 − mrn−13, we have

max
1≤i≤m

�
�a>

i W
�
�

2
≤ 5.86

p

log n kW k
F
.

Proof: Define W = [w1, w2, · · · , wr], then we can write
�
�a>

i W
�
�

2

2
=

Pr
k=1

(
a>

i wk

)2
. Recognize that

�

a>
i

wk

kwkk2

�2

follows the χ2 distribution with 1 degree of freedom. It then

follows from [61, Lemma 1] that

P

��

a>
i

wk

kwkk2

�2

≥ 1 + 2
√

t + 2t

�

≤ exp (−t),

for any t > 0. Taking t = 13 logn yields

P

�(
a>

i wk

)2 ≤ 34.3 kwkk2
2 log n

�

≥ 1 − n−13.

Finally, taking the union bound, we obtain

max
1≤i≤m

�
�a>

i W
�
�

2

2
≤

rX

k=1

34.3 kwkk2
2 log n = 34.3 kW k2

F
log n

with probability at least 1 − mrn−13.

Lemma 12: Suppose a ∼ N (0, In). Then for any fixed

matrices X , H ∈ R
n×r, we have

E

h�
�a>H

�
�

2

2

�
�a>X

�
�

2

2

i

=
�
�H

�
�

2

F

�
�X

�
�

2

F
+ 2

�
�H>X

�
�

2

F
;

E

h(
a>HX>a

)2
i

=
�

Tr
(
H>X

)�2

+Tr
(
H>XH>X

)

+
�
�HX>��2

F
.
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Moreover, for any order k ≥ 1, we have E
�
ka>Hk2k

2

�
≤

ck kHk2k
F

, where ck > 0 is a numerical constant that depends

only on k.

Proof: Let X = [x1, x2, · · · , xr] and H =
[h1, h2, · · · , hr]. Based on the simple facts

E
�
(x>a)2aa>� = kxk2

2 In + 2xx>,

E
�
(a>xi)(a

>xj)aa>� = xix
>
j + xjx

>
i + x>

i xjIn,

we can derive

E

h�
�a>H

�
�

2

2

�
�a>X

�
�

2

2

i

=
rX

i=1

rX

j=1

E

h(
a>hi

)2 (
a>xj

)2
i

=

rX

i=1

rX

j=1

�

khik2
2 kxjk2

2 + 2
�

h>
i xj

�2
�

= kHk2
F
kXk2

F
+ 2

�
�H>X

�
�

2

F
,

and

E

��

a>HX>a
�2
�

= E

 
rX

i=1

(
a>hi

)2 (
a>xi

)2

!

+ E

⎡


X

i6=j

(
a>hi

) (
a>xi

) (
a>hj

) (
a>xj

)





=

rX

i=1

�

khik2
2 kxik2

2 + 2
�

h>
i xi

�2
�

+
X

i6=j

h�

h>
i xi

��

h>
j xj

�

+
�

h>
i hj

� (
x>

i xj

)i

+
X

i6=j

h�

h
>
i xj

� (
x>

i hj

)i

=
�

Tr
(
H>X

)�2

+
�
�HX>��2

F
+ Tr

(
H>XH>X

)
.

Finally, to bound E

h�
�a>H

�
�

2k

2

i

for an arbitrary H ∈
R

n×r, we write the singular value decomposition of H as

H = UΣV >, where U = [u1, u2, · · · , ur] ∈ R
n×r,

Σ = diag {σ1, σ2, · · · , σr}, and V ∈ R
r×r. This gives

�
�a>H

�
�

2

2
=

rX

i=1

σ2
i (a>ui)

2.

Let bi = σia
>ui for i = 1, · · · , r, which are independent

random variables obeying bi ∼ N
(
0, σ2

i

)
due to the fact

U>U = Ir. Since E
�
b2t
i

�
= σ2t

i (2t − 1)!! ≤ ckσ2t
i for any

i = 1, · · · , r and t = 1, · · · , k, where ck is some large enough

constant depending only on k, we arrive at

E

⎡



�
rX

i=1

b2
i

�k


 ≤ ck

�
rX

i=1

σ2
i

�k

= ck kHk2k
F

as claimed.

As a simple remark, the bound on E[ka>Hk2k
2 ] can

also be obtained via a corollary of Hanson-Wright inequal-

ity. In particular, [62, Theorem 6.3.2] tells us that

kka>Hk2 − kHkFkψ2 � kHk. Here k · kψ2 denotes the

sub-Gaussian norm of a random variable; see [62]. As a

result, kka>Hk2kψ2 � kHkF, which immediately implies

E
�
ka>Hk2k

2

�
≤ ck kHk2k

F
for some ck > 0 that depends

only on k.

Lemma 13: Fix X\ ∈ R
n×r. Suppose the ai’s are i.i.d. ran-

dom vectors following ai ∼ N (0, In), i = 1, · · · , m. For any

0 < δ ≤ 1, suppose m ≥ cδ−2n log n for some sufficiently

large constant c > 0. Then we have
�
�
�
�
�

1

m

mX

i=1

�
�a>

i X\
�
�

2

2
aia

>
i −

�
�X\

�
�

2

F
In − 2X\X\>

�
�
�
�
�

≤ δ
�
�X\

�
�

2

F
,

with probability at least 1 − c1rn
−13, where c1 > 0 is some

absolute constant.

Proof: This proof adapts the results of [3, Lemma 7.4]

with refining the probabilities. Let a(1) be the first element of

a vector a ∼ N (0, In). Based on [63, Theorem 1.9], we have

P

��
�
�
�
�

1

m

mX

i=1

(ai(1))
2 − 1

�
�
�
�
�
≥ δ

�

≤ e2 · e−(c1δ2m)
1/2

;

P

��
�
�
�
�

1

m

mX

i=1

(ai(1))
4 − 3

�
�
�
�
�
≥ δ

�

≤ e2 · e−(c2δ2m)1/4

;

P

��
�
�
�
�

1

m

mX

i=1

(ai(1))6 − 15

�
�
�
�
�
≥ δ

�

≤ e2 · e−(c3δ2m)
1/6

.

So, by setting m � δ−2n, we have
�
�
�
�
�

1

m

mX

i=1

(ai(1))
2 − 1

�
�
�
�
�
≤ δ,

�
�
�
�
�

1

m

mX

i=1

(ai(1))
4 − 3

�
�
�
�
�
≤ δ,

�
�
�
�
�

1

m

mX

i=1

(ai(1))
6 − 15

�
�
�
�
�
≤ δ, (31)

with probability at least 1− c4n
−13 for some constant c4 > 0.

Moreover, following [61, Lemma 1], we know

P

�

(ai(1))
2 ≥ 1 + 2

√
t + 2t

�

≤ exp (−t),

which gives

P

�

(ai(1))
2 ≥ 36.5 logm

�

≤ exp (−14 logm) = m−14,

if setting t = 14 logm. Therefore, as long as m ≥ cn, we have

max
1≤i≤m

|ai(1)| ≤
p

36.5 logm, (32)

with probability at least 1− c5n
−13 for some constant c5 > 0.

With (31) and (32), the results in [3, Lemma 7.4] imply

that for any 0 < δ ≤ 1, as soon as m ≥ cδ−2n log n for

some sufficiently large constant c, with probability at least

1 − c1 n−13,
�
�
�
�
�

1

m

mX

i=1

(
a>

i x
)2

aia
>
i − kxk2

2 I − 2xx>

�
�
�
�
�
≤ δ kxk2

2
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holds for any fixed vector x ∈ R
n. Let X\ =

[x\
1, x

\
2, · · · , x\

r]. Instantiating the above bound for the set of

vectors x
\
k, k = 1, . . . , r and taking the union bound, we have

�
�
�
�
�

1

m

mX

i=1

�
�a>

i X\
�
�

2

2
aia

>
i −

�
�X\

�
�

2

F
I − 2X\X\>

�
�
�
�
�

≤
rX

k=1

�
�
�
�
�

1

m

mX

i=1

(
a>

i x
\
k

)2
aia

>
i −

�
�x

\
k

�
�

2

2
I − 2x

\
kx

\>
k

�
�
�
�
�

≤ δ

rX

k=1

�
�x

\
k

�
�

2

2
= δ

�
�X\

�
�

2

F
.

APPENDIX B

PROOF OF LEMMA 1

The crucial ingredient for proving the lower bound (18) is

the following lemma, whose proof is provided in Appendix C.

Lemma 14: Suppose m ≥ c

�
�

X
\
�
�

4

F

σ4
r(X\)

nr log (nκ) with some

large enough positive constant c, then with probability at least

1 − c1n
−12 − me−1.5n, we have

vec (V )
> ∇2f(X)vec (V )

≥ 2Tr
�

X\>V X\>V
�

+ 1.204σ2
r(X

\) kV k2
F
, (33)

for all matrices X and V where X satisfies

�
�
�X − X\

�
�
�

F

≤
1
24

σ2
r(X

\)
kX\k

F

. Here, c1 > 0 is some universal constant.

With Lemma 14 in place, we are ready to prove (18). Let

V = T 1QT − T 2 satisfy the assumptions in Lemma 1, then

we can demonstrate that

Tr
�

X\>V X\>V
�

= Tr
�(

X\ − T 2 + T 2

)>
V
(
X\ − T 2 + T 2

)>
V
�

= Tr
�(

X\ − T 2

)>
V
(
X\ − T 2

)>
V
�

+ 2Tr
�(

X\ − T 2

)>
V T>

2 V
�

+ Tr
�

T>
2 V T>

2 V
�

≥ Tr
�

T>
2 V T>

2 V
�

−
�
�X\ − T 2

�
�

2 kV k2
F

− 2
�
�X\ − T 2

�
� kT 2k kV k2

F

=
�
�T>

2 V
�
�

2

F
−
�
�X\ − T 2

�
�

2 kV k2
F

− 2
�
�X\ − T 2

�
� kT 2k kV k2

F
(34)

≥ −

⎛


1

24

σ2
r

�

X\
�

�
�
�X

\
�
�
�

⎞



2

kV k2
F

− 2 · 1

24

σ2
r

�

X\
�

�
�
�X

\
�
�
�

·

⎛


1

24

σ2
r

�

X\
�

�
�X\

�
�

+
�
�X\

�
�

⎞

 kV k2
F

(35)

≥ −0.0886σ2
r(X

\) kV k2
F
, (36)

where (34) follows from the fact that T>
2 V ∈ R

r×r is a

symmetric matrix [64, Theorem 2], (35) arises from the fact
�
�T>

2 V
�
�

2

F
≥ 0 as well as the assumptions of Lemma 1,

and (36) is based on the fact

�
�
�X

\
�
�
� ≥ σr(X

\). Combin-

ing (36) with Lemma 14, we establish the lower bound (18).

To prove the upper bound (19) asserted in the lemma,

we make the observation that the Hessian in (17) satisfies

�
�∇2f(X)

�
�

=

�
�
�
�
�

1

m

mX

i=1

�

ka>
i Xk2

2 − ka>
i X\k2

2

�

Ir ⊗
(
aia

>
i

)

+
1

m

mX

i=1

2X>aia
>
i X ⊗

(
aia

>
i

)

�
�
�
�
�

≤
�
�
�
�
�

1

m

mX

i=1

�
�
�
�
a>

i

�

X + X\
��

X − X\
�>

ai

�
�
�
�
Ir ⊗

(
aia

>
i

)

+
1

m

mX

i=1

2
�
�a>

i X
�
�

2

2
Ir ⊗

(
aia

>
i

)

�
�
�
�
�

≤
�
�
�
�
�

1

m

mX

i=1

�

ka>
i Xk2 + ka>

i X\k2

�

·
�
�
�a

>
i

(
X−X\

)
�
�
�

2
aia

>
i

+
1

m

mX

i=1

2
�
�a>

i X
�
�

2

2
aia

>
i

�
�
�
�
�

(37)

=

�
�
�
�
�

1

m

mX

i=1

�

ka>
i Xk2 + ka>

i X\k2

�

·
�
�
�a

>
i

(
X − X\

)
�
�
�

2
aia

>
i

+
1

m

mX

i=1

2
��
�a>

i X
�
�

2

2
−
�
�a>

i X\
�
�

2

2

�

aia
>
i

+
1

m

mX

i=1

2
�
�a>

i X\
�
�

2

2

(
aia

>
i

)

− 2
��
�X\

�
�

2

F
In + 2X\X\>

�

+ 2
��
�X\

�
�

2

F
In + 2X\X\>

�
�
�
�
�
�

≤
�
�
�
�
�

3

m

mX

i=1

(ka>
i Xk2 + ka>

i X\k2)ka>
i (X − X\)k2aia

>
i

�
�
�
�
�

| {z }

:=B1

+ 2

�
�
�
�
�

1

m

mX

i=1

ka>
i X\k2

2aia
>
i − kX\k2

FIn − 2X\X\>

�
�
�
�
�

| {z }

:=B2

+ 2
�
�
�

�
�X\

�
�

2

F
In + 2X\X\>

�
�
�

| {z }

:=B3

, (38)

where (37) follows from the fact kI ⊗ Ak = kAk. It is seen

from Lemma 13 that

B2 ≤ δ
�
�X\

�
�

2

F
≤ 0.02σ2

r

(
X\

)
,

when setting δ ≤ 0.02
σ2

r

(
X

\
)

�
�

X\

�
�

2

F

. Moreover, it is straightforward

to check that

B3 ≤ 6
�
�X\

�
�

2

F
.
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With regards to the first term B1, note that by Lemma 11

and (20b), we can bound

�
�a>

i X
�
�

2
≤
�
�
�a

>
i X\

�
�
�

2
+
�
�
�a

>
i (X − X\)

�
�
�

2

≤ 5.86
p

log n
�
�X\

�
�

F
+

1

24

p

log n ·
σ2

r

�

X\
�

�
�
�X\

�
�
�

F

,

for 1 ≤ i ≤ m, and therefore,

B1 ≤ 1.471σ2
r

(
X\

)
log n

�
�
�
�
�

1

m

mX

i=1

aia
>
i

�
�
�
�
�

≤ 1.48σ2
r

(
X\

)
log n, (39)

where the last line follows from Lemma 9. The proof is then

finished by combining (38) with the preceding bounds on B1,

B2 and B3.

APPENDIX C

PROOF OF LEMMA 14

Without loss of generality, we assume kV k
F

= 1. Write

vec (V )
> ∇2f(X)vec (V )

=
1

m

mX

i=1

vec (V )
>
h��
�a>

i X
�
�

2

2
− yi

�

Ir ⊗
(
aia

>
i

)i

· vec (V )

+
1

m

mX

i=1

vec (V )
>
h�

2X>aia
>
i X

�

⊗
(
aia

>
i

)i

· vec (V )

=
1

m

mX

i=1

��
�a>

i X
�
�

2

2
− yi

�

vec (V )
>

vec
(
aia

>
i V

)

+
1

m

mX

i=1

vec (V )
>

vec
�

2aia
>
i V X>aia

>
i X

�

=
1

m

mX

i=1

�
�
�a>

i X
�
�

2

2
−
�
�
�a

>
i X\

�
�
�

2

2

�
�
�a>

i V
�
�

2

2

+
1

m

mX

i=1

2
�

a>
i XV >ai

�2

. (40)

In what follows, we let X = X\ + t
σ2

r(X
\)

kX\k
F

H with t ≤ 1/24

and kHk
F

= 1 which immediately obeys

�
�
�X − X\

�
�
�

F

≤
1
24

σ2
r(X

\)
kX\k

F

, and express the right-hand side of (40) as

p (V , H, t)

:=
1

m

mX

i=1

�
�
�a>

i X
�
�

2

2

�
�a>

i V
�
�

2

2
+ 2

�

a>
i XV >ai

�2
�

| {z }

:=q(V ,H,t)

− 1

m

mX

i=1

�
�
�a

>
i X\

�
�
�

2

2

�
�a>

i V
�
�

2

2
. (41)

The aim is thus to control p (V , H , t) for all matrices satisfy-

ing kHk
F

= 1 and kV k
F

= 1, and for all t obeying t ≤ 1/24.

We first bound the second term in (41). Let V =
[v1, v2, · · · , vr], then by Lemma 13,
�
�
�
�
�

1

m

mX

i=1

�
�a>

i X\
�
�

2

2

�
�a>

i V
�
�

2

2
−
�
�X\

�
�

2

F

�
�V

�
�

2

F
− 2

�
�X\>V

�
�

2

F

�
�
�
�
�

=

�
�
�
�
�

1

m

mX

i=1

�
�a>

i X\
�
�

2

2

rX

k=1

(
a>

i vk

)2 −
�
�X\

�
�

2

F

rX

k=1

kvkk2
2

− 2

rX

k=1

�
�X\>vk

�
�

2

2

�
�
�
�
�

≤
rX

k=1

�
�
�
�
�

1

m

mX

i=1

�
�a>

i X\
�
�

2

2

(
a>

i vk

)2

−
�
�X\

�
�

2

F
kvkk2

2 − 2
�
�X\>vk

�
�

2

2

�
�
�
�
�

=
rX

k=1

�
�
�
�
�
v>

k (
1

m

mX

i=1

ka>
i X\k2

2aia
>
i − kX\k2

F
− 2X\X\>)vk

�
�
�
�
�

≤
rX

k=1

kvkk2
2

�
�
�
�
�

1

m

mX

i=1

ka>
i X\k2

2aia
>
i −

�
�X\

�
�

2

F
− 2X\X\>

�
�
�
�
�

≤ δ
�
�X\

�
�

2

F

rX

k=1

kvkk2
2 = δ

�
�X\

�
�

2

F
kV k2

F
.

By setting δ ≤ 1
24

σ2
r(X

\)
kX\k2

F

, we see that with probability at least

1 − c1rn
−13,

1

m

mX

i=1

�
�a>

i X\
�
�

2

2

�
�a>

i V
�
�

2

2

≤
�
�X\

�
�

2

F

�
�V

�
�

2

F
+ 2

�
�X\>V

�
�

2

F
+

1

24
σ2

r

(
X\

)
kV k2

F
, (42)

holds simultaneously for all matrices V , as long as m �
kX

\k4

F

σ4
r(X\)

n log n.

Next, we turn to the first term q (V , H , t) in (41), and we

need to accommodate all matrices satisfying kHk
F

= 1 and

kV k
F

= 1, and all scalars obeying t ≤ 1/24. The strategy is

that we first establish the bound of q (V , H, t) for any fixed

H , V and t, and then extend the result to a uniform bound

for all H , V and t by covering arguments.

A. Bound With Fixed Matrices and Scalar

Recall that

q (V , H, t)

=
1

m

mX

i=1

h�
�a>

i X
�
�

2

2

�
�a>

i V
�
�

2

2
+ 2

(
a>

i XV >ai

)2
i

| {z }

:=Gi

.

We will start by assuming that X and V are both fixed and

statistically independent of {ai}m
i=1. In view of Lemma 12,

E [Gi]

= E

h�
�a>

i X
�
�

2

2

�
�a>

i V
�
�

2

2

i

+ 2E

h(
a>

i XV >ai

)2
i

= kXk2
F
kV k2

F
+ 2

�
�X>V

�
�

2

F
+ 2

�

Tr
(
X>V

)�2
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+ 2
�
�XV >��2

F
+ 2Tr

(
X>V X>V

)

≤ kXk2
F
kV k2

F
+ 2 kXk2 kV k2

F
+ 2 kXk2

F
kV k2

F

+ 2 kXk2 kV k2
F

+ 2 kXk2 kV k2
F

≤ 9 kXk2
F
kV k2

F
= 9

�
�
�
�
�
�

X\ + t
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

H

�
�
�
�
�
�

2

F

(43)

≤ 18

⎛




�
�X\

�
�

2

F
+ t2

σ4
r

�

X\
�

�
�
�X

\
�
�
�

2

F

kHk2
F

⎞




≤ 18.002
�
�X\

�
�

2

F
, (44)

where (43) follows kV kF = 1 and X = X\ + t
σ2

r(X
\)

kX\k
F

H ,

and (44) arises from the calculations with kHkF = 1 and

t ≤ 1/24. Therefore, if we define Ti = E [Gi] − Gi, we have

E [Ti] = 0 and

Ti ≤ E [Gi] ≤ 18.002
�
�X\

�
�

2

F
,

due to Gi ≥ 0. In addition,

E
�
T 2

i

�
= E

�
G2

i

�
− (E [Gi])

2 ≤ E
�
G2

i

�

= E

���
�a>

i X
�
�

2

2

�
�a>

i V
�
�

2

2
+ 2

(
a>

i XV >ai

)2
�2
�

= E

h�
�a>

i X
�
�

4

2

�
�a>

i V
�
�

4

2

i

+ 4E

h(
a>

i XV >ai

)4
i

+ 4E

h(
a>

i XV >ai

)2�
�a>

i X
�
�

2

2

�
�a>

i V
�
�

2

2

i

≤ 9E

h�
�a>

i X
�
�

4

2

�
�a>

i V
�
�

4

2

i

(45)

≤ 9

r

E

h�
�a>

i X
�
�

8

2

i
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F
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�
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�
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�
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�
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�
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�
�
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�

4

F
,

where (45) follows from the Cauchy-Schwarz inequality, (46)

comes from the Hölder’s inequality, and (47) is a consequence

of Lemma 12. Apply Lemma 8 to arrive at

P

�

1

m

mX
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Ti ≥
1

24
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r

�
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⎛
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−c
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r
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F

⎞


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(48)

which further leads to

q (V , H, t) =
1

m
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1

m
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�
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�
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�
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�
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�
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�
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r

�
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Substituting X = X\ + t
σ2

r(X
\)

kX\k
F

H for X , and using the

facts kHk
F

= 1, kV k
F

= 1 and t ≤ 1/24, we can calculate

the following bounds:
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�
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�
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�
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�
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�

�
�
�X

\
�
�
�

2

F

�
�
�H

>V

�
�
�

2

F

+ 2t
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

Tr
�

V >HX\>V
�

≥
�
�
�X

\>V

�
�
�

2

F

− 2 t
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

�
�X\

�
� kHk kV k2

F

≥
�
�
�X

\>V

�
�
�

2

F

− 1

12
σ2

r

�

X\
�

;

�
�XV >��2

F
=
�
�
�X

\V >
�
�
�

2

F

+ t2
σ4

r

�

X\
�

�
�
�X

\
�
�
�

2

F

�
�
�HV >

�
�
�

2

F

+ 2 t
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

Tr
�

V H>X\V >
�

≥
�
�
�X

\V >
�
�
�

2

F

− 2 t
σ2

r

�

X\
�

�
�
�X\

�
�
�

F

�
�X\

�
� kHk kV k2

F

≥
�
�
�X

\V >
�
�
�

2

F

− 1

12
σ2

r

�

X\
�

;

Tr
�

X>V X>V
�

= Tr
�

X\>V X\>V
�

+ 2 t
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

Tr
�

H>V X\>V
�

+ t2
σ4

r
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\
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− t2
σ4

r

�

X\
�

�
�
�X\

�
�
�

2

F

kHk2 kV k2
F

≥ Tr
�

X\>V X\>V
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−
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1
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+

1
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�

σ2
r

�
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,

which, combining with (49), yields

q (V , H, t)

≥
�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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r

�
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.

B. Covering Arguments

Since we have obtained a lower bound on q (V , H, t) for

fixed V , H and t, we now move on to extending it to a

uniform bound that covers all V , H and t simultaneously.

Towards this, we will invoke the �-net covering arguments

for all V , H and t, respectively, and will rely on the

fact max1≤i≤m kaik2 ≤
√

6 n asserted in Lemma 10. For

notational convenience, we define

g (V , H , t) = q (V , H, t) −
�
�X\

�
�

2

F
− 2

�
�X\>V

�
�

2

F

− 2Tr
�

X\>V X\>V
�

− 1.371σ2
r
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.

First, consider the �-net covering argument for V . Suppose

V 1 and V 2 are such that kV 1kF
= 1, kV 2kF

= 1, and

kV 1 − V 2kF
≤ �. Then, since

�
�
�
�

�
�
�X

\>V 1

�
�
�

2

F

−
�
�
�X

\>V 2

�
�
�

2

F

�
�
�
�

≤
��
�
�X

\>V 1

�
�
�

F

+
�
�
�X

\>V 2

�
�
�

F

� �
�
�X

\> (V 1 − V 2)
�
�
�

F

≤ 2
�
�X\

�
�

2
�,

and
�
�
�Tr

�

X\>V 1X
\>V 1

�
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�
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�
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�
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�
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we have
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�
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�
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�
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�
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�
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�
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�
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�
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
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,

as long as � =
σ2

r(X
\)

10584 n2kX\k2 . Based on Lemma 7, the cardi-

nality of this �-net will be

�
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Secondly, consider the �-net covering argument for H .

Suppose H1 and H2 obey kH1kF
= 1, kH2kF

= 1, and

kH1 − H2kF
≤ �. Then one has

|g (V , H1, t) − g (V , H2, t)|
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⎛
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as long as � = 1
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F

kX\k . Based on Lemma 7, the cardi-
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Finally, consider the �-net covering argument for all t, such

that t ≤ 1/24. Suppose t1 and t2 satisfy t1 ≤ 1/24, t2 ≤ 1/24
and |t1 − t2| ≤ �. Then we get
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as long as � = 1
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F
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with probability at least 1 − e−c1nr log (nκ) − me−1.5n.

C. Finishing the Proof

Combining (42) and (50), we can prove

vec (V )
>∇2f(X)vec (V )

≥
�
�
�X

\
�
�
�

2

F

+ 2
�
�
�X

\>V

�
�
�

2

F

+ 2Tr
�

X\>V X\>V
�

+ 1.246σ2
r

�

X\
�

− 1

m

mX

i=1

�
�
�a

>
i X\

�
�
�

2

2

�
�a>

i V
�
�

2

2

≥
�
�
�X

\
�
�
�

2

F

+ 2
�
�
�X

\>V

�
�
�

2

F

+ 2Tr
�

X\>V X\>V
�

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 18,2021 at 23:38:04 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: NONCONVEX MATRIX FACTORIZATION FROM RANK-ONE MEASUREMENTS 1943

+ 1.246σ2
r

�

X\
�

−
�
�
�X

\
�
�
�

2

F

− 2
�
�
�X

\>V

�
�
�

2

F

− 1

24
σ2

r

�

X\
�

≥ 2Tr
�

X\>V X\>V
�

+ 1.204σ2
r

�

X\
�

as claimed.

APPENDIX D

PROOF OF LEMMA 2

We first note that

�
�
�Xt+1Qt+1 − X\

�
�
�

2

F

≤
�
�
�Xt+1Qt − X\

�
�
�

2

F

(51)

=
�
�
�(Xt − µ∇f (Xt))Qt − X\

�
�
�

2

F

=
�
�
�XtQt − µ∇f (XtQt) − X\

�
�
�

2

F

(52)

=
�
�
�xt − x\ − µ · vec

�

∇f (XtQt) −∇f
�

X\
���

�
�

2

2
, (53)

where we write

xt := vec (XtQt) and x\ := vec
(
X\

)
.

Here, (51) follows from the definition of Qt+1 (see (13)), (52)

holds owing to the identity ∇f (Xt) Qt = ∇f (XtQt) for

Qt ∈ Or×r, and (53) arises from the fact that ∇f
�

X\
�

= 0.

Let

Xt(τ) = X\ + τ
(
XtQt − X\

)
,

where τ ∈ [0, 1]. Then, by the fundamental theorem of

calculus for vector-valued functions [65],

RHS of (53)

=

�
�
�
�
xt − x\ − µ ·

Z 1

0

∇2f (Xt(τ))
(
xt − x\

)
dτ

�
�
�
�

2

2

(54)

=

�
�
�
�

�

I − µ ·
Z 1

0

∇2f (Xt(τ)) dτ

�
(
xt − x\

)
�
�
�
�

2

2

=
(
xt − x\

)>
�

I − µ ·
Z 1

0

∇2f (Xt(τ)) dτ

�2

·
(
xt − x\

)

=
�
�xt − x\

�
�

2

2

− 2µ ·
(
xt − x\

)>
�Z 1

0

∇2f (Xt(τ)) dτ

�
(
xt − x\

)

+ µ2 ·
(
xt − x\

)>
�Z 1

0

∇2f (Xt(τ)) dτ

�2
(
xt − x\

)

≤
�
�xt − x\

�
�

2

2

− 2µ ·
(
xt − x\

)>
�Z 1

0

∇2f (Xt(τ)) dτ

�
(
xt − x\

)

+ µ2 ·
�
�
�
�

Z 1

0

∇2f (Xt(τ)) dτ

�
�
�
�

2
�
�xt − x\

�
�

2

2
. (55)

It is easy to verify that Xt(τ) satisfies (20) for any τ ∈
[0, 1], since

�
�
�Xt(τ) − X\

�
�
�

F

= τ
�
�
�XtQt − X\

�
�
�

F

≤ 1

24

σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

,

and

max
1≤l≤m

�
�
�a

>
l

�

Xt(τ) − X\
��
�
�

2

= τ · max
1≤l≤m

�
�
�a

>
l

�

XtQt − X\
��
�
�

2

≤ 1

24

p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

.

Lemma 1 then implies that

(
xt − x\

)>
�Z 1

0

∇2f (Xt(τ)) dτ

�
(
xt − x\

)

≥ 1.026σ2
r

�

X\
� �
�xt − x\

�
�

2

2
,

and
�
�
�
�

Z 1

0

∇2f (Xt(τ)) dτ

�
�
�
�
≤ 1.5σ2

r

�

X\
�

log n + 6
�
�X\

�
�

2

F
.

Substituting the above two inequalities into (53) and (55) gives

�
�
�Xt+1Qt+1 − X\

�
�
�

2

F

≤
�
�xt − x\

�
�

2

2
− 2µ · 1.026σ2

r

�

X\
��
�xt − x\

�
�

2

2

+ µ2 ·
�

1.5σ2
r

�

X\
�

log n + 6
�
�
�X

\
�
�
�

2

F

�2
�
�xt − x\

�
�

2

2

=
h

1 − 2.052σ2
r

�

X\
�

µ
i �
�
�XtQt − X\

�
�
�

2

F

+

 �

1.5σ2
r

�

X\
�

log n + 6
�
�
�X

\
�
�
�

2

F

�2

µ2

!
�
�
�XtQt−X\

�
�
�

2

F

≤
�

1 − 1.026σ2
r

�

X\
�

µ
� �
�
�XtQt − X\

�
�
�

2

F

,

with the proviso that µ ≤ 1.026σ2
r(X

\)�
1.5σ2

r(X\) log n+6kX\k2

F

�2 . This

allows us to conclude that

�
�Xt+1Qt+1−X\

�
�

F
≤
�

1 − 0.513σ2
r

(
X\

)
µ
��
�XtQt−X\

�
�

F
.

APPENDIX E

PROOF OF LEMMA 3

Recognizing that
�
�
�Xt+1Qt+1 − X

(l)
t+1R

(l)
t+1

�
�
�

F

≤
�
�
�Xt+1Qt+1 − X

(l)
t+1R

(l)
t Q>

t Qt+1

�
�
�

F

=
�
�
�Xt+1 − X

(l)
t+1R

(l)
t Q>

t

�
�
�

F

=
�
�
�Xt+1Qt − X

(l)
t+1R

(l)
t

�
�
�

F

,
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we will focus on bounding
�
�Xt+1Qt − X

(l)
t+1R

(l)
t

�
�

F
. Since

Xt+1Qt − X
(l)
t+1R

(l)
t

= (Xt − µ∇f (Xt))Qt

−
�

X
(l)
t − µ∇f (l)

�

X
(l)
t

��

R
(l)
t

= XtQt − X
(l)
t R

(l)
t − µ∇f (Xt)Qt

+ µ∇f (l)
�

X
(l)
t

�

R
(l)
t

= XtQt − X
(l)
t R

(l)
t

− µ
1

m

mX

i=1

��
�a>

i Xt

�
�

2

2
− yi

�

aia
>
i XtQt

+ µ
1

m

mX

i=1

��
�
�a

>
i X

(l)
t

�
�
�

2

2
− yi

�

aia
>
i X

(l)
t R

(l)
t

− µ
1

m

��
�
�a

>
l X

(l)
t

�
�
�

2

2
− yl

�

ala
>
l X

(l)
t R

(l)
t

= XtQt − X
(l)
t R

(l)
t − µ∇f (XtQt) + µ∇f(X

(l)
t R

(l)
t )

| {z }

:=S
(l)
t,1

− µ
1

m

��
�
�a

>
l X

(l)
t

�
�
�

2

2
− yl

�

ala
>
l X

(l)
t R

(l)
t

| {z }

:=S
(l)
t,2

,

we aim to control
�
�S

(l)
t,1

�
�

F
and

�
�S

(l)
t,2

�
�

F
separately.

We first bound the term
�
�S

(l)
t,2

�
�

F
, which is easier to handle.

Observe that by Cauchy-Schwarz,

�
�
�
�

�
�
�a

>
l X

(l)
t

�
�
�

2

2
− yl

�
�
�
�

=

�
�
�
�
a>

l

�

X
(l)
t R

(l)
t − X\

��

X
(l)
t R

(l)
t + X\

�>
al

�
�
�
�

≤
�
�
�a

>
l

�

X
(l)
t R

(l)
t − X\

��
�
�

2

�
�
�a

>
l

�

X
(l)
t R

(l)
t + X\

��
�
�

2
.

(56)

The first term in (56) can be bounded by

�
�
�a

>
l

�

X
(l)
t R

(l)
t − X\

��
�
�

2

≤
�
�
�a

>
l

�

X
(l)
t R

(l)
t − XtQt

��
�
�

2

+
�
�
�a

>
l

�

XtQt − X\
��
�
�

2

≤
√

6n
�
�
�X

(l)
t R

(l)
t − XtQt

�
�
�

+ C2

�

1 − 0.5σ2
r

�

X\
�

µ
�t p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

≤
√

6nC3

�

1 − 0.5σ2
r

�

X\
�

µ
�t
r

log n

n
·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

+ C2

�

1 − 0.5σ2
r

�

X\
�

µ
�t p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

= (
√

6C3 + C2)
�

1 − 0.5σ2
r

�

X\
�

µ
�t p

log n
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

,

(57)

where we have used the triangle inequality, Lemma 10, as well

as the induction hypotheses (28c) and (28b). Similarly, the sec-

ond term in (56) can be bounded as
�
�
�a

>
l

�

X
(l)
t R

(l)
t + X\

��
�
�

2

≤
�
�
�a

>
l

�

X
(l)
t R

(l)
t − X\

��
�
�

2
+ 2

�
�
�a

>
l X\

�
�
�

2

≤
�√

6C3 + C2

�p

log n
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

+ 11.72
p

log n
�
�
�X

\
�
�
�

F

≤
�√

6C3 + C2 + 11.72
�p

log n
�
�X\

�
�

F
, (58)

where we have used (57), Lemma 11, and σ2
r

�

X\
�

≤
�
�X\

�
�

2

F
. Similarly, we can also obtain

�
�
�a

>
l X

(l)
t

�
�
�

2
≤
�√

6C3 + C2 + 5.86
�p

log n
�
�X\

�
�

F
.

Substituting (57) and (58) into (56), and using the above

inequality, we get
�
�
�S

(l)
t,2

�
�
�

F

= µ
1

m
·
�
�
�
�

�
�
�a

>
l X

(l)
t

�
�
�

2

2
− yl

�
�
�
�
·
�
�
�ala

>
l X

(l)
t

�
�
�

F

≤ C2
4

�

1 − 0.5σ2
r

�

X\
�

µ
�t

· µ 1

m
· σ2

r

�

X\
�

log n

· kalk2

�
�
�a

>
l X

(l)
t

�
�
�

2

≤
√

6C3
4

�

1 − 0.5σ2
r

�

X\
�

µ
�t

· µ 1

m
· σ2

r

�

X\
�

log n

· √n
�
�X\

�
�

F

p

log n

=
√

6C3
4

�

1 − 0.5σ2
r

�

X\
�

µ
�t

· µ
√

n · (log n)3/2

m
σ2

r

�

X\
� �
�X\

�
�

F
, (59)

where C4 :=
√

6C3 + C2 + 11.72.

Next, we turn to

�
�
�S

(l)
t,1

�
�
�

F

. By defining

s
(l)
t,1 = vec

(
S

(l)
t,1

)
, xt = vec (XtQt) ,

and

x
(l)
t = vec

(
X

(l)
t R

(l)
t

)
,

we can write

s
(l)
t,1

= xt − x
(l)
t − µ · vec

�

∇f (XtQt) −∇f(X
(l)
t R

(l)
t )

�

= xt − x
(l)
t − µ ·

Z 1

0

∇2f
�

X
(l)
t (τ)

� �

xt − x
(l)
t

�

dτ

=

�

I − µ ·
Z 1

0

∇2f
�

X
(l)
t (τ)

�

dτ

��

xt − x
(l)
t

�

.
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Here, the second line follows from the fundamental theorem

of calculus for vector-valued functions [65], where

X
(l)
t (τ) = X

(l)
t R

(l)
t + τ

�

XtQt − X
(l)
t R

(l)
t

�

, (60)

for τ ∈ [0, 1]. Using very similar algebra as in Appendix D,

we obtain
�
�
�S

(l)
t,1

�
�
�

2

F

≤
�
�
�xt − x

(l)
t

�
�
�

2

2

+ µ2

�
�
�
�

Z 1

0

∇2f
�

X
(l)
t (τ)

�

dτ

�
�
�
�

2 �
�
�xt − x

(l)
t

�
�
�

2

2

− 2µ ·
�

xt − x
(l)
t

�>�Z 1

0

∇2f
�

X
(l)
t (τ)

�

dτ

�

·
�

xt − x
(l)
t

�

. (61)

It is easy to verify that for all τ ∈ [0, 1],
�
�
�X

(l)
t (τ) − X\

�
�
�

F

=
�
�
�(1 − τ)

�

X
(l)
t R

(l)
t − XtQt

�

+ XtQt − X\
�
�
�

F

≤ (1 − τ)
�
�
�X

(l)
t R

(l)
t − XtQt

�
�
�

F

+
�
�
�XtQt − X\

�
�
�

F

≤ C3

r

log n

n
·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

+ C1

σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

(62)

=

�

C3

r

log n

n
+ C1

�
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

≤ 1

24

σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

, (63)

where (62) follows from the induction hypotheses (28a)

and (28b), and (63) follows as long as C1 +C3 ≤ 1
24 . Further,

for all 1 ≤ l ≤ m, by the induction hypothesis (28b) and (28c),
�
�
�a

>
l

�

X
(l)
t (τ) − X\

��
�
�

2

≤ (1 − τ)
�
�
�a>

l

�

X
(l)
t R

(l)
t − XtQt

��
�
�

2

+
�
�
�a>

l

�

XtQt − X\
��
�
�

2

≤ kalk2

�
�
�X

(l)
t R

(l)
t − XtQt

�
�
�+ C2

p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

≤
√

6nC3

r

log n

n
·
σ2

r

�

X\
�

�
�
�X\

�
�
�

F

+ C2

p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

≤
�√

6C3 + C2

�p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

≤ 1

24

p

log n ·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

,

as long as
√

6C3 + C2 ≤ 1
24 . Therefore, Lemma 1 holds

for X
(l)
t (τ), and similar to Appendix D, (61) can be further

bounded by
�
�
�S

(l)
t,1

�
�
�

F

≤
�

1 − 0.513σ2
r

�

X\
�

µ
��
�
�XtQt − X

(l)
t R

(l)
t

�
�
�

F

(64)

as long as µ ≤ 1.026σ2
r(X

\)�
1.5σ2

r(X\) log n+6kX\k2

F

�2 . Consequently,

combining (59) and (64), we can get
�
�
�Xt+1Qt+1 − X

(l)
t+1R

(l)
t+1

�
�
�

F

≤
�
�
�S

(l)
t,1

�
�
�

F

+
�
�
�S

(l)
t,2

�
�
�

F

≤
�

1 − 0.513σ2
r

�

X\
�

µ
� �
�
�XtQt − X

(l)
t R

(l)
t

�
�
�

F

+
√

6C3
4

�

1 − 0.5σ2
r

�

X\
�

µ
�t

· µ
√

n · (log n)3/2

m
σ2

r

�

X\
��
�X\

�
�

F

≤ C3

�

1 − 0.5σ2
r

�

X\
�

µ
�t+1

r

log n

n

σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

, (65)

where (65) follows from the induction hypothesis (28b),

as long as m ≥ c
kX

\k2

F

σ2
r(X\)

n logn for some large enough

constant c > 0.

APPENDIX F

PROOF OF LEMMA 4

For any 1 ≤ l ≤ m, by the statistical independence of al

and X
(l)
t+1 and by Lemma 11, we have

�
�
�a

>
l

�

X
(l)
t+1Q

(l)
t+1−X\

��
�
�

2
≤5.86

p

log n
�
�
�X

(l)
t+1Q

(l)
t+1−X\

�
�
�

F

.

Since following Lemma 2,
�
�
�Xt+1Qt+1 − X\

�
�
�

�
�
�X

\
�
�
�

≤
�
�
�Xt+1Qt+1 − X\

�
�
�

F

�
�
�X

\
�
�
�

≤ C1

�

1 − 0.513σ2
r

�

X\
�

µ
�t+1

·
σ2

r

�

X\
�

�
�
�X

\
�
�
�

F

·
�
�
�X

\
�
�
�

≤ 1

2
σ2

r

�

X\
�

,

as long as C1 ≤ 1
2 , and following Lemma 3,

�
�
�Xt+1Qt+1 − X

(l)
t+1R

(l)
t+1

�
�
�

�
�
�X

\
�
�
�

≤
�
�
�Xt+1Qt+1 − X

(l)
t+1R

(l)
t+1

�
�
�

F

�
�
�X

\
�
�
�

≤ C3

�

1 − 0.5σ2
r

�

X\
�

µ
�t+1

r

log n

n
·
σ2

r

�

X\
�

κ
�
�
�X

\
�
�
�

F

·
�
�
�X\

�
�
�

≤ 1

4
σ2

r

�

X\
�

,
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as long as C3 ≤ 1
4 , we can invoke Lemma 37 in [15] and get

�
�
�Xt+1Qt+1−X

(l)
t+1Q

(l)
t+1

�
�
�

F

≤5κ
�
�
�Xt+1Qt+1−X

(l)
t+1R

(l)
t+1

�
�
�

F

.

Further, by the triangle inequality, Lemma 10, Lemma 3

and Lemma 2, we can deduce that
�
�
�a

>
l

�

Xt+1Qt+1 − X\
��
�
�

2

≤
�
�
�a

>
l

�

Xt+1Qt+1 − X
(l)
t+1Q

(l)
t+1

��
�
�

2
+

�
�
�a

>
l

�

X
(l)
t+1Q

(l)
t+1 − X\

��
�
�

2

≤ kalk2

�
�
�Xt+1Qt+1 − X

(l)
t+1Q

(l)
t+1

�
�
�+

5.86
p

log n
�
�
�X

(l)
t+1Q

(l)
t+1 − X\

�
�
�

F

≤
√

6n
�
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·
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5
√
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µ
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,

where the last line follows as long as 5
√

6C3 + 5.86 C1 +
29.3 C3 ≤ C2. The proof is then finished by applying the

union bound for all 1 ≤ l ≤ m.

APPENDIX G

PROOF OF LEMMA 5

Define

Σ0 = diag {λ1 (Y ) , λ2 (Y ) , · · · , λr (Y )}
= Λ0 + λI;

Σ
(l)
0 = diag

n

λ1

�

Y (l)
�

, λ2

�

Y (l)
�

, · · · , λr

�

Y (l)
�o

= Λ
(l)
0 + λ(l)I, 1 ≤ l ≤ m,

then by definition we have Y Z0 = Z0Σ0, Y (l)Z
(l)
0 =

Z
(l)
0 Σ

(l)
0 , and

Σ0Z
>
0 Z

(l)
0 − Z>

0 Z
(l)
0 Σ

(l)
0 =

1

2m
ylZ

>
0 ala

>
l Z

(l)
0 . (66)

Moreover, let Z0,c and Z
(l)
0,c be the complement matrices

of Z0 and Z
(l)
0 , respectively, such that both [Z0, Z0,c] andh

Z
(l)
0 , Z

(l)
0,c

i

are orthonormal matrices. Below we will prove

the induction hypotheses (28) in the base case when t = 0
one by one.

A. Proof of (28a)

From Lemma 6, we have
�
�
�X0Q0 − X\

�
�
�

F

≤ 1
q

2
(√

2 − 1
)
σr

�

X\
�

�
�
�X0X

>
0 − X\X\>

�
�
�

F

=
1

q

2
(√

2 − 1
)
σr

�

X\
�

�
�
�Z0Λ0Z

>
0 − X\X\>

�
�
�
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≤
√

r
q

2
(√

2 − 1
)
σr

�

X\
�

·
�
�
�Z0Σ0Z

>
0 − X\X\> − λZ0Z

>
0

�
�
� . (67)

The last term in (67) can be further bounded as
�
�
�Z0Σ0Z

>
0 − X\X\> − λZ0Z

>
0

�
�
�

≤
�
�
�
�
Y − 1

2
kX\k2

F
I − X\X\>

�
�
�
�

+

�
�
�
�
Z0Σ0Z

>
0 − Y +

1

2
kX\k2

F
Z0,cZ

>
0,c

�
�
�
�

+

�
�
�
�

1

2
kX\k2

F
Z0Z

>
0 − λZ0Z

>
0

�
�
�
�

≤ δ
�
�
�X

\
�
�
�

2

F

+ δ
�
�
�X

\
�
�
�

2

F

+ δ
�
�
�X

\
�
�
�

2

F

= 3δ
�
�
�X\

�
�
�

2

F

, (68)

where (68) follows from

kY − E[Y ]k =

�
�
�
�
Y − 1

2

�
�
�X

\
�
�
�

2

F

I − X\X\>
�
�
�
�

≤ δ
�
�
�X

\
�
�
�

2

F

via Lemma 13, the Weyl’s inequality, and

|λ − E [λ]| =

�
�
�
�
λ − 1

2

�
�
�X

\
�
�
�

2

F

�
�
�
�
≤ δ

�
�
�X

\
�
�
�

2

F

via Lemma 9. Plugging (68) into (67), we have

�
�
�X0Q0 − X\

�
�
�

F

≤ 3
q

2
(√

2 − 1
)
·
δ
√

r
�
�
�X

\
�
�
�

2

F

σr

�

X\
� ,
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Setting δ = c
σ3

r(X
\)

√
rkX\k3

F

for a sufficiently small constant

c, i.e. m �
kX

\k6

F

σ6
r(X\)

nr log n, we get

�
�
�X0Q0 − X\

�
�
�

F

≤

C1
σ2

r(X
\)

kX\k
F

. Following similar procedures, we can also show
�
�
�X

(l)
0 Q

(l)
0 − X\

�
�
�

F

≤ C1
σ2

r(X
\)

kX\k
F

.

B. Proof of (28b)

Following Weyl’s inequality, by (28a), we have

�
�
�σi (X0) − σi

�

X\
��
�
� ≤ C1

σ2
r

�

X\
�

�
�
�X

\
�
�
�

F

,

and similarly,

�
�
�σi

�

X
(l)
0

�

− σi

�

X\
��
�
� ≤ C1

σ2
r(X

\)
kX\k

F

, for i =

1, · · · , r. Combined with Lemma 6, there exists some constant

c such that
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�
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. (69)

We will bound each term in (69), respectively. For the first

term, we have
�
�
�Z0Σ0Z

>
0 − Z

(l)
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(l)
0 Z

(l)>
0

�
�
�
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h
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>
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(l)
0,c

�
�
�

F

≤
�
�
�
�
Z0 ·

1

2m
ylZ

>
0 ala

>
l Z

(l)
0

�
�
�
�

F

+
�
�
�Z0Z

>
0 − Z

(l)
0 Z

(l)>
0

�
�
�

F

�
�Y (l)

�
�

+ kY k
�
�
�Z

>
0 Z

(l)
0,c

�
�
�

F

, (70)

where the last line follows from (66). Note that the first term

in (70) can be bounded as
�
�
�
�
Z0 ·

1

2m
ylZ

>
0 ala

>
l Z

(l)
0

�
�
�
�

F

≤ 1
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�
�
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>
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�
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�
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l Z
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l Z0
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2
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√
n · (log n)
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�
�X\

�
�

2

F
, (71)

which follows Lemma 10 and Lemma 11. The second term

in (70) can be bounded as
�
�
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=
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(l)
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0

�
�
�
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√
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>
0 Z

(l)
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�
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P∈Or×r

�
�
�Zt − Z

(l)
t P
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�
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, and the

last line follows from the fact
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�

F

≤
√

2
�
�
�Z

>
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�
�
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[66]. Putting this together with the third term

in (70), we have
�
�
�Z0Z

>
0 − Z

(l)
0 Z

(l)>
0

�
�
�

F

�
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�
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�
�X

\
�
�
�

4

F
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r

�

X\
� , (73)

where (72) follows from Lemma 13 and the Davis-Kahan

sin Θ theorem [67], and (73) follows from Lemma 10 and

Lemma 11.

For the second term in (69), we have
�
�
�λZ0Z

>
0 − λ(l)Z
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�
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�

√
n · (log n)3/2 · √r
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�
�
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�
�
�

4

F

σ2
r

�

X\
�

+

√
r · log n

m

�
�
�X\

�
�
�

2

F

, (75)

where the first term of (74) is bounded similarly as (73),

and (75) follows from Lemma 11. Combining (71), (73),

and (75), we obtain

�
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�X0Q0 − X
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�
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,

where the last inequality holds as long as m �
kX

\k5

F

σ5
r(X\)

n
√

r log n = nr3 log n.

C. Proof of (28c)

Since from (28a) and (28b),
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�
�
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�
�
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,

and for every 1 ≤ l ≤ m,
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,

with proper constants, following Lemma 37 in [15], we have
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which implies that for every 1 ≤ l ≤ m we can get
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This further gives
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\
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,

where (76) follows from Lemma 10 and Lemma 11, and (77)

follows from (28b).

D. Finishing the Proof

The proof of Lemma 5 is now complete by appropriately

adjusting the constants.
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