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Nonconvex Matrix Factorization From
Rank-One Measurements
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Abstract— We consider the problem of recovering low-rank
matrices from random rank-one measurements, which spans
numerous applications including covariance sketching, phase
retrieval, quantum state tomography, and learning shallow poly-
nomial neural networks, among others. Our approach is to
directly estimate the low-rank factor by minimizing a nonconvex
least-squares loss function via vanilla gradient descent, following
a tailored spectral initialization. When the true rank is bounded
by a constant, this algorithm is guaranteed to converge to
the ground truth (up to global ambiguity) with near-optimal
sample complexity and computational complexity. To the best
of our knowledge, this is the first guarantee that achieves near-
optimality in both metrics. In particular, the key enabler of near-
optimal computational guarantees is an implicit regularization
phenomenon: without explicit regularization, both spectral ini-
tialization and the gradient descent iterates automatically stay
within a region incoherent with the measurement vectors. This
feature allows one to employ much more aggressive step sizes
compared with the ones suggested in prior literature, without
the need of sample splitting.

Index Terms— Matrix factorization, rank-one measurements,
gradient descent, nonconvex optimization.

I. INTRODUCTION

HIS article is concerned with estimating a low-rank
positive semidefinite matrix M i e R™" from a few
rank-one measurements. Specifically, suppose that the matrix
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of interest can be factorized as
T s
M= xixt € R™™,

where X" € Rnx7 (r < n) denotes the low-rank factor.
We collect 7 measurements {y;}7", about M’ taking the
form

yi = a, Ma; = HaiTX“Hz, i=1,--,m,

where {a; € R"}!", represent the measurement vectors
known a priori. For instance, we will work with the Gaussian
design model (namely, a; ~ AN(0,I,)) unless otherwise
noted. One can think of {a@;a; }™, as a set of linear sensing
matrices (so that y; = (a;a; , M*)), which are all rank-one.'
The goal is to recover M ", or equivalently, the low-rank factor
X h, from a limited number of rank-one measurements. This
problem spans a variety of important practical applications,
with a few examples listed below.

o Covariance sketching. Consider a zero-mean data stream
{#;},c7, whose covariance matrix M® := E[zx, ]
is (approximately) low-rank. To estimate the covariance

matrix, one can collect m aggregated quadratic sketches

of the form 1
T,.3\2
yi= = D _la; )",
2
which converges to E[(a; #;)%] = a] M"a, as the

number of data instances grows. This quadratic covari-
ance sketching scheme can be performed under minimal
storage requirement and low sketching cost. See [2] for
detailed descriptions.

o Phase retrieval and mixed linear regression. This prob-
lem subsumes as a special case the phase retrieval prob-
lem [3], which aims to estimate an unknown signal xl e
R™ from intensity measurements (which can often be
modeled or approximated by quadratic measurements of
the form y; = (a, £%)?). This problem has found numer-
ous applications in X-ray crystallography, optical imag-
ing, astronomy, etc. Another related problem in machine
learning is mixed linear regression with two components,
where the data one collects are generated from one of
two unknown regressors; see [4] for precise formulation.

o Quantum state tomography. Estimating the density
operator of a quantum system can be formulated as a
low-rank positive semidefinite matrix recovery problem
using rank-one measurements, when the density operator
is almost pure [5]. A problem of similar mathematical

Given that y; is a quadratic function with respect to both X f and aj,
the measurement scheme is also referred to as quadratic sampling.
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formulation occurs in phase space tomography [6],
where the goal is to reconstruct the correlation function
of a wave field.

o Learning shallow polynomial neural networks. Taking
{a;,y;}", as training data, our problem is equivalent
to learning a one-hidden-layer, fully-connected neural
network with a quadratic activation function [7]-[9],
where the output of the network is expressed as y =
iy olaTal) with X* = [af,ab, - &i] € R
and the activation function o(z) = 2.

A. Main Contributions

Due to the quadratic nature of the measurements, the natural
least-squares empirical risk formulation is highly nonconvex
and in general challenging to solve. To be more specific,
consider the following optimization problem:

min

1 m
X) =
X ERnxr J(X)

4m 4
=1

(s llalx[2)"

which aims to optimize a degree-4 polynomial in X and is NP
hard in general. The problem, however, may become tractable
under certain random designs, and may even be solvable using
simple methods like gradient descent. Our main finding is the
following: under i.i.d. Gaussian design (i.e. a; ~ N (0,1,)),
vanilla gradient descent combined with spectral initialization
achieves appealing performance guarantees both statistically
and computationally.

o Statistically, we show that gradient descent converges
exactly to the true factor X % (modulo unrecoverable
global ambiguity), as soon as the number of measure-
ments exceeds the order of O(nr*k7/2logn). When r is
fixed independent of n, this sample complexity is near-
optimal up to some logarithmic factor with respect to n
and 7.

o Computationally, to achieve e-accuracy, gradient descent
requires an iteration complexity of O(k? r?log(1/e))
(up to logarithmic factors), with a per-iteration cost of
O(mnr). When r is fixed independent of m and n,
the computational complexity scales linearly with mn,
which is proportional to the time taken to read all data.

These findings significantly improve upon existing results
that require either resampling (which is not sample-
efficient and is not the algorithm one actually runs in
practice [9]-[11]), or high iteration complexity (which results
in high computation cost [12]). In particular, our work is most
related to [12] that also studied the effectiveness of gradient
descent. The results in [12] require a sample complexity on
the order of nrS log2 n, as well as an iteration complexity
of O(n*r?log(1/€)) (up to logarithmic factors) to attain
e-accuracy. In comparison, our theory improves the sam-
ple complexity to O(nr*logn) and, perhaps more impor-
tantly, establishes a much lower iteration complexity of
O(r?log(1/€)) (up to logarithmic factor). To the best of our
knowledge, this work is the first nonconvex method (without
resampling) that achieves both near-optimal statistical and
computational guarantees with respect to n.
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B. Surprising Effectiveness of Gradient Descent

Recently, gradient descent has been widely employed to
address various nonconvex optimization problems due to its
appealing efficiency from both statistical and computational
perspectives. Despite the nonconvexity of (1), [12] showed
that within a local neighborhood of X h, where X satisfies

1 o? (Xh)

_ xt il
F

2

f(X) behaves like a strongly convex function, at least along
certain descending directions. However, this region itself is
not enough to guarantee computational efficiency, and conse-
quently, the smoothness parameter derived in [12] is as large as
n? (even ignoring additional polynomial factors in r), leading
to a step size as small as O(1/n*) and an iteration complexity
of O(n*log(1/€)). These are fairly pessimistic.

In order to improve computational guarantees, it might
be tempting to employ appropriately designed regularization
operations — such as truncation [13] and projection [14].
These explicit regularization operations are capable of stabiliz-
ing the search direction, and make sure the whole trajectory
is in a basin of attraction with benign curvatures surround-
ing the ground truth. However, such explicit regularizations
complicate algorithm implementations, as they introduce more
tuning parameters.

Our work is inspired by [15], which uncovers the “implicit
regularization” phenomenon of vanilla gradient descent for
nonconvex estimation problems such as phase retrieval and
low-rank matrix completion. In words, even without extra reg-
ularization operations, vanilla gradient descent always follows
a path within some region around the global optimum with
nice geometric structure, at least along certain directions. The
current paper demonstrates that a similar phenomenon persists
in low-rank matrix factorization from rank-one measurements.

To describe this phenomenon in a precise manner, we need
to specify which region enjoys the desired geometric proper-
ties. To this end, consider a local region around X % where
X is “incoherent” with all sensing vectors in the following
sense:

e ()
—+/logn - ——=.
2V e
We term the intersection of (2) and (3) the Region of Inco-
herence and Contraction (RIC). The nice feature of the RIC
is this: within this region, the loss function f(X) enjoys
a smoothness parameter that scales as O(max{r,logn})
(namely, |[V? f(z)| < max{r,logn}, which is much smaller
than O(n?) provided in [12]). As is well known, a region
enjoying a smaller smoothness parameter enables more aggres-
sive progression of gradient descent.

A key question remains as to how to prove that the trajectory
of gradient descent never leaves the RIC. This is, unfortu-
nately, not guaranteed by standard optimization theory, which

max [l (X - X)], <

1<i<m

2This is called incoherent because if X is aligned (and hence coherent) with
the sensing vectors, |a,l—r (x - X”) ||2 can be O(y/n) times larger than the
right-hand side of (3).
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only ensures contraction of the Euclidean error. To address
this issue, we resort to the leave-one-out trick (which has been
adopted for a growing number of problems, e.g., [15]- [28])
that produces auxiliary trajectories of gradient descent that use
all but one sample. This allows us to establish the incoherence
condition by leveraging the statistical independence of the
leave-one-out trajectory w.r.t. the corresponding sensing vector
that has been left out. Our theory refines the leave-one-out
argument and further establishes linear contraction in terms of
the entry-wise prediction error.

C. Notations

We use boldface lowercase (resp. uppercase) letters to
represent vectors (resp. matrices). We denote by [|x||, the /o
norm of a vector x, and X ', | X|| and || X || the transpose,
the spectral norm and the Frobenius norm of a matrix X,
respectively. The kth largest singular value of a matrix X
is denoted by oy (X). Moreover, the inner product between

two matrices X and Y is defined as (X,Y) = Tr (YTX),

where Tr (-) is the trace. We also use vec(V') to denote vector-
ization of a matrix V. The notation f(n) < g(n) or f(n) =
O(g(n)) means that there exists a universal constant ¢ > 0
such that |f(n)| < ¢|g(n)|. In addition, we use ¢ and C' with
different subscripts to represent positive numerical constants,
whose values may change from line to line.

II. ALGORITHMS AND MAIN RESULTS

To begin with, we present the formal problem setup. Sup-
pose we are given a set of m rank-one measurements as
follows )

T
Yi = Hai Xh”z’

izla"'ama (4)

where a; € R" is the ith sensing vector composed of
i.id. standard Gaussian entries, i.e. a; ~ N (0,1I,), for
1 = 1,---,m. The underlying ground truth X% e Roxr
is assumed to have full column rank but not necessarily
having orthogonal columns. Define the condition number of

M = X X5 as
K= 5)

S

Our goal is to recover X b up to (unrecoverable) orthonormal
transformation, from the measurements y = {y;};~, in a
statistically and computationally efficient manner.

A. Vanilla Gradient Descent

The algorithm studied herein is a combination of vanilla
gradient descent and a judiciously designed spectral initializa-
tion. Specifically, consider minimizing the squared loss:

1 m
(v~ llal X13)

2
= 9
4m 4

=1

(X)) (©)
which is a nonconvex function. We attempt to optimize this
function iteratively via gradient descent

XtJrlth_/fftvf(Xt)v t:Oa]-v"'v (7)
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Algorithm 1 Gradient Descent With Spectral Initialization

Input: Measurements y = {%}:11 and sensing vectors
{ai}inil-

Parameters: Step size p;, rank r, and number of
iterations 7'

Initialization: Set X = Z QA(I)/ 2, where the columns of
Zy € R™ " contain the normalized eigenvectors
corresponding to the r largest eigenvalues of the matrix

1 m
Y=o Z?Jz’az’a:7 (€))
=1
and Ay is an r x r diagonal matrix, with the entries on
the diagonal given as
[Ao), = N (Y) -,

where A = 537" y; and \; (Y) is the ith largest
eigenvalue of Y.
Gradient loop: For t =0:1:T — 1, do

izl,"',T, (10)

1 m
X1 =X — g - o Z (HaiTXtH; - yz) aia] X;.

i=1
(11
Output: X 7.

where X; denotes the estimate in the tth iteration, p; is the
step size/learning rate, and the gradient V f(X) is given by

VI(X)= %Z (a7 XI5 - ;) aial X, ®

i=1

For initialization, similar to [12],> we apply the spectral
method, which sets the columns of X as the top-r eigenvec-
tors — properly scaled — of a matrix Y as defined in (9).
The rationale is this: the mean of Y is given by

1
E[Y] = 5| X*|¢ I + X*X*T,

and hence the principal components of Y form a reasonable
estimate of X°, provided that there are sufficiently many
samples. The full algorithm is described in Algorithm 1.

B. Performance Guarantees

Before proceeding to our main results, we specify the metric
used to assess the estimation error of the running iterates.

1
Since (XhP) (XhP) = X'X"" for any orthonormal

matrix P € R™", X % is recoverable up to orthonormal
transforms. Hence, we define the error of the t¢th iterate X,
as

dist (X4, X) = || X.Q, — X", (12)
where @, is given by
Q, = argminp - || X P — XhHF (13)

3Compared with [12], when setting the eigenvalues in (10), we use the
sample mean A rather than A1 (Y) to estimate %HX : lI2.
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with O"*" denoting the set of all » x r orthonormal matrices.
Accordingly, we have the following theoretical performance
guarantees of Algorithm 1.

Theorem 1: FixAXh € R™ ", Suppose that we have y; =
a7 X?2 for a; s N(0,I,) and 1 < i < m. Suppose
that m > enr®(r + /k)x3logn with some large enough
constant ¢ > 0, and that the step size obeys 0 < i := pu =
m' Then with probability at least 1—O(mn~"),
the iterates satisfy

t 0'724 (Xh)
dist (X1, X*) < ¢ (1 - 0.5paf(Xh)) AL AR i}
ol
F
for all ¢ > 0. In addition,
ol (X0@ - x|, <
t O'g ()(h
e (1—0.5#03(Xh)) Viogn - ===, (15)
x|
%],
for all 0 < t < cgn®. Here, c1,---,c4 are some universal

positive constants.

Remark 1: The precise expression of required sam-
ple comple)h(ity in Theoreﬂm5 1 can be written as m >
{L}((—X'f)\/?, /<;§ l‘;((—XHhF)n\/Flog (kn) with some large
enough constant ¢ > (. By adjusting constants, with probabil-
ity at least 1 — O(mn~"), (15) holds for 0 < ¢t < O(n®) in
any power c5 > 1.

cmax

Theorem 1 has the following implications.

o Near-optimal sample complexity when v is fixed: The-
orem | suggests that spectrally-initialized vanilla gra-
dient descent succeeds as soon as m = O(nrtlogn).
When r» = O(1), this leads to near-optimal sample
complexity up to logarithmic factor. In fact, once the
spectral initialization is finished, a sample complexity at
m = O(nr®logn) can guarantee the linear convergence
to the global optima. To the best of our knowledge, this
outperforms all performance guarantees in the literature
obtained for any nonconvex method without requiring
resampling.

o Near-optimal computational complexity: In order
dist (Xt,X“) <
e| X%|f, it suffices to run gradient descent for
T = O (r?*polylog(n)log(1/e)) iterations. This
results in a total computational complexity of
O (mnr3poly log(n)log(1/e€)).

o Implicit regularization: Theorem 1 demonstrates
that both the spectral initialization and the gradient
descent updates provably control the entry-wise error
maxi<i<m HalT (XtQt — Xh) H s the
remain incoherent with respect tg all the sensing vectors.
In fact, the entry-wise error decreases linearly as well,
which is not characterized in [15].

to achieve e-accuracy, i.e.

and iterates

Theorem 1 is established using a fixed step size. According
to our theoretical analysis, the incoherence condition (15) has
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a significant impact on the convergence rate. After a few
iterations, the incoherence condition can be bounded indepen-
dent of logn, which leads to a larger step size and faster
convergence. Specifically, we have the following corollary.

Corollary 1: Under the same setting of Theorem 1, after
T, = c¢ max{r?r?logn,log®n} iterations, the step size can
be relaxed as 0 < py := p = Wg(xn), with some universal
constant cg, c7 > 0, then the iterates satisfy

t 0'724 Xh)

dist (X1, X¥) < 1 (1~ 0.500%(X")) (16)

x|,
F
for all ¢ > T,, with probability at least 1 — O(mn~7).

III. RELATED WORK

Instead of directly estimating X %, the problem of interest
can be also solved by estimating M* = X°X"T in higher
dimension via nuclear norm minimization, which requires
O(nr) measurements for exact recovery [2], [5], [29], [30].
See also [31]-[34] for the phase retrieval problem. However,
nuclear norm minimization, often cast as the semidefinite
programming, is in general computationally expensive to deal
with large-scale data.

On the other hand, nonconvex approaches have drawn
intense attention in the past decade due to their abil-
ity to achieve computational and statistical efficiency all
at once [35]. Specifically, for the phase retrieval problem,
Wirtinger Flow (WF) and its variants [3], [13], [15], [36]-[40]
have been proposed. As a two-stage algorithm, it consists
of spectral initialization [41] and iterative gradient updates.
This strategy has found enormous success in solving other
problems such as low-rank matrix recovery and comple-
tion [14], [42]-[45], blind deconvolution [15], [46], [47],
and spectral compressed sensing [48]. We follow a similar
route but analyze a more general problem that includes phase
retrieval as a special case.

The paper [12] is most close to our work, which studied the
local convexity of the same loss function and developed per-
formance guarantees for gradient descent using a similar, but
different spectral initialization scheme. As discussed earlier,
due to the pessimistic estimate of the smoothness parameter,
they only allow a diminishing learning rate (or step size) of
O(1/n*), leading to a high iteration complexity. We not only
provide stronger computational guarantees, but also improve
the sample complexity, compared with [12].

In spirit, our paper is also similar to [15], which studies
the phase retrieval problem — a spectral case of the model
we consider herein. Compared with the phase retrieval case,
the extension from rank-one to rank-r case is highly nontrivial.
In fact, none of the theorems or technical lemmas herein can
be straightforwardly obtained without a significant amount of
technical efforts. For instance, in the rank-one case, local
strong convexity (cf. Lemma 1) holds uniformly within a
local region surrounding the global optimum. However, this
does not hold for the rank-r case, unless we restrict attention
to highly restricted directions. See the restrictions on V' in
Lemma 1. This calls for more refined analysis in order to
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TABLE I

COMPARISONS WITH EXISTING RESULTS IN TERMS OF SAMPLE COMPLEXITY AND COMPUTATIONAL COMPLEXITY TO REACH e-ACCURACY. THE ToP
HALF OF THE TABLE IS CONCERNED WITH ALGORITHMS THAT REQUIRE RESAMPLING, WHILE THE BOTTOM HALF OF THE
TABLE COVERS ALGORITHMS WITHOUT RESAMPLING

[ Algorithms with resampling |

Sample complexity |

Computational complexity |

AltMin-LRROM [10] O(nrtlog? nlog (1)) O(mnrlog (1))
egFM [11] O(nr3 log(%)) O(mnrlog(%))
EP-ROM [9] O(nr?log® nlog (%)) O(mn? log (%))
AP-ROM [9] O(nr3logfnlog (%)) O(mnrlognlog (%))
[ Algorithms without resampling [ Sample complexity | Computational complexity |
Convex [2] O(nr) O(mn? ﬁ)
GD [12] O(nrSlog? n) O(mn’r3logtnlog (%))
GD (Algorithm 1, Ours) O(nrtlogn) O(mnrmax{logZ n,r?} log (%))

——n =200,r =5
——n =500,7=5
——n = 200,r =10

10! ——n =500,7 = 10|3

Relative estimation error
)
n

50 100 150 200 250 300 850 400
Iteration count
(a) Relative estimation error

Fig. 1.
count using different problem sizes, when m = 5nr.

establish the uniform lower bound. In addition, with regards to
spectral initialization, due to the non-uniform singular values,
the perturbation bounds for the eigenvectors are more delicate
to deal with. Last but not least, we also proved the linear
convergence of the sample-wise incoherence measure, which
has not been established even in the rank-one case in [15]; see
Equation (15).

Several other existing works have suggested different
approaches for low-rank matrix factorization from rank-one
measurements, of which the statistical and computational
guarantees to reach e-accuracy are summarized in Table I.
We note our guarantee is the only one that achieves simul-
taneous near-optimal sample complexity and computational
complexity. Iterative algorithms based on alternating mini-
mization or noisy power iterations [9]—[11] require a fresh set
of samples at every iteration, which is never executed in prac-
tice, and the sample complexity grows unbounded for exact
recovery.

Many nonconvex methods have been proposed and analyzed
recently to solve the phase retrieval problem, including the
Kaczmarz method [49]-[51] and approximate message pass-
ing [52]. In [53], the Kaczmarz method is generalized to
solve the problem studied in this article, but no theoretical
performance guarantees are provided.

The local geometry studied in our paper is in contrast
to [54], which studied the global landscape of phase retrieval,
and showed that there are no spurious local minima as soon
as the sample complexity is above O(n log® n). It will be

——n = 200,7 =5

——n =500, =5
——n = 200,r = 10|{

—w—n = 500,7 = 10

Relative incoherence condition

o
FS

50 100 150 200 250 300 350 400
Iteration count
(b) Relative incoherence condition

Performance of the proposed algorithm in regard to (a) relative estimation error, and (b) relative incoherence condition with respect to the iteration

interesting to study the landscape property of the generalized
model in our paper.

Our model is also related to learning shallow neural net-
works. [55], [56] studied the performance of gradient descent
with resampling and an initialization provided by the ten-
sor method for various activation functions, however their
analysis did not cover quadratic activations. For quadratic
activations, [7] adopts a greedy learning strategy, and can only
guarantee sublinear convergence rate. Moreover, [8] studied
the optimization landscape for an over-parameterized shallow
neural network with quadratic activation, where r is larger
than n.

IV. NUMERICAL EXPERIMENTS

In this section, we provide several numerical experiments
to validate the effective and efficient performance of the
proposed algorithm. During each experiment, given a pair of
(n,r), the ground truth X* € R™ " is generated with i.i.d.
N(0, %) entries. We first examine the relative estimation error
dist(X ¢, X?) /|| X"||¢ and the relative incoherence condition
maxi<i<m [|@] (X:Q, — X")||2/|| X*||r with respect to the
iteration count using a constant step size p; = 0.03, where the
number of measurements set as m = 5nr. The convergence
rates in Figure 1 are approximately linear, validating our
theory.

We then examine the phase transitions of the proposed algo-
rithm with respect to the number of measurements. Multiple
Monte Carlo trials are conducted, and each trial is deemed a
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——n =200,7=5
——n =500,r =5

0.8 ——mn = 200,7 = 10|
——n =500, =10
]
©0.6
1)
1)
@
3
504
()

o
()

0 % |
3 4 5
m/(nr)

Fig. 2. The success rate of the proposed algorithm with respect to the number
of measurements m/(nr) using different problem sizes.

—e—m = 5nr
——m = Tnr
——m = 10nr

107 1
102 1
10 20 30 40 5

Relative estimation error

10
0

SNR (dB)

Fig. 3. Relative estimation error with respect to SNR in different numbers
of measurements, when n = 200 and » = 5.

success if the relative estimation error is less than 10~ within
T = 1000 iterations. Figure 2 depicts the success rate over 20
trials, where the proposed algorithm successfully recovers the
ground truth as soon as the number of measurements is about 4
times above the degrees of freedom nr. These results suggest
that the required sample complexity scales linearly with the
degrees of freedom, and our theoretical guarantees are optimal
up to logarithmic factors.

Next, we numerically verify the stability of the proposed
algorithm against additive noise, where each measurement is
given as y; = HaiTX d ||§ + ¢;, where the noise ¢; is generated
iid. from N(0,0%). Figure 3 shows the estimation error
with respect to SNR in different numbers of measurements
when n = 200 and » = 5. As the noise variance o2
increases, the performance of the proposed algorithm degener-
ates smoothly. Increasing the number of measurements helps
to improve the estimation accuracy.

Finally, we test the performance of the proposed algorithm
when the measurement vectors a;’s are i.i.d. generated from a
sub-Gaussian distribution under random initialization. Specif-
ically, we consider a case where each entry in a; is drawn
i.i.d. from a uniform distribution ¢/[—1, 1]. We then implement
gradient descent with a constant step size p; = 0.5 starting
from a random initialization, whose entries are generated i.i.d.
following A/ (0, %) Figure 4 shows the appealing convergence
performance of the proposed algorithm.

V. OUTLINE OF THEORETICAL ANALYSIS

This section provides the proof sketch of the main results,
with the details deferred to the appendix. Our theoretical
analysis is inspired by the work of [15] for phase retrieval and
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Fig. 4. Relative estimation error with respect to the iteration count
using different problem sizes when the sensing vectors are generated from
sub-Gaussian distributions and a random initialization is employed, when
m = 5nr.

follows the general recipe outlined in [15], while significant
changes and elaborate derivations are needed. We refine the
analysis to show that both the signal reconstruction error and
the entry-wise error contract linearly, where the latter is not
revealed by [15]. In below, we first characterize a region of
incoherence and contraction that enjoys both strong convexity
and smoothness along certain directions. We then demonstrate
— via an induction argument — that the iterates always stay
within this nice region. Finally, the proof is complete by
validating the desired properties of spectral initialization.

A. Local Geometry and Error Contraction

We start with characterizing a local region around X h,
within which the loss function enjoys desired restricted strong
convexity and smoothness properties. This requires exploring
the property of the Hessian of f(X), which is given by

V2f(X) = % Em: (la7 X3 = v:) I + 2X Taia] X |

i=1

® (a;a;). (17)

Here, we use ® to denote the Kronecker product and hence
V2f(X) € R"*"" Now we are ready to state the following
lemma regarding this local region, which will be referred to
as the region of incoherence and contraction (RIC) throughout
this article. The proof is given in Appendix B.

Le;nma 1: Suppose the sample size obeys
[l
o1 (XF)
Then with probability at least 1 —cyn™
we have

vec (V)T V2f(X)vec (V) > 1.02602(X7) |V |2,

mo >

c nrlog (nk) for some sufficiently large constant ¢ > 0.

12 —1.5n __

me —12

mn~ <,

(18)

and

[V2£(X)|| < 1.502(X ) logn +6|| X2 (19)

hold simultaneously for all matrices X and V satisfying the
following constraints:

g,
oyt < LT
||X X HF - 24 XhH ) (20a)
F
i 72 (X*)
T(x _ Xt = N )
@%Hal (X - X )H2 < 57Vlogn X (20b)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 18,2021 at 23:38:04 UTC from IEEE Xplore. Restrictions apply.



1934
and V = T1Q — Ty satisfying

2 Xh)
_ Xt i(i
1T = XF|| < 55 : @n

where Qp := argminpceorx-
some absolute positive constant.

The condition (20) on X formally characterizes the RIC,
which enjoys the claimed restricted strong convexity (see (18))
and smoothness (see (19)). With Lemma 1 in mind, it is easy
to see that if X; lies within the RIC, the estimation error
shrinks in the presence of a properly chosen step size. This
is given in the lemma below whose proof can be found in

TP — Ts||g. Here, ¢; is

Appendix D.

Le;nzna 2: Suppose the sample size obeys m >
c;‘f((X”% nrlog (nk) for some sufficiently large constant ¢ > 0.
Then with probability at least 1 —c;n =2 —me 15" —mn =12,

if X, falls within the RIC as described in (20), we have
dist (X151, X7) < (1 0.513u0%(XF) ) dist(X1, X7),

provided that the step size obeys 0 < puy = p <
1.02607 (X")

(1.502(X*) log n-+6]1 X%)12)
constant.

Assuming that the iterates {X:}, stay within the RIC
(see (20)) for the first 7, iterations, according to Lemma 2,
we have, by induction, that

=. Here, ¢; > 0 is some universal

T.+1
dist(X 7,41, X7) < (1 - 0.513W$(X“)) dist (X o, X?)

_ 1 v 2 (X)
“ouve Vo XuH
.

as soon as
4
|
F

for some large enough constant c. Notice that due to the high
probability nature of each induction step, the union bound can
only tolerate a polynomial number of induction steps, say 1, =
c3 n®. After t > T., showing that X, stays in the RIC
is more immediate because the distance between X and X°
has decreased by enough so that the simple Cauchy-Schwarz
inequality suffices to prove. In particular, we have

T. > cmax log2 n, (22)

s, [lal (Xe1Qun = X,
< max [laifl, | X011Q, - X

1<i<m

e L g G (XY)

(23)

R YNNG x|
F
o? X"
1 (X))
24 ‘XhH
F
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Algorithm 2 Leave-One-Out Versions

Input: Measurements {y;}, ;. and sensing vectors
{ai}iin

Parameters: Step size p;, rank r, and number of
iterations 7.

Initialization: X él) = Zél)Aél)l/ ?, where the columns of
Z él) € R™" contain the normalized eigenvectors
corresponding to the r largest eigenvalues of the matrix

1
YW= m Z Z/iaiaiT,
[RE

(25)

and Aél) is an r x r diagonal matrix, with the entries on
the diagonal given as

[qu = NYO) =D =1, (26)

i

N1
where/\()—m

iripr Yi and A (Y(l)) is the ith
largest eigenvalue of Y ®,

Gradient loop: Fort =0:1:T — 1, do

l ! 1 e l
X0 = X0 3 (ol X0 - i) aval X
Bl
27)
Output: Xg,f).

where (23) follows from Lemma 10 for all ¢ > T,.. Conse-
quently, contraction of the estimation error dist(X;, X?) can
be guaranteed by Lemma 1 for all ¢ > T, with probability at

least 1 — cyn =12 — me= 15" — 12,

B. Introducing Leave-One-Out Sequences

It has now become clear that the key remaining step is
to verify that the iterates {X,} satisfy (20) for the first T,
iterations, where 7, is on the order of (22). Verifying (20b)
is conceptually hard since the iterates {X;} are statistically
dependent with all the sensing vectors {a;}7 . To tackle this
problem, for each 1 <[ < m, we introduce an auxiliary leave-
one-out sequence {X El)}, which discards a single measure-
ment from consideration. Specifically, the sequence { X §”} is
the gradient iterates operating on the following leave-one-out
function

1 2
X 1= 2= 3 (ol X)
m =
RE2)
See Algorithm 2 for a formal definition of the leave-one-out
sequences. Again, we want to emphasize that Algorithm 2 is
just an auxiliary procedure useful for the theoretical analysis,

and it does not need to be implemented in practice.

2

(24)

C. Establishing Incoherence via Induction

Our proof is inductive in nature with the following induction
hypotheses:

- x] e, (1-050 (x)
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t
D)
s [ xR < 10t ().
2 b
flogn Or (X)
ol
F
(28b)
t
(i), <im0 (1))
mas |la, (XtQt X )H2 <y (1-0502 (X%
o2 (Xh
-y/logn - ———% (28¢)
x|
F
where Ry) = argminpgcprxr || X1 Q) — XEI)P| ¢ and the
positive constants Cy, Cy and Cj satisfy
1
< — < —
Q+Q,M,@+ﬁ@,ﬂ,
5.86C) + 5.86C3 + V6C3 < Cs. (29)

Furthermore, the step size p is chosen as

Co0 . (Xh)
RS 722 (30)
(o2(X")logn + || X¥||2)

with appropriate universal constant cg > 0.

Our goal is to show that if the tth iteration X, satisfies
the induction hypotheses (28), then the (¢ + 1)th iteration
X 41 also satisfies (28). It is straightforward to see that the
hypothesis (28a) has already been established by Lemma 2,
and we are left with (28b) and (28c). We first establish (28b) in
the following lemma, which measures the proximity between
X and the leave-one-out versions Xgl), whose proof is
provided in Appendix E.

Lemma 3: Suppose the
sl
O %
If the induction hypotheses (28) hold for the ¢th iteration, with

sample size obeys m >

c nrlog (nk) for some sufficiently large constant ¢ > 0.

probability at least 1 —c;n ™12 —me 15" —mn 12, we have
¢
énlfgn Xi+1Qu41 — t-i)-lRt-i-l H
2 i
o ()
Cs (1 — 0.502 (Xh) u) Oi" )

K XhH
F

as long as the step size obeys (30). Here, ¢; > 0 is some
absolute constant.

In addition, the incoherence property of X 1(5 1 with respect
to the /th sensing vector a; is relatively easier to establish, due
to their statistical independence. Combined with the proximity
bound from Lemma 3, this allows us to justify the incoherence
property of the original iterates X1, as summarized in the
lemma below, whose proof is given in Appendix F.

Lemma 4: Suppose the sample size obeys
Bl
4 XhF
If the induction hypotheses (28) hold for the tth iteration, with

m =

c nrlog (nk) for some sufficiently large constant ¢ > 0.

1935

probability exceeding 1 — c;n ™12 — me~ 12" — 2mn 12,
T _ x| <
e, ol (Xen@u - X7, <
t+1 ol Xh)
Cs (1 —0.502 (Xh) u) Vlogn - h
x|
F

holds as long as the step size satisfies (30). Here, ¢; > 0 is
some universal constant.

D. Spectral Initialization

Finally, it remains to verify that the induction hypotheses
hold for the initialization, i.e. the base case when ¢t = 0. This
is supplied by the following lemma, whose proof is given in
Appendix G.

Lemma 5: Suppose that
Xt Xt

j (X|LF) \/7_",/@} Ix (X ”)n\/_logn for some suf-
ficiently large constant ¢ > 0. Then X satisfies (28) with
probability at least 1 — c;n~'2 — me=15" — 3mn~12, where

c1 is some absolute positive constant.

the sample size exceeds

m > cmax

E. Putting Things Together

With Lemmata 1-5 in place, we are ready to put things
together and prove the desired result Theorem 1.

Proof of Theorem 1: Lemma 5 justifies (14) and (15) in
Theorem 1 for ¢t = 0, i.e. spectral initialization. Given this base
case, Lemma 2, together with Lemmata 3-4 establishes (14)
and (15) in Theorem 1 for 1 <t < T, in an inductive manner.
Further built upon these, the proof is complete by repeatedly
applying Lemma 2; see the paragraph after Lemma 2 for a
complete argument of this part. O]

VI. CONCLUSION

In this article, we have shown that low-rank positive
semidefinite matrices can be recovered from a near-minimal
number of random rank-one measurements, via the vanilla
gradient descent algorithm following spectral initialization.
Our results significantly improve upon existing results in
several ways, both computationally and statistically. In par-
ticular, our algorithm does not require resampling at every
iteration (and hence requires fewer samples). The gradient
iteration can provably employ a much more aggressive step
size than what was suggested in prior literature (e.g. [12]),
thus resulting in much smaller iteration complexity and hence
lower computational cost. All of this is enabled by establishing
the implicit regularization feature of gradient descent for
nonconvex statistical estimation, where the iterates remain
incoherent with the sensing vectors throughout the execution
of the whole algorithm.

There are several problems that are worth exploring in future
investigation. For example, our theory reveals the typical size
of the fitting error of X; (i.e. y; — ||a; X¢||2) in the presence
of noiseless data, which would serve as a helpful benchmark
when separating sparse outliers in the more realistic scenario.
Another direction is to explore whether implicit regularization
remains valid for learning shallow neural networks [55]. Since
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the current work can be viewed as learning a one-hidden-layer
fully-connected network with a quadratic activation function
o(z) = 2%, it would be of great interest to study if the
techniques utilized herein can be used to develop strong
guarantees when the activation function takes other forms.
Below we list a few further considerations that are worth
discussion.

e Random initialization. The current paper focuses on a
judiciously designed initialization scheme, namely spec-
tral initialization. It turns out that for fast convergence
of gradient descent, spectral initialization is not nec-
essary and random initialization suffices; see Figure 4
for the numerical evidence. However, establishing the
global convergence for gradient descent with random
initialization is challenging. For example, [57] proves this
for the case with 7 = 1. How to extend that to the general
rank case remains an interesting and challenging problem.
One roadblock is to construct appropriate sign-flipping
sequences as in [57] to decouple the dependency of the
gradient iterates on the data.

o Sample complexity w.rt. r and k. Last but not least, our
sample complexity (i.e. O(nr?)) is sub-optimal when the
rank r is allowed to grow with the problem dimension
n. Some of the difficulties stem from establishing the
local strong convexity of the nonconvex loss function
(cf. Lemma 1). Specifically, it is challenging to prove the
local strong convexity with near optimal sample com-
plexity O(nr). Improving the theoretical support under
optimal sample complexity O(nr) remains a challenging
problem.

o Universal recovery guarantees? Throughout the paper,
we have assumed that the signal X % is fixed and inde-
pendent of the measurement vectors. One might naturally
wonder whether the recovery guarantees continue to hold
when we allow X7 to be arbitrary. This, however, might
be highly nontrivial. In particular, establishing the local
strong convexity and smoothness as shown in Lemma 1
is difficulty, if not impossible, when X 7 is allowed to
be arbitrary. Here the Hessian matrix V2 f(X) does not
necessarily concentrate around its mean with very few
samples, which might preclude us from obtaining the
desired strong convexity and smoothness conditions for
the loss function.

APPENDIX A
TECHNICAL LEMMAS

In this section, we document a few useful lemmas that are
used throughout the proof.

Lemma 6 ([42, Lemma 5.4]): For any matrices X, U €
R"™%" we have

[XXT -UU"||; > \/2(V2 - 1)o, (X)dist(X,U).

Lemma 7  (Covering  Number  for  Low-Rank
Matrices [58, Lemma 3.1]): Let S, = {X €
R™>*" rank(X) < r,||X|f = 1}. Then there exists
an e-net S, C S, with respect to the Frobenius norm obeying
|S,| < (9/e)(matnatiir,
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Lemma 8 ( [3], [59]): Suppose x1,--- ,z,, are i.i.d. real-
valued random variables obeying x; < b for some determin-
istic number b > 0, E[z;] = 0, and E [mf] = d?. Setting
0? = m - max{b?,d*}, we have

oSz mfoo(-2)m(1-0 (1))

where ®(-) is the cumulative distribution function of a standard
Gaussian variable.

Lemma 9: [60, Theorem 5.39] Suppose the a;’s are
i.i.d. random vectors following a; ~ N (0,1,),i=1,--- ,m.
Then for every t > 0 and 0 < 0 < 1,

1 m
I, —— E aia;r
m <
i=1

holds with probability at least 1 — 2e=<t’, where § = C'y/ ~+
L_ On this event, for all W & R™*", there exists

<5

vm
1 m T 9 ) )
m > _llal Wi = IWlig| < a 1wl
i=1
Lemma 10: [3] Suppose the a;’s are i.i.d. random vectors

following a; ~ N (0,1I,),7=1,---,m. Then with probabil-
ity at least 1 — me 1", we have

max ||a;lly < V6n.
1<i<m

Lemma 11: Fix W € R™*", Suppose the a;’s are i.i.d. ran-
dom vectors following a; ~ N (0,1,), ¢ = 1,--- ,m. Then
with probability at least 1 — mrn =13, we have

lai W||, < 5.86y/logn ||W]||.

Proof: Define W = [w1,wa, - ,w,], then we can write
2
||azTW||§ — %, (el wy)?. Recognize that (aTw—)

| k
i flwelly

max
1<i<m

follows the x? distribution with 1 degree of freedom. It then
follows from [61, Lemma 1] that

2
P <ajﬂ> > 142V +2t | <exp(—t),
lwill
for any ¢ > 0. Taking ¢t = 13 logn yields
P ((a?wk)Q <343 Hwng logn) >1-n"13

Finally, taking the union bound, we obtain

max ||a;rW||§ < 234.3 Hwkﬂglogn =34.3 ||W||ilogn

1<i<m
k=1

with probability at least 1 — mrn='3. O
Lemma 12: Suppose a ~ N (0,1,). Then for any fixed
matrices X, H € R"*", we have

E||la" H|3la" X][3| = | H|IF|X |7 + 2] H" X
E[(a"HX a)’| = (Tr(HTX))QJrTr(HTXHTX)
+ | EXTL
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Moreover, for any order k& > 1, we have E[|la” H||3"] <

cx | H ||§k, where ¢, > 0 is a numerical constant that depends
only on k.

Proof: Let X = [x1,29, - ,x,] and H =
[h1,ha, -+, h,]. Based on the simple facts
E[(z'a)’aa’] = ||w|\§ I, +2xx’,

E [(aTwi)(aij)aaT] = wlw;— +xjz) +x) x1,,
we can derive

B[l B2 0 X[ = 3 E (@R

i=1 j=1

-3y [|hi|§ 515 +2 (hjwj)Q}

i=1 j=1

(a72;)’]

= |H|Z X +2|H X|Z,

and

E [(aTHXTa) 1
>l oo

i=1

=E

YE|Y () (a"2) (a7hy) (a')

i#]
_ Z [Hhi@ il +2 (] ””)]
+ ; Kh:wz) (h]‘T“’j) + (hiThj) (w:wj)]
3 [ (nla)) (@ hy)]

i#j
= (Tr(HTx))2 +|EXT|E+ r(HT XHTX).

Finally, to bound E {HaTH sz} for an arbitrary H €

R™" we write the singular value decomposition of H as
H = UXZV', where U = [uj,ug,---,u,] € R™",
3 =diag{o1,09, -+ ,0,.}, and V € R"*". This gives

T
Zaf(aTui)Q
i=1

Let b; = o;a'wu; for i = 1,---,r, which are independent
random variables obeying b; ~ N (O o; ) due to the fact
U'U = I,. Since E [b?'] = o2 (2t — 1)!! < cxo?t for any
i=1,---,randt =1,---  k, where ¢; is some large enough
constant depending only on k, we arrive at

™ k s k
(zbf) (zos) "
=1 =1

as claimed.

As a simple remark, the bound on E[||a’ H||2*] can
also be obtained via a corollary of Hanson-Wright inequal-
ity. In particular, [62, Theorem 6.3.2] tells us that
llaTHl2 — [Hlelly, S || Here || - |14, denotes the

a" H]|; =

1937

sub-Gaussian norm of a random variable; see [62]. As a
result, ||[|a” H||2|ly, < |[H]|F, which immediately implies
Ella”H|3] < ¢ |H|;" for some ¢;, > 0 that depends
only on k. O

Lemma 13: Fix X% € R"". Suppose the a;’s are i.i.d. ran-
dom vectors following a; ~ N (0,1,),i=1,--- ,m. For any
0 < 6 < 1, suppose m > ¢ 2nlogn for some sufficiently
large constant ¢ > 0. Then we have

m

Z HaTXhHQm

< 6||X“

X L 2T

I

with probability at least 1 — c;7n '3, where ¢; > 0 is some
absolute constant.

Proof: This proof adapts the results of [3, Lemma 7.4]
with refining the probabilities. Let a(1) be the first element of

a vector a ~ N (0, I,,). Based on [63, Theorem 1.9], we have
1 m . 2 .
P (‘EZ(W(U)Q -1 > 6) <e?.e (c16%m) :
m
LY () -3 5>
> 6) < e? .ef(cgazm)l/ﬁl

(0262m)1/4,

)

SeQ-e_

Y

1, 2

E;(az(l)) -1/ <9,
ii(av(l))‘l—?; <5

mi:l ' T

1 m 6

3 (a;(1))® — 15| < 4, (31)

with probability at least 1 —c4n '3 for some constant c4 > 0.
Moreover, following [61, Lemma 1], we know

P ((ai(l))2 > 142V + 2t) < exp (—t),
which gives
P ((ai(l))2 > 36.5logm) < exp (—14logm) = m™*,

if setting t = 14 log m. Therefore, as long as m > cn, we have

max. la;(1)] < +/36.5logm,

1<4< (32)

with probability at least 1 —c5n ' for some constant c5 > 0.

With (31) and (32), the results in [3, Lemma 7.4] imply
that for any 0 < § < 1, as soon as m > c6 2nlogn for
some sufficiently large constant ¢, with probability at least
11— n 13,

m
Easca,z

— el I — 2z " || <5l
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holds for any fixed vector ©# € R". Let X % = and (36) is based on the fact || X hL > o (X h). Combin-
[wi, scg, .-+, x8]. Instantiating the above bound for the set of ing (36) with Lemma 14, we establish the lower bound (18).
vectors @, k = 1,...,r and taking the union bound, we have To prove the upper bound (19) asserted in the lemma,
m we make the observation that the Hessian in (17) satisfies
ZnaTxhnzaz X2 -2 xT
[V2F(X)]|
m
; 0 T 1 «—
=3 (ol @) aia] — |2 1 - 2afa] — 3" (lal X1 ~ la] X¥3) I, @ (asa])
1=1 m i=1
B2 _ B2
s(sznwknz—énx 2 2S5 a0 o T>‘
k=1
| 1 T
APPENDIX B M=
PROOF OF LEMMA 1 n 9
il alar X7 T al
The crucial ingredient for proving the lower bound (18) is + m z; Haz ||2 r @ (aia;) |
=

the following lemma, whose proof is pr0V1ded in Appendix C.

1 m
b'el T T yh T b T
Lemma 14: Suppose m > ¢ H4 X|LF nrlog (nk) with some m Z (”ai X2+ |la; X H2)'Hai (X-x )HQU'zai
large enough positive constant c, then with probability at least 1= m
1—cn~ 12 _ e 1 5”, we have +_ZZHO’:XH§ala: (37)
m <
vee (V) V2f(X)vee (V) 1 =
> 2Tr (X“TVX“TV) + 120X VIE, 33 =|— Z (||an|\2 + |\an“|\2)- al (X - Xh)H2 a;a]
for all matrices X and V' where X satisfies HX — XhH < 1
A(x) 5 LS (el X o X)) el
214 W Here, ¢; > 0 is some universal constant. i=1
With Lemma 14 in place, we are ready to prove (18). Let 4+ = i ZHGTXuH a )
V =T:Qr — T satisfy the assumptions in Lemma 1, then p 2\
we can demonstrate that b2 DT
- =2 (|| XL + 2X° X7
T (XTVXTY)
b2 5'el
=T ((X* = T2+ T2) V(X =Ty + T2) V) +2 (|| X¥[p L +2X°X ) H
=T (X5 - T2) V(X - T2) V) 3 &
X)X - T) < || = 3 (el Xz + lla] X¥)12)a] (X = X*)2asa]
Oy ((Xh —T,) VTQTV) Tr (TQTVTQTV) i=1
2 =B
> Tr (TQTVTQTV) — | Xt =1 V12
— 2]t — 7| | T VI Z ol X700l — | X E L — 2XX
_ T 2 f 2 2
= T2 Ve = [IX* = T2 IV; 7
— h_ 2
2| X" — T ||T2l\ VI G4 Ly HHXhHiIn n 2X“X“TH, (38)
2 i
> -5 <f Ao -
X
where (37) follows from the fact | I @ Al = ||AJ|. It is seen
1 0f (Xh) 1 08 (X“) h , from Lemma 13 that
-2 T QTJFHX || 1Ivie
X 17 By < 8| X%|)% < 0.0202(X%),
(35
> 0. 2(x" 2 o2 (x5
> —0.08860, (X7) HVHF ’ (36) when setting § < 0.02@. Moreover, it is straightforward
where (34) follows from the fact that T2T V e R™*" is a to check that |X H
symmetrlc matrix [64, Theorem 2], (35) arises from the fact
||T2 V||F > 0 as well as the assumptions of Lemma 1, B3 < GHXhHi
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With regards to the first term Bj, note that by Lemma 11 We first bound the second term in (41). Let V =

and (20b), we can bound [v1,v2,- - ,v;], then by Lemma 13,
a] X TX“H T(x - x° H 1
o 1l < )l LS o X el VI — 2V — 2 XV
1 U,% Xt i=1
< 5.86+/logn X+ = logn - ———*,
SR x|, 5 ST XS (aTwn) - X ol
for 1 <7 < m, and therefore, .
m - QZ ||Xh
Bi < 1.4710%(X") logn Zai k=1
" 1 i T h 2 T 2
< 1.4803(Xh) log n, (39) < kz:; m ; Hai X ||2 (a; vi)

where the last line follows from Lemma 9. The proof is then

g2 2 BT
finished by combining (38) with the preceding bounds on Bj, — | X loxlls = 2(| X

BQ and 33
s m
= T xh hy2 By hT
= v a; X*[za;a X' -2X'X
APPENDIX C kz:;  ( Z I I3 — [ X*[; v
PROOF OF LEMMA 14 -
2 2
Without loss of generality, we assume || V|| = 1. Write < Z vkll; m Z ||azTXh||§az'a;r—HXh||F —2X XxHT
T «—2 =
Vec( ) V2f(X)vec (V) <"
2 2 2
2 <O X[ > lloells = ol XF[| 1V [le -
= 2ovee )" [(lal X[ - ) 105 (aia])
0'2 a
. vec (V) By setting 6 < 214 ﬁ, we see that with probability at least
-13

1—cirn S
)

m

ZH@TX“H lal V]

+ % ivec(V)T [(2XTaiaiTX) ® (aiaj

-vec (V)
1 & 2 b b b
= > (lal X3 v:) vec (V) vec (aia] V) < [ XFEIV[IF + 2 X VIg + 5o (X [VIE, @2)
142% holds simultaneously for all matrices V, as long as m 2
+ p. Zvec (V)T vec (2a¢aiTVXTaiaiTX) ||4}((;(|LF)nlog n.
"f,zl ) 'Next, we turn to the first term ¢ (V', H,t) in (41), and we
_ L Z (H"JXHQ — ’ azTXhH ) ||u,iTV||2 need to accommodate all matrices satisfying || H||p = 1 and
m = ? 2 ? IVl = 1, and all scalars obeying ¢ < 1/24. The strategy is
1™ N2 that we first establish the bound of ¢ (V, H,t) for any fixed
+ — Z 2 (a;'—X Vv ai) . (40) H, V and t, and then extend the result to a uniform bound
i=1 for all H, V and t by covering arguments.

) H with ¢ < 1/24

In what follows, we let X = X*+¢5 (h
x || A. Bound With Fixed Matrices and Scalar

and ||H|| = 1 which immediately obeys HX X hH Recall that
0'2 i
2—14 I ’(::” F) , and express the right-hand side of (40) as q(V,H,t)
1 m
p(V.H.1) =3 [lal X [0l V3 +2(a] XV @)
1 & 2 2 2 =1
SERS [HaiTXHQ lal VI +2 (o] XV 7a) ] =G,
i=1 We will start by assuming that X and V are both fixed and
i—q(V,H.t) statistically independent of {a;}!". In view of Lemma 12,
2
al X[ a V. @y ElG
2

= B [||a7 X [laT V2] + 28 [(a] XV 7a,)’]
The aim is thus to control p (V, H,t) for all matrices satisfy- , , o ] J
ing |H||g =1 and |[|V||g = 1, and for all ¢ obeying ¢t < 1/24. = | XF VI + QHX VHF 19 (Tr(X V))
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2| XV |2+ 2T (X TVXTV)
< IXIFIVIE + 21 X IVIIE + 2 XIF [ VIIF
+2[IX PV IF + 21X 7 |V IIE

03 (Xh)
b & +t7hH

|
F

2

<9X|ZIVIF=9 (43)

<18 [ || xF|[F + ¢ I?

< 18.002)| X" |2

Ie- (44)

b
where (43) follows [V = 1 and X = X +t”)((f )H.

and (44) arises from the calculations with |H||r = 1 and
t < 1/24. Therefore, if we define T; = E [G;] — G;, we have
E[T;] =0 and

T, < E[G;] < 18.002]| X¢| 2,
due to GG; > 0. In addition,
E[T7] =E[G}] - (E[Gi))* <E[G]]
—& | (a7 X[l VI + 207 XV7ar)?)’]
= E[[|a] X[l V] + 4E (o] XV Ta))’"]

+4E [ (a] XV a;)[|al X ]la] V3]

< 9 [[la] X [[3]la] V'] (43)

< 9\/E a7 x5] E [[lal V3] (46)

< 9eq | X[E IV Ik = 9ea| X1 (47)
Uf (Xh) ! A

= 9cy || XF +1 H| <|1x%:

x|
F F

where (45) follows from the Cauchy-Schwarz inequality, (46)
comes from the Holder’s inequality, and (47) is a consequence
of Lemma 12. Apply Lemma 8 to arrive at

mo (Xh)
< ZTzf i+ (X )) < exp )
(48)
which further leads to
m
q(V,H,t) ZG =E[G ZTi
mi4

>E[Gi] - ia 2(x7)
2
= IXIZIVIE+2] XV +2 (T(X V)

3% (%)

> X IVIE + 2| X T V[ + 2| XV T}

+2| XV +2m (XTVXTV) -
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1
T T b
+2Tr (X TVXTV) - 107 o2 (X7). (49)
Substituting X = X042 oA (X |)H for X, and using the

facts |[H||[g =1, |V =1 and t < 1/24, we can calculate
the following bounds:
7 (X%)
= |

|
F

IX 1 =

| x|l + 2 I

) Uf (Xh)
> | XFlp = 2t | X 1 H e

- X
F
a2 L 2( u)
Z ||X ||F 12 r X ’
) 2 ot (Xh) 2
vt vl

F
F

x|
F
U? (Xh)
> || XV =2 2| X [V
|2
F
Ty llf L 2( u)
Z X'V . 120'T X )
Uf (Xh)
XV =[xy e v
S F
F

2 Jf (Xh H hH )
| XTI H[ VI
F b
|

> v g
- F o1

7or (Xh) ;
Tr (XTVXTV)
U? (Xh)
= Tr (X“TVX“TV) 121y (HTVX“TV)
4

+t2@”ﬁ (H'VHTV)
x|

03 (Xh) h )
2 ———=|| X7 | H[| |V

.

> Tr (X”VX”V) .
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L0 (Xh) +2‘HX“TV HQ—HXWV H2
=V ? e e
HX H +2‘ﬂ (X“Tleﬂvl) ~Tr (X”VQX“TVQ)‘
11
Ty xiTy) 1 ; m
> T (XTVXETV) < +242) F(x) < %Z{||aZX||§HaiTV1H§+2(anVlTai)T
which, combining with (49), yields =1
1 & 2
V. X[l Xl vl 2 (o )]
2 2 2 =
> Xt 2 XV 2 xev T +8]x7 e
Ty xiTy) o (P 1 2( h) 1 &« 2 2 2 2
L2 (XTVXTV) - (Fo g ) (X) < LS Jar X far vl - el X o Vel
2 i=1
> | x97 + 2| xTv || +ome (X“TVX”TV) m
|27 i 2 |(arxviar)' - (aZXVJai)2‘+8||Xh||Qe
+207 (X)) - <15+ ! >a,% (x7) =
21 1224
T 12 T T T
> ||xE|P 42| x TV 2 L omy (XuTVXuTV) < E;Hai X[|; (e Vi, +[lai Vall,)[la) (Vi=V2)],
F

+ 1'37103 (Xh) : G,IX (Vl + VQ)T a;| - (I:X (Vl - VQ)T a;

i=1

B. Covering Arguments + 8||Xh ||2€

Since we have obtained a lower bound on ¢ (V, H,t) for <6n-||X|*> 2V6n-vV6n-c+2-12n-||X|-6n-|X| e
fixed V, H and ¢, we now move on to extending it to a n 8||Xh||2e
uniform bound that covers all V', H and t¢ simultaneously. )
Towards this, we will invoke the e-net covering arguments o2 ( Xh)
for all V, H and t, respectively, and will rely on the = 216en? X4t H
fact maxi<i<m ||ailly < V6 n asserted in Lemma 10. For H HF
notational convenience, we define

- b2 1Ty |12 2 1(2 203 (Xh) 2 b||2
g(V,H t)=q(V,H,t)— || X*||” - 2| X" V|| < 432en” | || XP|" + ¢ T |H| | +8|| X"
Ty (X“TVX“TV) ~1.37102 (X“). HX HF

-I-SHXh"Qe

2 1
First, consider the e-net covering argument for V. Suppose < (432.75 n” + 8) 6||Xh |” < ﬂgf (Xh) ;
V1 and V5 are such that |V ]| = 1, [|[V2| = 1, and
[V1— V2| < e Then, since as long as € = . Based on Lemma 7, the cardi-
10584 nz LXH \

2 2
HXuTVIH -~ HXHTVQ nality of this e-net will
F F

o\ (n+r+1)r
< (x| + | xTve| ) || X v - v <9><n+r+1>r 910584 2 | x|
- F F F - =
A 6 7t ()
and < exp (enrlog (nk)).
‘Tr (XhTVthTvl) —Tr (XhTVthTVg)‘ Secondly, consider the e-net covering argument for H.
Suppose H; and Hs obey ||Hi|p = 1, |[H2||f = 1, and
T T T T
= ‘Tr (Xh ViXF Vl) - Tr (Xh ViXF VQ)‘ |H1 — Hsl||¢ < e. Then one has
T T T T
-l-‘Tr(Xu \2P. & VQ)_Tr(Xh VyX°© Vg)‘ lg(V,Hy,t)— g(V,Ha,t)|
<XV le IV = Vel =[q(V, Hy,1) —q(V,Hz,ﬂI
2 2
XAVl Ve = Valle g X5 .
< 2| x*e. = fm | (X e uH H ”‘” Vi
we have 2
m 0—3 (Xh)
lg(V1,H,t)— g(Va,H, 1) + = 22 a X“+t7hH1 V'ia;
<lg(V2 HoA) ~ g (Va, H 1) ||
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2
1 m 0—3 (Xh) 5
—Z a; Xi4t— 2 H, ||aiTV||2
]
F 2
2
1 m 0',% (Xh)
—> 2(a] | XF+t H,|V'a;
= XhHF
2
1 m . 9 - ' 0—3 (Xh)
<—> lal Vi, ||al | X*+t7rmHy
L -y
2
o? (Xh)
x|
F 2
2
9 m 0-% (Xh)
+ —Z a;-r X° +t H, VTG/i
m “— XhH
i=1 E
o? (Xh) ’
a; | X%+t H,|V'a,
|
F
o2 (x*) 25
<6n-V6n-t - 2v6n- || X7
x|
F
7t (x°)
T 25
+2:6n-t— e-12n- —|| XY
‘)(uH 24
F
2 i
oz (X )
BOACIIPIPE (x°).
- 8 Xh‘ — 247
F
I — 1 e Based on Lemma 7, the cardi
as OngaSE*W'W' ased on Lemma 7, the cardi-
nality of this e-net will be
b (n+r+1)r
gy b
(—) 9.225 n?.
6 |
F

< exp (enrlogn).

Finally, consider the e-net covering argument for all ¢, such
that ¢ < 1/24. Suppose t; and to satisfy t; < 1/24, o < 1/24
and |t; — t2| < e. Then we get

|g (VaHvtl) _g(VvHat2)|
= |q(VaH7t1) _q(V7H;t2)|

1 &« o (Xh) 2
== |lal | X +tim—tH || [[a] V],
= ||
F 2
2
1 m 0—3 (Xh)
+= 2|a | X"+t H|V'a;
g
F
2
1 m 0—3 (Xh) )
— aiT Xh-f—tziH ||aiTV||2
= [
2
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m

1

m

1 2
= m Z Haz‘TVHz ’
i=1

2

F 2

o,% (Xh)
— 7 H

|

a,% (Xh)
— 7 H

|
2

o (}(“)

T

||
F

JYh) 25
e 12 ol X

(7).

. The cardinality of this e-net

2

VTai

F
2

VTai ’

<6n-V6n e%%n~§MXw

o? X°

|
F

as long as ¢ =
will be

< 225en? 1X¥] < 5707

X5
[l

—1 .
5400 nZ2

1/24
€

Scnz-

x|
ol XHh
enough constant ¢, for all matrices V' and X such that

2 b
X—X“H < 17X
H F o 24 [l X,

E

Therefore, when m > ¢ nrlog (nk) with some large

, we have
2 2
q (Va H7 t) > HXhHF + 2||‘)(h—r‘/HF
+2ﬂ(X”VXﬂWj+1zmﬁ(Xﬂ,6m
with probability at least 1 — e~ 177108 (n5) _ype—1.5n

C. Finishing the Proof
Combining (42) and (50), we can prove

vee (V) V2f(X)vee (V)
2 2
> [t 2 XV o (xTVxTY)
1 m
1.24602 (X*) — =
* UT( ) m;

2 2
2 [ o v eom (xTvxETY)

2
al X[l v
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2 2
+ 1.24602 (X“) - HX“H -2 HXHTVH It is easy to verify that X, (7) satisfies (20) for any 7 €
] F F [0,1], since
2 b
_ 22 (x )
337 ( 1o (X“)
> 9Ty (X”VX“TV) +1.20402 (X“) HXt( X“H —THXtQt X H
as claimed.
and
T _ y#h
APPENDIX D lglfgfnual (Xt(T) X )H2

PROOF OF LEMMA 2

— . T . b
- lg%?anaz (%@ - x7)|,

We first note that

5 1
HXtJrthH B XuH < —+/logn - )
. 24 XuH
) F
= t+1Qy E 51 Lemma 1 then implies that

2
= (Xt = pV[f(X4)Q, — XhHF
= |x@ - nvsixi@) - x| (52)

= ||lxy — 2% — - vec (Vf (X:Q) - Vf (Xh))‘ z

(e — )" (/01 vy (Xt(f))df) (w: — o)

> 102607 (X*) [}z — 25,
, (53)

and

where we write

1
/VQf(Xt(T))dT < 1.50% (X*) logn + 6| X%
0

Substituting the above two inequalities into (53) and (55) gives

x, == vec (X;Q,) and z:=vec(X?).

Here, (51) follows from the definition of @, (see (13)), (52) )
holds owing to the identity Vf (X;)Q, = V[ (X.Q,) for HXt+1Qt+1 - XhH
F
Q, € O™*", and (53) arises from the fact that V f (Xh) =0. 9 ) 9
Let < [l - @ - 20~ 102607 (X* ) | - ¥
_ xh _ 2\ 2
Xe(r) = X+ 7(X:Q, — XF), e (1802 (X g+ X7 o = o

where 7 € [0,1]. Then, by the fundamental theorem of

2
calculus for vector-valued functions [65], = {1 — 2.05207 (Xh) M} HXtQt - XhHF
2\ 2 2
s ot 59 2 (1002 () sl [
1
b 2 b
x—w—u-/VfXT x, —x)dr (54)

2
1.02602(X")
1502 (X log nt6 x3]|2)

5 with the proviso that p < This

_ H(Iu/ v (X () ) (o —w“>2

= (z; — wh)—r (I - /1 V2f (X4(7)) dT) allows us to conclude that
' | X11Quir=X|p < (1 - 051807 (X)) | X1 QX

(e — )
= ||l - 2|
N 1 ) h APPENDIX E
—2pu- (¢ — x¥) (/0 \Y f(Xt(T))dT> (@ — x7) PROOF OF LEMMA 3

- 1 2 Recognizing that
+ p? - (2 — 2% (/ V2 (X4(7)) dT) (z; — ) 0 RO
0 HXtJrth-H - X t+1H

< | _whHQ 0)
° T 1 ) . < HXt-HQt+1 Xf+1R Qf Qf+1H
~ 2 (@ - ) (/ v f( tm)dT) (@ =) | X1 - xRPQT
= t+1 t

v2 f(X(r

Hwt — a2t (55) = |xiQ. - xR

?
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we will focus on bounding || X;1Q, — Xiﬂleﬁl) |- Since

X11Q, - X}, R
= (X —pVf (X)) Qy
-~ (XE” —uvfo (ng))) RE”
=Xx,Q, - X"R{" - uvf (X)) Q,
+uv O (x{") R
- X.Q, - X{'R}"

1 m
- ME Z (||antHj - yz) aia;‘rXtQt
i=1

N

ar xi"

aiTX,(fl)

2
’2 - yz> aiaiTXgl)Rgl)

2
L) el xR

- x,Q, - X"R" — uv i (X,Q,) + uv (X" RV

L
=5

1 NI
ok (x|
m

, yl> aia] X\"RY,

—g®
=85

we aim to control HSEI%HF and HS%HF separately.

We first bound the term ||S§l;| £» Which is easier to handle.
Observe that by Cauchy-Schwarz,

2
’ — Y
2

ol x{"

.
a (XS)RS) - X“) (XE”RE” + X“) a

< [lor (xR =) oy (60 + )]

(56)

The first term in (56) can be bounded by
Jor (xR - x7)]
<[lol (xR - x:0.)]
+ol (xi@i-x7)]

<en HX§”R§” - X.Q,

+Co (1 —0.507 (Xh) u)t Viogn JQXifh)
I
< s (-0 (o)) 22 T
A
+Cy (1 —0.507 (Xh) M)t Viogn - 02)57‘?)
:
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— (V6Cs + C») (1 — 0.502 (X“) u)t \/@%7
.

(57)

where we have used the triangle inequality, Lemma 10, as well
as the induction hypotheses (28c) and (28b). Similarly, the sec-
ond term in (56) can be bounded as

ol (xR + x7)]
< [lar (xR —x*)|, +2 ol x*
of (Xh)
< (\/603 +02) Viogn—— 2
x|
F
+11.72\/logn HXhHF

< (V603 + Gy +11.72) Viogn] | XF| .

where we have used (57), Lemma 11, and J? (Xh) <

(58)

| X : ||i Similarly, we can also obtain

|al x| < (V6Cs + C2 +5.86) /log ] X .

Substituting (57) and (58) into (56), and using the above
inequality, we get

: Halal—ngl)

2
‘ — Y
2

al X"

\F
< C} (1 —0.502 (Xh) u)t . u% o2 (Xh) logn

l
Nl ||a; X"

;

<V6C3 (1 —0.507 (Xh) ,u)t -u% o2 (Xh) logn
'\/EHXHHF\/@

=603 (1 —0.502 (Xh) ,u)t

Vi (ogn)™? 5 0oy p
“TUT’ (X ) HX ||F’ (59
where Cy := v/6C5 + Co + 11.72.
Next, we turn to HSEI%HF By defining
sgl% = Vec(S%)7 xr = vec (X:Q,),

and
wgl) = veC(Xgl)Rgl)),

we can write

1
si

=, —af) — p-vee (V (X:Q,) - V(X R))

=x; — wgl) — - /01 V2f (Xff’(ﬂ) (mt — wgl)) dr

= <I— x /01 VA f (Xgl)(T)) dT> (wt - wgl)) '
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Here, the second line follows from the fundamental theorem

of calculus for vector-valued functions [65], where
x{() = xR + 7 (x:Q, - X"R"),  (©0)

for 7 € [0, 1]. Using very similar algebra as in Appendix D,
we obtain

(wt — xgl)) . (61)
It is easy to verify that for all 7 € [0, 1],
b,
= H(l 7) (Xﬁl)Rﬁl) - XtQt) + X:Q; — XEHF
<(1-7) HXgl)Rgl) - X.Q, . + HXtQt - XhHF
2 b 2 i
1 o (X o (X
< Oy 21 ( e al (62)
" ||
F F
2 b
1 (o X
= | Cs4/ o8 + 4 ( )
n XhH
107 (X“) o
F

where (62) follows from the induction hypotheses (28a)
and (28b), and (63) follows as long as Cy +C3 < 2 1 Further,
for all 1 <[ < m, by the induction hypothesis (28b) and (28¢c),

H (X‘” -x),

<0 o (xR0 - x.0),

+ Haf (xa-x,

< llailly HX(”R”) X,Q,| + Ca\/logn - ( )
o2 (X° o2 (Xt

<\/_Cg 1ogn Q—l—Cngogn- )
“ x| x|

F F

o2 (X“)

< (\/603 + Cz) Vlogn - sl
F
< 214 Vlogn - i (Xh)

x|
F

1
as long as C < 3

1945

as long as V6Cs + Cy < 2—14. Therefore, Lemma 1 holds

for X El)(r), and similar to Appendix D, (61) can be further
bounded by

I, = (1ot () [ xim)
(64)

1.02607(X%)
1.503(X”)10gn+6||X”||i)
combining (59) and (64), we can get

b
< s, +[}s:3],
< (1-051302 (X*) ) | x.@, - X" R
+603 (1 — 0.502 (X“) M)t
MMUf (Xh) ||Xu||

ey [ ()
§03(1—0.503(X“)u) Oi" “H

where (65) follows from the induction hypothesis (28b),
[l

as long as m > ¢ (X )nlogn for some large enough

as long as pu <

=. Consequently,

ORPNO)
Xf+1Rt+1 HF

(65)

constant ¢ > 0.

APPENDIX F
PROOF OF LEMMA 4

For any 1 <[ < m, by the statistical independence of a;
and Xﬁzl and by Lemma 11, we have

Jof (2 3] <5 30y x 0,0 -,
Since following Lemma 2,
e =] x|
P, x|
e (1 — 0.51302 (X“) u)t“ i (Xh) . HX“H

x|
F

L,
<= Xh)
= 20'7" ( )
and following Lemma 3,

1
[

l
< HXH-th—H E-i)-lRt+1H HXhH

< 05 (1-0.50% (X¥) M)”H/lo% . (’QS) 1Y
K
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as long as C3 < 7, we can invoke Lemma 37 in [15] and get = A(()l) + )\(Z)I7 1<l <m,

HXt+1Qt+1_ §+1 f+1H <5’€HXt+1Qf+1 XﬁrlRﬁrlH then by definition we have YZ, = Z,X,, YVZzZ{ =

zVsW and
Further, by the triangle inequality, Lemma 10, Lemma 3 0o

and Lemma 2, we can deduce that

1
502, z0 — zJ zVs® = 52 aa ZY.  (66)
HU/l—r (Xt+1Qt+1 - Xh) H

Moreover, let Z; . and Zé{)(: be the complement matrices

< Haz—r (Xt+1Qt+1 t+1 )H of Zy and Z(()l), respectively, such that both [Zy, Z ] and
Ha'r (X( Q¥ X“) H L (()l), Z(l)} are orthonormal matrices. Below we will prove
! e e induction hypotheses (28) in the base case when ¢t = 0
< Nadl, || X 01 Qe - X“MQE%H + one by one.
5.86logn | X1, Q1Y) - x¥|
osn t+1 - A. Proof of (28a)
< Vbn HXY‘/HQ]‘/Jrl X(l 1Qt21H From Lemma 6, we have
+5.86logn | X11Quy — X1 Q1 | xo0@o - x|
+5.861/logn | X141Q,, — X° < 1 HXOXJ B X“X”H
2(vV2 - 1)o, (X¥)
< (\/Gn—f— 5.86s/10gn) ‘ Xi41Qp 1 — X(z)nglle" ( 1 )
- ZoAoZI — X“X“TH
+5.86\/logn || X111Q 41 — Xh 2(VZ - 1), (X“) H 0
5 (\/671 n 5.86\/10gn) K HXHthH - thletHH ) NG
+5.861/10g || X111 Qu iy — XF|| 2(vV2 - 1)o, (X“)
5 (V6 + 5.36+/log ) - | Zom027 - x5 X*T ~ AZ02] . (67)
; (1 . (Xu) )t+1 \/@ o2 (Xh) The last term in (67) can be further bounded as
i %7 a n . ’XuH HZOEOZOT CXEXET - AZOZOTH
F
1
v o (x0) < |y - prcpr - xex
2 b ’ r 2
+5.86/logn - Oy (1 — 0.51302 (X ) u) T 1
X HF +1(Zo20Z; - Y + EHXh”IQ:ZO,CZ(—)r,C
< (5v6Cs + 5860, +29.3C5, [ 28" 1 T T
= A ) + §|\X“H%Zozo —AZoZ,
2 b 2 2 2
g 5 X < s+ sl x|
(1—0.503 (Xh) u) 1ogn-7h - F+ F+ F
2
x|, x| )
2 Xh)
<Oy (1 —0.502 (Xh) F‘)tﬂ Vlogn - ) ( ; where (68) follows from

XhH 1 2
F Y —E[Y]|| = HY—EHX“HFI—X“X“T

where the last line follows as long as 5v6C5 + 5.86 C; +
29.3 C3 < (Cy. The proof is then finished by applying the <d
union bound for all 1 <[ < m.

x[.
F

via Lemma 13, the Weyl’s inequality, and

APPENDIX G b
PROOF OF LEMMA 5 A-E[A ]|_‘>‘__ <5HX H
Define via Lemma 9. Plugging (68) into (67), we have
20 :diag{Al (Y)a)‘Q (Y)a a)\r (Y)} 2
vr x|
= Ao + M, 3 F

HXOQQ_XhHFS 2(\/5_1)' . (Xh) )

0 = diag {A1 (Y(w) By (Y(w) A (Y<z>)}
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3(xt
Ir (X ) — - for a sufficiently small constant Where the last line follows from (66). Note that the first term

fHX “IIe in (70) can be bounded as

Xt
c, ie. m 2 l‘g(xHu)nrlogn, we get HXOQO—XhHF

Setting § =

1
HZO ylZQ aa Z(()l)

2( xh
4 ﬁ Following similar procedures, we can also show .

T w4 T (1) T
o _ xt 2(x7) < —Haz > H |al 20| [la/ Zo|
|xQl - xt| < cay ” 32 : :
Vi (logn)™ = \/r e
g Lo an
B. Proof of (28b) which follows Lemma 10 and Lemma 11. The second term
Following Weyl’s inequality, by (28a), we have in (70) can be bounded as
o (x7) |2025 - 20207 |

0 (Xo) — 0y (Xh)‘ < C17ha

Zy (ZO - Zf)”:rg”)T

ag; (X(l)) — 0; (X )‘ < C1 || (”H) for 1 =
1,---,r. Combined with Lemma 6, there exists some constant
c such that

and similarly,

+ (Z0 _ zg”:rg”) (fo):rg”)T

<2HZ _Z07 >H <2\/_HZ0

0@ - xR

1 where T() = argmin rxr || 4y — (l)P} , and the
< HXOX(—)F _X(()Z)Xél)TH t g PcO t
2 (V2 —1)o, (Xo) F last line follows from the fact ‘ Zy— l)T l)H
<< ‘XOX(—)F _ X(()I)Xél)TH V2 HZO Zél)c‘ ] [66]. Putting this together with the third term
or (Xh) F in (70), we have
c
Y ! 202 - 20207y + v |27 280
7 (X°)
< o i) i,
c D) »(OT
=—7 ‘ Zo30Z,) — Z(()>z:(()>z(()> , H(iyzazaf) Z(()I)H
7 (x) < x| B : 7
o) 0T ] o7 (Xh)
.
-220Z; + V2 z; BT "
. F a7 X, Jor 28] et |
< ——|Zoz0z - 200 20| S
= (Xh) 02404 0 <0 %o . m o2 (Xh)
4
c i
T |rz0zg - 202027 . ©9) _ Vi (logn)”? -/ " 73
Oy (X ) ~ m 5 (Xh)a ( )
JT

We will bound each term in (69), respectively. For the first

where (72) follows from Lemma 13 and the Davis-Kahan
term, we have

sin © theorem [67], and (73) follows from Lemma 10 and

HZOEOZJ - ZSZ)E(Z)Z(Z)TH Lemma 11.
For the second term in (69), we have

[ 02404 0 o E HAZOZJ—A(”ZE)”ZE)”TH
Tz _ z050 0 F
< ||Z0X0Z, 2y — Z || 202025 2y,
F T 0 T W) T
\ZoZ) —\Z'ZY' +)2ZZ
<2202, 2y - 2 ZTZ(”E(”H 0 0 Zo 0 Zo
+ HZOZJZ(()I)E(()” _ Z(Z)E(Z)H + 1Yl HZO _ /\(l)Z(()l)Zél)T
L ZTaal z0 F
<||Zy- %ylZo aa; Z i <\ HZ()ZO Z(l)Z(l H ‘)\ )\(l)‘ HZ l)Z(l HF
+llzozs - 20207 v e
T () ] < V- (logn)™”- /1 F Y (74)
N ”YH HZO ZO’C P’ (70) ~ m o2 (Xh) 2m
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where the first term of (74) is bounded similarly as (73),
and (75) follows from Lemma 11. Combining (71), (73),
and (75), we obtain

4

;
_ Vi (logn)*? - /7 HX HF
G

- [loen (X))
~ n

H hH |
F
inequality holds as

HXOQO X(l)R(l)H

where the last

[|;|( )n\/_logn—nr3logn

long as m 2

C. Proof of (28c)
Since from (28a) and (28b),

|00 - 7 [|x7] <[ xo@o—x7] |37 02 ().

and for every 1 <[ < m,

[ %00 - xR || < [ 30@0 - xR ||
O’E (Xh) ,

with proper constants, following Lemma 37 in [15], we have

[0, Xy, <o oo - xR

which implies that for every 1 <[ < m we can get

ey x|,
<llx _X(l) (0 X _xt
>~ OQO OQO F+ OQO E
<ol X0+ o x],
/logn 2<Xh) $<Xh)
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i T, T
F
2 i
o (x)

|
F

This further gives

T 4
XoQ ~ X*)|
e [|al (XoQo—X*)|
_ T(X 0 <z>)
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T (w0 A0 u)
X X
+ 1Iéﬂlaé)$n, ’al ( 0 QO 2
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< v/n- max HXOQO — X(()I)Q(()I)H

1<Ii<m
+ /logn - maX HX(()I)Q(()I)—XhH2 (76)
< Vn -k max HXOQ X(l)R(l)H
1<li<m 0
0 O uH
e - x| X0 Q" -]
2 b 2 i
1 o (X o (X
< Vn-ry] 280 +logn-—_2 (77
], ]
F
o (X“)
logn ,
x|

where (76) follows from Lemma 10 and Lemma 11, and (77)
follows from (28b).

D. Finishing the Proof

The proof of Lemma 5 is now complete by appropriately
adjusting the constants.
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