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Abstract—In this paper, we consider the problem of sequen-
tial transmission over the binary symmetric channel (BSC)
with full, noiseless feedback. Naghshvar et al. proposed a one-
phase encoding scheme, for which we refer to as the small-
enough difference (SED) encoder, which can achieve capacity
and Burnashev’s optimal error exponent for symmetric binary-
input channels. They also provided a non-asymptotic upper
bound on the average blocklength, which implies an achievability
bound on rates. However, their achievability bound is loose
compared to the simulated performance of SED encoder, and
even lies beneath Polyanskiy’s achievability bound of a system
limited to stop feedback. This paper significantly tightens the
achievability bound by using a Markovian analysis that leverages
both the submartingale and Markov properties of the transmitted
message. Our new non-asymptotic lower bound on achievable
rate lies above Polyanskiy’s bound and is close to the actual
performance of the SED encoder over the BSC.

I. INTRODUCTION

Feedback does not increase the capacity of memoryless
channels [1], but it can significantly reduce the complexity
of communication and the probability of error, provided that
variable-length feedback (VLF) codes are allowed. In his
seminal paper, Burnashev [2] first derived the optimal error
exponent of VLF codes using a conceptually important two-
phase transmission scheme. The first phase is called the
communication phase, in which the transmitter seeks to in-
crease the decoder’s belief about the transmitted message by
improving its posterior to above 1/2. The second phase is
called the confirmation phase, in which the transmitter seeks
to increase the posterior of the most likely message identified
from the communication phase to above a target threshold, at
which it can be reliably decoded.

For the binary symmetric channel (BSC) with noiseless
feedback, Horstein [3] first proposed a simple, elegant trans-
mission scheme that achieves the capacity of BSC; it was
then generalized by Shayevitz and Feder [4] to the concept
of posterior matching. Since Horstein’s work, several authors,
e.g., [S]-[9], have constructed schemes to achieve the capacity
or the optimal error exponent of BSC with noiseless feedback.

Recently, attention has shifted from the asymptotic regime
to the finite-blocklength regime. Polyanskiy et al. [10], [11]
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first showed that variable-length coding with noiseless feed-
back can provide a significant advantage in achievable rate
over fixed-length codes without feedback. In their analysis, a
simple stop feedback scheme is enough to obtain an achievable
rate larger than that of a fixed-length code without feedback.

For symmetric binary-input channels with noiseless feed-
back, Naghshvar et al. [9], [12] proposed a one-phase encoding
scheme, which we refer to as the small-enough-difference
(SED) encoder, that attains capacity and Burnashev’s opti-
mal error exponent simultaneously. They also gave a non-
asymptotic upper bound on the average blocklength of the
SED encoder. However, in the case of BSC, their bound
corresponds to a lower bound on achievable rate that lies
beneath Polyanskiy’s lower bound on the achievable rate of
a system limited to stop feedback. A system such as the SED
encoder that exploits full noiseless feedback should provide a
higher rate than a system limited to stop feedback.

In this paper, we seek a tightened upper bound of aver-
age blocklength of sequential transmission over BSC with
noiseless feedback. The bounds of [9], [12] were derived
by synthesizing a delicate new submartingale from two sub-
martingales that characterize the fundamental behavior of the
transmitted message. In fact, this general proof technique dates
back to the work of Burnashev and Zigangirov [13]. However,
this sophisticated analysis succeeds in establishing a non-
asymptotic upper bound, but it does not reveal the fundamental
mechanism that produces the constant term in the bound.

Following the SED encoder in [12], we present a Markovian
analysis that leverages the submartingale results of Naghshvar
et al. [9], [12] and the Markov structure of the the transmitted
message during its confirmation phase. This enables us to sig-
nificantly tighten the upper bound on average blocklength and
to gain a deep understanding of the constant term in the bound.
Specifically, we will apply a time-of-first passage analysis on
the Markov chain formed by the transmitted message in the
confirmation phase, which fully accounts for the times when
the transmitted message falls back from the confirmation phase
to the communication phase. Our analysis reveals that the
constant term mainly results from the differential time spent
in the “fallback” stage.

This paper is organized as follows. Sec. II formulates the
problem of sequential transmission over the discrete memory-
less channel (DMC) with noiseless feedback. Sec. III presents
our main results and the proof using our Markovian analysis.
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Fig. 1. System diagram of a DMC with full, noiseless feedback.

Sec. IV demonstrates the simulated performance of the SED
encoder and compares our results with previous achievability
bounds by Polyanskiy and bounds from the lemma of Naghsh-
var et al. Due to space constraints, we only present the proof
sketch. Complete proof details can be found in [14].

II. PROBLEM SETUP

Consider the problem of sequential transmission (or
variable-length coding) over a DMC with full, noiseless feed-
back as depicted in Fig. 1. The DMC is described by the finite
input set X, finite output set )/, and a collection of conditional
probabilities P(Y'|X). The Shannon capacity of the DMC is
given by

CZH})&XI(X;Y), (D)

where Px denotes the probability distribution over the finite
set X. Let C; be the maximal Kullback-Leibler (KL) diver-
gence between the conditional output distributions,

C, = I{E%XXD(P(HX =z)|PY|X =4). (2

We also denote

maxzex P(Y =y|X =)
mingexy P(Y =y|X =x)°
All logarithms in this paper are base 2. We assume C, C1, Co
are positive and finite. It can be easily shown that 0 < C' <

C; < (3 < oo. For the BSC(p) with crossover probability
0 <p<1/2, letting ¢ =1 — p, we have

C5 = maxlog
yey

3)

C =1-H(p) )
B p q
C1 =plog = + qlog = &)
q p
Cy =log L. (6)
p

Let 6 be the transmitted message uniformly drawn from
the message set Q = {1,2,..., M}. The total transmission
time (or the number of channel uses, or blocklength) 7 is
a random variable that is governed by a stopping rule that
is a function of the observed channel outputs. Thanks to the
noiseless, feedback channel, the transmitter is also informed
of the channel outputs and thus the stopping time.

The transmitter wishes to communicate 6 to the receiver.
To this end, it produces channel inputs X; fort =1,2,...,7
as a function of # and past channel outputs Y!~! =
(Y1,Ys,...,Y;_1), available to the transmitter through the full,
noiseless feedback channel. Namely,

X;=e(0,Y"Y, t=1,...,1, (7

for some encoding function e; : ) X yi-l 5 x.

After observing 7 channel outputs Y7, Y5, ..., Y, the re-
ceiver makes a final estimate 6 of the transmitted message 0
as a function of Y7, i.e.,

6 =d(y"), )

for some decoding function d : Y7 — Q.
The probability of error of the scheme is given by

P, 2 Pr{f + 6}. 9)

For a fixed DMC and for a given € > 0, the goal is to
find encoding and decoding rules described in (7), (8), and a
stopping rule that defines the stopping time 7 such that P, < ¢
and the average blocklength E[7] is minimized.

As noted in [12], a sufficient statistic of Y for 6 is the
belief state of the receiver,

p(t) £ [p1(t), p2(t), ... pu ()], (10)

where for each i € €, p;(t) = Pr{f = i|Y?'} for t > 1,
and Y = (). The receiver’s initial belief of 6 = i is p;(0) =
Pr{f =i} = 1/M. According to Bayes’ rule, upon receiving
Yt, pi(t) can be updated by
pilt = DP(Y = gl X = (5, Y1)

ZjeQ pi(t =P =y|X =e(j, Y1)
Thanks to the noiseless feedback, the transmitter will be
informed of y; at t + 1 and thus can calculate the same p(t).

The stopping time 7 and decoding rule considered in [12] are
given by

t=0,1,2,...,7,

pilt) = (11)

T =min{t : rneaé(pi(t) >1—¢} (12)
6 = arg max p; (7). (13)

1€EQ

Clearly, with the above scheme, the probability of error meets
the desired constraint, i.e.,

P.=E[l- rlneaécpi(T)] <e. (14)

For any DMC, Naghshvar et al. [9], [12] proposed an
encoder, which we refer to as the small-enough-difference
(SED) encoder, for symmetric binary-input channels (thus also
for the BSC). This encoder is implemented using a partitioning
algorithm, which, after calculating p(¢t — 1), partitions §2 into
two subsets So(t — 1) and S;(t — 1) such that

0< > pit—1) - > pit—1) < min p(t—1). (15
1€Sp(t—1) €51 (t—1)
Then, X; =0 if € So(t — 1) and X; = 1 otherwise.
With the stopping time in (12) and the SED encoder in (15),
Naghshvar et al. proved the following non-asymptotic upper
bound on E[r] via a delicate submartingale synthesis.

Theorem 1 (Remark 7, [12]). The proposed scheme described
in (12), (13), and (15), for symmetric binary-input channels
satisfies,

< logM—Hoglog% n log% +1

96 - 22C2
S 1% c; + .

oc, (16)

E[r]



III. THE MARKOVIAN ANALYSIS ON AVERAGE
BLOCKLENGTHS

In this section, we consider the problem of sequential
transmission (or variable-length coding) over BSC with full,
noiseless feedback. Specifically, we follow Naghshvar et al.’s
framework described in Sec. II, i.e., the stopping time in (12),
the decoding rule in (13), and the SED encoder in (15). Our
analysis focuses on the BSC(p) with crossover probability
0<p<l1/2

Our main result is stated in the following theorem.

Theorem 2. The proposed scheme described in (12), (13), and
(15) for the BSC(p), 0 < p < 1/2, satisfies

1—

log M ’VlongF -‘ Cy pCs (C1+ Co Cy 4

E[r] < pC2 (C1+C2  C2)  C1
==+ +Cl( c Cl)+C
(17)

The proof of Theorem 2 is given by our Markovian analysis.
Unlike the proof technique of Theorem 1, first, we decompose
the process into a communication phase and a confirmation
phase that also accounts for the fallback of the transmitted
message, i.e., the time when the transmitted message falls
back from the confirmation phase to the communication phase
and then returns to the confirmation phase. Next, we utilize
submartingale results for the communication phase, but exploit
the Markov structure of the confirmation phase to perform
a time-of-first passage analysis. The constant term yielded
from the time-of-first passage analysis explicitly captures the
penalty of falling back, which is given by the third term of
the RHS of (17). Over the course of the Markovian analysis,
we will convince the reader that this constant term is in fact
the differential time of the fallback between the actual process
and the fictitious process of a random walk.

For brevity, throughout Sec. III, denote by § = i € Q the
transmitted message unless otherwise specified.

A. Previous Results of Naghshvar et al. and Polyanskiy

We first review several key results Naghshvar et al. demon-
strated in [9] and [12] and Polyanskiy’s VLF upper bound
derived by Williamson et al. [15].

Let p;(t) denote the posterior of the transmitted message
0 = i € Q. The log-likelihood ratio of § = ¢ is denoted

pi(t)
L—pi(t)

For a given ¢ > 0, define the genie-aided stopping time 7;(¢)
of =i as

U;(t) = log (18)

7:(€)

With the SED encoder in (15), Naghshvar e al. proved that
{Ui(t)}:2, forms a submartingale.

=min{t: p;(t) > 1 — €}. (19)

Lemma 1 (Naghshvar er al., [9]). With the SED encoder in
(15), {Ui(t)}s2 forms a submartingale with respect to the
filtration F; = o{Y'*}, satisfying

E[U;(t+1)| 7] 2Ui(t) + C,  if Us(t) <0 (20)
E[U;(t +1)|F] = ( )+C1, i U(t) >0 (21
Uit +1) = Ui(t)] < (22)
Proof: See Appendix in [9] or [14]. |

Remark 1. Lemma I characterizes the fundamental behavior
of the transmitted message 0 due to the SED encoder and the
BSC(p). In [14], we also show that for any t > 1,

C<E[U{t+1)-U®) < Ch. (23)

Lemma 2 (Naghshvar ef al., [12]). Assume that the sequence
{&:}82, forms a submartingale with respect to a filtration
{F:}. Furthermore, assume there exist positive constants
Ki, Ko, and K3 such that

E[&41]F] >& + K,
E& 1] F:] >& + Ko,
- §t| §K37

if& <0

if& >0

if max{&i41,&} > 0.

&> B}, B> 0

|€t+1

Consider the stopping time v = min{t :

Then we have
—&o 1 1
1 ==
+&ol{ey<0} T K +

Clearly, the submartingale in Lemma 1 can be incorporated
into Lemma 2 by setting &, = U;(¢), K1 = C, Ko = Cy, K3 =
Cs and B = log % Thus, appealing to Lemma 2, we obtain
the following tightened upper bound of E[r] over Theorem 1.

3K2

B
< .
Elo] < KK,

(24)

Corollary 1. The proposed scheme described in (12), (13),
and (15) for BSC(p), 0 < p < 1/2, satisfies

logM log 3C3
Elr] < .
r==c+—a"*ce

Following Polyanskiy [11], Williamson et al. [15] derived
the VLF upper bound on average blocklength for the BSC.

1—e
€

(25)

Theorem 3 (Polyanskiy’s VLF bound, [15]). For a given € >
0 and a positive integer M, there exists a stop-feedback VLF
code for BSC(p), with average blocklength satisfying

log(M —1) logl log2(1—
Ejr] < 108 ) logc  log2(1-p)

= C C C (26

B. The Markovian Analysis: Proof of Theorem 2

Consider a genie-aided decoder with the genie-aided stop-
ping rule described in (19). Clearly, 7 < 7;(¢) for any
0 =i € Q, by definition. Thus,

Elr] = E[E[r|0 = i]] <E[E[r(e)|0 = i]] = E[rs(e)]. (27)

2The stopping time v can be shown to be a.s. finite in general for any
positive threshold B. See [14] for more details.
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Fig. 2. An instance of the generalized Markov chain initiated at U* () = u*, where u* € Sy is some constant. The value inside the ¢-th circle is an element

of state S;, 0 <1 < n.

Note that the SED encoder does not rely on the location of
0, we also have E[ry(e)] = E[r;(€)|0 = i] = E[r;(€)]. Thus, it
suffices to analyze E[7;(¢)] henceforth.

Now, we decompose E[r;(¢)] into

E[ri(6)] = E[7:(1/2) + 7i(e) — 7:(1/2)]
= E[7:(1/2)] + Eu [E[ri(e) — 7:(1/2) | Ui(7:(1/2)) = ul],
(28)
where 7;(1/2) = min{t : p;(t) > 1/2} following (19) and u
represents the log-likelihood ratio of the transmitted message
when p;(t) crosses 1/2 for the first time. By definition and
Lemma 1, 0 < u < Cs.

The decomposition in (28) provides a key insight on the
average blocklength of the sequential transmission. It indicates
that the overall average blocklength may be obtained as the
sum of the expected time of first crossing of 1/2 by p;(t) and
the expected time after the first crossing of 1/2 until p;(¢)
exceeds 1 —e. Our next step is to upper bound each term in the
RHS of (28), which is given by Lemma 3 and 4, respectively.
Finally, summing the two upper bounds yields Theorem 2.

Lemma 3. With the SED encoder in (15), the stopping time
7i(1/2) of the transmitted message 0 = i € Q) satisfies
log M C1
c T

Proof: Let F; = o{Y'} denote the history of receiver’s
knowledge up to time t. For brevity, let T = 7,(1/2) be the
shorthand notation for random variable 7;(1/2). Consider n; =
UT‘T(t) —t. We can easily show that the new sequence {n; }?2 is
also a submartingale. Since 7" is a.s. finite, by Doob’s optional
stopping theorem [16],

E[r;(1/2)] < (29)

—1 =Y — el < Bfr
_E[U(T) - U(T — D]+ E[U(T —1)] E[T)
C
Sw _ ]E[T]

Therefore, rewriting the above inequality in terms of E[T]
establishes the lemma.
|

Lemma 4. With the SED encoder in (15), the difference
between stopping times T;(€) and 7;,(1/2) of the transmitted
message 0 = i € () satisfies, for any 0 < u < Co,

E[ri(e)=i(1/2) | Ui(r:(1/2)) = u]

e o oo o
<L @ 17 e < > . (30)

- Cq Cq c G

Proof: The proof requires several steps. First, we show
that if p;(t) > 1/2 (or U;(t) > 0), U;(t) forms a Markov
chain, which is given by Lemma 5. Thus, E[r;(¢) — 7;(1/2) |
Ui(7:(1/2)) = u] is equivalent to the expected time-of-first
passage from u to log 125. In order to capture the fact that 0
could fall back to the communication phase and then re-enter
the confirmation phase with probability 13, we consider the
following generalized Markov chain.

Definition 1. Ler Sy = [0, Co) represent the set of all possible
values of log-likelihood ratio u when p;(t) transitions from
below 1/2 to above 1/2. Let n = [log 1=¢/C5]. Let S; =

[1C2,7Cs + C3), 1 < j < n. The generalized Markov chain
is defined as a sequence of states Sy, S1, .. .,Sy, satisfying

P(Sj41]S)) =Pyjp(u+Colu€ Sj_1) =¢q, 0<j<n—1
P(8;-1|8;) =Pyjy(u—Colue S;)=p, 1<j<n,
P(8|So) =Py (u' € Solu € Sy) = p,
P(S,|S8,) =Py U(U/GSn|U€Sn):1.

Fig. 2 illustrates an instance of the generalized Markov
chain initiated at U*(t) = u*, where
Uit) - | %2 | G, if Tilt) 2 0
U*(t)é{ 0= |72 Co i Vi)

€2y

400, otherwise.

Each time U,(t) > 0, there is a Markov chain with the initial
position U*(¢) that can be readily determined from Uj(t).
Also, U*(t) remains constant as long as U;(t) > 0.

Next, let us consider the position-invariant stopping rule as

7;'(€) = min {t : {Ué(;)J > Fogcl;e“ } .

Thus, regardless of U*(¢), the position-invariant stopping rule
of (32) is achieved exactly when U;(t) enters state S, of the
generalized Markov chain for the first time. In contrast, the
stopping rule of (19) might be achieved either at state S,, or
Sn—1, which complicates the analysis.

More importantly, the position-invariant stopping rule is
more stringent than the genie-aided stopping rule in that it
yields an upper bound on 7;(¢), i.e.,

(32)

T < 15(€) < 7/ (€). (33)

This can be justified by the definition of 7;(¢) in (19) and that

Ui<TC;;<e>) N {Ui(g;(e))J N FO% 11 . logc 12‘

(34)

3This can be justified by the fact that 7;(1/2) is a.s. finite.
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Fig. 3. The rate as a function of average blocklength over the BSC(0.05)
with full, noiseless feedback. e = 1073.

That is, p;(77*(€)) > 1 — €, which concludes that (33) holds.
Let V; denote the expected time-of-first passage from state
S; tostate S,,, 1 =0,1,...,n—1. Thus, for any 0 < u* < Cj,

E[7i(e)=7i(1/2) | Us(7:(1/2)) = v’}
<E[r;" () = 7:(1/2) | Ui(r:(1/2)) = u*] = Vb

In the appendix of [14], the time-of-first passage analysis
on the generalized Markov chain yields

_n p (o \" e
V01_2p+1_2p(1 (1_p) )(AO AL (36)

where Aj is the expected self-loop time from state Sy to state
Sp associated with a standard random walk, A is the actual
expected self-loop time from state Sy to state Sp, which is also
the expected time it takes to fall back to the communication
phase from state Sy and then return to state Sy. Here, the
second term in (36) is exactly the differential time between the
actual process and the fictitious random walk, which reveals
the fundamental mechanism of the constant term in the upper
bound. A more detailed analysis in [14] shows that

(35)

Ay <14 LG 37
C
Co
o=1+ ==
0 + o (38)
Therefore, combining (36), (37) and (38), we have
n D Ci+Cy (O
Vo < - ==
01—2p+1—2p( C Cl>
:LCQ & Cl+c2_% ) (39)
01 Cl c C(1

Finally, appealing to (35) and (39) concludes the proof. ®
Lemma 5. The log-likelihood ratio U;(t) of the transmitted

message 0 =i € Q) satisfies
PU;(t+1) = u+ Co|U;(t) = u,u > 0) =q,
PU;(t+1) =u— Co|U;(t) = u,u > 0) =p.

(40)
(41)

IV. NUMERICAL SIMULATION

In this section, we consider the BSC with crossover prob-
ability p = 0.05 and € = 103, Then, it can be calculated
that

C =0.7136, C; = 3.8231, Cy = 4.2479. (42)

Clearly, this setting meets the technical conditions in [12].
Thus, from (16) given by Naghshvar et al.,

< log M + log log M + 3.32
- 0.7136

which turns out to be a loose bound.

The rate of a VLF code is given by R = I‘I’Eg[ T]YI , suggesting
that an upper bound on E[7] corresponds to an achievability
bound on rate.

Fig. 3 demonstrates the simulated rate performance of the
SED encoder as a function of average blocklength E[7].
We also plot the achievability bounds given by Theorem 2,
Theorem 3, and Corollary 1. However, due to the exponential
complexity of the partitioning algorithm, we were only able
to simulate up to & = 25. Nevertheless, one can see that
our new bound exceeds the lower bound of Polyanskiy on
achievable rate for a system limited to stop feedback, as would
be expected for a system utilizing full, noiseless feedback.
In contrast, the corollary from Naghshvar et al.’s lemma lies
beneath Polyanskiy’s VLF lower bound, indicating that it does
not capture the actual performance of the SED encoder. In-
deed, we show analytically in [14] that our bound in Theorem
2 is tighter than that in Corollary 1 and than that in Theorem
3 if the crossover probability p is moderately large.

E[r] +2.87 + 12702.89, (43)
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