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Abstract—Cyclic redundancy check (CRC) codes combined
with convolutional codes yield a powerful concatenated code that
can be efficiently decoded using list decoding. To help design such
systems, this paper presents an efficient algorithm for identifying
the distance-spectrum-optimal (DSO) CRC polynomial for a
given tail-biting convolutional code (TBCC) when the target
undetected error rate (UER) is small. Lou et al. found that
the DSO CRC design for a given zero-terminated convolutional
code under low UER is equivalent to maximizing the undetected
minimum distance (the minimum distance of the concatenated
code). This paper applies the same principle to design the DSO
CRC for a given TBCC under low target UER. Our algorithm
is based on partitioning the tail-biting trellis into several disjoint
sets of tail-biting paths that are closed under cyclic shifts.
This paper shows that the tail-biting path in each set can be
constructed by concatenating the irreducible error events (IEEs)
and circularly shifting the resultant path. This motivates an
efficient collection algorithm that aims at gathering IEEs, and a
search algorithm that reconstructs the full list of error events with
bounded distance of interest, which can be used to find the DSO
CRC. Simulation results show that DSO CRCs can significantly
outperform suboptimal CRCs in the low UER regime.

I. INTRODUCTION

Tail-biting convolutional codes (TBCCs) are simple and
powerful codes in the short blocklength regime. Unlike
the conventional zero-terminated convolutional code (ZTCC)
whose trellis paths all begin and end in the zero state, a TBCC
only requires that each trellis path starts and ends at the same
state. This avoids the need for termination bits. TBCCs were
first proposed by Ma and Wolf [1] as a modified version of
the ZTCC to eliminate the rate loss caused by termination bits.
Solomon and Tilborg [2] demonstrated the intriguing relation
that any TBCC can be transformed into a quasi-cyclic code
and conversely, many quasi-cyclic codes can be viewed as a
TBCC with a small constraint length. Subsequently, it was
shown that any linear block code can correspond to a tail-
biting (TB) trellis representation and the code represented by
such trellis is called a TB code [3], [4]. The significance of
TB codes lies in the fact that they achieve the best minimum
distance of codes in the short-to-medium blocklength regime
[1], [5], [6].
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Since the advent of TBCCs and TB codes, several authors
proposed a variety of algorithms to decode a TBCC or a TB
code, e.g., [1], [7]–[12]. These algorithms are based on either
maximum likelihood (ML) or maximum a posteriori (MAP)
criteria. For ML decoding algorithms, the wrap-around Viterbi
algorithm (WAVA) [10] achieves the near-ML performance
with the minimum complexity.

Cyclic redundancy checks (CRCs) are commonly used to
detect whether a codeword is correctly received. Recently,
with the development of 5G, CRC-aided list decoding of
finite blocklength codes has received increasing popularity.
CRC-aided list decoding can significantly help improve the
code performance, e.g., [13]–[16]. Lou et al. [17] first de-
signed the optimal CRC for a given ZTCC such that the
concatenated CRC-ZTCC achieves the minimum undetected
error rate (UER) when the target UER is low. The CRC
they designed can be referred to as the distance-spectrum-
optimal (DSO) CRC in the sense that the upper bound of the
UER characterized by the full undetected distance spectrum is
minimized and the upper bound is close to the true UER when
the target UER is set low. However, DSO CRC design for a
given TBCC is still missing from the literature. It is remarkable
that a simple suboptimal CRC design [16] can nearly achieve
the random coding union bound of Polyanskiy et al. [18].

The DSO CRC design principle under a low target UER
parallels that of Lou et al., which is equivalent to maximizing
the undetectable minimum distance of the overall concatenated
code. To this end, the first step is to gather a sufficient
number of error events, i.e., TB paths, of distances less than
some threshold. This can be accomplished by the collection
algorithm. Then, the search algorithm is employed to find
the DSO CRC polynomial that maximizes the undetectable
minimum distance. For TBCCs, a trivial collection algorithm
is to perform Viterbi search separately at each possible initial
state to find all error events of a bounded distance. However,
such an algorithm will be inefficient in collecting TB paths
for a family of objective trellis lengths. If the objective trellis
length changes to a smaller value, one has to redo the above
procedure from scratch.

Unlike the trivial algorithm, this paper provides an efficient
algorithm that supports the DSO CRC design of a given TBCC
for a family of objective trellis lengths. The algorithm is based
on partitioning the TB trellis into several disjoint sets of TB
paths that are closed under cyclic shifts. Specifically, for a



feedforward convolutional encoder with v memory elements
and a specified blocklength, its TB trellis can be described as
the union of all TB paths of the required length that start and
end at any of the 2v states. Each TB path can be categorized
by a state through which it traverses. Let TBP(0) be the set of
TB paths that traverse through state 0. Then, recursively define
TBP(i), 1 ≤ i ≤ 2v − 1, as the set of TB paths that traverse
through state i but not through 0, 1, . . . , i− 1. Clearly, the 2v

sets are disjoint and collectively contain all TB paths. Next,
we introduce the concept of irreducible error event (IEE) of
TBP(i), the atomic TB path starting at state i but not passing
states 0, 1, . . . , i − 1 in between. Thus, each path in TBP(i)
can be reconstructed by concatenating the corresponding IEEs
and then circular shifting the resultant path. Since the set of
IEEs can be reused for equal or smaller trellis lengths, our
collection algorithm will be efficient compared to the trivial
algorithm.

The paper is organized as follows. Sec. II reviews the
preliminaries of the TBCC and TB trellises, and Lou et al.’s
CRC design for ZTCCs. Sec. III introduces the partition of a
TB trellis, IEEs, our DSO CRC design algorithm for TBCCs
under low UERs, and a design example. Sec. IV concludes
the entire paper.

II. PRELIMINARIES

A. Construction of the TBCC

We briefly follow [1] in describing a TBCC. For ease of
understanding, consider a feedforward, (n, 1, v) convolutional
code of rate 1/n and v memory elements, albeit the design
approach in this paper can be generalized to any feedforward,
(n, k, v) TBCC. For a binary information sequence of length
K, K ≥ v, we first use the last v bits to initialize the
convolutional encoder and ignore the outputs. Then the entire
K-bit information sequence is fed into the encoder and the
resultant nK-bit output is a TB codeword. As can be seen,
the initial and final state of the codeword will be the same.
In this way the rate loss caused by termination in a ZTCC is
eliminated.

B. Tail-Biting Trellises

We follow [4] in describing the tail-biting trellises. Let V be
a set of vertices (or states), A the set of output alphabet, and
E the set of ordered triples or edges (v, a, v′), with v, v′ ∈ V
and a ∈ A. In words, (v, a, v′) ∈ E denotes an edge that starts
at v, ends at v′ and has output a.

Definition 1 (Tail-biting trellises, [4]). A tail-biting (TB)
trellis T = (V,E,A) of depth N is an edge-labeled directed
graph with the following property. The vertex set V can be
partitioned into N vertex classes

V = V0 ∪ V1 ∪ · · · ∪ VN−1 (1)

such that every edge in T either begins at a vertex of Vi and
ends at a vertex of Vi+1, for some i = 0, 1, . . . , N − 2, or
begins at a vertex of VN−1 and ends at a vertex of V0.

Message u(x)
CRC gen.
poly. p(x)

Convolutional
Encoder g(x)

BPSK
Modulator

AWGN
Channel

Output ũ(x)
or NACK

Soft S-LVD
with CRC p(x)

xmu(x) + r(x) = q(x)p(x) q(x)p(x)g(x)

xmũ(x) + r′(x) = q(x)p(x) + e(x)

1

Fig. 1. Block diagram of a system employing CRC and convolutional codes.

Geometrically, a TB trellis can be viewed as a cylinder of
N sections defined on some circular time axis. Alternatively,
we can also define a TB trellis on a sequential time axis I =
{0, 1, . . . , N} with the restriction that V0 = VN so that we
obtain a conventional trellis.

For a conventional trellis T of depth N , a trellis section
connecting time i and i+1 is a subset Ti ⊆ Vi×A×Vi+1 ⊆ E
that specifies the allowed combination (si, ai, si+1) of state
si ∈ Vi, output symbol ai ∈ A, and state si+1 ∈ Vi+1, i =
0, 1, . . . , N − 1. Such allowed combinations are called trellis
branches. A trellis path (s,a) ∈ T is a state/output sequence
pair, where s ∈ V0 × V1 × · · · × VN , a ∈ AN . The code
represented by trellis T is the set of all output sequences a
corresponding to all trellis paths (s,a) in T .

For a TB trellis T of depth N , a TB path (s,a) of length N
on T is a closed path through N vertices. If T is defined on
a sequential time axis I = {0, 1, . . . , N}, then any TB path
(s,a) of length N satisfies s0 = sN .

In this paper, we only consider the TB trellis T of depth N
satisfying V0 = Vi, i = 1, 2, . . . , N −1. Clearly, the TB trellis
generated by the feedforward, (n, 1, v) convolutional encoder
g(x) meets our condition.

C. System Model and Lou et al’s CRC Design Method

We briefly follow [17] in introducing their DSO CRC design
scheme for a given ZTCC under a low target UER.

The basic system model is depicted in Fig. 1. Let us
consider a K-bit information sequence represented as a binary
polynomial u(x) of degree no greater than K − 1. Then, the
m parity check bits are calculated as the remainder r(x) of
xmu(x) divided by a degree-m CRC generator polynomial
p(x). Therefore, the (K + m)-bit sequence described by
xmu(x)+ r(x) is divisible by p(x), i.e., there exists a unique
polynomial q(x) such that xmu(x) + r(x) = q(x)p(x).
Hence, the CRC-coded sequence can be concisely expressed as
q(x)p(x). Let g(x) = (g(1)(x), . . . , g(n)(x)) be the generator
polynomial of a feedforward, rate-1/n convolutional encoder.
After feeding the CRC-coded sequence q(x)p(x) into the
encoder, the output q(x)p(x)g(x) is the final codeword of the
ZTCC. The transmitter sends the BPSK-modulated sequence
of q(x)p(x)g(x) through an additive white Gaussian noise
(AWGN) channel. After receiving the channel outputs, the
serial list Viterbi decoder (S-LVD) produces the most likely
message sequence ũ(x) if a codeword passes the CRC check
before reaching the maximum list size. Otherwise, a negative
acknowledgement (NACK) is output. Performance analysis of
S-LVD can be found in [14]. An undetected error occurs if
S-LVD erroneously identified a path corresponding to input



sequence q(x)p(x)+ e(x), where e(x) 6= 0 and is divisible by
p(x), as the maximum-likelihood (ML) path.

The fundamental design challenge is to identify the optimal
CRC for the ZTCC generated by g(x) such that the UER
is minimized. Lou et al. [17] showed that if the target UER
is low enough, the UER will be dominated by the smallest-
distance undetected error. Therefore, designing the DSO CRC
polynomial is equivalent to designing the CRC with the max-
imum undetectable minimum distance. This is the essential
motivation of Lou et al’s approach. In their design method,
a CRC polynomial is removed from the candidate list if it
possesses a smaller undetectable minimum distance or more
undetected errors at the same distance. As we proceed to
higher distances, the CRC candidate list is refined until only
one candidate remains in the list. This candidate is the DSO
CRC polynomial for the given ZTCC under the target UER.

Note that the DSO CRC polynomial is always the one that
minimizes the upper bound of the UER characterized by the
full undetected distance spectrum. If the target UER is not low
enough, the above CRC design procedure does not necessarily
yield the DSO CRC polynomial.

III. OPTIMAL CRC DESIGN FOR THE TBCC

In this paper, we consider the same system model as in
Fig. 1 except replacing ZTCCs with TBCCs. The primary
distinction between the two types of convolutional codes is
that a TB error event can start at a nonzero state and remain
in nonzero states on the trellis.

The fundamental DSO CRC design principle for a given
convolutional code under a low target UER is analogous
to that of Lou et al., which is to maximize the minimum
distance at which an undetectable TB error event first occurs,
(or undetectable minimum distance). Formally speaking, the
degree-m DSO CRC design procedure involves two steps.
First, the collection algorithm gathers a sufficient number
of error events of distances less than some threshold d̃ and
stores them for future use. By “sufficient”, we mean that
the number of error events is enough to sieve the unique,
degree-m CRC polynomial out of 2m−1 candidates2. Next,
the search algorithm initializes a list of 2m−1 CRC candidates.
Iterating from distance 1 to d̃, a candidate is removed from
consideration if it possesses a smaller undetected minimum
distance or more undetected errors at the same distance.
Eventually, the last one in the list is the DSO CRC polynomial.

For TBCCs, the trivial collection algorithm is to perform
Viterbi search at each initial state and then aggregate error
events according to increasing distances. However, such an
algorithm will be inefficient in designing DSO CRCs for a
family of objective trellis lengths. The TB paths of one trellis
length found by the trivial collection algorithm cannot be
easily adapted to another trellis length.

To enable the design for a family of objective trellis
lengths, we propose an efficient collection algorithm that

2A CRC generator polynomial must have 1 as coefficients for both the
scalar term and the degree-m term.

finds sufficient number of IEEs. These IEEs can be reused to
reconstruct TB paths of any objective length via concatenation
and circularly shifting the resultant path. The motivation of our
collection algorithm originates from the following partitioning
of TB trellises.

A. Partitioning of the Tail-Biting Trellis

For a given feedforward, (n, 1, v) convolutional encoder
g(x), let us consider the corresponding TB trellis T =
(V,E,A) defined on a given sequential time axis I =
{0, 1, . . . , N}. Since T can also be represented by the union
of TB paths (each corresponding to a TBCC codeword), we
categorize each TB path according to the states through which
it traverses. Formally speaking, let

V
(π)
0 = (σ0, σ1, . . . , σ2v−1) (2)

be a predetermined permutation of V0 = {0, 1, . . . , 2v − 1}.
Define the set of TB paths w.r.t. V (π)

0 as

TBP(σi) ,
{
(s,a) ∈ V N+1

0 ×AN : s0 = sN ;

∃j ∈ I s.t. sj = σi; ∀j ∈ I, sj /∈ {σ0, σ1, . . . , σi−1}
}
,

∀i =0, 1, . . . , 2v − 1. (3)

In words, the set of TBP(σ0) only contains TB paths that
traverse through state σ0; the set of TBP(σ1) contains TB
paths that traverse through state σ1 but not σ0; so on and so
forth. Clearly, all sets TBP(σ), σ ∈ V (π)

0 , form a partition of
the TB trellis T , i.e.,

TBP(σi) ∩ TBP(σj) = ∅, if σi 6= σj (4)⋃
σ∈V (π)

0

TBP(σ) = T. (5)

An important property of the above decomposition is that each
set TBP(σ) is closed under cyclic shifts.

Theorem 1. Any cyclic shift of a TB path (s,a) ∈ TBP(σ)
is also a TB path in TBP(σ).

Proof: Since circularly shifting a TB path (s,a) on a
TB trellis T defined on a given sequential time axis I =
{0, 1, . . . , N} is equivalent to circularly shifting I around T
defined on a circular time axis, this preserves the sequence of
states (or vertices) through which the TB path (s,a) traverses.
Hence, the statement in Theorem 1 holds.

Inspired by the concepts of basis and linear combination
in a vector space, we can consider the set of IEEs starting at
state σ as a basis from which each TB path of length N in
TBP(σ) may be constructed. The next section shows that this
is accomplished by concatenating the IEEs and then circularly
shifting the resultant TB path.

Definition 2 (Irreducible Error Events). For a TB trellis T on
sequential time axis I = {0, 1, . . . , N}, the set of irreducible
error events (s,a) at state σ w.r.t. V (π)

0 = (σ0, σ1, . . . , σ2v−1)
is defined as

IEE(σi) ,
⋃

j=1,2,...,N

IEE(σi, j), ∀i =0, 1, . . . , 2v − 1, (6)



Algorithm 1 The Collection Algorithm

Input: The TB trellis T , threshold d̃, permutation V (π)
0

Output: The list of IEEs LIEE(d̃) = {(s,a,u)}
1: Initialize lists Lσ to be empty for all σ ∈ V (π)

0 ;
2: for i← 0, 1, . . . , |V (π)

0 | − 1 do
3: Perform Viterbi search at σi on T to collect list Lσi(d̃)

of all IEEs of distances less than d̃;
4: end for
5: return LIEE(d̃)←

⋃
σ∈V (π)

0
Lσ(d̃);

Algorithm 2 The Search Algorithm

Input: The length N , degree m, list of IEEs LIEE(d̃)
Output: The optimal degree-m CRC gen. poly. p(x)

1: Initialize the list LCRC of 2m−1 CRC candidates, the
empty list LTBP(d) of TBPs, d = 0, 1, . . . , d̃− 1;

2: for d← 1, . . . , d̃− 1 do
3: Construct new TBPs (s,a,u) from LIEE(d̃) s.t.
wH(a) = d, |s| = N , via concatenating or cyclic shifting;

4: LTBP(d)← LTBP(d) ∪ {(s,a,u)};
5: end for
6: Candi(1)← LCRC;
7: for d← 1, . . . , d̃− 1 do
8: for pi(x) ∈ Candi(d) do
9: Pass all u(x) ∈ LTBP(d) to pi(x);

10: Ci ← the number of divisible u(x) of dist. d;
11: end for
12: C∗ ← mini∈Candi(d) Ci
13: Candi(d+ 1)← {pi(x) ∈ Candi(d) : Ci = C∗};
14: if |Candi(d+ 1)| = 1 then
15: return Candi(d+ 1);
16: end if
17: end for

where

IEE(σi, j) ,{(s,a) ∈ V j+1
0 ×Aj : s0 = sj = σi;

sj′ /∈ {σ0, σ1, . . . , σi} for all j′, 0 < j′ < j}. (7)

Theorem 2. Every TB path (s,a) ∈ TBP(σ) can be con-
structed from the IEEs in IEE(σ) via concatenation and cyclic
shifting operations.

Proof: Let us consider T as a TB trellis defined on a
sequential time axis I = {0, 1, . . . , N}. For any TB path
(s,a) ∈ TBP(σ) of length N on T , we can first circularly
shift it to some other TB path (s(0),a(0)) ∈ TBP(σ) on T

such that s(0)0 = s
(0)
N = σ.

Now, we examine s(0) over I. If s(0) is already an element
of IEE(σ), then there is nothing to prove. Otherwise, there
exists a time index j, 0 < j < N , such that sj = σ. In this
case, we break the TB path (s(0),a(0)) at time j into two
sub-paths (s(1),a(1)) and (s(2),a(2)), where

s(1) =(s0, s1, . . . , sj), a(1) = (a0, a1, . . . , aj−1),

s(2) =(sj , sj+1, . . . , sN ), a(2) = (aj , aj+1, . . . , aN−1).

Note that after segmentation of (s(0),a(0)), the resultant
two sub-paths, (s(1),a(1)) and (s(2),a(2)), still meet the TB
condition. Repeat the above procedures on (s(1),a(1)) and
(s(2),a(2)). Since the length of a new sub-path is strictly
decreasing after each segmentation, the boundary case is the
atomic sub-path (s,a) of some length j∗ satisfying s0 =
sj∗ = σ, sj′ 6= σ, ∀j′ ∈ (0, j∗) which is clearly an element
of IEE(σ). Thus, we end up obtaining sub-paths that are all
elements of IEE(σ). Concatenating them yields the circularly
shifted version of TB path (s(0),a(0)).

Theorem 2 indicates that collecting IEEs starting at every
state σ is enough to reconstruct all TB paths in set TBP(σ).
This underlies the collection and search algorithm we are about
to propose. Note that the collection of IEEs only relies on the
distance threshold d̃ assuming sufficiently long search depth.
Once we collect all IEEs of distance less than d̃, these IEEs
can be reused to reconstruct TB path of distance less than d̃
and of any objective length.

B. The CRC Design Algorithm for the TBCC

For the TB trellis T of a feedforward, (n, 1, v) convolutional
encoder g(x), let (s,a,u) denote the triple of states s, outputs
a and inputs u, where the inputs u are uniquely determined
by state transitions si → si+1, i = 0, 1, . . . , N − 1. Motivated
by the partitioning of T and IEEs in Sec. III-A, we propose the
collection algorithm and search algorithm to design the degree-
m DSO CRC polynomial p(x), as demonstrated in Algorithm
1 and 2, respectively. In the pseudo-code description, we use
u and u(x) interchangeably to denote the sequence and the
corresponding polynomial, respectively.

To visualize the process of the collection algorithm, consider
the state diagram of the convolutional code, where each cycle
in the state diagram with a length equal to the trellis depth
represents a TB path. For a given ordering of states V (π)

0 =
(σ0, σ1, . . . , σ2v−1), once the algorithm finds all IEEs starting
from σ0, the state diagram is reduced by removing σ0 and the
incoming and outgoing edges associated with it. The algorithm
then finds the IEEs starting at σ1 on the reduced state diagram.
Repeating the above procedure, the collection algorithm is able
to find all sets of IEEs.

The search algorithm first reconstructs each length-N TB
path of bounded distance through concatenation of IEEs and
cyclic shift, and then finds the DSO CRC polynomial. The
reconstruction step can be accomplished via dynamic program-
ming. Specifically, let L(w, l) be the list of TB paths of weight
w and of length l, 0 ≤ w < d̃, 1 ≤ l ≤ N . Thus, given a new
IEE (s,a,u) of weight wH(a) and of length |s| satisfying
wH(a) ≤ w and |s| < l,

L(w, l) = L(w, l) ∪ {L(w−wH(a), l−|s|) + (s,a,u)}, (8)

where + denotes the element-wise concatenation. Eventually,
the lists L(w,N), w < d̃ stores all length-N TB paths of
distance less than d̃.



Fig. 2. The number of TB paths of length equal to l vs. length l for TBCC
(133, 171) with d̃ = 22, N = 74.

TABLE I
COMPARISON OF UNDETECTED DISTANCE SPECTRA BETWEEN THE

DEGREE-6 DSO CRCS AND THE SUBOPTIMAL CRCS IN [16] TBCC
(13, 17) AND N = 70 BITS. THE DSO CRCS ARE HIGHLIGHTED. Ad OF

DISTANCES BETWEEN 8 TO 10 ARE ALL ZEROS THUS OMITTED.

v TBCC CRC Undetected Distance Spectra Ad

7 11 12 13 14 15 16 17

3 (13, 17)
0x43 1 8 198 758 1114 2814 7375 18473
0x63 0 0 735 0 2310 0 13965 0

1) Space complexity of the search algorithm: The space
complexity is proportional to the total number of bits required
to represent all TB paths in all lists L(w, l), 0 ≤ w < d̃,
1 ≤ l ≤ N . If the distance threshold d̃ is much less than the
target length N , the growth of the number of TB paths of
length equal to l eventually becomes polynomial in l. Fig. 2
shows the growth of number of TB paths of length l for TBCC
(133, 171) with d̃ = 22 and N = 74. As can be seen, if l ≥ 3d̃,
the growth then becomes polynomial. This suggests that space
complexity is polynomial in N provided that N > 3d̃.

2) Choices of distance threshold d̃: In order to design the
DSO CRC polynomial for a given TBCC, one has to select
an appropriate d̃. Empirically, d̃ ranges from 2dfree to 3dfree
for designing a CRC polynomial of degree m ≤ 10.

3) Choices of V (π)
0 : We note that in practice, the ordering

of V (π)
0 exerts a negligible influence on the space complexity.

Hence, the natural ordering suffices for the DSO CRC design.

C. Example: Degree-6 DSO CRC for TBCC (13, 17)

As an example, we design the degree-6 DSO CRC polyno-
mial for TBCC (13, 17) with K = 64 bits under target UER
Pe = 10−10. Since the UER is low enough, the UER in this
regime will be dominated by the smallest undetected errors.

Table I presents the undetected distance spectra up to d̃ = 17
for the degree-6 suboptimal CRC polynomial 0x43 designed in
[16] and our degree-6 DSO CRC polynomial 0x63 for TBCC
(13, 17) and K = 64 bits with overall trellis length N =
K +m = 70. With the full undetected distance spectrum, the

U
nd

et
ec

te
d 

Er
ro

r R
at

e

Fig. 3. Assume the target UER Pe = 10−10. The truncated union bound
vs. SNR for all 32 degree-6 CRC polynomial candidates for TBCC (13, 17)
and K = 64 bits. The degree-6 DSO CRC polynomial 0x63 and degree-6
suboptimal CRC polynomial 0x43 designed in [16] are highlighted.

UER of a given CRC and TBCC can be upper bounded by
the union bound of probability, namely,

Pe ≤
dmax∑
d=1

AdQ

(√
dEs
N0

)
, (9)

where dmax is the maximum possible distance of the finite-
length TBCC, and Q(x) is the tail probability function of
standard normal distribution. In practice, the full undetected
distance spectrum can be computationally expensive. Instead,
we will only calculate the bound in (9) up to d̃ and such a
bound is known as the truncated union bound. Despite the
resulting computational inaccuracy, the truncated union bound
still serves as a good estimate in the low UER regime.

Fig. 3 shows the truncated union bounds up to distance
d̃ = 17 of all 32 degree-6 candidate CRC polynomials for
TBCC (13, 17). The curves corresponding to the suboptimal
CRC 0x43 and the DSO CRC 0x63 are highlighted. As can
be seen, the DSO CRC outperforms the suboptimal CRC by
2 orders of magnitudes at 6.5 dB, the SNR at which the DSO
CRC attains the target UER of 10−10. However at 3 dB, the
DSO CRC 0x63 designed for 6.5 dB performs worse than the
CRC 0x43 and thus fails to remain optimal. This demonstrates
that the DSO condition indeed depends on the operating SNR
or target UER.

IV. CONCLUSION

In this paper, we propose an efficient algorithm for design-
ing DSO CRC polynomials for any specified TBCC for a low
target UER. The algorithm is based on decomposing the TB
trellis into several disjoint sets of TB paths that are closed
under cyclic shifts. We also showed that the TB path in each
set can be constructed from the IEEs via concatenation and
cyclic shift. The use of IEEs enables the DSO CRC design for
a family of trellis lengths (or the corresponding blocklengths).
Our results demonstrate that for low target UER, DSO CRCs
can significantly outperform suboptimal CRCs.
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