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Abstract—This paper proposes a finite-precision decoding
method for low-density parity-check (LDPC) codes that features
the three steps of Reconstruction, Computation, and Quantization
(RCQ). Unlike Mutual-Information-Maximization Quantized Be-
lief Propagation (MIM-QBP), RCQ can approximate either belief
propagation or Min-Sum decoding. MIM-QBP decoders do not
work well when the fraction of degree-2 variable nodes is large.
However, sometimes a large fraction of degree-2 variable nodes
is used to facilitate a fast encoding structure, as seen in the IEEE
802.11 standard and the DVB-S2 standard. In contrast to MIM-
QBP, the proposed RCQ decoder may be applied to any off-the-
shelf LDPC code, including those with a large fraction of degree-2
variable nodes. Simulations show that a 4-bit Min-Sum RCQ
decoder delivers frame error rate (FER) performance within
0.1 dB of full-precision belief propagation (BP) for the IEEE
802.11 standard LDPC code in the low SNR region. The RCQ
decoder actually outperforms full-precision BP and Min-Sum in
the high SNR region were FER less than 10~°. This paper also
introduces Hierarchical Dynamic Quantization (HDQ) to design
the non-uniform quantizers required by RCQ decoders. HDQ is
a low-complexity design technique that is slightly sub-optimal.
Simulation results comparing HDQ and optimal quantization on
the symmetric binary-input memoryless additive white Gaussian
noise channel show a mutual information loss of less than 10~°
bits, which is negligible for practical applications.

Index Terms—Low Precision LDPC Decoder, Information Max-
imization Quantizer, Finite-Precision Decoding.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes [1], [2] have been
widely used in wireless communication and NAND flash
systems because of their excellent error correction capabilities.
Message passing algorithms are used to decode LDPC codes,
and in practical implementations the messages must often
be quantized. Uniform quantization of messages with low
precision significantly deteriorates decoder performance.

Recently, non-uniform quantization of messages in LDPC
decoders have provided excellent performance with low pre-
cision and coarse quantization []. One way to realize non-
uniform quantization LDPC decoders is to design lookup
tables (LUTSs) for variable nodes and/or check nodes. In [3],
a Finite Alphabet Iterative Decoder (FAID) is proposed to
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overcome the error floor of an LDPC code under binary
symmetric channel (BSC).

Aiming to minimize the performance degradation in
the water fall region, [4] proposed a Mutual-Information-
Maximization LUT (MIM-LUT) decoder. The MIM-LUT de-
composes the actual node operation into a series of cascaded
binary-input-single-output LUTs. In [5], Lewandowsky et al.
proposed the Information-Optimum decoder, also called the
Information Bottleneck (IB) decoder. Stark et al. extended the
ideas from [4] and [5] to develop message alignment (MA) in
[6]-[8] such that IB decoders can also work on irregular LDPC
codes with arbitrary degree distributions. In [9], [10], the Min-
LUT decoders were proposed, which replace the LUTs in the
check node with a discrete, cluster-based Min-Sum operation.
One problem faced by Min-LUT is it can’t work well when
the fraction of degree-2 variable node is large [10].

The other way to realize non-uniform quantization is by
designing quantization parameters that maximize the mutual
information between the source and quantized messages. In
[11], Jason Kwok-San Lee and Jeremy Thorpe proposed a
non-uniform BP decoder, which is implemented based only on
simple mappings and fixed-point additions. Unfortunately, the
authors did not provide a systematic way to find those mapping
parameters. Recently, He et al. in [12] provided a systematic
way to find mappings by implementing density evolution
and dynamic programming quantization [13], and proposed
MIM-QBP. They also extended MIM-QBP to irregular LDPC
codes. However, similar to Min-LUT, MIM-QBP also faces
the problem that it does not perform well when the fraction
of degree-2 variable nodes in the LDPC code is large [12].

Even though both Min-LUT and MIM-QBP can have an
excellent decoding performance by optimizing the edge dis-
tribution to lower the fraction of degree 2 variable nodes, it
is sometimes necessary to consider LDPC codes with large
fraction of degree 2 variable nodes. For an example, in the
IEEE 802.11 standard’s rate 1/2 LDPC code, half of the
variables nodes have degree 2 [14].

In this work, we generalize the structure in [11] and propose
a finite-precision LDPC decoding method that features the
three steps of Reconstruction, Computation, and Quantization
(RCQ). Unlike MIM-QBP and Min-LUT, RCQ can be applied
on any off-the-shelf LDPC code, including those with a large
fraction of degree-2 variable nodes, such as the IEEE 802.11
code. The main contributions in this paper are:



o We proposed a generalized RCQ decoder structure. Un-
like the work in [11], [12], RCQ decoders can be an
approximation of either BP decoders (bp-RCQ) or Min-
Sum decoders (ms-RCQ).

e We designed an efficient sub-optimal quantization
scheme, called Hierarchical Dynamic Quantization
(HDQ), for the symmetric binary-input discrete mem-
orelyess channel (BIDMC). HDQ is used for channel
quantization and RCQ decoder construction.

o We used HDQ to implement Mutual Information Max-
imization Discrete Density Evolution (MIM-DDE), and
showed that the RCQ decoder is a result of MIM-DDE.

o We designed a 4 bit bp-RCQ decoder for the IEEE 802.11
standard rate 1/2 LDPC code for theoretical interests.
Simulations show that a 4-bit bp-RCQ decoder delivers
frame error rate (FER) performance less than 0.1dB of
full-precision BP.

o We designed a 4 bit ms-RCQ decoder for the IEEE 802.11
standard rate 1/2 LDPC code for practical implementa-
tion interests. Simulations show that a 4-bit ms-RCQ de-
coder delivers frame error rate (FER) performance 0.1dB
of full-precision BP in the low SNR region. Simulation
shows that ms-RCQ decoder actually outperforms full-
precision BP and Min-Sum with FER less than or equal
to 1075,

The remainder of this paper is organized as follows: In Sec.
II, we give the description and notations for the RCQ decoder.
A hierarchical dynamic quantization algorithm is proposed in
Sec. III. Mutual information maximization Discrete Density
Evolution is introduced in Sec. IV. This section also describes
how to design RCQ decoders given an LDPC ensemble.
Simulation results and discussion are given in Sec. V. Finally,
Sec. VI concludes our work.

II. RECONSTRUCTION COMPUTATION QUANTIZATION
DECODING STRUCTURE

Message passing algorithms update messages between vari-
able nodes and check nodes in an iterative manner either
until a valid codeword is found, or a predefined maximum
number of iterations, I, is reached. The updating procedure
contains two steps: 1) computation of the output , 2) message
exchange of the output between neighboring nodes. We call
messages with respect to the computation internal message,
and messages passed over the edges of the Tanner graph
external message. In [11], the authors proposed a LDPC
decoder structure where the internal message has a higher
precision than external message. In this work, we generalize
their structure and propose a decoding framework that features
three steps of Reconstruction, Computation and Quantization.

As illustrated in Fig.1, an RCQ decoder consists the follow-
ing three parts:

1) Reconstruction: Reconstruction R(-) : FJ* — F5(m <
n) maps external message u; to internal message 7;. We
denote channel reconstruction by R°". Additionally, we denote
variable node reconstruction and check node reconstruction at
iteration ¢ by R¢ and Ry, respectively.
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Fig. 1. RCQ Decoding Structure Illustration

2) Computaion: Computation function F(-) : F§ — F5 is
used to calculate the outgoing message ;. We denote the
variable node function and check node function by F* and F¢,
respectively. 7 sums up all incoming messages. 7 can have
different implementations. We denote the check node operation
in BP (i.e. hyperbolic-tangent operation) and standard Min-
Sum decoder by Fy, and Fp,..

3) Quantization: A quantizer Q(-) : F§ — FJ' quantizes
Tout 10 @ m bit external message uyy:. A m bit Quantizer )
is determined by 2™ — 1 thresholds th = {thq,...,thom_1}
and

0 i <thy
2m—1 i > thom_1 (1

j th]’ <1< thj+1

Qi) =

We denote channel quantization by Q°", and check node
quantization and variable node quantization at the i*" iteration
by @ and @)} respectively.

RCQ decoder precision can be fully described by a three
tuple (m,nc nY), which represents external message preci-
sion, check node internal message precision and variable node
internal message precision. We use notation co to denote
floating point representation.

III. HIERARCHICAL DYNAMIC QUANTIZATION

Like most non-uniform quantization LDPC decoders, de-
signing RCQ decoder involves quantization that maximizes
mutual information. Kurkoski in [13] proposed a dynamic
programming method to find an optimal quantizer for BIDMC
with complexity O(M?), where M is cardinality of channel
output. Dynamic programming quantization is proven to be
optimal, however quantization becomes impractical when M
is large. To mitigate computational complexity, different low-
complexity near-optimal algorithms are proposed. In [15], Tal
developed an annealing quantization algorithm with complex-
ity O(M log(M)) for quantizing the symmetric BIDMC. In
[5] Lewandowsky J. improved sequential Information Bottle-
neck algorithm (sIB) to quantize symmetric BIDMC . The
computation complexity of the IB algorithm is O(tM), where
t is the number of trials. As a machine learning algorithm,
IB algorithm requires multiple trials to guarantee a satisfying
result. In this work, we propose an efficient m bit quanti-
zation algorithm for the symmetric BIDMC with complexity
O(mM).

Consider code bits = € {0,1} in a binary LDPC codeword
that are modulated by Binary Phase Shift Keying (BPSK), i.e.
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Fig. 2. HDQ method illustration: Quantizing symmetric BI-AWGNC obser-
vation into 2 bit messages
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Fig. 3. An intermediate step of STS Algorithm

s(x) = —2x + 1, and transmitted over an Additive Gaussian
White Noise (AWGN) channel. Assuming x obeys a uniform
distribution and noise variance is o2, the joint probability
density function between x and received signal y, p(z,y|o)
is
1 (w=s(=)?
= — 202

Since HDQ is designed under a BIDMC, we first uniformly
quantize p(x,y|o) into M levels and denote the joint prob-
ability mass function (p.m.f.) by P(X,Y), X = {0,1},Y =
{0,..., M —1}. We denote P(X =1,Y =1i) by P(X;,Y;) for
simplicity.

A m bit Quantizer Q°" aims to maximize the mutual
information between X and quantized value 7' [13] :

I(X;T). 3
arg max J(X; T) 3)

Lemma 1 and Lemma 2 in [4] simplifies finding an optimal
m bit quantizer to finding 2™ — 1 boundaries {a1, ..., agm 1 }.
Even so, jointly optimizing 2™ — 1 boundaries still has a
large searching space. Hence, instead of optimizing thresholds
jointly, the HDQ algorithm determines these boundaries bit
level by bit level. Figure. 2 illustrates how HDQ quantizes
symmetric BILAWGNC output into 2 bit levels :

e initialize: ag and aq4.

o bit level 0: determine as, ag < as < ag — 1,

e bit level 1 : fix as and determine a; and as, ag < a1 <

as — 1 and as < ag < aq — 1.

Algorithm 1: Sequential Thresholds Searching (STS)

input : P(X,Y), a;, a,
output: a,,:

]Dl — [P(X()?Yal) P(X17Yaz)]

Py [P(g){ol,Yam) P(Xl,Yaalﬂ)]
PT <~ [Zi;al+1 P(X07)/7) Zi;al-l,-l P(Xla }/7,)]

for i< 1toa,—a —2do
ck « cost(P, Py)
cf < cost(P, Py)
if ¢} < ¢’ then
P+~ P+ P,
P.«—P.— P,
P [P(X0>Yaz+i+1)
else
| return q; +7+ 1
end

P(X1,Ya,1it1)]

end
return a, — 1

Algorithm 2: Hierarchical Dynamic Quantization
input : Pr(X,Y),X €{0,1},Y €{0,...N—1}; m
output: P(X,7T), Q, R
ag <0
anN < N -1
for i < 0 to m — 1 do

for j « 0to 2" —1do

AL (j+3) < STS (a,fij’a%(j—&-l))
end
end
P(X;,Ty) « Y0 P(X, Th)
P(X(.hyai)
th; < log P, Y

R(i) = log Hx>7

Note that a; and a3 are independently optimized. It is easy
to show that the solution of a; is independent to the solution
of as. A similar idea is also used in optimizing progressive
reads for flash memory cells [16].We borrow the metric of
Information Bottleneck algorithm and develop a sequential
threshold searching (STS) algorithm to find a;. Given q; and
ar, 7 > 1 and starting from a; 1, STS sequentially calculates
the merging costs that each entry is merged into left or right
cluster and stop when left merging cost is larger than right
merging cost. Fig. 3 shows an intermediate step of STS.
Merging cost is defined as mutual information loss when
merging two probabilities together(Ref [5], Eq(10)) . Full
description of STS and HDQ algorithm are given in Algorithm
1 and 2, respectively.

Fig. 4 shows various 4 bit quantization regions for channel
output of BILAWGNC under different o2. We examined four
different quantization algorithms. Simulations show that the
improved sIB algorithm and HDQ algorithm have a quanti-
zation result very close to the optimal dynamic programming
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Fig. 4. Quantization regions for channel output of BILAWGNC under different
2
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algorithm. Annealing quantization algorithm deviates from the
optimal solution to different extent under different 0. We use
I9(X;T) to denote the mutual information between X and
quantized value 7', obtained by optimal dynamic programming
quantizer and use I°“?(X;T) to represent mutual information
obtained through sub-optimal quantizers. Therefore, we can
quantitatively evaluate the performance of each sub-optimal
algorithm by Al = I?(X;T) — I*"*(X;T).

Fig. 5 gives Algy, of each sub-optimal quantizer. Simu-
lations show that all three sub-optimal quantizers yield very
similar mutual information to the optimal quantizer. However,
we can still see that compared with annealing quantization,
sIB algorithm and HDQ have a quantization result more close
to the optimal quantizer because the ATy, is around 1076 for
both sIB and HDQ.

In the next section, we will use HDQ to conduct mutual-
information-maximization discrete density evolution and con-
struct RCQ decoder.

IV. MUTUAL INFORMATION MAXIMIZATION
DISCRETE DENSITY EVOLUTION

RCQ decoder is a result of quantized density evolution :
In the ¢ iteration, Qf, Ry, Qy, RY,, are constructed by
quantizing the joint p.m.f. between code bits and the message
from either the variable node or check node. To differentiate
our discrete density evolution from the one using uniform
quantization [17], we name our density evolution Mutual-
Information-Maximization Discrete Density Evolution (MIM-

DDE).

A. MIM-DDE at check node

Denote the joint p.m.f between the external message
from the i*" variable node and corresponding code bit by

PY(X,T), X = {0,1}, T = {0,...,2™ — 1}. Based on
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Fig. 5. Difference of mutual information loss between each sub-optimal

quantizer and optimal quantizer

the independence assumption in density evolution [18], all
incoming messages have same distribution:

PYYX,T) = P'(X,T), i=0,,de—=2 (4

where d. is check node degree. At check node, the code
bit corresponding to output is the XOR sum of code bits
corresponding to all inputs. By denoting:
PU(X, T)® PYY(X,T) 2 > P""(Xm, T)P""(Xn,T), (5
where m,n,k € {0,1}, the joint p.m.f between code bit

corresponding to output and input messages, PS5, (X, T), can
be represented by:

P (X, T)=P" %X, T)®..®P""*(X,T) (6)
=P (X, T)®..® P"(X,T) (7
£ PU(X, 7)Y, 8)

where T is a vector containing all incoming d. — 1 messages.
Eq.(8) gives p.m.f. update when Fy is implemented at the
check node.

In order to keep the cardinality of external message the
same, P¢,,(X,T) needs to be quantized to 2™ levels. As
pointed in [5], |T| = 27(4~1) will be very large when m
and d. is large. For an example, if d. = 8 and m = 4,
|T| = 2.68+108. Hence, directly quantizing P¢,, (X, T) is im-
possible. To mitigate the problem of cardinality bombing, we
propose an intermediate coarse quantization algorithm called
One-Step-Annealing (OSA) quantization without sacrificing
mutual information. Note that Eq. (8) can be calculated in
a recursive way and each step takes two inputs:

PC

out

(X, T)® = P(X,T)®" Ve P'(X,T) (9

We observe that, in each step, the output of Eq.(9) has some
entries with very close log likelihood ratio (LLR) values. By



Fig. 6. OSA illustration: points are ordered w.r.t. LLR values. Each color
represents a cluster and LLR value difference in each cluster is less than [s.

merging entries whose LLR difference is small enough, mutual
information loss is negligible. Hence, OSA simply merges
entries whose LLR values difference is less than a threshold
ls, and the output of OSA will be the input of the next p.m.f
calculation step, i.e.:

PU(X,T)® = 0sa(PY(X,T)®"Y 1,)® P'(X,T). (10)

We use I € [107%,1073] in our simulation. Fig. 6 shows an
illustration of OSA and a full description of the OSA algorithm
is given in Algorithm.3. The following table shows |T| after
we implement OSA and choose different /,. The example we
show has the parameter m = 4, d. = 8. The result shows that
OSA greatly decreases the output cardinality, and based on
our simulation, mutual information losses under these three [,
are all less than 10~7 bits.

10—3
1.3 %103

5% 10 4%
1.7 % 103

10— 1
3.3%10%

ls 0
IT] | 2.68 % 103

For a regular LDPC code with check node degree d., HDQ
is implemented to quantize T into a m bit message. We denote
the joint p.m.f. between code bit x and quantized value 7" by
Pe(X,T). As a result of HDQ, Q°¢ and R" in this iteration
are constructed.

Unlike regular LDPC codes, irregular LDPC codes have dif-
ferent node ty&)es, we denote the check node edge distribution
by p(z) = > io5® p;x~!. To update P¢(X,T) and construct
Q¢ and R" for irregular LDPC code, we need to quantize:

de
(X,T) =Y piPe(X,T)207V

=2

Pout (11)
Due to space limitations, we refer [9] to Min-Sum operation.
Note that Min-Sum operation doesn’t increase the cardinality

of output, this implies for ms-RCQ:

1) m =nf,
2) R° doesn’t change with respect to iteration. We can map
2™ messages to {—2"—1,...,—1,1,...,2™—1} and then

implement F, .. We can also implement a single LUT
to realize the min-sum operation.

B. MIM-DDE at variable node

Each variable node sums the LLR messages from its channel
observation and neighboring check nodes. By denoting:

1

P (X, T)D PY(X,T) = )

PYY(X,T)P*(X,T),
(12)

Algorithm 3: One Step Annealing Algorithm (OSA)
input : Pr(X,Y), X €{0,1},Y €{0,.... N —1}; I,
output: Pr(X,T)
j<+0
PI'(X(), T]) < P(XQ, YO)

Pr(Xl,Tj) — P(Xh}/(])

Pr(Xo,Yo)
L log prix, v

fori<1to N —1do

if (log pix>73 — 1) <l then
P(Xo,Tj) — PI‘(X07TJ‘) + PI“(X(),Y;)

P(XlaTj) — PI‘(Xl,Tj) + PI'(Xl,}/i)

else

j—j5+1

Pr(X071}) < Pr(X()vn)
Pr(Xy,T;) < Pr(Xy1,Y;)

Pr(Xo,Y;)
L+ log prixy )

end
end

the joint p.m.f between code bit X and incoming message
combination T, P? (X, T), given variable node degree d,,

can be expressed by:

Ppa(X,T) = PX, T) B P(X, 1) D, 13)
Similarly, for irregular LDPC codes with variable edge degree

distribution A\(x) = Z?;’;" Xiz'~1, PY (X, T) is given by:

out

dy,max
(X,T)=PX,T)30 > \PX,T) D,

1=2

PU

out
(14

P, (X, T) is then quantized to 2™ levels by HDQ. Also,
as a result of HDQ, and joint p.m.f between code bit X
and quantized messages T', PY(X,T), is updated. Q" in this
iteration and R° in the next iteration are built correspondingly.
Note that variable nodes also face the cardinality bombing
problem, hence OSA is needed in each recursive step.

Thus, by implementing MIM-DDE, we can iteratively up-
date P¢(X,T), P’(X,T) and build Q5, QY, RS and RY,
1=A{0,....Ip — 1}.

In MIM-DDE, we only limit the precision of external
messages, i.e. m, and keep internal messages, n¢ (only for
bp-RCQ) and n®, full precision. To make internal message
precision finite, a uniform n® (or n”) quantizer is required
when implementing F°(or F").

V. SIMULATION AND DISCUSSION

In this section, we build RCQ decoder for IEEE 802.11
standard LDPC code with codeword length 1296 and edge
distribution:

Az) = 0.25882 + 0.31402* + 0.04652° 4 0.38372'°, (15)

p(r) = 0.81402° + 0.1860z" . (16)
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Fig. 8. The effect of internal message quantization for 4 bits ms-RCQ

This LDPC code has fast encoding structure hence half the
variable nodes has degree 2. The Nh we used to design RCQ
is 0.90 dB for both bp-RCQ and ms-RCQ. I is set to be 50.

Fig. 7 shows the FER simulation result of bp-RCQ(4,00,00)
and ms-RCQ(4,4,00). As comparison, we give the performance
of BP(co) and Min-Sum (c0). BP decoder performs best in
low Eb region. However FER curve slope decreases after 2.4
dB due to elementary trapping sets [3], which is a result of
many degree-2 variable nodes. Min-Sum(oo) decoder performs
worst. For RCQ decoders, when ff—: is low, compared with
BP(c0), bp-RCQ (4,00,00) and ms-RCQ(4,4,00) has a degra-
dation 0.1 dB. As —b increases, bp-RCQ(4,00,00) behaves
similarly to BP(o0) and have a degradation less than 0.1
dB. However, ms-RCQ (4,4,00) outperforms BP(co) and Min-
Sum(oc) with FER less than or equal to 107°.

It seems counter intuitive that ms-RFQ performs even better
than Min-Sum (oc0), however it is worthy noting that ms-
RFQ implements cluster-based Min-Sum operation rather than
LLR based Min-Sum operation [10]. We collected noised
codewords that BP could not decode under 2.6 dB and fed
them into ms-RCQ. Simulation results show that ms-RCQ can
decode 80% of them. Hence ms-RFQ is able to overcome
elementary trapping set that degrades BP performance.

For a purpose of practical implementation, we are more
interested in ms-RCQ. Fig.8 gives FER performance of ms-
RCQ decoder with different n”. When % < 2.2 dB, ms-
RCQ(4,4,12) (5 bits to integer part and 7 bits to fraction part),
ms-RCQ(4,4,10) (5 bits to integer part and 5 bits to fraction
part) and ms-RCQ(4,4,8) (5 bits to integer part and 3 bits
to fraction part) have a degradation 0.1, 0.15 and 0.2 dB,
compared with BP(co). When E, /N, > 2.4 dB, all three ms-
RCQ decoders outperform BP(c0).

VI. CONCLUSION

In this work, HDQ is proposed to quantize a symmetric
binary input discrete channel into m bit levels. Then we use
HDQ and MIM-DDE to construct the RCQ decoder. Unlike
MIM-QBP, RCQ can approximate either belief propagation or
Min-Sum decoding. We use an IEEE 802.11 standard LDPC
code to illustrate that the RCQ decoder works well when the
fraction of degree-2 variable nodes is large. Simulations show
that a 4-bit ms-RCQ decoder delivers frame error rate (FER)
performance 0.1 dB of full-precision belief propagation (BP)
in the low SNR region. The RCQ decoder actually outperforms
full-precision BP in the high SNR region because it overcomes
elementary trapping sets that decrease the slope of the FER
curve under BP decoding at high SNR.
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