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ABSTRACT Increased data rates and very low-latency requirements place strict constraints on the
computational complexity of channel decoders in the new 5G communications standard. Practical
low-density parity-check (LDPC) decoder implementations use message-passing decoding with finite
precision, which becomes coarse as complexity is more severely constrained. In turn, performance degrades
as the precision becomes more coarse. Recently, the information bottleneck (IB) method was used to design
mutual-information-maximizing mappings that replace conventional finite-precision node computations. As
a result, the exchanged messages in the IB approach can be represented with a very small number of bits.
5G LDPC codes have the so-called protograph-based raptor-like (PBRL) structure which offers inherent
rate-compatibility and excellent performance. This paper extends the IB principle to the flexible class of
PBRL LDPC codes as standardized in 5G. The extensions include IB decoder design for puncturing and
rate-compatibility. In contrast to existing IB decoder design techniques, the proposed decoder can be used
for a large range of code rates with a static set of optimized mappings. The proposed construction approach
is evaluated for a typical range of code rates and bit resolutions ranging from 3 bit to 5 bit. Frame error
rate simulations show that the proposed scheme always outperforms min-sum decoding algorithms and
operates close to double-precision sum-product belief propagation decoding. Furthermore, alternatives to
the lookup table implementations of the mutual-information-maximizing mappings are investigated.

INDEX TERMS LDPC codes, 5G, message-passing decoding, mutual-information based signal processing,

information bottleneck method, machine learning.

. INTRODUCTION

OW-DENSITY parity-check (LDPC) codes are used

in the current 5G standard due to their very powerful
error-correction performance [1]. However, to fully exploit
the error-correction capabilities of these codes, high precision
belief propagation is required. In practice, this decod-
ing approach comes with two main challenges. First, the
messages which carry the soft information are exchanged
iteratively between the check nodes and variable nodes
in the Tanner graph and require a high resolution to
precisely convey the belief on a codeword bit. As a

result, the message transfer becomes a major bottleneck
as the block length increases [2]. Second, realizing the
correct check node operation, i.e., the box-plus operation
requires several computationally complex operations. The
traditional strategies to combat the high message reso-
lution and the computational burden at the check nodes
involve quantization of the messages and approximation
of the arithmetical operations [3]. However, it is well
known that the performance deteriorates drastically as the
quantization of the messages is too coarse, i.e., below
6 bits.
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One way of dealing with coarse quantization is the
finite-alphabet iterative decoding (FAID) approach [4], [5].
Here, hand-optimized lookup tables are designed which
replace the conventional node operations. The FAID
approach was shown to achieve very competitive
performance on a binary symmetric channel with regular
LDPC codes, despite coarse quantization.

However, in [6], [7], a fundamentally different way to
design node operations tailored to coarse quantization was
sketched. Instead of trying to approximate the arithmetic in
the node operations, a mutual-information-based design was
proposed. Here, the operations do not mimic the actual box-
plus operation but represent a discrete input-output relation
which maximizes the mutual information between the quan-
tized message and the corresponding codeword bit. In [8] it
was shown that the ideas from [6] and [7] can be directly
linked to the information bottleneck method [9], which is a
more generic framework with roots in machine learning and
information theory [10].

While similar in operation to the lookup tables developed
for the FAID approach [4], [5], the tables used in information
bottleneck (IB) decoders are designed analytically [11]-[15].
Maximizing mutual information requires access to the
respective joint distributions in each decoder iteration. These
distributions can be tracked and predicted using discrete den-
sity evolution [7], [11], [13], [14]. In turn, no log-likelihood
ratios (LLRs) are processed in the entire decoder at any
time. Instead, integer-valued messages, referred to as clus-
ter indices in this paper, are exchanged. The resulting IB
LDPC decoders operate only 0.1dB away from the double-
precision belief propagation performance, even though all
messages were represented with 4 bits and the operations
were simple discrete input-output mappings [11], [13], [14].
In [16], it was shown that with similar decoders, a decoding
throughput up to 588 Gb/s is possible with high energy and
area efficiency.

Interestingly, despite several successful applications of
mutual-information-based signal processing, for some time,
designing LDPC decoders for non-optimized irregular LDPC
codes remained an open problem. Results in [14], [17] sug-
gested that both, coarsely quantized min-sum decoders and
decoders leveraging mutual-information-maximizing lookup
tables only work for certain irregular LDPC codes with
optimized degree distributions. However, in [12], 4 bit
information bottleneck decoders that use a technique called
message alignment were presented. These decoders approach
the performance of double-precision belief-propagation
decoders also for irregular LDPC codes without specifically
optimized degree distributions.

To the best of our knowledge, all information bottle-
neck decoders and related mutual-information-maximizing
lookup table decoders in literature are tailored for a par-
ticular code ensemble with a specific rate and do not take
into account puncturing. However, in practical systems a
rate-compatible decoding scheme is favorable. Recently, so-
called protographbased raptor-like (PBRL) LDPC codes were
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shown to pair very powerful error-correcting capabilities
and an efficient structure that enables an inherent rate-
compatibility [18]. This family of LDPC codes is also used
in the 5G standard [1]. In particular, PBRL LDPC codes
leverage degree-one variable nodes which allow for a flex-
ible rate change. These degree-one variable nodes build an
incremental-redundancy code in addition to the high-rate
mother code. As a result, variable nodes with degree one
up to twenty might exist in the Tanner graph. This high
irregularity in addition to puncturing requires a very evolved
IB design approach to build decoders that work with a very
coarse quantization. In addition, the proposed decoder is
not matched to a particular code rate, as state-of-the-art 1B
decoders are [11], [13], [14]. The decoder, defined by a sin-
gle set of lookup tables, can be used for the entire range of
rates covered by the PBRL LDPC code. In the conference
version of this paper [19], the IB decoder design only for
puncturing was sketched. This paper extends this concept to
rate-compatible design with efficient table-reuse across var-
ious code rates. Here, message alignment is leveraged as a
general design concept. As message alignment turns out as a
fundamental technique crucial to build powerful IB decoders,
we propose a novel view on message alignment which allows
achieving even better performance in terms of frame error
rates compared to the results presented in [19]. As a further
extension to [19], this journal paper investigates alterna-
tive implementations of the mutual-information-maximizing
lookup tables. Here, a static min-sum-inspired mapping at
the check node is investigated which still outperforms the
conventional min-sum decoder.

In detail, the paper -contains

contributions:

o Extension of the design of IB LDPC decoders
from [11], [12] to include puncturing in both the high-
rate mother code and the degree-one variable nodes of
PBRL codes.

« Reformulation of message alignment as an IB problem,
facilitating designs for irregular LDPC codes.

o The new interpretation of message alignment allows the
reuse of tables across the entire rate range allowing a
compact rate-compatible IB decoder for an entire PBRL
code family.

« Investigation of several message alignment implemen-
tations and their effect on the decoder performances.

« A 4-bit information bottleneck decoder for a PBRL code
family designed using the new construction approach
that outperforms a 6-bit normalized-min-sum decoder
and performs very close to double-precision belief
propagation decoding.

o Detailed investigation of the impact of the bit resolu-
tion on the decoding performance. Therefore, different
resolutions, from 3 bit to 5 bit are considered. It is
shown that even 3 bit quantization is still sufficient to
outperform a 4 bit min-sum decoder.

« Investigation of the effect of alternative implementations
of the mutual-information-maximizing lookup tables.

the following main
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FIGURE 1. (a) lllustration of the information bottleneck setup, (b) Exemplary
information bottleneck graph.

Organisation: The IB method and PBRL LDPC codes are
briefly reviewed in Section II. In Section III, we summarize
the design of IB LDPC decoders and discuss differences
to conventional decoding techniques like belief-propagation
decoding or min-sum decoding. Thereafter, message align-
ment and its variants are reviewed. Section V targets the
effect of puncturing in PBRL LDPC codes and techniques
to incorporate puncturing in the decoder design. Finally,
this paper targets the problem of rate-compatible decoding
architectures in Section VI. In Section VII, further numeri-
cal simulations comparing the performance of our proposed
decoder with several reference systems and LDPC codes
are provided. Additionally, simulation results for different
implementations of the mutual-information-preserving map-
pings and message alignment are provided in Section VII.
Section VIII concludes the paper.

Notation: The realizations y € ) from the event space
Y of a discrete random variable Y occur with probabil-
ity Pr(Y = y) and p(y) is the corresponding probability
distribution. The cardinality or alphabet size of a ran-
dom variable is denoted by |)Y|. Joint distributions and
conditional distributions are denoted p(x,y) and p(x|y),
respectively.

Il. PREREQUISITES AND PRIOR ART
This section briefly reviews the information bottleneck

method and its applications in signal processing. Furthermore
binary PBRL LDPC codes are introduced.

A. THE INFORMATION BOTTLENECK METHOD

Formally, the information bottleneck method is a cluster-
ing framework. It pairs ideas from machine learning, i.e.,
decision theory, with information-theoretical concepts, i.e.,
mutual information and the Kullback-Leibler divergence. In
contrast to rate-distortion theory, which focuses on com-
pression with respect to a given distortion measure, the
information bottleneck setup involves the pairwise mutual
information between three random variables. This setup is
sketched in Figure 1(a). The random variable X is termed
the relevant random variable, Y denotes the observed ran-
dom variable and T denotes the compressed random variable.
Furthermore, these three random variables form the Markov
chain X — Y — T. Typically, in mutual-information-based
signal processing, the focus is solely on the maximum preser-
vation of relevant information given a certain cardinality
|'7T]. In [20] it was shown that in this case the, in general,
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probabilistic clustering p(¢|y) becomes a deterministic rela-
tion t = f(y), which maps an observation y € ) into a cluster
t € T. For a more detailed review of information bottle-
neck algorithms, we refer to [20]. In summary, the general
objective in mutual-information-based signal processing is
to obtain a mapping ¢ = f(y) such that

max [(X; T)
1=f(y)

ey

with an inherent constraint on |7 | as t € 7. As a by-product,
an information bottleneck algorithm delivers the meaning of
each cluster, i.e., p(x|t).

B. MUTUAL-INFORMATION-MAXIMIZING
LOOKUP TABLES
Due to the discrete nature of the event space 7 of T the
function ¢ = f(y) maps a continuous or discrete input y
onto a discrete output ¢. In literature, different strategies
to implement this function exist. Proposed approaches range
from threshold-based quantizers to lookup tables which store
the input-output relation ¢ = f(y) by storing the respective
t for every y. Figure 1(b) uses the information bottleneck
graph notation introduced in [8] to express this relation.
The input y of the shown lookup table is compressed by
the mutual-information-maximizing mapping such that the
output ¢ is highly informative about the relevant variable X.
Please note that at no point the function or lookup table is
intended to approximate or simplify an arithmetic function.
In other words, mutual-information-based signal process-
ing does not start from a given arithmetic expression and
does not try to find a smart approximation. Instead, it takes
quantization effects and message resolutions into account
right from scratch. The rest of this paper uses the terms
f (), lookup table and the mapping p(¢|y) from Figure 1(a)
synonymously.

C. PROTOGRAPH-BASED RAPTOR-LIKE (PBRL)
LDPC CODES
Thorpe [21], [22] introduced LDPC codes constructed from
a protograph, which is a small Tanner graph that describes
the connectivity of the overall LDPC Tanner graph. A copy
and permute operation referred to as “lifting” obtains the
full LDPC parity check matrix from the protograph.
Figure 2 shows the protograph structure of a PBRL code
as described in [18], [23]. The protograph of a PBRL LDPC
code consists of two parts: (1) a highest-rate code (HRC)
protograph and (2) an incremental redundancy code (IRC)
protograph. The IRC provides lower rates as more of its
variable nodes are transmitted, starting from the top. For a
more detailed introduction to PBRL LDPC codes we refer
the reader to [18], [23]. In general, the protomatrix of the
protograph shown in Figure 2 is given as

H— |:HHRC 0] @)

Hire 1)
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FIGURE 2. Protograph of a PBRL LDPC code where the shaded node depicts a
puntured variable node in the highest-rate code and the partial shade indicates that
degree-one variable nodes can be punctured to adapt the rate.

where Hygrc denotes the parity check matrix of the highest
rate code, Hjpc denotes the parity check matrix of the incre-
mental redundancy code and 0 and I denote the all-zeros and
the identity matrix respectively.

This paper addresses the issue of designing IB decoders
that accommodate the puncturing that is inherent to PBRL
code families. As a design principle of PBRL codes, one
or two variable nodes in the HRC remain punctured for all
supported code rates [23], as indicated by the shaded HRC
variable node in Figure 2. Thus, the IB decoder for the HRC
must be designed to handle this puncturing. Additionally, all
of the IRC variable nodes are punctured for the highest code
rate, but degree-one variable nodes are added to the proto-
graph as the rate is lowered. Thus, a degree-one variable node
might be punctured depending on the code rate, as indicated
by the partial shade of the degree-one variable nodes. The
IB decoder must be able to adapt to the induced changes
in the degree distributions and the associated changes in the
probability distributions of message reliabilities that occur
as the rate is lowered.

lll. INFORMATION BOTTLENECK DECODERS FOR
UNPUNCTURED BINARY LDPC CODES

In recent works [11]-[14], information bottleneck decoders
were shown to handle the trade-off between low implemen-
tation complexity and near-optimal performance very well.
In the following section, this paper reviews all required
steps to construct such information bottleneck decoders for
unpunctured binary LDPC codes.

A. TRANSMISSION SCHEME AND CHANNEL OUTPUT
QUANTIZATION

We consider a binary LDPC encoded transmission over a
quantized output, symmetric additive white Gaussian noise
(AWGN) channel with binary phase-shift keying modulation
(BPSK). We denote the equally likely transmitted symbols
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FIGURE 3. Quantization boundaries and regions for the BI-AWGN channel computed
using the information bottleneck algorithm from [11] for different noise variances N

by x, which serve as channel input. The binary channel
input and continuous channel output y are related by the
transition probability p(y|x). Feeding p(y, x) and the cardi-
nality |7¢;| into the information bottleneck algorithm yields
the quantizer mapping p(fch|y), where tn € Top denotes
the discrete channel output. Such a mapping is sketched in
Figure 3 where the lines illustrate the boundaries of the
clusters #., for different noise variances O’]%. In general, a
representative log-likelihood ratio (LLR) can be assigned to
each quantization region. These representative LLRs cor-
respond to the quantized channel knowledge which serves
as input for belief-propagation decoding. In contrast, an
information bottleneck decoder does not use any quantized
LLRs, but processes only the abstract quantization index
teh € {1, ...,|7cn|} instead.

B. INFORMATION BOTTLENECK DECODERS FOR
REGULAR LDPC CODES
1) CONVENTIONAL VARIABLE NODE OPERATION

In state-of-the-art belief propagation decoding, the soft-
information is represented by LLRs. At a variable node,
all incoming LLRs are summed up except the message
received over the edge for which extrinsic information is
to be generated.

2) MUTUAL-INFORMATION-BASED VARIABLE NODE
OPERATION

In mutual-information-based signal processing the task is
to determine a deterministic function which maps an input
vector ti" = [A", .. ., t}“,}]T with M incoming discrete, integer
valued messages t%n, i=1,...,M into a cluster °*. In this
case, the relevant variable X is the codeword bit represented
by the variable node. The clustering is done such that the
mutual information between the compressed observation 1%
and the relevant codeword bit is maximized. Consequently,
the actual decoding simplifies to an exchange of cluster
indices and discrete mappings or look-up operations. Thus,
there is no need to exchange real-valued LLRs and to per-
form arithmetic operations. Instead, the challenge is to obtain
p(x, t") such that the information bottleneck algorithm can
find the optimal assignment p(f°"[t") or U = f(t"). A
detailed derivation of p(x, t™") is beyond the scope of this
paper but can be found in [7], [8], [14].
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FIGURE 4. Input-output relation of (a) the box-plus operation, (b) min-sum operation, (c) offset min-sum operation, (d) the check node lookup table designed using the
information bottleneck method, (e) the min-sum operation using cluster indices and (f) the offset min-sum operation using cluster indices.

3) CONVENTIONAL CHECK NODE OPERATION

As benchmarks, this paper considers three conventional
implementations of the check node operation. Their input-
output relations are visualized in Figure 4(a) - Figure 4(c).
The axes display the possible input values and the color
or contour displays the respective output value. In state-
of-the-art belief propagation decoding evaluating the check
node equation equals the box-plus sum of the incoming log-
likelihood ratios. The box-plus operation H of two LLRs L;
and L, is defined as

) eliel2 4+ 1
og Lol oy

LiHBL,

To avoid the evaluation of the exponential and logarith-
mic functions, a common approximation is the min-sum
approximation. Here it is assumed that

Ly B Ly =~ sign(Ly) - sign(Lp) - min{|Ly], |L2|}.

The input-output relation of the box-plus operation is
sketched in Figure 4(a) and respectively for the min-sum
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operation in Figure 4(b). Clearly, the non-linearities of the
box-plus operation result in bent contour plots, whereas the
min-sum operation cannot capture these curves and produces
an edged shape instead.

In [3] two versions of the min-sum operation were
proposed. First, the normalized min-sum decoder weights
the minimum LLR by a factor o which yields

(L. IL
Ly B L, ~ sign(Ly) - sign(Lp) - min{IZq], IL21}.

3)
Due to the scaling of the LLRs by 1/« the performance can
be largely improved compared to pure min-sum decoding [3].
The proper choice of 1/« can be determined using density
evolution.

Second, instead of multiplying with a constant 1/« the
offset-min-sum decoder subtracts a predetermined constant
B depending on the smallest magnitude of the respective
LLRs, i.e.,

Ly B L, ~ sign(Ly) - sign(Ly)

x max((min{|Li], |L2[} — B),0).  (4)
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As pointed out in [3], in contrast to normalized min-
sum the constant 8 will set LLRs with small magnitudes to
zero, i.e., the contribution in the next variable node update
vanishes. In Figure 4(c) the input-output relation for an
offset-min-sum check node is sketched. In Figure 4(c), the
values of B were set to

0, for min{|L{]|, |L2|} < 1

1, for 1 <min{|Ly], |L2|} <6 &)
2, for 6 < min{|L;|, |L;]|}.

ﬁ:

4) MUTUAL-INFORMATION-BASED CHECK NODE
OPERATION

To determine the relevant-information-preserving mapping,
the joint distribution p(x, t™) of the input vector £ pooling
discrete, integer valued messages and the relevant quantity
is required. For generation of extrinsic information at a
check node, the relevant variable X is the modulo 2 sum
of d. — 1 bits connected to the check node. Applying the
information bottleneck algorithm yields a discrete input-
output mapping U = f(t") as depicted in Figure 4(d)
for tin = [1‘l ) "T. Here, the clusters tiln and tizn are sorted
according to there respective LLR. Although not intended to
approximate the box plus operation, the mapping found by
the information bottleneck represents the bended contours
of the box plus operations much better than the min-sum
operation. Furthermore, one observes that the symmetric
properties of the box plus operations are preserved which
allows to reduce the memory need when storing the function
U = f£(t") as look-up table.

Interestingly, as pointed out in [24] when the variable node
operations are replaced by mutual-information-maximizing
look-up tables an application of the min-sum approxima-
tion is straightforward if the incoming messages are discrete
cluster indices til“ and ti2“ and not LLRs L; and L. This
is possible if the natural ordering of the cluster indices ;}“
represents the ordering of the LLRs L; associated with 7",
where i € {l,...,M} and M denotes the number of pro-
cessed messages. The respective input-output relations for
min-sum and offset min-sum using clusters are shown in
Figure 4(e) and Figure 4(f) respectively.

C. RELEVANT-INFORMATION-PRESERVING
CLUSTERINGS FOR ARBITRARY IRREGULAR LDPC
CODES

In contrast to regular LDPC codes, irregular LDPC codes
are characterized by nodes with varying degrees, i.e., the
number of incoming messages differs. This paper leverages
the edge-degree distribution [25]:

Amax Pmax
M)y =Y mat®t p@) =Y pat?", 6)
d=2 d=2

where A4 denotes the fraction of edges connected to variable
nodes with degree d and p; denotes the fraction of edges
connected to check nodes with degree d. Thus, for irreg-
ular LDPC codes the input joint distribution p(x, tin|d) for
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the information bottleneck depends on the node degree d.
Consequently, it is not sufficient to design message mappings
only for variable nodes or check nodes but for variable nodes
or check nodes considering the individual node degrees.

In density evolution a code ensemble is considered, i.e.,
instead of a particular irregular LDPC code with a certain
parity check matrix, the connectivity between variable and
check nodes is only known on average defined by the degree
distribution. To construct the required input joint distribu-
tions p(x, ti“|d), discrete density evolution from [7] needs
to be extended to consider the degree distribution of the
code ensemble. In order to incorporate the degree distribu-
tion one has to average over all possible degrees resulting
in the marginal distribution p(x, ti“), i.e.,

Amax

( t‘“) dep( tin|d). %)

In discrete dens1_ty evolution p(x, °"Y) has to be tracked
instead of p(x,t™). We define the marginal distribution
plx, ©°Y) as

)"max

out Z)\dp out
:Z,\d 3 p<r°“‘|tin,d)p<x,ti“|d), (8)

d=2  tingJvec
where 7V denotes the set of all possible combinations of
t" for a node with degree d. As it will be shown later,
this straightforward marginalization is unfavorable for the
mutual-information-maximizing design principle.

In [17], it was first described that discretized min-sum
decoders require a particular degree distribution A(¢), respec-
tively p(¢), to not suffer from a large gap between the
decoding threshold of the belief-propagation decoder and
the decoding threshold of the discretized min-sum decoder.
Note that the eventspace 7 = {1,...,|T|} is independent
of the node degree d but in contrast the particular meaning
p(x|r°", d) depends on the node degree. Thus, from the clus-
ter indices alone, the check node cannot resolve if a message
originates from a variable with high or low degree. As the
variety of node degrees increases, the dynamic range of the
respective reliabilities also increases. Thus, especially irreg-
ular LDPC codes with high irregularity suffer from large
performance degradation when decoded with coarse quan-
tization and conventional LLR-based decoding, e.g., using
min-sum decoding. However, in the next section, this paper
discusses a pre-processing step to improve the performance
of the information bottleneck decoder independent of the
degree distribution.

IV. MESSAGE ALIGNMENT AS AN INFORMATION
BOTTLENECK PROBLEM

This section reviews message alignment as introduced
in [26]. In addition to the approach from [26], an alterna-
tive realization is proposed which is closely related to [14].
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observed random
variables (T, D)

I(X;T,D)
p(x, ", d)

relevant random
variable X

I(T,D; Z)
p(z[t™,d)

I(X; 2)
p(z|z)

compressed random
variable Z

FIGURE 5. Message alignment formulated as an information bottleneck, where
I(X; Z) is the relevant information, I(X; T, D) is the original mutual information and

I(Y; T, D) is the compressed information.
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FIGURE 6. Designing explicit message alignment: The joint distribution
p(x, t°Ut, d) used for alignment is composed of the individual output distributions
p(x, t°U|d) weighted by the edge-degree distribution.
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FIGURE 7. Designing implicit message alignment: The joint distribution p(x,'ti", d)
used for alignment is now composed of the individual input distributions p(x, t"|d) of
the information bottleneck algorithm weighted by the edge-degree distribution.

Therefore, message alignment is posed as an information
bottleneck problem which makes it more intuitive to gener-
alize message alignment for puncturing as it is proposed in
Section V.

A. EXPLICIT MESSAGE ALIGNMENT

As the event space T is independent of the node degree d
but in contrast, p(x|t°", d) depends on the node degree, the
marginalization as in (8) averages misaligned beliefs [12].
These beliefs do not represent the density evolution equa-
tions appropriately. Instead of performing (8) directly, first,
the problem needs to be considered from an information the-
oretical perspective, e.g., using the information bottleneck
framework.

For the node-dependent IB design, the information bot-
tleneck setting involves the random variables T, D, X and Z
as depicted in Figure 5. As visualized in Figure 6, given
p(x, 1°"Y|d) and p(d) given by A4 in the considered example,
the joint distribution of these random variables can be found
as p(x, t, d), with mutual information /(X; T, D). As the out-
going message shall be restricted to Z, the task is to find
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FIGURE 8. Processing in a concatenated lookup table for dy = 4 with message
alignment.

a mapping p(z|r®", d) such that I(X; Z) is maximized. This
paper assumes Z = 7. As the mapping p(z|®™, d) can be
decomposed and embedded in the node design, such that the
lookup table becomes p(z|t™, d) instead of p(r°™!|t", d), this
technique is called message alignment as it ensures that mes-
sages with the same index capture the same belief. Since the
alignment relies explicitly on the degree-dependent mappings
(Pt d) it is referred to as explicit message alignment.

Example 1: Let us assume an IB variable node with
degree d, = 4, depicted in Figure 8 as concatenation of
two-input-lookup tables. In Figure 8 each lookup table is
depicted as trapezoid with the input vector t" = [ticrlll, tiln]T
or ti = [, t}n]T, where i =2,...,d, — 1 and output 1",
As illustrated in Figure 8, the lookup tables for all node
degrees d, < 4 are implicitly constructed as they serve as
intermediate results for the degree d, = 4 variable node.
Thus, the overall number of lookup tables depends only
on the largest node degree and not on the variety of node
degrees. In turn, the intermediate mappings p(r°"!|t", d) are
fed into the message alignment unit to explicitly construct
a node-degree-independent belief p(x, z).

B. IMPLICIT MESSAGE ALIGNMENT

As an extension to the original message alignment approach,
this paper discusses an alternative approach similar to [14].
Instead of treating message alignment as post-processing
step, it can also be included as a design objective imme-
diately in the look-up table design. Here, the mappings
p(z|t") are designed using p(x, t"|d) directly instead of
using p(x, 1°“Y|d). This is depicted in Figure 7. Thus, ana-
log to the message alignment setup from Figure 5, now the
random variables T, X, D and Z serve as a starting point.
Thus, instead of two subsequent optimizations, i.e., first to
find p(1°"!|t", d) and then p(z|r°", d), as in the explicit mes-
sage alignment setting, p(z|t", d) is found in one shot. The
results obtained with the two techniques are discussed and
compared later in this paper.

V. INFORMATION BOTTLENECK DECODERS FOR PBRL
LDPC CODES

To decode PBRL LDPC codes, the respective IB decoders
must support puncturing. Puncturing denotes the process
of not transmitting code bits. As a result, the number of
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information bits per code word bits, which is the code rate,
can be easily and gradually changed. At the receiver side in a
conventional LLR-based decoder, the punctured bits are rep-
resented by an LLR zero which is fed into the decoder. Thus,
although puncturing itself is a fairly easy problem for con-
ventional decoders, it is not straightforward for information
bottleneck decoders. This section describes one of the main
contributions of this paper, partially proposed in the con-
ference version of this paper in [19]. First, incorporating
punctured nodes using message alignment is shown. Then,
in addition to [19], this section focuses on the different
notions of puncturing faced in PBRL codes and provides
detailed examples.

A. CONSTRUCTING INFORMATION BOTTLENECK
DECODERS FOR PUNCTURED PBRL LDPC CODES
As it was shown in [7], [11], to achieve the best performance
with mutual-information-based lookup tables, symmetric
input distributions are optimum if the channel is symmetric.
As a result, the LLR zero is originally not covered in IB
decoders. To tackle this problem, an additional cluster might
be introduced which explicitly corresponds to the LLR zero.
This approach results in an uneven number of clusters.
This paper shows, that by using message alignment and
the structure of PBRL codes, mutual-information maximizing
lookup tables that support puncturing can be designed also
with an even number of clusters that show close-to-optimum
decoding performance. First, the effects of puncturing at the
variable nodes and check nodes are investigated with respect
to the computation of the joint distributions.

1) PUNCTURING FROM A VARIABLE NODE
PERSPECTIVE

A variable node can face puncturing in two ways. First, the
channel message which is connected to the variable node can
be punctured. Second, a message from a check node can be
punctured. Irrespective of the origin, a punctured message
cannot contribute any relevant information. As a result, there
is no need to process this message.

Example 2: Let us assume again an IB variable node
with degree d, = 4, depicted in Figure 8 as a concatena-
tion of two-input-lookup tables. Please remember that in the
unpunctured case the number of messages processed was
M = 4, since three messages received over edges connected
to check nodes plus the channel message are processed.
If the channel message is punctured, the effective degree
is reduced by one. Thus, the respective input distribution is
plx, tiln, tizn, ti3“). Also, if the message from a check node is
punctured, the effective degree is reduced by one. Thus, the
respective input distribution is for example p(x, tg}ll tiln, tizn) if
t3' is punctured. Please note that for this joint distribution it
does not matter which of the messages conveyed by check
nodes is punctured, as due to density evolution and mes-
sage alignment all individual distributions p(x, t}n) are the
same in each iteration. In turn, only the number of punctured
messages conveyed from the check nodes matters.
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(T, P; Z) 1(X;7)
p(zlt, o) p(z]z)

compressed random
variable Z

FIGURE 9. Considering puncturing as message alignment problem, where I(X; Z) is
the relevant information, /(X; T, P) is the original mutual information and I(Z; T, P) is
the compressed information.

This example illustrates that two notions of puncturing
exist at a variable node. We will refer to the first type as
channel-induced puncturing and the second type as check-
node-induced puncturing. First, we introduce the random
variable P with event space o €{true, false} indicating if a
node is punctured or not. In this paper, the puncturing rate
equals the fraction of variable nodes with degree d > 1 that
are punctured.

CHANNEL-INDUCED PUNCTURING

As depicted in Figure 8 the channel message is processed in
the first stage, for which the input vector is t" = [£}, tll”]T.

The resulting joint distribution equals

P(x, [tiCTl, tiln]T> = l%p(x, ti%)p(x, tiln). 9)

Clearly, p(x, [tic‘;l, tiln]T) and thus also p(xlt?”‘), which is used
in the next step, depends on the statistics of the quantized
channel output (see Section III-A). When incorporating punc-
turing, p(x, té’}l) differs if the channel message is punctured
or not. As a result, we rewrite (9) as

p(x, [lic?l, tiln]T|Q> = I%x)p(x, tic?l|g>p(x, ti1“>. (10)

Due to the concatenation of lookup tables as shown in
Figure 8 all subsequent tables depend on P. Consequently,
in a straightforward implementation, the number of required
lookup tables will increase drastically to account for all pos-
sible combinations of punctured and non-punctured nodes
and their respective degrees. Hence, this paper proposes to
make use of the message alignment technique to prohibit
such an increase in the number of look-up tables. The corre-
sponding setting is shown in Figure 9. By applying message
alignment, one creates the mapping p(z|t, o) and the mean-
ing p(x|z) such that all subsequently constructed tables do
not depend any longer on the node being punctured or not.
This approach ensures that the number of lookup tables is
not increased as compared to an unpunctured IB decoder.

CHECK-NODE-INDUCED PUNCTURING

Besides the puncturing of the channel message, also a mes-
sage received from a check node can be punctured, e.g.,
if the respective check node is connected to a punctured
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degree-one variable node. This is explained in more detail
in Section V-A2. As a result, the variable node degree is
reduced, i.e., fewer lookup tables need to be constructed (see
Figure 8). However, the computation of the joint distributions
remains

AT 1 . .
p<x, [z‘c‘;,, t‘f‘] ) - %p(x, f;;l)p(x, z'{‘). (11)
for the first lookup table and
. 9T 1 .
P(x, [t?ftl, t}n] ) = %p(x, " )p(x, t}n) (12)

for all subsequent lookup tables i = 2,...,d, max — 1.
However the overall effective edge-degree distribution Aeff
will be changed.

2) PUNCTURING FROM A CHECK NODE PERSPECTIVE

Check nodes are only implicitly affected by puncturing if
they are connected to a punctured degree-one variable node,
or in the first iteration if the incoming message is a punctured
channel message. If one incoming message is punctured, i.e.,
the relevant information is zero, all outgoing messages will
also be punctured, i.e., they convey no information. Thus, the
respective check node is effectively deactivated in the Tanner
graph. This changes the effective edge-degree distribution
for the check nodes pefr which has to be considered in the
message alignment for the lookup table construction.

3) COMPUTING THE EFFECTIVE DEGREE
DISTRIBUTIONS

As discussed in the previous section, puncturing effects
the effective degrees of both the variable nodes and the
check nodes. Thus, in contrast to classical density evolu-
tion where the code ensemble is considered, when designing
information bottleneck decoders the Tanner graph needs to
be known to determine the effective edges in PBRL codes
and the corresponding effective degree distributions pefr # o
and Aefr 7 A.

VI. CONSTRUCTING RATE-COMPATIBLE INFORMATION
BOTTLENECK DECODERS

Rate-compatible codes which allow to efficiently adapt the
code rate according to the channel conditions are a cru-
cial and inevitable part of modern communication systems.
In contrast to state-of-the-art message-passing decoders,
their mutual-information-based counterparts are not rate-
compatible as the set of mutual information preserving
mappings is matched to a specific rate. This section contains
one of our main contributions. In this section, we devise an
approach to reuse the mappings across several rates.

A. REUSING TABLES OF INFORMATION BOTTLENECK
DECODERS FOR MULTIPLE RATES

As summarized in Section II, PBRL codes consist of a
high-rate code (HRC) and an incremental redundancy code
(IRC). The HRC can be described by the triplet of parame-
ters (ny, nc, np), where n, is the number of variable nodes,
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FIGURE 10. Schematic sketch of reuse of lookup tables for all rates based on the
lookup tables for codes with higher rates.

ne denotes the number of check nodes and 7, indicates the
number of punctured nodes in the HRC. The set of possible
rates R; of a PBRL code with full rank Hygc is given by

(ny — ne)

Ri= v
b (e —np )

13)

where i < 0 indicates the number of unpunctured degree-one
variable nodes and let ijy,x denote the maximum number of
degree-one nodes added by the IRC. As discussed in the
previous section, puncturing degree-one variable nodes has
an impact on the effective degree-distributions Aefr, pefr and,
thus, also the maximum node degree Aefrmax depends on
the number of punctured degree-one variable nodes. At the
lowest rate, no degree-one variable node is punctured. Thus,
one will observe the largest values Aeff max across all rates
R; for R On the other hand, Aeff max Will be smallest for
Ro

Proposition 1: For a fixed PBRL code with full rank
Hprc, Aeff,max,r; < )\eff,max,ij Vi,j=0,...,imax if R; > R;.

Proof: As the IRC adds more redundancy by activating
parts in the Tanner graph, this is equivalent to augmenting
Hpggc. Hence, the node degree of the variable nodes can
only be increased and not decreased. O

Please note, that the number of needed lookup tables
depends on the node degree (see Figure 8). According to
Proposition 1, designing an information bottleneck decoder
for the highest code rate supported by a PBRL code yields
variable nodes with the smallest number of lookup tables.
Thus, similar to the table reuse in an irregular LDPC code,
where a node with larger degree is obtained by stacking new
tables on top of a node with lower degree, we propose to
use the lookup tables for the highest rate as a starting point
for the design of the lookup tables for lower rates. This is
depicted in Figure 10.

Example 3: Let us consider a fixed PBRL code with
rates R; = 2/3,R; = 1/2,Ry = 1/3 and dymax,r; = 9,
dv,max,R_/. =15, dy max,r, = 27. Please note, that d¢ max = 19

Imax *
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TABLE 1. Simulation parameters.

decoder node operation (check / var)  precision exchanged messages  precision check node  precision variable node  channel quantizer
belief-propagation box-plus / addition 64 bit 64 bit 64 bit None
offset min-sum (4) / addition 4 bit 4 bit 6 bit 4 bit
NMSA (3) / addition 6 bit 6 bit 6 bit None
proposed lookup table / lookup table 4 bit 4 bit 4 bit 4 bit

and is independent of the chosen rate. Without reuse, mutual-
information-maximizing mappings are designed for each rate
for a fixed design-Ep/No. Results for such a setting are
shown later in Section VII-A. With the reuse, first the map-
pings for rate R; = 2/3 with dymax,r, = 9 are designed
for a fixed design-Ej /Ny optimized for this rate. In the sec-
ond step, the mappings derived for R; = 2/3 are reused for
R; = 1/2 with dv,max,Rj = 15. As dy max,r; — 1 mappings
could be reused, only dv,maX,Rj — dy,max,g; = 6 new map-
pings are designed and appended as shown in Figure 10.
These new mappings are designed for a new design-Ep/No
optimized for R; = 1/2. Thus, a subset of mappings is
used mismatched, i.e., designed for another rate and also
different channel conditions. However, it will be shown in
Section VII-D that only a small performance degradation
will be observed. This is due to the fact that message align-
ment is adapted to the degree distribution and compensates
the slight imperfections of the reused mappings. In the next
step, the mappings for Ry are designed with a new design-
Ep /Ny optimized for Ry = 1/3 but reusing the d, max g, — 1
mappings for R; = 2/3 and the dy max,r; — dv,max,k; Mappings
optimized for R; = 1/2. Please note that message alignment
is not shown in Figure 10 explicitly but it is done for every
code rate successively. In addition, also the mappings in the
check nodes remain unchanged and only message alignment
is updated if needed.

VII. RESULTS AND DISCUSSION

In this section, we present and discuss results obtained
performing frame error rate simulations for an exemplary
PBRL LDPC code. We propose to construct all involved
lookup tables just once for a fixed design-Ep/No which is
optimized for each rate. The constructed lookup tables are
then stored and applied for all Ej/Ny. Hence, the lookup
table construction needs to be done only once and offline.
In Section VII-A, the proposed decoder which incorporates
puncturing is evaluated. Afterwards, in Section VII-B, the
impact of the bit resolution on the performance is analyzed.
Section VII-C discusses the impact of explicit and implicit
message alignment (see Section IV) on the frame error
rate performance. Simulation results for the proposed table
reuse strategy from Section VI are shown in Section VII-D.
Finally, in Section VII-E, alternative implementations of the
lookup table approach as proposed in [24] are applied to the
proposed design approach.

We consider three reference schemes to compare the
performance of our decoder. The decoding of a codeword is
stopped after a maximum number of 100 decoding iterations
or earlier if the syndrome check is successful. First, we con-
sider a double-precision belief propagation decoder with a
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flooding schedule. The received samples are not coarsely
quantized but represented with double precision and the
internal operations are additions at the variable node and
box-plus at the check node. Second, we use the normalized
min-sum algorithm (NMSA) [27], [28] with 6 bit resolu-
tion for the outgoing check node message and 6 bit for
the outgoing variable node message. Again the inputs to
the decoder are not coarsely quantized but represented with
double precision. The operations here are additions at the
variable nodes but the normalized min-sum approximation is
used at the check nodes (see (3)). Third, we use the offset-
min-sum decoder with only 4 bit resolution at the check
node and offsets according to (5) and 6 bit at the variable
node to prevent an overflow when adding the 4 bit messages
received from the channel quantizer. Finally, we designed
our proposed information bottleneck decoder for fully 4 bit
integer architecture. This means, starting from the channel
quantizer which outputs 4 bit integers, the internal messages
require only 4 bit and only lookup operations are performed.
These lookups do not mimic any arithmetic function but
realize the relevant-information preserving mappings found
using the information bottleneck method.

As discussed in the introduction, the FAID approach
from [5] is conceptually related to the decoders from [11]
or [14]. However, to the best of our knowledge, all these
decoder do not support puncturing or rate-compatibility and
are thus not shown as benchmark systems.

A. INCORPORATING PUNCTURING USING MESSAGE
ALIGNMENT

In this subsection, we investigate the proposed generalized
decoder design to cover punctured variable nodes. Here,
the code was taken from [23]. The code has K = 1032
information bits and is evaluated for various code rates R
ranging from R, = 1/3 up to R, = 4/5. Furthermore, in this
subsection, the decoder mappings were designed for each
code rate individually with an individual design-E,/No, i.e.,
the table reuse from Section VI is not applied.

The most important parameters of the applied decoders
are summarized in Table 1 for a quick overview. First, we
consider a decoder designed for a fixed rate of R, = 0.5.
The results are shown in Figure 11. As expected, the belief-
propagation (BP) algorithm (e-marker) achieves the best
frame error rate performance, but at the same time, has the
highest computational complexity (see Table 1). Although all
applied operations in the information bottleneck decoder (4-
marker) are simple lookups, the decoder performs only less
than 0.2 dB worse than the benchmark. The results are even
more remarkable when considering the tremendous gap to the
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FIGURE 11. Frame error rates for the proposed scheme (diamond-marker), and the
reference schemes summarized in Table 1 for the considered PBRL LDPC code with
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FIGURE 12. Frame error rates for the proposed scheme (diamond-marker) and the
reference schemes summarized in Table 1 for the considered PBRL LDPC code with
code rate R¢ = 1/3 (blue, dashed), 2/3 (dark red, dotted), 4/5 (dark orange, dash dot).

offset-min-sum and normalized min-sum decoders with an
even slightly higher resolution. Please note, that PBRL codes
have typically variable nodes with very large degrees. From
the gap of 0.75 dB noticed in Figure 11, we conclude that a
conventional offset-min-sum decoder, which exchanges only
4 bit messages, cannot be used for PBRL codes with such
a coarse quantization since the dynamic range of the LLRs
cannot be captured appropriately. The gap can be reduced
by choosing a finer resolution as indicated by the frame
error rate curve for the 6 bit NMSA decoder. However, with
the generalized design for information bottleneck decoders
proposed in this paper, both challenges, i.e., puncturing and
rate-compatible design, can be efficiently tackled to enable
fully 4 bit decoders for PBRL codes. Figure 12 shows the
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FIGURE 13. Frame error rate simulations for the proposed decoder for different bit
resolution as summarized in Table 2 for code rate R¢ = 1/3. Only belief propagation
and the offset min-sum decoder are shown as reference, with parameters according to
Table 1.
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FIGURE 14. Frame error rate simulations for implicit and explicit message
alignment.

results for various other rates. For all considered rates, the
belief propagation decoder with double-precision resolution
and no channel quantizer achieves the best performance.
However, again we observe that the proposed information
bottleneck decoder operates very close to this benchmark.
Interestingly, the proposed schemes outperform the 4 bit off-
set min-sum decoder and the 6 bit NMSA decoder for all
investigated rates.

B. IMPACT OF THE BIT RESOLUTION ON THE DECODER
PERFORMANCE

For the considered code, this subsection investigates the
impact of the chosen bit resolution on the performance. The
respective bit resolutions used are summarized in Table 2.
The results are shown in Figure 13. For the sake of clarity,
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TABLE 2. simulation parameters of investigated information bottleneck decoders.

exchanged messages  check node  variable node  channel quantizer
3 bit 3 bit 3 bit 3 bit
4 bit 4 bit 4 bit 4 bit
5 bit 5 bit 5 bit 5 bit

TABLE 3. Memory requirements per iteration for information bottleneck decoders

with and without table reuse for a 4bit decoder.

R¢ | de,max | check node memory | dy max | variable node memory
no reuse  reuse no reuse reuse
4/5 19 8.7kB 8.7kB 6 2.6kB 2.6kB
2/3 19 8.7kB - 9 4.1kB 1.5kB
12 19 8.7kB - 15 7.2kB 3.1kB
1/3 19 8.7kB - 27 13.3kB 6.1kB
Total | | 34.8kB 8.7kB | | 27.1kB 13.3 kB

only the results for R, = 1/3 are shown and the refer-
ence systems are limited to the offset min-sum decoder and
the belief propagation decoder with the parameters from
Table 1. However, similar results were obtained for all other
code rates. Interestingly, it can be observed that for a 5
bit information bottleneck decoder, the performance gap to
double-precision belief propagation decoding nearly van-
ishes. Furthermore, it can be observed that the proposed 3 bit
information bottleneck decoder shows the same performance
as the offset min-sum decoder, which uses 4 bit for the chan-
nel quantizer, 4 bit for the exchanged messages and 6 bit
for the variable node operation (see Table 1).

C. IMPACT OF DIFFERENT IMPLEMENTATIONS OF
MESSAGE ALIGNMENT FOR PROPOSED IB DECODERS
As proposed in Section IV, the message alignment approach
can be realized either based on p(x, 1°*|d) termed explicit
message alignment or based on p(x, t"|d) referred to as
implicit message alignment. In Figure 14 the impact of the
selected message alignment approach on the frame error rate
performance is investigated. It is shown, that the performance

VOLUME 1, 2020

gain achieved by the implicit approach is 0-0.1 dB over the
explicit message alignment approach. The slight performance
degradation of explicit message alignment is caused by using
the compressed representation 7" of t" in the alignment step
instead of ", However, when considering the concatenated
scheme with reuse, the implicit message alignment approach
has slightly higher memory complexity. The implicit align-
ment mapping has | 7> input combinations whereas explicit
message alignment works on the compressed random vari-
able directly and has only |7 input combinations (see
Figure 6 and Figure 7).

D. MEMORY CONSIDERATIONS AND TABLE REUSE
Besides supporting puncturing, the proposed generalized
decoder design enables also the reuse of lookup tables across
several rates. In contrast to state-of-the-art information bot-
tleneck decoders where one set of tables was designed for
only one particular rate, the proposed decoder using the tech-
nique proposed in Section VI uses one set of tables for all
rates. In Figure 16, the simulation results are shown, where
the proposed information bottleneck decoder optimized for
each rate from the previous section is included as a refer-
ence. As described in Section VI, the decoder construction
starts with the highest code rate, i.e., R, = 4/5. Thus, no
difference between the decoders can be observed for this
rate. The lookup tables for all lower code rates are built on
top of the lookup tables from the code with a higher rate.
Here, a small performance degradation below 0.1 dB can be
observed due to the mismatched table reuse.

According to [12], the memory of one two-input lookup
table is given as WT"T' byte if |7.;| = |T| and d. —2 tables
are needed for a check node with degree d. and d, —1 tables
for a variable node with degree d,. Table 3 summarizes the
overall required memory demand. It can be observed that
for the considered PBRL code, the memory per iteration
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FIGURE 16. Frame error rate simulations where one static set of lookup tables is
used for all rates.

can be reduced by a factor 3 for the check nodes and by a
factor of approximately 1.8 for the variable nodes. Beside
the reduction in memory, the table reuse allows for more
efficient implementations as the same set of lookup tables
can also be used for multiple code rates. Please note that
the memory requirements given in Table 3 hold only for
decoder implementations on a digital signal processor or
software defined radio where the lookup tables are stored
in memory. In general, the mappings could also be effi-
ciently implemented as a static logic syntheses on a FPGA or
ASIC [16].

E. IMPLEMENTING THE LOOKUP TABLES

As described in Section II, the general aim of the information
bottleneck is to obtain a mapping °* = £(t") which pre-
serves the relevant information. Typically, these mappings
depend on the code rate and iteration. Figure 15 shows the
check node lookup tables in the last step of the cascaded
structure for a code rate R, = 0.5 and different iterations,
i.e., iteration 1, 50 and 100. It can be observed that tables
change over the iterations.

In general, the lookup table implementation shown in this
paper is just one way to realize the mapping. However, the
general design concepts proposed in this paper are crucial for
any implementation of the learned function f(t). In liter-
ature, threshold-based implementations are proposed which
require computations in a so-called computational domain
at a higher internal resolution as compared to conventional
information bottleneck decoder [29]. In contrast, at least for
the check node, the min-sum operation can be performed
using the integer-valued cluster indices as pointed out in
Section II and proposed in [24]. Simulation results for such a
hybrid approach where the lookup tables replace the variable
node operation but the check node performs the min-sum
operation (see Figure 4(e)) are shown in Figure 17. In turn,
the mapping at the check node is fixed for all iterations
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FIGURE 17. Frame error rate simulations where all lookup tables in the check nodes
are replaced by the min-sum update rule (see Figure 4(e)).

and does not change. However, the variable node mappings
are still adapted to the evolving densities and, thus, change
in each iteration. Again, only the results for the proposed
decoder with the parameters from Table 1 are shown as
reference, for the sake of clarity. It can be observed that
the performance of the proposed decoder with the min-sum
update rule of Figure 4(e) is much better than the state-of-the-
art offset min-sum decoder (see Figure 11 and Figure 12),
especially for the lowest rate, i.e., R, = 1/3. For exam-
ple, at a FER of 10~* the offset min-sum decoder shown
in Figure 12 is outperformed by 0.6 dB. This is a very
interesting observation as the 4 bit min-sum decoders are
typically known to work fairly bad for low code rates. Only
if the resolution is reduced further, e.g., down to 3 bit, the
hybrid approach with the min-sum operation at the check
node shows an early error floor.

VIIl. CONCLUSION

This paper uses the information bottleneck method to effi-
ciently represent reliability information, reducing the data
transfer and computational complexity of protograph-based
raptor-like LDPC decoding. The proposed decoder extends
the information bottleneck decoder design to incorporate
puncturing and leverages the inherent rate-compatibility of
this powerful class of LDPC codes to develop a rate-
compatible decoder. The proposed information bottleneck
framework integrates a message alignment module into the
decoder design to dynamically adjust to the degree dis-
tribution for various rates. This approach accommodates
puncturing for all supported rates without significantly
increasing the number of required information bottleneck
lookup tables. It was shown that lookup tables can be reused
for various rates due to the code structure which drasti-
cally reduces the memory demand and the implementation
complexity in a rate-compatible decoder. The proposed
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information bottleneck decoder exchanges only coarsely
quantized messages and replaces the arithmetic in the node
operations by lookup tables. This decoder performs only
0.2 dB worse than the belief-propagation algorithm and out-
performs the offset-min-sum algorithm. The impact of the
bit resolution was investigated and it was shown that a 3
bit information bottleneck decoder is still able to outper-
form an offset-min-sum decoder with larger bit resolution.
Nonetheless, the main contributions of this paper are with
respect to the general mutual-information-based design of
the LDPC decoders and are not to limited any particular
implementation of the mappings f(t™"). Interestingly, the
considered hybrid approach [14], containing the min-sum
operation at the check node and the lookup operation at
the variable node works extremely well for the entire range
of code rates investigated. This approach together with the
presented table reuse across various code rates allows to fur-
ther reduce the implementation complexity of the proposed
decoder.
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