FUNDAMENTA
MATHEMATICAE

Online First version

On the Lipschitz dimension of Cheeger—Kleiner
by

Guy C. David (Muncie, IN)

Abstract. In a 2013 paper, Cheeger and Kleiner introduced a new type of dimension
for metric spaces, the “Lipschitz dimension”. We study the dimension-theoretic properties
of Lipschitz dimension, including its behavior under Gromov—Hausdorff convergence, its
(non-)invariance under various classes of mappings, and its relationship to the Nagata
dimension and Cheeger’s “analytic dimension”. We compute the Lipschitz dimension of
various natural spaces, including Carnot groups, snowflakes of Euclidean spaces, metric
trees, and Sierpinski carpets. As corollaries, we obtain a short proof of a quasi-isometric
non-embedding result for Carnot groups and a necessary condition for the existence of
non-degenerate Lipschitz maps between certain spaces.
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1. Introduction. In a 2013 paper [CK13|, Cheeger and Kleiner intro-
duced a new type of dimension for metric spaces, the Lipschitz dimension,
and proved some deep results about spaces of Lipschitz dimension < 1. In this
paper, we study the dimension-theoretic properties of Lipschitz dimension.
We begin our introduction with a discussion of the analogies with topolog-
ical dimension that lead to the definition of Lipschitz dimension, and then
describe the structure and results of the present paper.

1.1. Topological dimension and Lipschitz dimension. We will be
concerned with a metric analog of a well-studied concept in topology: the
topological dimension dimp(X) of a space X. In the setting of compact
metric spaces, the topological dimension dimp(X) admits many equivalent
definitions. The “small inductive definition” defines the empty set to have
dimy () = —1, and then declares that dimy(X) < n if X has a neighbor-
hood basis of open sets U with dimp(0U) < n — 1. The “Lebesgue covering
definition” declares dimz(X) to be the minimal n such that every locally
finite open cover of X admits a locally finite refinement of multiplicity at
most n + 1, meaning that every point is contained in at most n + 1 sets of
the refinement.

These two definitions are known to be equivalent for compact (in fact,
for separable) metric spaces (see [Nag83, Sections 1.4 and I1.5]), and so we
refer to them simply as “topological dimension”, denoted by dimr.

There is yet another way (among many others unmentioned here) to view
the topological dimension of a compact metric space X, this time through
studying continuous maps from X to Euclidean space. A continuous map is
called light if f=!(p) is totally disconnected for each p in the image of f. We
then observe, for a compact metric space X, that

(1.1) dimz(X) = min{n > 0:3f: X — R" light},
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where R? denotes the one-point space. (This follows from [Nag83, Theorems
II1.6 and II1.10].) Thus, the topological dimension of compact metric spaces
can be seen through examining light maps to Euclidean space.

In [CK13], Cheeger and Kleiner were inspired by this fact to give a quan-
titative analog of topological dimension. They replace continuous maps by
Lipschitz maps, give a quantitative analog of the notion of lightness, and
then use the analog of (1.1) to define a new notion of dimension.

As a preliminary, we need the following discrete notion:

DEFINITION 1.1. For r > 0, a finite sequence (z1,...,x) in a metric
space X is an r-path if d(z;, x;41) <rforallie {1,... k}.

We say that two points in X are in the same r-component of X if there is
an r-path in X containing both of them. This defines an equivalence relation
on X.

Cheeger and Kleiner then used this notion to define a quantitative analog
of lightness for Lipschitz maps:

DEFINITION 1.2 (Cheeger—Kleiner [CK13]). A map f: X — Y between
metric spaces is Lipschitz light if there is a constant C' > 0 such that

e f is Lipschitz with constant C, and
e for every r > 0 and every subset W C Y with diam(W) < r, the r-com-
ponents of f~1(W) have diameter at most Cr.

(An astute reader may note that Definition 1.2 is not precisely the one
given in [CK13, Definition 1.14], though it is the one used in |[CK13, Sec-
tion 11]. We address this small discrepancy in Subsection 1.3 below.)

By analogy with (1.1), Cheeger and Kleiner define the following notion
of dimension, which is the main subject of the present paper.

DEFINITION 1.3 (Cheeger—Kleiner [CK13]). A metric space X has Lip-
schitz dimension < n if there is a Lipschitz light map f: X — R"™.

We let the Lipschitz dimension of X be the minimal n such that X
has Lipschitz dimension < n, and denote this by dimy(X). If X admits no
Lipschitz light map into any Euclidean space, we write dimp,(X) = oc.

Again, RY is considered here to be the one-point metric space.

The two main theorems of [CK13] concern the structure of spaces of Lip-
schitz dimension < 1. First of all, Cheeger and Kleiner characterize spaces
of Lipschitz dimension < 1 as inverse limits of systems of metric graphs sat-
isfying certain axioms [CK13, Theorems 1.10 and 1.11]. Second, they show
that each metric space of Lipschitz dimension < 1 admits a bi-Lipschitz
embedding into the Banach space Lj. (By contrast, [Laa00] and [CK15]
construct spaces of Lipschitz dimension 1 with no bi-Lipschitz embedding
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into Hilbert space, or even the Banach space ¢;.) This provides motiva-
tion to study Lipschitz dimension from the perspective of metric embedding
theory.

We are now ready to elaborate on the goals and results of the present

paper.

1.2. Purpose and results of the present paper. The purpose of this
paper is to study the dimension-theoretic properties of Lipschitz dimension.
We explain the structure of our paper and the ideas of our main results here,
referring the reader to the appropriate sections for the official statements of
theorems.

After giving basic notation in Section 2, we first describe the relationship
(or lack thereof) between Lipschitz dimension and other well-studied notions
of metric dimension: the Nagata, Assouad, and Hausdorff dimensions. In
particular, we show that Lipschitz dimension bounds Nagata dimension from
above (Corollary 3.5), and that the two agree for 0-dimensional spaces but
not in general (Proposition 3.6).

We then address, in Section 4, the behavior of Lipschitz dimension under
completions, products, and unions.

In Section 5, the technical core of the paper, we characterize Lipschitz
light maps on doubling metric spaces via their behavior under Gromov—
Hausdorff convergence (Theorem 5.19), obtaining bounds on Lipschitz di-
mension of tangent spaces as a consequence.

We then use this and other techniques to compute the Lipschitz dimen-
sion of a number of natural examples in Section 6, including metric trees,
snowflakes of Euclidean spaces, and Carnot groups. The most concrete re-
sults of this section are that

e products of n metric trees (as well as rank-n Euclidean buildings) have
Lipschitz dimension n (Corollary 6.3),

e snowflakes of R™ have Lipschitz dimension n (Corollary 6.5), and

e non-abelian Carnot groups have infinite Lipschitz dimension (Theorem 6.8).

As a corollary of this last fact, we obtain a short proof of a quasi-isometric
non-embedding result (Corollary 6.10) in the spirit of Pauls [Pau01].

Also in Section 6, in Theorem 6.16, we introduce a “self-covering” prop-
erty for Euclidean subsets and use this to compute the Lipschitz dimension
of some classical fractals, like the Sierpiiski carpets and gasket. The results
of Section 6 rely on Gromov-Hausdorff convergence arguments; in the case
of trees and buildings, they rely on constructions of Lipschitz light maps
provided by Lang and Schlichenmaier [LS05].

In Section 7, we consider the “Lipschitz differentiability spaces” first de-
scribed by Cheeger. These are metric measure spaces X that carry a type
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of measurable cotangent bundle allowing for the almost-everywhere differ-
entiation, in an appropriate sense, of Lipschitz functions from X to R. Our
main result in this section is Theorem 7.6, which states that the dimension
of Cheeger’s cotangent bundle is bounded above by the Lipschitz dimension,
complementing earlier results of Schioppa [Sch16, Corollary 5.99] and the
author [Dav15, Corollary 8.5] concerning Assouad dimension.

Lastly, in Section 8, we study the invariance and non-invariance proper-
ties of Lipschitz dimension under various categories of mappings: Lipschitz
light, quasisymmetric, snowflake, and David—Semmes regular mappings. We
provide a construction in Corollary 8.3 that shows that, while Lipschitz light
mappings cannot decrease Lipschitz dimension, they can increase it arbitrar-
ily, and in fact that every compact doubling metric space is the image under
a Lipschitz light map of a space with Lipschitz dimension 0.

In our study of David—Semmes regular mappings in Subsection 8.3, we
also obtain in Corollary 8.10 a necessary condition for the existence of non-
degenerate Lipschitz maps between certain spaces.

Throughout the paper, we include a number of questions that we consider
worth studying.

1.3. Remarks on the definition of Lipschitz light mappings. Be-
fore proceeding further, we remark briefly on a discrepancy between our
definition of Lipschitz light in Definition 1.2 and [CK13, Definition 1.14].

In [CK13, Definition 1.14], a Lipschitz map f: X — Y between metric
spaces is called Lipschitz light if there is C' > 0 such that, for every bounded
subset W C Y, the diam(W )-components of f~!(W) have diameter at most
C diam(W).

Our Definition 1.2 and [CK13, Definition 1.14] are equivalent if Y = R"
(n > 1), but are not equivalent in general, as Remarks 1.4 and 1.5 now show.

REMARK 1.4. It is clear that if a mapping satisfies Definition 1.2, then
it satisfies [CK13, Definition 1.14]. If n > 1 and Y = R", it is not hard to
show that the converse holds as well. Indeed, if f: X — R" satisfies [CK13,
Definition 1.14] and W C R™ has diam (W) < r, then one may find a point
x € R™ such that W/ = W U {z} has diam(W’) = r. Any r-component of
f~Y(W) lies in an r-component (i.e., a diam(W’)-component) of f~1(W’),
and hence has diameter at most C'r.

REMARK 1.5. In general, a mapping may satisfy [CK13, Definition 1.14|
and not Definition 1.2, as the following example shows. Let X = [0, 1] x (2Z),
Y =10,1], and f: X — Y simply be the projection to the first factor. Then
f satisfies [CK13, Definition 1.14]: Any W C Y has diam(W) < 1, so any
diam (W )-component of f~(W) is simply an isometric copy of W contained
in some [0,1] x {2n}.
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However, this mapping fails Definition 1.2 in the case W =Y and r = 2,
since f~1(W) has 2-paths of arbitrarily large diameter.

For the remainder of this paper, we use Definition 1.2 above as our defi-
nition of Lipschitz light maps, as it is better adapted to general metric space
targets. We point out that, for the purposes of computing Lipschitz dimen-
sion on spaces with positive Lipschitz dimension, it does not matter which
definition one takes (by Remark 1.4), and that Definition 1.2 is in any case
the one used in Section 11 of [CK13].

2. Notation and definitions

2.1. Basic metric space notions. We write (X, d) for a metric space.
Often, if the metric d is understood from the context, we denote it simply
by X, and also we often use the same symbol d to denote the metric on
different spaces. A pointed metric space is simply a pair (X, z) consisting of
a metric space X and a point z € X.

We denote open and closed balls in a metric space X by

B(xz,7r)={y € X :d(y,x) <r} and B(z,r)={y€ X :d(y,z) <r}.

If we wish to emphasize the ambient space X in which the ball is taken, we
may write Bx (x,r). If A > 0 and B = B(z,r), it is convenient to write AB
for B(x, A\r).

The diameter of a set F in a metric space X is

diam(F) = sup{d(z,y) : z,y € E}.
The distance between two sets E, F' in a metric space X is
dist(F, F) = inf{d(z,y) :xz € E, y € F}.

If one of these sets happens to be a single point, say F = {p}, then we write
dist(p, F') rather than dist({p}, F).

If F is a subset of a metric space X and r > 0, then the open and closed
r-neighborhoods of £ in X are

N.(E)={y € X :dist(y,E) <r} and N,(E)={ye€ X :dist(y,E) <r}.

For € > 0, an e-separated set in X is a subset in which all mutual distances
are at least €. An e-net S in X is a maximal e-separated set (which always
exists by Zorn’s lemma); in that case we have X = N(5).

A metric space is proper if all closed balls in the space are compact.
A metric space is doubling if there is a constant N such that every ball
in X can be covered by N balls of half the radius. This is a finite dimen-
sionality condition; in fact, it is equivalent to the finiteness of the Assouad
dimension defined in Definition 3.2. Every complete, doubling metric space
is automatically proper.
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It is often useful to study the Cartesian product X x Y of two metric
spaces (X,dx) and (Y,dy). To fix a convention, unless otherwise noted, we
take the metric on X X Y to be the /5, combination of the metrics on the
factors:

d((z,y), (',y")) = max{dx (z,2'),dy (y,9)}.
Of course, this choice of product metric d is bounded above and below by
constant multiples of any of the other natural £, combinations of the two
metrics.

In Section 7, we will need the notion of a metric measure space, which
for us is a complete metric space X equipped with a finite Radon measure p.
A metric measure space is doubling if the measure p is doubling, meaning
that it is non-zero and there is a constant C' > 0 such that

n(2B) < Cu(B)

for all balls B in X. In particular, this implies that X is a doubling metric
space in the sense defined above [Hei0l, Section 10.13].

2.2. Mappings. A function f : X — Y between two metric spaces is
called Lipschitz (or L-Lipschitz) if there is L > 0 such that

d(f(x), f(2")) < Ld(z,2") for all x,2" € X.
It is called bi-Lipschitz (or L-bi-Lipschitz) if
L7 d(z,2') < d(f(z), f(2') < Ld(z,2’) for all z,2’ € X.

A 1-bi-Lipschitz map is called an isometric embedding.

A more general class than the bi-Lipschitz mappings is the class of qua-
sisymmetric mappings. An embedding f: X — Y is called quasisymmetric
if there is a homeomorphism 7: [0,00) — [0, 00) such that

d(z,a) < td(z,b) implies d(f(x), f(a)) <n(t)d(f(z), f(b))
for all triples a, b, z of points in X and all ¢ > 0. Quasisymmetric maps may
wildly distort distances (in particular, they may not be Lipschitz), but in
some sense they preserve “shape”. See [Hei0l| for an introduction to qua-
sisymmetric mappings.

Other than the bi-Lipschitz mappings, another interesting subclass of
quasisymmetric mappings are the snowflake mappings. A mapping f: X —Y
is called a snowflake mapping (or an a-snowflake mapping) if there are con-
stants o € (0,1] and C > 0 such that

Cild(x,y)a <d(f(x), f(y)) < Cd(x,y)* forall x,y € X.

A metric space Z is called an a-snowflake if it is the image of another metric
space X under an a-snowflake mapping. Of course, this is equivalent to
saying that Z is bi-Lipschitz equivalent to the metric space (X, d%).
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The terminology “snowflake” arises from the fact that the standard von
Koch snowflake curve in R?, with the induced Euclidean metric, can be
viewed as an a-snowflake image of [0, 1], where o~ ! is the Hausdorff dimen-
sion of the snowflake.

A few other classes of mappings will be introduced in the paper as needed.

3. Relationship to other dimensions. In this section, we discuss the
relationship between Lipschitz dimension and a number of other well-known
notions of dimension for metric spaces: the topological dimension (defined
in the introduction) and the Hausdorff, Assouad, and Nagata dimensions.

3.1. Other dimensions for metric spaces. We first briefly recall the
definitions of the latter three dimensions. For more information about the
Hausdorff and Assouad dimensions, we refer the reader to [Hei01, Sections 8.3
and 10.13|, and for the Nagata dimension to [LS05].

The n-dimensional Hausdorff measure of a set E in a metric space X is

H"(E) = %1_1}(1) {%}if} ZL: diam(B;)",
the infimum being over covers of F by closed balls B; of diameter at most §.
DEFINITION 3.1. The Hausdorff dimension of X is
dimy (X) = inf{a > 0: H*(E) =0} € [0, 0]

DEFINITION 3.2. The Assouad dimension dima(X) of a metric space X
is the infimum of all # > 0 such that there is a constant C' for which every set
of diameter d can be covered by at most Ce ? sets of diameter at most ed.

Equivalently, dim 4 (X') can be defined as the infimum over all v > 0 such
that there is a constant C' for which every ball of radius r contains at most
Ce™7 er-separated points.

Lastly, we define the Nagata dimension dimpy(X) of a metric space X.
Call a family {B;} of subsets of X D-bounded if each B; has diameter < D.
For s > 0, the s-multiplicity of the family {B;} is the minimal n such that
every subset of X with diameter < s meets at most n members of the family.

DEFINITION 3.3. The Nagata dimension of X, which we denote dimpy (X),
is the minimal integer n with the following property: there exists ¢ > 0 such
that, for all s > 0, X has a cs-bounded covering with s-multiplicity n + 1.

The Nagata dimension is clearly a quantitative analog of the Lebesgue
covering definition of topological dimension, introduced at the start of Sub-
section 1.1.

Each of the five notions of dimension defined above (topological, Lip-
schitz, Hausdorff, Assouad, and Nagata) is easily seen to be invariant under
bi-Lipschitz homeomorphisms.
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We have the following relationships between the above dimensions, for
all separable metric spaces X:

(3.1) dimp(X) < dimy(X) < dima(X)
(see |[LS05, Theorem 2.2] and [LDR15, Theorem 1.1]), and
(3.2) dimp(X) < dimy(X) < dima(X)

(see [Hei01, Theorem 8.13 and Exercise 10.6]). Each of the above inequalities
may be strict; we refer the reader to the references above for examples.

We now explain where dimy,(X) does (and does not) fit into the lists
(3.1) and (3.2).

3.2. Nagata dimension and topological dimension. By [LS05, The-
orem 2.2|, dimy(X) > dimp(X) for every metric space X. We show that
Lipschitz dimension provides an upper bound for Nagata dimension, and
hence also for topological dimension.

LEMMA 3.4. If f: X — Y is Lipschitz light, then dimy(X) < dimpy(Y).

Proof. Without loss of generality, we may assume that f is 1-Lipschitz
and that dimy(Y) = n < oco. Fix s and consider a cs-bounded cover {B;}
of Y with s-multiplicity at most n + 1. We may also assume without loss of
generality that ¢ > 1.

For each ¢, let {U;} denote the cs-components of f~1(B;). Then, because
f is Lipschitz light with some constant C' > 1, we have

diam(UjZ:) < Cecs
for all 4, 5.

We claim that {U;}” forms a cover of X with s-multiplicity at most
n + 1. Consider any set £ C X with diam(F) < s. First of all, note that for
each fixed 7, F can meet U J’ for at most one value of j. Indeed, if £ met both
U;f and U}, then there would be x € U; and y € U} with d(z,y) < s < cs, in
which case U ]’ and U,i would be the same cs-component, i.e., we would have
j=k.

So we must show that E meets some U! for at most n + 1 values of i.
This is the same as saying that f(E) meets B; for at most n + 1 values of i.
This is in fact the case, because diam(f(E)) < s, as f is 1-Lipschitz, and
because {B;} has s-multiplicity at most n+ 1. =

COROLLARY 3.5. For any metric space X, dimy(X) < dimp,(X).

Proof. This follows immediately from the previous lemma and the fact
that the Nagata dimension of R" is n. =

On the other hand, Nagata dimension provides no non-trivial upper
bound for Lipschitz dimension. This will follow from Theorem 6.8 below and
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[LDR15, Theorem 4.2|, which together say that non-abelian Carnot groups
have infinite Lipschitz dimension and finite Nagata dimension. (See Sec-
tion 6.3 for the definition of a Carnot group.)

Nagata dimension and Lipschitz dimension do agree for 0-dimensional
spaces:

PROPOSITION 3.6. A metric space X has Lipschitz dimension 0 if and
only if it has Nagata dimension 0.

Proof. By Corollary 3.5, we always have
dimz,(X) > dimy(X),

and so if dimy,(X) = 0 then dimy(X) = 0.

Conversely, suppose the Nagata dimension of X is zero. That means
that, for every s > 0, there is a cs-bounded cover of X with s-multiplicity
at most 1.

Let f: X — RY be the constant map. We claim that f is Lipschitz light.
This just means that for every s > 0, the s-components of X have diameter
at most cs. Consider the cover of X given by the Nagata dimension in the
previous paragraph. Any s-component of X must be contained in a single
set in the cover, so it has diameter at most cs. Hence f is Lipschitz light. =

QUESTION 3.7. Is there a compact metric space with Nagata dimension 1
and Lipschitz dimension greater than 17

This question is interesting in light of the results in [CK13| described in
the introduction.

3.3. Hausdorff dimension and Assouad dimension. There is in
general no relationship between the Lipschitz dimension and the Hausdorff
or the Assouad dimension of a space. The following two propositions indicate
this.

Building on a construction of Laakso [Laa00], Cheeger and Kleiner [CK15]
give a very flexible construction of metric spaces with Lipschitz dimension 1,
including examples with arbitrary Hausdorff and Assouad dimensions.

PROPOSITION 3.8 (|[CK15|). For every o > 1, there is a compact metric
space of Lipschitz dimension 1 and Hausdorff and Assouad dimensions equal
to «.

This shows that the Hausdorff and Assouad dimensions can be larger
than Lipschitz dimension by any desired amount.

The reverse situation can also happen: the Lipschitz dimension may be
any amount larger than the Hausdorff and/or Assouad dimensions. Indeed,
as we will note in Subsection 6.3.1, Carnot groups have finite Hausdorff and
Assouad dimensions, but have infinite Lipschitz dimension by Theorem 6.8
below.
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4. Monotonicity, completions, products, and unions. In this sec-
tion, after proving some basic facts concerning Lipschitz light maps, we study
the behavior of Lipschitz dimension under products and unions.

4.1. Monotonicity and completions. For future reference, we make
the following simple observations:

LEMMA 4.1. Let X,Y, Z be metric spaces and f: X =Y andg: Y — Z
be Lipschitz light. Then

(i) go f is Lipschitz light,
(iii) the extension f: X —Y of f to the completions of X andY is Lipschitz
light, and

(iv) dimp(X) = dimg(X).

Proof. Let C = max{C}y,Cy, 1}, where Cy and Cj are the Lipschitz light
constants of f and g, respectively.

For item (i), let B C Z be a ball of radius r and consider an r-path
P C (go f)~%B). Then f(P) CY is a Cr-path with g(f(P)) contained in
a ball of radius r < Cr, and hence diam(f(P)) < C?r because g is Lipschitz
light with constant C. Thus, P is a C?r-path with diam(f(P)) < C?r, and
hence diam(P) < C3r because f is Lipschitz light with constant C. It follows
that each r-component of (go f)~!(B) has diameter at most C®r, and hence
this composition is Lipschitz light.

Item (ii) follows from (i) by taking Z = R™, where n = dimy(Y).

For item (iii), consider a ball B = B(y,r) C Y and an r-path P =
(T1,...,m,) C fﬁl(B) C X. Fix € > 0. For each i € {1,...,n}, choose a
point z, € X with d(«},z;) < €, and set P’ = (21,...,). Also choose a
point ¢ € Y with d(y,y’) < e.

Then P’ is an (r + 2¢)-path in X with f(P’) C B(y',r+2Ce) C Y. Since
f is Lipschitz light on X,

diam(P) < diam(P’) + 2¢ < C(r + 2Ce) + 2e.

Sending € to 0 shows that diam(P) < Cr and hence f is Lipschitz light.
Item (iv) follows from (iii) by taking ¥ = R", where n = dimy(X). =
4.2. Products and unions
PROPOSITION 4.2. Let X and Y be metric spaces with

dim(X) <m and dimz(Y) <n.

Then
dimz (X xY) <m+n.
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Proof. Let Z = X x Y and write wx and my for the projections to the
two factors.
Let f: X - R™ and g : Y — R"™ be Lipschitz light mappings. Let

F=(fg):Z—>R"™"

Fix W C R™*" with diam(W) < r. We write mgm : R™*" — R™ for the pro-
jection onto the first m coordinates and 7gn : R™" — R" for the projection
onto the last n coordinates.

Let A be an r-component of F~1(W) C Z. Note that

f(rx(A)) = mrm (F(A)) C mrm (W),
9(my (A)) = mrn (F(A)) S mgn (W).

If P is any r-path in A, then wx (P) and 7y (P) are r-paths in f~!(7gm (W))
and g~ !(mgn (W)), respectively.

It follows that 7x (P) and my (P) have diameters controlled by Cr, where
C' is the maximum of the Lipschitz light constants of f and g. Thus, P has
diameter controlled by Cr. As P was an arbitrary r-path in A, diam(A) <C'r.
This proves that F' is Lipschitz light, and hence dimz(Z) <m +n. =

In Proposition 4.2, equality is of course sometimes attained (e.g., for
R x R) but it may be strict in some cases. An example following [LS05,
Theorem 2.6] shows this: Let X = Z and Y = [0,1]. Then it is easy to
see that dimz(X) = dimz(Y) = 1. However, dim;(X x Y) = 1 as well.
Indeed, the map f: X xY — R defined by f(n,t) = 2n+t is a bi-Lipschitz
embedding: It is clearly Lipschitz. If n = m, then |f(n,t)—f(m,s)| = [t—s| =
d((n,t),(m,s)). Otherwise,

|f(n7t) - f(m7 S)‘ 2 2‘” - m’ - |t - S| = "I”L - m’ = d((nvt)v (mvs))'

Next we study unions. While we are able to show that a finite union of
spaces with finite Lipschitz dimension has finite Lipschitz dimension, we do
not appear to obtain the sharp bound.

PROPOSITION 4.3. Let Z be a metric space that can be written as a union
Z=XUY. Then

Proof. Write m = dimz(X) and n = dim(Y). Of course, if either is
infinite, then there is nothing to prove.

Let f: X — R™ and g : Y — R” be Lipschitz light. We may assume
that both are Lipschitz light with constant C' > 1. By McShane’s extension
theorem [Hei01, Theorem 6.2], we may extend both mappings to Lipschitz
mappings defined on all of Z, though of course they will not necessarily be
Lipschitz light on the entire domain Z.
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Let F': Z — R™™ be defined by F(z) = (f(z),9(z)). We claim that F'
is Lipschitz light.
Let W C R™™ be a set of diameter at most r > 0, and let

P=(o1,...,m)
be an r-path in F~Y(W) C Z. Without loss of generality, assume that

1 € X.
We make the following immediate observation:

(4.1) If A > 1, then any Ar-path @ contained in PN X or PNY has dia-
meter at most C Ar.

Indeed, for such a path @, either f or g maps it into a set of diameter at
most r < Ar, and both these maps are Lipschitz light on their respective
original domains X and Y.

We now define a subpath P’ C P as follows.

Let i1 = 1. For each j > 1, inductively set i; to be the smallest index
greater than i;_; such that xi; € X. Continue this until there is no such
index i;. We obtain a subpath

P'= (xi,...,z;,) C P.

Observe that if i; > 4;_1+1, then the entire subpath of P from index 7;_;+1
to i; — 1 is contained in Y, since it is disjoint from X. Thus, by (4.1), the
diameter of this subpath is at most Cr. The same holds for the subpath
between index iy and the last index k, if it so happens that i, < k.
Thus,
d(xi;_y, ;) < (C+2)r  for each j,

i.e., P'is a (C 4 2)r-path, and moreover
P C NCT(P/).

Since P’ is a (C + 2)r-path that is entirely contained in X, it follows

again from (4.1) that
diam(P') < C(C + 2)r.
Hence,
diam(P) < diam(P’) + 2(C + 2)r < (C + 2)*r.

Thus, F is Lipschitz light and so dimz(Z) <n+m. =

Of course, Proposition 4.3 implies that any finite union of spaces with
finite Lipschitz dimension has finite Lipschitz dimension.

If true, the natural bound in Proposition 4.3 would be to replace the sum
by the maximum:

QUESTION 4.4. If Z = X UY, is it true that
dimp,(Z) < max(dimg,(X),dimz(Y))?
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5. Gromov—Hausdorff limits and weak tangents

5.1. Convergence of metric spaces. We will use the notion of conver-
gence of “mapping packages”’, a version of Gromov-Hausdorff convergence,
that is described in [DS97, Chapter 8|. This version applies only to sequences
of complete metric spaces that are doubling with uniform constants, and
mappings defined on such spaces. Expositions of this material are also given
in [Kei04] and |Dav16, Section 2.1].

DEFINITION 5.1. We say that a sequence {F};} of non-empty, closed sub-
sets of some Euclidean space RV converges to a non-empty closed set I C RN
if

lim sup  dist(z,F)=0 and lim  sup dist(y, F;) =0

I ze F;NB(0,R) I ye FNB(0,R)
for all R > 0.

We now move on to defining convergence of mappings.

DEFINITION 5.2. Suppose {F}} is a sequence of closed sets converging to
a closed set F' in RN as in the previous definition. Let Y be a metric space
and fj: F; =Y, f: F — Y be mappings. We say that {f;} converges to f
if for each sequence {z;} in RY such that z; € Fj for all j and x; — z € F,

lim fy(z;) = /(@)

We have the following compactness statements for these notions of con-
vergence:

LEMMA 5.3 ([DS97, Lemmas 8.2 and 8.6]). Let {F}} be a sequence of
non-empty, closed subsets of R™ that all intersect a fized ball B(0,r). Let
fj+ Fj = R™ be L-Lipschitz mappings such that, for each bounded set B CR",

sup sup|f;(@)] < oo.
j J?EBij
Then there is a subsequence along which {F;} converges to a non-empty,
closed subset F' of R™ (in the sense of Definition 5.1) and {f;} converges to
an L-Lipschitz mapping f: F — R™ (in the sense of Definition 5.2).

Now we begin to define convergence for general metric spaces and map-
pings.

DEFINITION 5.4. A sequence {(X},d;,p;)} of pointed metric spaces con-
verges to a pointed metric space (X, d, p) if the following holds. There exists
a € (0,1, N € N, and L-bi-Lipschitz embeddings e; : (X;,d) — RY,
e (X,d*) — RY with ej(p;) = e(p) = 0 for all j. Furthermore, we require
that e;(X;) converge to e(X) in the sense of Definition 5.1, and that the
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real-valued functions dj(ej_l(x), ej_l(y)) defined on e;(X;) x e;(X;) converge
to d(e (z),e " (y)) on e(X) x e(X) in the sense of Definition 5.2.

In the case where the metric spaces {(X;,d;)} and (X, d) are uniformly
doubling, the embeddings e; and e can always be found, by Assouad’s em-
bedding theorem (see [Hei01, Theorem 12.2]).

DEFINITION 5.5. A mapping package consists of a pair of pointed metric
spaces (M, dpr,p) and (N, dy, q) as well as a mapping g : M — N such that
g(p) = q. It is written ((M,ds,p), (N,dN,q),g).

We slightly abuse notation and call a mapping package “doubling” if
the underlying spaces are both doubling, and “uniformly doubling” if all
underlying spaces are doubling with the same doubling constant.

DEFINITION 5.6. A sequence {((Xj,d;,p;), (Y}, pj,45),h;)} of mapping
packages is said to converge to another mapping package (X, d, p), (Y, p,q), h)
if the following conditions hold. The sequences {(X;, d;,p;)} and {(Y}, pj, q;}
converge to (X, d,p) and (Y, p, q), respectively, in the sense of Definition 5.4.
Furthermore, the maps g; o h; o fj_1 converge to go ho f~! in the sense of
Definition 5.2, where fj}, gj, f, g are the embeddings of Definition 5.4.

We take this opportunity to remark that the limit of a sequence of map-
ping packages is unique up to isometry; see [DS97, Lemma 8.20|. That is, two
limits of the same sequence of mapping packages are isometrically equivalent
by an isometry that preserves base points and intertwines the mappings.

We often use the — notation to indicate convergence of a sequence of
pointed metric spaces or mapping packages, e.g., (X;,d;,p;) = (X, d, p).

The following proposition is a special case of [DS97, Lemma 8.22].

PropOSITION 5.7. Let {((Xj,d;,p;), (Yj,pj,q5),hj)} be a sequence of
mapping packages in which all the metric spaces are complete and uniformly
doubling, and in which the maps h; are equicontinuous and uniformly bounded
on bounded sets and satisfy h;j(p;) = qj. Then there exists a mapping pack-
age ((X,d,p),(Y,p,q),h) that is the limit of a subsequence of {((X;,d;,p;),

(Yj,pj,aj)s hj)}-

Here, the assumption that the {h;} are equicontinuous and uniformly
bounded on bounded sets means that for each R > 0 and € > 0, there is 6 > 0
such that

pj(hj(x),h;i(y)) <e forall z,y € Bx,(p;, R) with d;(z,y) <6
and

sup  sup  pj(h;(2), ;) < oo.
J ze€Bx;(p;R)
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In particular, this assumption is satisfied when the h; are Lipschitz or snow-
flake maps with constants controlled independent of j, which is how we will
always use this result.

We will now describe some consequences of the convergence of a sequence
of mapping packages, which are Lemmas 8.11 and 8.19 of [DS97].

PROPOSITION 5.8. Suppose a sequence {(Xg,dr,pr)} of pointed metric
spaces converges to the pointed metric space (X, d,p), in the sense of Defini-
tion 5.4. Then there exist (not necessarily continuous) mappings ¢r: X — X
and Yy : X — X such that:

(i) For all k, ¢x(p) = pr. and ¢(px) = p.
(ii) For all R >0,

Jim sup{dx (¥ (ox(2)),2) : « € Bx(p, R)} =0,
Jim sup{dx, (¢x(vk(2)), 2) : @ € Bx, (pk, R)} = 0.
(iii) For all R >0,
Jim sup{|dx, (éx(2), k(y)) — dx (2, y)| : 2,y € Bx(p, R)} =0,
Jim sup{|dx (Vi (2), ¥x(y)) — dx,. (2, y)| : 2,y € Bx, (px, R)} = 0.

PROPOSITION 5.9. Suppose a sequence of mapping packages
{(Xk, dies i), (Yo, oy i), )

converges to a mapping package

(X, d,p), (Y,p,q), h),

where the mappings hy are uniformly Lipschitz and satisfy hi(pr) = qx.
Then there exist (not necessarily continuous) mappings ¢r: X — Xi and
Y X — X satisfying exactly the conditions of Proposition 5.8, and map-
pings or: Y — Y and 1: Yy — Y satisfying the analogous properties of
Proposition 5.8, such that in addition, for all x € X,

(5.1) Tim 7 (hi(94(1))) = h()
and this convergence is uniform on bounded subsets of X.

The following lemma is needed to ensure that subsets of our spaces con-
verge. It is a simple consequence of [DS97, Lemma 8.31].

LEMMA 5.10. Suppose that {(X, di,pr)} is a sequence of pointed metric
spaces that converges to the pointed metric space {(X,d,p)} in the sense of
Definition 5.4. Let {Fy} be a sequence of non-empty closed sets with

pr € F, C X for each k.
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Then we can pass to a subsequence to get convergence of (Fy,dp,px) to
(F,d,p), where F' is a non-empty closed subset of X.

Lastly, we record the following basic facts about the preservation of map-
ping properties under limits.

LEMMA 5.11. Let {((Xg, dk,pr)s Y, Pk, qr), f&)} be a sequence of map-
ping packages converging to ((X,d,p), (Y, p,q), f).

(i) If all the fy, are L-Lipschitz, then so is f.
(ii) If all the fy are L-bi-Lipschitz, then so is f.
(i) If all the fi are a-snowflake maps with constant C, then so is f.
(iv) If all the fi are surjective a-snowflake maps with constant C, then f is
a surjective a-snowflake map.

Proof. The first two statements in the lemma are given in [DS97, Lemma
8.20], and the third is easy to verify by the same means. The fourth follows
by passing to a subsequence along which the packages

{((Yis o an)s (X dits o), (f) ™)}
converge as well, which we can do by (iii) and Proposition 5.7. m

5.2. Tangents and weak tangents. We can now define the notions of
tangent and weak tangent to a space or mapping package.

DEFINITION 5.12. If (X, d) is a metric space, a weak tangent of X is any
limit of pointed metric spaces of the form (X, A\pd, zx), where A\ > 0 and
i € X.

If f:(X,d) = (Y,p) is a mapping, a weak tangent of f is any limit of
mapping packages of the form

((X7 Akd, Ik)? (Y) APk f(xk‘))v f)7
where A\ > 0 and zp € X are arbitrary.
We denote the collection of weak tangents of X or f by WTan(X) or
WTan(f), respectively.

As a special case of the notion of weak tangent, one may force the base
points zp to be fixed and the sequence of scales to tend to infinity, corre-
sponding to the notion of “blowing up” the space at a given point. This is
the notion of a tangent.

DEFINITION 5.13. If (X, d) is a metric space and = € X, a tangent of X
at = is any limit of pointed metric spaces of the form (X, \id,x), where
)\k — Q.

If f:(X,d) = (Y,p)is amapping and = € X, a tangent of f is any limit
of mapping packages of the form

((X7 Akda (L’), (Y7 )\kp7 f(l’)), f)7
where A\, — oo.
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We denote the collection of tangents of X at x by Tan(X,z), and the
collections of tangents of f at x by Tan(f,x).

Of course, tangents are always weak tangents. Proposition 5.7 guarantees
that a doubling metric space has at least one tangent at each of its points,
and that a Lipschitz mapping has a tangent at each point of its domain.

If F is a non-empty, closed subset of R", one may wish to pass to a
tangent or weak tangent of F' inside R", rather than viewing it simply as
an abstract metric space. We have the following simple consequence of the
results above.

LEMMA 5.14. Let FF C R"™ be a non-empty, closed set, and let f: F — R™
be a Lipschitz mapping. Let {x;} be a sequence of points in F' and {\;} be a
sequence of positive numbers. Then:

(i) We may pass to a subsequence along which the sets

(5.2) Aj(F = ;)
and the mappings
(5.3) 20 N(FA 2+ 25) = f(z5)

converge to a set F CR" and a mapping f: F — R™, in the sense
of Definitions 5.1 and 5.2. Furthermore, (F,0) is in WTan(F) and the
mapping package

((£,0), (R™,0), f)
is in WTan(f).

(ii) Conversely, if ((Z,p),(R™,0),h) € WTan(f) arises from the choice of
points {x;} and scales {\;}, then, after passing to a subsequence, the
sets in (5.2) converge to a set F isometric to (Z,p) and the mappings in
(5.3) converge to a mapping on F that agrees with h, up to composition
with an isometry.

Proof. This is an immediate consequence of Lemma 5.3 and Proposi-
tion 5.7, and the fact that limits of isometric spaces and mappings are them-
selves isometric. (See [DS97, Lemma 8.12|.) =

5.3. Gromov—Hausdorff limits of Lipschitz light mappings. In
this subsection, we study the Gromov—Hausdorff convergence properties of
Lipschitz light mappings, culminating in a characterization result, Theorem
5.19, and corresponding consequences for Lipschitz dimension.

We begin by establishing the persistence of the Lipschitz light property
during Gromov—-Hausdorff convergence.

PRrROPOSITION 5.15. Let {((Xg, dk,pr)s Y, Pk, i), fr)} be a sequence of
complete, uniformly doubling mapping packages converging to {((X,d,p),
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(Y,p,q), f)}. Assume that each f, is Lipschitz light with constant C, in-
dependent of k. Then f is Lipschitz light with constant C.

Proof. To begin, the map f is C-Lipschitz by Lemma 5.11.

Consider a sequence of mapping packages as in the proposition. We have
“almost-isometries” ¢p: X — Xp, ¥p: Xp > X, 0p: Y =Y, and 74: Y =Y
as in Proposition 5.9.

Fix r > 0 and W C Y with diam(W) < r. Let U be an r-component of
f~Y(W) C X, and P an arbitrary r-path in U.

We can choose R > 0 large enough so that P C B(p, R/2) and Py :=
¢r(P) C B(pg, R/2) for each k € N. Let € € (0,r) be arbitrary. We may then
choose k € N sufficiently large so that all distortions of ¢y, 1k, ok, T are less
than e. In other words,

sup{d(¢y(dr(z)), x) : © € Bx(p, R)} <,
sup{dk (o (Vr(2)), x) : € B(pk, R)} <,
sup{|di(dx (), or(y)) — d(z,y)| : z,y € B(p, R)} <e,
sup{|d(vr(x), Yr(y)) — di(z, y)| - 2,y € B(pr, R)} <,
with analogous properties for 7, and 0. We may furthermore ensure that
|76 (fr(Pr(x))) — f(x)] <€ forall x € B(p, R).
Then Py, = ¢ (P) is an (r + 2¢)-path in X}. Moreover,
diam(fx(Pg)) < diam(7x(fi(Py))) + 2¢ < diam(f(P)) + 4e < r + 4e.

Since fj is Lipschitz light with constant C' and fx(Py) is a set of diameter
at most r + 4e, it follows that

diam(Py) < C(r + 4e).
Lastly, we have
diam(P) < diam(FPy) + 2¢ < C(r + 4e) + 2e.
Letting € tend to 0, we get
diam(P) < C'r,
which proves that f is Lipschitz light with constant C.

COROLLARY 5.16. If X andY are complete and doubling, and f: X =Y
is Lipschitz light with constant C, then so is each f € WTan(f).

Proof. We need only observe that the mapping
£ (X.Ad) = (Vi)

is also Lipschitz light with constant C, for each A > 0, and then apply
Proposition 5.15. =
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As an immediate consequence, we show that Lipschitz dimension cannot
increase when passing to weak tangents.

COROLLARY 5.17. If X is doubling, dimp,(X) < n and (Z, z) € WTan(X),
then dimp,(Z) < n.

Proof. 1f f: X — R™ is Lipschitz light, then by Proposition 5.7 there is a
mapping f € WTan(f) from Z to R™. It is Lipschitz light by Corollary 5.16. =

In fact, we can also characterize Lipschitz light mappings among all Lip-

schitz mappings by examining their weak tangents.
Before we do so, we need the following lemma.

LEMMA 5.18. Let {(Xn,dn,pn)} — (X, d,p) be a converging sequence of
complete, uniformly doubling pointed metric spaces. Suppose that for each n,
there is a Op-path P, C B(pn,1) C X, containing p,, and 6, — 0. Then,
after passing to a subsequence,

{(Pnadnapn)} - (Pa d,p),

where P C X is compact and connected.

Proof. The existence of a subsequence under which P, converges to a
compact set P C X is ensured by Lemma 5.10. Assume that P is not con-
nected. It follows that P can be written as AU B, where € := dist(A, B) > 0.

Fix mappings ¢,: P — P, and v, : P, — P as in Proposition 5.8. By
choosing n large, we may ensure that

on < €/10,  |dn(Pn(z), On(y)) —d(z,y)| < €/10, [dn(¥n(dn(z)), z)| < €/10
for all z,y € P.
Fixae AC Pand be B C P. Then ¢,(a) and ¢, (b) are in P, so there
is a d,-path
(an(a) = xrlm R ¢n(b) = xnm) c P,

between them. Then

(a’ ¢n($3l)7 Q)Dn(xi)’ M ¢n(x;n)7 b) g P
is a %-path from a to b in P. But this is impossible, since dist(A, B) = €.

THEOREM 5.19. Let f: X — Y be a Lipschitz mapping between complete,
doubling metric spaces. Then the following are equivalent:

(i) f is Lipschitz light.
(ii) Each weak tangent of f is Lipschitz light.
(iii) Fach weak tangent of f is light.

Proof. We have already shown in Corollary 5.16 that (i) implies (ii).
Since Lipschitz light maps are automatically light, (ii) immediately implies
(iii). It remains to show that (iii) implies (i).
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Suppose that every weak tangent of f is light, but that f is not Lipschitz
light. That means that, for each n € N, we have

e a positive number 7,
e a subset W,, C Y with diam(W,,) <r,, and
e an ry-path P, C f~1(W,) with diam(P,) > nry,.

Let x,, be the initial point of P,. We consider the following sequence of
mapping packages:

U0 iy (% iy ) 1) |

By Proposition 5.7, a subsequence of this sequence converges to a mapping
package

~ ~

{((X,d, 2),(Y,p, f(2)), f)}
in WTan(f).

In the space (X, md :L'n) P,isa l-pa‘ch of diameter exactly 1. By
passing to a further subsequence, we may assume that P, converges to a
connected subset P C X as in Lemma 5.18. Furthermore, dlam(P) =1,
since diam(P,) = 1 for each n.

On the othe}r I}and, f(P,) C W, has Eliameter at most % in (Y, m ,0),
and therefore f(P) is a single point in Y.

Thus, f collapses the non-trivial connected set Ptoa point. It follows
that f is not light, contradicting our assumption (ii). m

6. Lipschitz dimensions of various spaces. In this section, we use
a variety of techniques to compute or bound the Lipschitz dimension of a
number of spaces. The main concrete results of interest are Corollary 6.3
concerning trees and buildings, Corollary 6.5 on snowflakes of Euclidean
spaces, Theorem 6.8 concerning Carnot groups, and Theorem 6.16 covering
certain fractals in Euclidean space.

6.1. Trees and Euclidean buildings. In this section, we study two
classes of non-positively curved spaces: metric trees and Euclidean buildings.
A metric tree is a geodesic metric space such that all geodesic triangles are
degenerate. In other words, a metric tree is a space T' such that any two points
x,y € T can be joined by a curve 7., of length d(z,y), and if z,y,2 € T
then 7, C 7zy U vy.. In particular, as in [LS05], no compactness or local
finiteness is assumed, so a metric tree may have arbitrarily large Hausdorff
dimension, for example.

The definition of Euclidean building would take us rather far afield here,
so we refer those who are interested to [LPS00, Section 6] or [KL97| for
details. The definition of Euclidean building will not directly enter our ar-
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guments in this section; we just use two results from |[LS05] about trees and
buildings.

In [LSO05, Lemma 3.1], Lang and Schlichenmaier study mappings that
satisfy certain technical conditions (those in Lemma 6.1 below), and show
that such mappings cannot decrease Nagata dimension. They then construct
such mappings from trees and buildings into R", in order to bound the
Nagata dimensions of these spaces.

We show that the mappings studied by Lang and Schlichenmaier are in
fact Lipschitz light.

LEMMA 6.1. Suppose f: X — Y is 1-Lipschitz and h: X x [0,00) — X
are mappings with the following three properties, for some A, u > 0:

(i) Whenever C CY is non-empty and bounded, there exists y € Y with
F7HC) C Ndiamey(f ()

(ii) Forallz € X andt >0, d(h(z,t),z) <t.
(i) If f(x) = f(2') and t > pd(x,2’), then h(x,t) = h(a',t).

Then f is Lipschitz light.

Proof. Consider any C' C Y with diam(C') < r. Consider also any r-path
(x1,...,2,) in f71(C). By (i), there is a corresponding (1 + 2\)r-path
(21,--,2n) C f7(y) for some y € Y, with d(z;, 2;) < Ar for each i.

By (iii), we see that

h(zi, (1 4 22)7) = h(zig1, u(1 4 2X)r)
for each 7 € {1,...,n —1}. So
h(zi, p(1 4+ 2A)r) = h(z;, p(1 +2X\)r)
for each 7,5 € {1,...,n}. Thus, there is a point p € X with
h(zi, (1 4+2\)r) =p foreachie {1,...,n}.
It follows from (ii) that
d(zi,p) = d(zi,h(zi,u(l + 2)\)r)) < u(l4+2X\)r  foreachie {1,...,n},

and so
diam({z1,...,2n}) < 2u(1 + 2M\)r.

Therefore,
diam({z1,...,2n}) < 2u(1 4+ 2X)r + 2\r = 2(p + 2uX + A\)r
and so f is Lipschitz light. =

It follows immediately from Lemma 4.1(ii) that if X and Y are as in
Lemma 6.1, then dim,(X) < dimz(Y’). We observe that Lang and Schlichen-
maier in fact prove the following en route to Theorems 3.2 and 3.3 of |[LSO05].
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THEOREM 6.2 (Lang—Schlichenmaier [LS05, Theorems 3.2 and 3.3|). Let
T be a metric tree and let X be a Fuclidean building of rank n. Then:

(i) There are maps fr: T — R and hp: T x R — T satisfying the assump-
tions of Lemma 6.1.

(ii) There are maps fx: X — R™ and hx: X x R — X satisfying the as-
sumptions of Lemma 6.1.

As a consequence, we have:

COROLLARY 6.3. Let X be a product of n (non-trivial) metric trees or a
Euclidean building of rank n. Then the Lipschitz dimension of X is n.

Proof. By Lemma 6.1 and Theorem 6.2, a Euclidean building of rank n
has Lipschitz dimension at most n, and a metric tree has Lipschitz dimension
at most 1.

Since a Fuclidean building of rank n contains an isometric copy of R™,
its dimension must be n.

By Proposition 4.2 and the above, a product of n metric trees has Lips-
chitz dimension at most n. If each tree is non-trivial, the product contains
an embedded copy of a cube in R™, and hence has Lipschitz dimension equal
ton. =

6.2. Snowflakes of Euclidean spaces. Unlike Nagata dimension (see
|[LS05, Theorem 1.2]), Lipschitz dimension is not a quasisymmetric or even
snowflake invariant, as we will discuss in Section 8. However, we have the
following result:

THEOREM 6.4. For every € € (0,1], the Lipschitz dimension of the e-
snowflake X = (R,|-|°) is 1.

Proof. The case € = 1 is immediate, so we assume € < 1.

By Assouad’s theorem [Hei01, Theorem 12.2], there is a bi-Lipschitz em-
bedding of X into some Euclidean space. Let n be the minimial dimension
of a Euclidean space R™ into which X bi-Lipschitz embeds. Note that n > 2
since dimg (X) > 1.

Let Y C R™ be the image of X under such a bi-Lipschitz embedding.
Since Lipschitz dimension is clearly a bi-Lipschitz invariant, it suffices to
show that Y has Lipschitz dimension 1.

Let m : R® — R be the projection onto the first coordinate. We claim
that 7|y is Lipschitz light.

Suppose not. Then, by Theorem 5.19, there is a weak tangent

((Z,2),(R,0),7) € WTan(r|y)
such that 7 is not light.

By Lemma 5.14, the weak tangent package above may be viewed as a
limit of rescalings inside R™. In other words, there is an isometry ¢ from Z
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onto a set ¥ C R” with +(z) = 0. Moreover, since rescalings and translations
like those in Lemma 5.14 do not affect the linear map 7, we have # = w o ¢.
Thus, we have a weak tangent

(Y CR",0),(R,0),7) € WTan(r|y)

such that the linear projection 7 is constant on a connected subset E of Y.
Since Y is bi-Lipschitz equivalent to X = (R, |- |¢), the space Y is also
bi-Lipschitz equivalent to (R, |-|¢) by Lemma 5.11. Therefore, any compact,
connected subset F of E CY is bi-Lipschitz equivalent to ([—1,1],] - [).
Since F is contained in 7~ !(p) (for some p € R), which is isometric
to R™™!, there is a bi-Lipschitz embedding

h: ([-1,1],]-|) = R™ L.

The mappings
t = XRE/N): (SN AL ]9 —» R

are then uniformly bi-Lipschitz, and so subconverge to a bi-Lipschitz em-
bedding of X = (R, |- [|) into R* ! as A\ — oo.

This contradicts our choice of n as the minimal integer such that X ad-
mits a bi-Lipschitz embedding into R™. Thus, 7|y must in fact have been Lip-
schitz light, which implies dimy,(X) = dim(Y) < 1. Of course, dimp,(X) > 1
by Corollary 3.5 and (3.1). =

COROLLARY 6.5. The Cartesian product of n snowflakes of R has Lips-
chitz dimension n. In particular, each snowflake of R™ has Lipschitz dimen-
ston n.

Proof. By Theorem 6.4 and Proposition 4.2, the Cartesian product of
n snowflakes of R has Lipschitz dimension at most n. It has Lipschitz di-
mension at least its topological dimension (by Corollary 3.5 and (3.1)), which
is also n.

For the second statement, we simply observe that (R"™, |-|) is bi-Lipschitz
equivalent to the Cartesian product of n copies of (R,|-[¢). =

We can also prove a result about the Lipschitz dimensions of more general
snowflakes in Euclidean space.

THEOREM 6.6. Let E C R™ be a closed set that is an a-snowflake for
some o € (0,1). Let k be an integer with
k>n— l
@
Then
dimL(E) < k.

Proof. Let w: R™ — R* be an arbitrary choice of linear projection, which
of course is 1-Lipschitz. We claim that m|g is Lipschitz light.
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Suppose not. Then, exactly as in Theorem 6.4, we find a set E C R"
such that

((E,0), (R, 0),7) € WTan(x|g),

and such that 7 is constant on a non-trivial connected subset C' C E. Thus,
C is contained in some 7~ !(p), which is an (n — k)-plane in R™.

On the other hand, F is also an a-snowflake. Indeed, if E is the image
of a metric space (Z,d) under an a-snowflake map with constant C, then
AE is the image of (Z,A\/*d) under an a-snowflake map with constant C.
It then follows from Proposition 5.7 and Lemma 5.11 that E is the image of
a metric space Z under an a-snowflake map.

Since E is an a-snowflake, each connected subset of E has Hausdorff
dimension at least 1/a. (A connected set always has Hausdorff dimension at
least 1, and a-snowflake maps multiply Hausdorff dimension by 1/«.)

Thus, using our assumption, we get

dimpy(C) = 1/a >n — k = dimg (7~ (p)),

which contradicts our observation that C' C 7~1(p).
Therefore, m|p must have been Lipschitz light, forcing dimy(F) < k. =

6.3. Carnot groups. The so-called Carnot groups are central objects
of study in the modern theory of analysis on metric spaces and non-smooth
calculus. We begin this subsection with a very brief introduction to Carnot
groups, referring the reader elsewhere for more background. We then show
that non-abelian Carnot groups have infinite Lipschitz dimension, and pro-
ceed by discussing some consequences of this fact. We thank Bruce Kleiner
for pointing out to us a number of years ago that Carnot groups should have
infinite Lipschitz dimension.

6.3.1. Background on Carnot groups. We give a very brief background
summary on Carnot groups. For more, we refer the reader to [Mon02, CD*07,
LD17]. Very little of the Lie group structure of Carnot groups is directly used
in our arguments below, but it is necessary to set the stage.

A Carnot group is a simply connected nilpotent Lie group G whose Lie
algebra g admits a stratification

where the first layer V) generates the rest via Vi1 = [V4, V;] forall 1 <i <s,
and we set Vi1 = {0}.

Given an inner product (-,-) on the horizontal layer Vj, the associated
sub-Riemannian Carnot—Carathéodory metric d on G is defined by

d(z,y) = inf{s (' (t),7'(¢))"/? dt : v a horizontal curve joining x to y},
0
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where an absolutely continuous curve v: [0,1] — G is called horizontal if
7' (t) € Vi for a.e. t € [0,1].

Like the standard Euclidean metric, which is just the special case in which
the stratification has a single layer, the Carnot—Carathéodory distance d is
invariant under left-translations, the maps L, defined by L,(p) = = - p. It
also admits a family of dilations: For each A > 0, there is a homeomorphism
6r: G — G such that

d(6x(x),00(y)) = Md(z,y) for each z,y € G.

Together, these facts imply that every element of WTan(G) is pointedly
isometric to (G, 0) itself.

The simplest non-abelian Carnot group is the (first) Heisenberg group H.
The underlying manifold of H is R?, and its Lie algebra h can be written

h =V1® ‘/27
where dim(V1) = 2, dim(Va) = 1, [V1, V4] = Vs, and [Vi, V2] = 0. In expo-
nential coordinates, H can be viewed as C x R with the group law
(z,t) x (&, t') = (z+ 2/, t +t' — FIm(22')).

On the Heisenberg group, the Koranyi metric

drc(p,q) = lla”"pll,
where
1z ) = (I=I* + 16¢%)1/*,

yields a bi-Lipschitz equivalent distance to d (see [CD107, p. 18|). If we
define the standard projection 7: H — C =2 R? by 7(z,t) = 2, we see that 7
is Lipschitz and that 7=!(y) is a snowflake of R for each y € R.

The main result about Carnot groups that we will use is the celebrated
Pansu differentiation theorem:

THEOREM 6.7 (Pansu [Pan89]). Let f: Gi — G2 be a Lipschitz map
between Carnot groups. Then for almost every x € G1, the sequence of maps
ox 0 (Ly(z)-10folLy)ody
converges uniformly on compact sets, as A — oo, to a Lie group homomor-

phism Df(x): Gi — Go that commutes with dilations.

We will use Theorem 6.7 in the case where G; is non-abelian and Gy is
a Euclidean space R™. In that case, Df(z) must collapse the (connected)
commutator subgroup of G1. Also, in the setting of Theorem 6.7,

((G1,0),(G2,0), Df(x)) € Tan(f,x) € WTan(f).

Carnot groups are doubling metric spaces. (See [LD17, p. 116] and note
that Ahlfors regular spaces are always doubling.) Therefore, they have finite
Hausdorff and Assouad dimensions. In addition, their Nagata dimension is
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equal to their topological dimension [LDR15, Theorem 4.2|, and hence also
finite, though generally smaller.

Nonetheless, in the next section, we show that non-abelian Carnot groups
have infinite Lipschitz dimension.

6.3.2. Lipschitz dimension of Carnot groups
THEOREM 6.8. If G is a non-abelian Carnot group, then dimp,(G) = oo.

Proof. Suppose there is a Lipschitz light map f: G — R™. Then by
Theorem 6.7, and the remark following it, there is

((G,0), (R",0), Df(x)) € WTan(f)

such that Df(x) is a group homomorphism that commutes with dilations.
In particular, D f(x) must collapse the (connected) commutator subgroup of
G to a point.

However, the mapping Df(z) is Lipschitz light by Corollary 5.16, so
cannot collapse a connected set to a point. This is a contradiction. =

We note that the same result holds for positive-measure subsets of Carnot
groups:

COROLLARY 6.9. Let G be a non-abelian Carnot group and let K C G
be compact with positive measure. Then dimp,(K) = oo.

Proof. By [LD11, Proposition 3.1|, there is a point € K and a tangent
(K,%) € Tan(K,z) such that K is isometric to G. It follows from Corol-
lary 5.17 that

dimy, (K) > dimz(K) = dimz(G) = cc. =

6.3.3. Quasi-isometric non-embedding for Carnot groups. As a corollary
of Theorem 6.8, we prove a “coarse” non-embedding result for Carnot groups,
Corollary 6.10. Our theorem overlaps with a result of Pauls [Pau01], but our
approach is somewhat different.

We recall a notion from coarse geometry: A quasi-isometric embedding of
a space X into a space Y is a (not necessarily continuous) map g: X — Y
with constants C > 1 and € > 0 such that

Cld(z,2") — e < d(g(z),g(z)) < Cd(z,z') + ¢

for all z,2’ € X. Quasi-isometric embeddings are coarse generalizations of
bi-Lipschitz embeddings.
Our methods give a short proof of the following result.

COROLLARY 6.10. If G is a non-abelian Carnot group, then G does not
admit a quasi-isometric embedding into any space of finite Lipschitz dimen-
sion. In particular, G does not admit a quasi-isometric embedding into any
finite product of trees or finite-rank Euclidean building.
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The statement about trees and buildings in Corollary 6.10 already follows
from a general result of Pauls [Pau0l, Theorem C]|. Both approaches rely at
heart on Pansu’s theorem. One advantage of our short approach is that it
does not require proving a “metric differentiation” form of Pansu’s theorem
(see [Pau0l, Theorem 4.7]) but rather relies directly on the original result
of Pansu. On the other hand, Pauls’ result allows for quite general targets,
including infinite-dimensional spaces, which our result does not address.

Proof of Corollary 6.10. Suppose G admits a quasi-isometric embedding
g: G — Y, where Y has finite Lipschitz dimension. There are constants
C > 1 and € > 0 such that

Cld(z,2") — e < d(g(z),g(x") < Cd(z,2') + €

for all z,2’' € G.

Let N be a 2Ce-net in G containing 0. On the one hand, g|y is easily
seen to be a bi-Lipschitz embedding of N into Y, and therefore N has finite
Lipschitz dimension.

On the other hand, the pointed spaces (d;/;(IN),0) converge to the point-
ed space (G,0) € WTan(N) as k € N tends to infinity. It follows from
Corollary 5.17 that

dimy,(G) < dimp(N) < oo,

which contradicts Theorem 6.8. Therefore, there can be no such quasi-iso-
metric embedding g.
The statement about trees and buildings now follows from Corollary 6.3. =

6.3.4. Carnot groups as counterezamples. We close this discussion of
Carnot groups by observing that they, in particular the first Heisenberg
group H, provide counterexamples to two natural hopes for Lipschitz dimen-
sion.

First of all, in contrast to Proposition 4.3, we observe that the finiteness of
Lipschitz dimension is not stable under countable unions, even locally finite
ones. Indeed, consider a 1-net N in the Heisenberg group H, with 0 € N.
Exactly as in the proof of Corollary 6.10, we must have dimy (N) = oo, even
though N is countable.

Next, we observe that the Heisenberg group also serves as a counterex-
ample to any “Hurewicz-type” theorem for Lipschitz dimension. Recall first
the classical Hurewicz theorem for topological dimension, which we state in
the compact case: If f: X — Y is a continuous map between compact metric
spaces, then

dimz(X) < dimp(Y) 4 sup{dimp(f*(y)) : y € Y}
(see, for example, [Nag83, Theorem III.6]).
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No such result holds with dimy, replacing dimp: Let X denote the closed
unit ball in the Heisenberg group H, let 7: X — Y := R? denote the restric-
tion to X of the standard projection from H to R?. Then dimy(Y) = 2. Fur-
thermore, for each y € R?, 771 (y) is contained in a space that is bi-Lipschitz
equivalent to a %—Snowﬂake of R, and hence has Lipschitz dimension < 1 by
Theorem 6.4. However, X itself has infinite Lipschitz dimension.

6.4. Subsets of R. In this subsection, we characterize the Lipschitz
dimension of subsets of R by a simple metric property.

DEFINITION 6.11. A set E in a metric space X is called porous, with
constant ¢ > 0, if for every z € F and r > 0, there is a point y with

B(y,cr) € B(z,r) \ E.
PROPOSITION 6.12. Let E C R. Then the following are equivalent:

(i) E has Lipschitz dimension 0.
(ii) Every weak tangent of E is totally disconnected.
(iii) E is porous.

Proof. First, assume F has Lipschitz dimension 0. Then every weak tan-
gent of F has Lipschitz dimension 0, by Corollary 5.17, hence topological
dimension 0, hence is totally disconnected. Thus, (i) implies (ii).

Suppose E satisfied condition (ii) but E was not porous. Then we could
find balls B(z;,r;) C R, with x; € E, such that

Nl/l(E(.T“ Ti) N E) D) E(Iz, T‘i).

Passing to a weak tangent of E along the sequence of scales \; = 1/r; and
the sequence of points z;, we obtain a weak tangent (E,0) € WTan(E) such
that F contains an isometric copy of [—1,1]. This contradicts (ii), proving
that (ii) implies (iii).

Finally, suppose E C R is porous. Then no weak tangent of E contains
a non-trivial interval. Indeed, suppose {(AtE,zx)} converged to a pointed
metric space (E,O) containing a non-trivial interval. Then, along a subse-
quence, the sets {\r,(E—x)} would converge in R to a set F' that is isometric
to E, and so contains a non-trivial interval. It would follow that, for arbi-
trarily large A, there is an interval Iy such that EN1I) is %—dense in I, which
contradicts the porosity of E.

Thus, every weak tangent mapping of the constant map x: F — R? is
light, and hence  : E — R is Lipschitz light. Therefore (iii) implies (i). m

For sets in R™, we do not know whether having Lipschitz dimension
< n —1 is equivalent to porosity.

One direction is clear: If a set in R™ has Lipschitz dimension < n — 1, it
must be porous. If it is not, then by an argument similar to that in Proposi-



30 G. C. David

tion 6.12, it has a weak tangent containing an isometric copy of a ball in R",
contradicting Corollary 5.17.

QUESTION 6.13. Is it true that a set E C R™ has Lipschitz dimension
<n —1if and only if it is porous?

REMARK 6.14. The answer to Question 6.13 is “yes” if one replaces Lip-
schitz dimension by Nagata dimension. One direction (Nagata dimension
< n — 1 implies porosity) follows from the same argument as in the remark
above Question 6.13, since Nagata dimension can also only drop under weak
tangents [LDR15, Proposition 2.18]. For the other direction, it is well-known
that porous subsets of R"™ have Assouad dimension < n and hence Nagata
dimension < n — 1 by [LDR15, Theorem 1.1].

6.5. Self-covering sets and classical fractals. In this subsection, our
goal is to show that some classical fractals in the plane have Lipschitz dimen-
sion 1. As concrete examples, our results apply to the standard Sierpiriski
carpets S, indexed by odd integers p > 3. Recall that for such p, the “first
generation” S; C R? is formed by dividing the unit square into axis-parallel
subsquares of side length 2 in the usual way and removing the central square.
The nth generation Sj is formed by doing the same procedure on each of
the squares of side length p~ (1)
Sp is defined as (1,2, Sy

Our results will also apply to the standard Sierpinski gasket, similarly
formed by starting with an equilateral triangle in the plane, dividing it into
four congruent equilateral triangles, removing the central triangle, and then
iterating this construction on the remaining three triangles of half the size.
See, for example, [DS97, pp. 7-8]| for pictures and descriptions of these con-
structions.

We frame our result for a certain class of sets that includes the above
examples, which we now describe. For a compact set K, a rescaled translate
of K is a set of the form sK + v for some s > 0 and v € R".

remaining in Sg_l. The Sierpinski carpet

DEFINITION 6.15. We call a compact set K C R"™ self-covering if there
are constants N € N and C' > 0 such that the following holds: For each
x € K and r > 0, there are rescaled translates K1,..., Ky of K such that

e M <N,
e diam(K;) < Cr, and
e B(z,r)N K C UK.

In other words, a set K is self-covering if every ball of radius r in K can
be covered by a controlled number of rescaled copies of K of size at most Cr.
Note that we allow the copies of K covering B(x,r)NK to overlap arbitrarily
and to contain points outside of K, but we do not allow rotations.
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It is easy to see that the Sierpinski carpets .S, and the Sierpinski gasket
are self-covering. On the other hand, the self-covering property is some-
what different from standard notions of self-similarity; for example, the set
[0,1]U[2,3] in R is self-covering. For non-examples, we point out that the
set {0} U {1, %, %, . } in R and the unit circle S' in R? are examples of
non-self-covering sets.

Of course, the whole unit cube in R™ is also an example of a self-covering
set, so we cannot expect to interestingly bound the Lipschitz dimension
based only on the self-covering property. Our additional assumption is that
the self-covering set does not contain any non-trivial line segments in some
fixed direction.

THEOREM 6.16. Let K C R"™ be compact and self-covering, according to
Definition 6.15. Assume that there exists v € S*~' such that K contains no
non-trivial line segment in direction v. Then the Lipschitz dimension of K
15 at most n — 1.

Proof. Let K and v be as in the theorem. Assume without loss of gener-
ality that diam(K) =1 and 0 € K.

Let 7 denote the orthogonal projection from R™ onto the orthogonal
complement V of v; of course, V is isometric to R*1.

We claim that 7|k is Lipschitz light, which will suffice to prove the theo-
rem. The spirit of this argument is similar to some above that use Gromov—
Hausdorff convergence. However, in this setting we need to be a bit careful
not to identify isometric sets, as we want to avoid rotation.

Suppose that 7| is not Lipschitz light. Then for each j € N there is a
set W; C V of diameter at most r; such that 7—!(W;) contains an r;j-path
P; with R; := diam(P;) > jr;.

Let B; = B(z;, R;)N K be aball in K of radius R; containing P;, where
x; is the initial point of P;. By Definition 6.15, there are rescaled translates
K}, e ij.vj of diameter at most C'R; covering Bj, with N; < N. Note that
we may freely assume that each K; actually intersects Bj, and therefore is
contained in B(zj, (C + 1)R;).

By passing to a subsequence, we may further assume that there is M in
{1,..., N} such that N; = M for all j € N.

For each i € {1,..., M}, consider the sequence of sets
1 .

This is a sequence of rescaled translates of K, all contained in B(0,C + 1).
Thus, we may pass to a subsequence (which we continue to label by j) such
that for each i, this sequence converges in the Hausdorff sense (equivalently,
in the sense of Definition 5.1) to a set K’ that is a rescaled translate of K.
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Indeed, each set - (Kl ;) is simply s} KZ + U for some 5 €[0,2(C'+1)]

and v € B(0,C + 1), so we may simply pass to a subsequence along which
{s%}52, and {v}}52; both converge.

In partlcular, our assumption on K implies that no K’ can contain a
non-trivial line segment in direction v.

Let Koo = UM, K.

By passing to a further subsequence, we may also assume that the sets

E(Pj )

converge to a compact subset P, C R". We also claim that Py, C K
If y € Py, then y = limy; for some y; € R%(P] — y;). Each such y; is in
some R—(K’ x;). Therefore there is some i € {1,..., M} such that y; €
o (K;O —x;) for infinitely many j, from which it follows that y € K, C Kx

By Lemma 5.18, P, is a connected set, and it has diameter 1. Moreover,

diam(r(Py)) = lim diam<w(1;(Pj - xj))> < lim < =0,

J—00 J

Thus, P C K is a non-trivial line segment in direction v.

To conclude the proof, we now argue that in fact some K’  must contain
a non-trivial subsegment of Ps,. Indeed, if not, then K! N Py, has empty
interior in Py, for each j. However, by the Baire Category Theorem, P, can-
not be the union of a finite collection of subsets with empty interior. Thus,
some K! N P, must contain a non-trivial subsegment of Py. Since K, is
a rescaled translate of K, this is a contradiction. m

COROLLARY 6.17. For each odd p € N, the Sierpiniski carpets S, have
Lipschitz dimension 1. The same holds for the Sierpinski gasket G.

Proof. The Sierpinski carpets S, and the Sierpiniski gasket G are easily
seen to satisfy Definition 6.15. Moreover, S, contains no non-trivial line seg-
ments in directions of irrational slope (see [DCT11, Corollary 4.5] or [CN14,
Theorem 3.4]), and the gasket G clearly contains no non-trivial vertical line
segments. Thus, these fractals all satisfy the conditions of Theorem 6.16 and
so have Lipschitz dimension at most 1. Since each contains some non-trivial
line segments, their Lipschitz dimensions must be equal to 1. =

7. Cheeger’s analytic dimension. In this section, we describe Cheeg-
er’s version of Rademacher’s theorem on certain non-smooth metric measure
spaces, which equips them with a type of “measurable cotangent bundle”,
and we show that Lipschitz dimension bounds the dimension of this cotan-
gent bundle.
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7.1. Cheeger’s differentiation theory and Lipschitz quotient map-
pings. Recall that Rademacher’s theorem says that a Lipschitz mapping
from R™ to R is differentiable almost everywhere, with respect to Lebesgue
measure. In [Che99|, Cheeger gave a far-reaching generalization of this re-
sult to a large class of non-smooth metric measure spaces. In order to do
so, he defined a very general notion of differentiable structure on a metric
measure space. (The name “Lipschitz differentiability space” used below for
this notion was coined by Bate [Bat15].)

DEFINITION 7.1 ([Che99]). A metric measure space (X, p) is called a
Lipschitz differentiability space if it satisfies the following condition: There
are countably many Borel sets (“charts”) U; of positive measure covering X,
positive integers n; (the “dimensions of the charts”), and Lipschitz maps
¢;: X — R™ with respect to which any Lipschitz function f: X — R is
differentiable almost everywhere, in the sense that for each ¢ and for y-almost
every = € U;, there exists a unique df () € R™ such that

1)~ £() — (@) - (i) — i)
y—a d(z,y)
Here df (x) - (¢i(y) — ¢i(x)) denotes the standard scalar product in R™:.

(7.1) = 0.

Although the choice of charts (U, ¢;) is by no means unique, the numbers
n; are uniquely determined, in the sense that if (U, ¢) and (V,1)) are charts
and u(UNV') > 0, then their associated dimensions must be the same. Thus,
the numbers n; reflect something about the geometry of the space (X, d, u),
which motivates the following, chart-independent, definition:

DEFINITION 7.2. If (X, d, p) is a Lipschitz differentiability space, we call
the supremum of the numbers n; from Definition 7.1 the analytic dimension
of X, and denote it dim¢c(X).

For a nice introduction to Cheeger’s theory, we refer the reader to [KM18]
and for more recent developments in the subject to [Batl5, Sch16, EB19].
For more specific results on the interaction between analytic dimension and
metric geometry, which is an active area of research, we refer the reader to
[Dav15, BL17, DK19, KS17].

The main theorem of [Che99] is that all the so-called “Poincaré inequality
(PI) spaces” are Lipschitz differentiability spaces. Examples of these include
Euclidean spaces and Carnot groups [Hei0l|, as well as a selection of more
exotic examples appearing in [BP99, Laa00, CK15, KS17]. The full spectrum
of possibilities does not seem to be well-understood yet.

A key tool in the study of Lipschitz differentiability spaces has been the
following notion.
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DEFINITION 7.3 (|[BJ799]). Let X and Y be metric spaces and f: X =Y a
mapping. We say that f is a Lipschitz quotient mapping if there are constants
C, ¢ > 0 such that

(7.2) B(f(z),cr) € f(B(z,r)) € B(f(z),Cr)
for all z € X and r > 0.

Note that the second inclusion in (7.2) simply says that the mapping
is C-Lipschitz. Lipschitz quotient mappings were first defined and studied
in [BJT99, JLT00], where the following path-lifting property was observed.
(For a proof in the generality below, see [DK19, Lemma 3.3].)

LEMMA 7.4. Let X be a proper metric space and let f: X — Y be a
Lipschitz quotient map. Let v: [0,T] — Y be a 1-Lipschitz curve with «(0) =
f(z). Then there is a Lipschitz curve 7: [0,T] — X with (0) = = such that
for=n.

Lipschitz quotient maps enter the study of Lipschitz differentiability
spaces through the following proposition. Independent proofs of this fact
were given in [Sch16, Theorem 5.56] and (in the doubling case) [Davl5,
Corollary 5.1]. A stronger statement appears in [CKS16, Theorem 1.11] but
is not needed here.

PROPOSITION 7.5. Let (X,d, ) be a complete, metrically doubling Lip-
schitz differentiability space with a chart (U, ¢: X — RF). Then for almost
every x € X and every mapping package

(X, %), (R,0),¢) € Tan(¢, z),
the mapping qAﬁ is a Lipschitz quotient map ofX onto RF.

Without the assumption that (X, d) is metrically doubling, one can still
interpret Tan(¢, x) with a bit of care and this proposition still holds (see
[DK19, Remark 2.11]). However, we will not need this case below.

7.2. Lipschitz dimension bounds analytic dimension. It was prov-
en in [Sch16, Corollary 5.99] and [Dav15, Corollary 8.5| that Assouad dimen-
sion is an upper bound for the analytic dimension of Lipschitz differentiabil-
ity spaces. In fact, a stronger result is now known to hold: Hausdorff dimen-
sion is an upper bound for analytic dimension. This follows from [DP*17,
Theorem 1.1]; see also the approaches in [KM18| and [GP16].

On the other hand, it is a very interesting open question whether Nagata
dimension bounds analytic dimension: see [KS17, Question 1.2].

We show here that Lipschitz dimension is an upper bound for analytic
dimension. Note that by the results in Subsection 3.3, this neither implies nor
is implied by the above-mentioned results concerning Assouad and Hausdorff
dimensions.
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THEOREM 7.6. Let (X,d, i) be a complete Lipschitz differentiability space.
Then dimc(X) < dimpz,(X).

Proof. Without loss of generality, we may assume n := dimp(X) < oo,
otherwise the theorem is trivial. Let f: X — R"™ be a Lipschitz light map.
Let k denote the analytic dimension of (X, d, i), so that there is a chart

(U,¢: X — RF)

in X. Our goal is to show that k < n, so assume to the contrary that k > n.

Lipschitz differentiability spaces satisfy a property called “pointwise dou-
bling”, which in particular implies that they can be covered up to measure
zero by compact, metrically doubling subsets. (See [BS13, Corollary 2.6] and
[Bat15, Lemma 8.3|.) We can therefore find a compact, metrically doubling
subset A C U with pu(A) > 0. Moreover, by [BS13, Corollary 2.7|, the space
(A, d, ) is a complete Lipschitz differentiability space consisting of one chart
(A, ¢: A — RF).

We now work entirely on A and forget about the rest of X. Of course,
f restricts to a Lipschitz light map f|4: A — R™, which we continue to
call f.

Choose a point x € A at which each of the n R-valued component func-
tions f; of f are differentiable. We may also choose x such that the conclusion
of Proposition 7.5 holds at x. By rescaling and passing to a suitable subse-
quence, we find that

(A, #) € Tan(A, z),
(@4 2), (R",0), f) € Tan(f,z),
((4,2), (R*,0),¢) € Tan(¢, z).

From the definition of differentiability in (7.1), there exists a linear map
L: RF — R™, formed from the df;, such that

f=Log.
Since we have assumed that k& > n, L has a non-trivial kernel. In other
words, there is a line £ € R¥ such that L(¢) = {0}.
By Proposition 7.5, qﬁ is a Lipschitz quotient map. By Lemma 7.4, there

must therefore be a non-trivial curve vy C A such that ¢(v) C L. It follows
that

f(y) = Lod(v) = {0},
i.e., that f is constant on 7.
On the other hand, f is a light mapping, by Proposition 5.15. It can there-

fore not collapse the non-trivial curve v to a point. This is a contradiction,
and therefore we must have £k <n. =
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8. Mapping properties. In this section, we discuss the invariance and
non-invariance properties of Lipschitz dimension under various classes of
mappings. We show that Lipschitz light mappings cannot decrease Lipschitz
dimension but can arbitrarily increase it, and we point to examples that show
that Lipschitz dimension is in general not a quasisymmetric or snowflake
invariant. We conclude by studying David—-Semmes regular mappings and
using them to prove Corollary 8.10, which provides a necessary condition for
certain metric spaces to admit non-degenerate Lipschitz maps between them.

8.1. Lipschitz light mappings. In Lemma 4.1, we already made the
easy observation that if f: X — Y is Lipschitz light, then dimp(X) <
dimz,(Y"). In other words, Lipschitz light mappings cannot decrease Lipschitz
dimension.

Here, we observe that this inequality may be strict (even if f is surjective).
The preliminary lemma we need is the following;:

LEMMA 8.1. Let X be a metric space of Nagata dimension 0, let' Y be a
metric space, and let f: X =Y be Lipschitz. Then f is Lipschitz light.

Proof. We showed in Proposition 3.6 that X must also have Lipschitz
dimension 0, i.e., that X admits a Lipschitz light map to the one-point metric
space RO, It follows that there is a constant C' > 0 such that every r-path P in
X has diameter at most Cr. Hence, if W C Y has diam(W) < r, then every
r-component of f~1(1W) has diameter at most Cr, making f Lipschitz light. =

The following fact is probably well-known, but we include a proof. It is an
analog of the well-known topological fact that every compact metric space
is a continuous image of the Cantor set.

PROPOSITION 8.2. LetY be a compact, doubling metric space. Then there

1s a compact metric space X of Nagata dimension O and a Lipschitz map from
X onto Y.

Proof. Let Y be a compact, doubling metric space. Assume without loss
of generality that diam(Y") = 1.
For each k € N, let N, CY be a sequence of nested 2 *-nets in Y, i.e.,
N; € Ny C--- . Given a point y in some Ng, let
Nip1(y) := {z € Npy1 - d(y, 2) < 275},
Since Y is bounded and doubling, there is an M € N such that |N;| < M
and |Ng41(y)| < M for each k € N and y € Nj.
We form X as an abstract Cantor set, as follows. Let X denote the set
of infinite words on the alphabet A ={1,..., M}, i.e.
X ={(a1,az2,...) : a; € Afor each i € N}.
Define a metric d on X by
d((a1,az,...), (b1, ba,...)) = 27 mintiaizbi},
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It is standard that d defines a compact metric (indeed, an “ultra-metric”)
on X.

Given s > 0, we may choose k with 2=*+1) < s < 2% Given a word w of
length k on the alphabet A, the set By, of all elements of X beginning with w
has diameter 2~ (k+1) < s. Moreover, if W C X has diameter < s < 2"“,
then W is contained in some B,, with |w| = k, from which it follows that the
disjoint cover{B,, : |w| = k} of X has s-multiplicity at most 1. Therefore,
X has Nagata dimension dimy(X) = 0.

We now define a Lipschitz map from X onto Y. For each k£ € N and
1y € N, choose an arbitrary surjective map

¢k,y: "4 — Nk+1(y)7
which we can do since |A| = M > |Ni4+1(y)|-
Similarly, choose an arbitrary surjective map

¢1 A — Ny.
Note that, for each sequence (aj,aq,...) € X, the sequence

y1:=d1(a1), Y2 = g1y (az), Y3 := d2y,(a3)
is Cauchy in Y as d(y;,yi+1) < 27°. We therefore define a map f: X — Y
by
f((ai)) = lim y;,

1—00
where y; is defined as above.

We now show that f is Lipschitz. Let a = (a;) and b = (b;) be distinct
elements of X. Let £ € NU {0} be the length of the maximal shared initial
segment between a and b, so that d(a,b) = 2=+ Then the first k terms
of the sequences (y;) defining f(a) and f(b) agree. Therefore,

oo
d(f(a), f(b)) < 277 =271 = 4d(a,b).
j=k
Hence, f is Lipschitz.
Lastly, we show that f is surjective. Note that, for each k& € N and
y € N, the point y itself is an element of ¢y ,(A) because N C Npq.
Thus, there is a choice of (a;) making y; equal to y for all i sufficiently large.
This implies that y = f((a;)), meaning that Ny C f(X) for each k € N. It
follows that f(X) is dense in Y, and hence f(X) =Y since X is compact
and f is continuous. =

We immediately have the following corollary of Proposition 8.2 and Pro-
position 3.6.

COROLLARY 8.3. Every compact, doubling metric space is the image un-
der a Lipschitz light map of a metric space with Lipschitz dimension 0.
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In particular, using Corollary 6.9, we may find compact doubling spaces
of infinite Lipschitz dimension, and thus by Corollary 8.3 we see that Lip-
schitz light mappings may arbitarily increase the Lipschitz dimension of a
metric space.

8.2. Quasisymmetric and snowflake non-invariance. As noted ear-
lier, it is apparent that Lipschitz dimension, like Hausdorff, Assouad, and
Nagata dimensions, is invariant under bi-Lipschitz deformations.

Nagata dimension is in addition a quasisymmetric invariant [LS05, The-
orem 1.2|. However, Lipschitz dimension is not.

COROLLARY 8.4. Lipschitz dimension is not a quasisymmetric, or even
snowflake, invariant.

Proof. Let G be a non-abelian Carnot group. Every snowflake of G ad-
mits a bi-Lipschitz embedding into some R” by Assouad’s embedding theo-
rem |[Hei0l, Theorem 12.2|. Therefore, each snowflake of G has finite Lips-
chitz dimension. On the other hand, dimz,(G) = oo by Theorem 6.8. »

More specifically, Corollary 8.4 shows that snowflake mappings can arbi-
trarily decrease Lipschitz dimension.

QUESTION 8.5. Can a snowflake map increase the Lipschitz dimension
of a compact metric space?

Recall that in Corollary 6.5, we showed that snowflakes of R"™ have Lip-
schitz dimension n. However, for general quasisymmetric deformations of
Euclidean space, Lipschitz dimension is not an invariant. This follows from
a construction of Semmes [Sem96].

COROLLARY 8.6. There exists n € N and an Ahlfors n-reqular quasisym-
metric deformation of R™ with infinite Lipschitz dimension.

We recall that a metric space X is Ahlfors n-regular if there is a constant

C > 0 such that
(8.1) C~ " <HY(B(x,r)) < Cr"™  for all r < diam(X).

Proof of Corollary 8.6. By [Sem96, Theorem 1.15|, there is an Ahlfors
n-regular quasisymmetric deformation of R™ that contains a bi-Lipschitz
embedded copy of the Heisenberg group. Thus, it has infinite Lipschitz di-
mension by Theorem 6.8. u

The example provided by the proof of Corollary 8.6 must have n > 4,
since n arises in [Sem96, Theorem 1.15] as the dimension of a Euclidean
space containing a snowflake embedding of the Heisenberg group, which must
have Hausdorff dimension greater than 4. An interesting question would be
to explore the Lipschitz dimension of quasisymmetric deformations of low-
dimensional Euclidean spaces:
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QUESTION 8.7. Does every quasi-arc (quasisymmetric image of [0,1]
C R) have Lipschitz dimension 1¢ Does every quasi-plane (quasisymmetric
image of R?) have finite Lipschitz dimension?

We note that a positive answer to Question 3.7 would imply a positive
answer to the first part of Question 8.7.

8.3. David—Semmes regularity and non-degenerate Lipschitz
maps. Another well-studied class of mappings are the so-called David—
Semmes regular mappings.

DEFINITION 8.8 (|DS97, Definition 12.1]). A Lipschitz map f: X — Y
is David—Semmes reqular if there is a constant C' > 0 such that, if B =
B(y,7) C Y, then f~1(B) can be covered by at most C balls of radius Cr
in X.

David—Semmes regular mappings are finite-to-one in a controlled, quan-
titative manner.

Lipschitz light mappings need not be David-Semmes regular: David—
Semmes regular mappings are always bounded-to-one, in particular discrete,
whereas Lipschitz light mappings need not be. However, we do have the
following direction.

LEMMA 8.9. David-Semmes regular mappings are Lipschitz light.

Proof. Let f: X — Y be David-Semmes regular. We may assume with-
out loss of generality that the constant C' from Definition 8.8 is at least 1.

Let W be a set of diameter at most 7 in Y. Then f~1(W) C X can be
covered by a collection B of at most C' closed balls, each of radius Cr.

Let P = (x1,...,21) be any r-path in f~1(W) C Upeg B € X. Without
loss of generality, assume that diam(P) = d(z1,zx). Let (By,...,By) be a
list of balls in B such that

(8.2) x1 € By and zp € By,
and
(83) 2B, N 2B;41 75@ for each 7 € {1,...,m— 1},

and moreover such that m is the minimal length of such a “chain of balls” sat-
isfying (8.2) and (8.3). Note that simply choosing one ball from B containing
each z; yields a path satisfying (8.2) and (8.3), so such chains exist.

The fact that m is minimal implies that B; # B; if 1 < ¢ < j < m.
Indeed, if B; = B; for such 4, j, then excising all the balls between indices
i+ 1 and j — 1 yields a shorter list satisfying (8.2) and (8.3).

Since there are only at most C' distinct balls in B, we have m < C,
and therefore diam(P) = d(z1,x;) < 4C?%r. As P was an arbitary r-path in
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f~YH(W), it follows that the r-components of f~(W) have diameter at most
4C?r, which proves that f is Lipschitz light. m

Combined with a result of David—Semmes, Lemma 8.9 yields one way
to control Lipschitz dimension of weak tangents of certain metric spaces by
Hausdorff dimension. Recall the definition of Ahlfors regularity from (8.1).

COROLLARY 8.10. Let X be an Ahlfors n-reqular metric space, Y a com-
plete, doubling metric space, and Z a compact subset of X. Suppose that
there is a Lipschitz map g: Z — Y such that H"(g(X)) > 0. Then there
are weak tangents A(X,:i‘) € WTan(X) and (Y,9) € WTan(Y) such that

dimz,(X) < dimg(Y). In particular, if dimp(Y) < m, then X has a weak
tangent with Lipschitz dimension at most m.

Proof. By [DS97, Proposition 12.8|, there is a weak tangent
((X,2),(Y,9),§) € WTan(g)

such that g is David—Semmes regular. The map § is then Lipschitz light by
Lemma 8.9, and so the result follows from the observation at the beginning
of Subsection 8.1.

The “In particular...” statement follows from Corollary 5.17. u

Corollary 8.10 can be viewed as a statement about which Ahlfors n-
regular spaces can admit “non-degenerate” Lipschitz maps into other spaces,
where a “non-degenerate” Lipschitz map is one whose image has positive
H™-measure.

In particular, if X is an Ahlfors n-regular metric space such that every
weak tangent of X has Lipschitz dimension greater than m, then X cannot
admit a non-degenerate Lipschitz map into a space of Lipschitz dimension
at most m.

Specializing further, if X is an Ahlfors n-regular metric space such that
every weak tangent of X has infinite Lipschitz dimension (as we have seen
is the case of non-abelian Carnot groups), then X cannot admit a non-
degenerate Lipschitz map into any metric space of finite Lipschitz dimension.
This is closely related to the notion of “strong unrectifiability” studied in
[AKO00, Section 7] and [DK20, Section 4.1|, among other places.
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