
Geodynamo Conductivity Limits
Peter E. Driscoll1 and Zhixue Du2,3

1Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC, USA, 2Geophysical
Laboratory, Carnegie Institution for Science, Washington, DC, USA, 3State Key Laboratory of Isotope Geochemistry,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China

Abstract In a metal, as in Earth's core, the thermal and electrical conductivities are assumed to be
correlated. In a planetary dynamo this implies a contradiction: that both electrical conductivity, which
makes it easier to induce current and magnetic field, and conductive heat transport, which hinders
thermal convection, should increase simultaneously. Here we show that this contradiction implies that the
magnetic induction rate peaks at a particular value of electrical and thermal conductivity and derive the
low- and high-conductivity limits for thermal dynamo action. A dynamo regime diagram is derived as a
function of electrical conductivity and temperature for Earth's core that identifies four distinct dynamo
regimes: no dynamo, thermal dynamo, compositional dynamo, and thermocompositional dynamo.
Estimates for the temperature-dependent electrical conductivity of the core imply that the geodynamo may
have come close to its high-conductivity “no dynamo” limit prior to inner core nucleation, consistent with
recent paleomagnetic observations.

1. Introduction
Planetary dynamos are maintained by inducing magnetic fields through fluid motions faster than they decay
by magnetic diffusion. Convection in a metallic core is typically driven by either thermal cooling, where
the heat removed from the core exceeds the amount that can be conducted in the absence of motion, or by
compositional buoyancy, where a phase change generates a gravitationally unstable density anomaly. Such
processes must be common given the evidence for dynamos in the iron-rich cores of most rocky planets
in the solar system. Three of the four terrestrial planets plus the Moon and Ganymede all have an active
dynamo today or evidence of one in their past (Schubert & Soderlund, 2011), with Venus being the possible
lone exception. The fact that most rocky planets have or had internally generated magnetic fields implies
that dynamo action in iron cores is relatively common, particularly in young planets, and that it is perhaps
more difficult to maintain over billions of years.

Recent upward revisions to the thermal and electrical conductivity of high-pressure and high-temperature
iron (Davies et al., 2015; de Koker et al., 2012; Gomi et al., 2016; Konôpková et al., 2016; Ohta et al., 2016;
Pozzo et al., 2012; Seagle et al., 2013; Silber et al., 2018; Wagle et al., 2018; Xu et al., 2018) have renewed inter-
est in how Earth has maintained a dynamo over 3.5–4 Ga. The modern geodynamo is thought to be driven
primarily by the release of light elements at the inner core boundary associated with the solidification of
the inner core. Although the age of the inner core is unknown, it is likely younger than the oldest paleo-
magnetic evidence, implying that some other mechanism must have been driving the ancient geomagnetic
field (Olson, 2013). The two favored options are a thermal dynamo driven by a superadiabatic core-mantle
boundary (CMB) heat flux (e.g., Driscoll & Bercovici, 2014; Davies et al., 2015; Nimmo, 2015), or an exsolu-
tion dynamo driven by the separation of a chemically saturated species from the core like MgO or SiO2 (e.g.,
Hirose et al., 2017; O'Rourke & Stevenson, 2016). Both of these plausible solutions depend strongly on the
value of the core thermal and electrical conductivities.

A simple and reliable way to characterize the operation of a dynamo is to compute its magnetic Reynolds
number (Rm), the ratio of magnetic induction to magnetic diffusion. We develop a simple model for estimat-
ing Rm associated with thermal convection as a function of core temperature and electrical conductivity. We
then apply the model to the Earth by estimating the CMB heat flux and energy available to drive dynamo
action. Finally, we compare our derived electrical conductivity limit to thermal dynamo action to an
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Figure 1. Schematic of a planetary interior showing the solid mantle and
underlying liquid core. Example temperature profiles (right) encompass the
lower mantle thermal boundary layer above the CMB and an adiabatic
profile below at two different CMB temperatures. CMB = core-mantle
boundary.

empirical estimate of the temperature-dependent core electrical conduc-
tivity and explore whether the geodynamo is expected to have operated
continuously throughout Earth history.

2. Theory
In its simplest form a dynamo can be described by the ratio of mag-
netic induction (!× (u×B)) to diffusion (!∇2B), known as the magnetic
Reynolds number (Rm)

Rm = "0#uD (1)

where "0 is magnetic permeability, # is electrical conductivity, u is con-
vective fluid velocity, ! = 1∕"0# is magnetic diffusivity, and D is a
characteristic length scale (e.g., Roberts, 2015). Laboratory and numeri-
cal studies systems with Rm > 40 are generally found to be supercritical
for dynamo action (Christensen & Aubert, 2006; Monchaux et al., 2009).

Recent revisions to the conductivity of iron prompts the question: What
does (1) predict for systems at very high or low electrical conductivity?
At first glance (1) implies that dynamo action would be more likely in
systems with high # and that Rm, and thereby the magnetic field, will
grow with #. For example, dynamo action would be expected to be easier
in a liquid metal than in a liquid silicate. But this assumes a comparable
convective velocity. Does fluid velocity depend on electrical conductivity?
If so how?

In a metal, like in Earth's core, electrons are assumed to dominate the conductive transport of electric
charge and heat, implying that the thermal and electrical conductivities are correlated, known as the
Wiedmann-Franz law:

k = #LT (2)

where L = 2.44 × 10−8 W$K−2 is the ideal Lorenz number (e.g., Pourovskii et al., 2017) and T is temper-
ature. Therefore, higher electrical conductivity implies higher thermal conductivity, which means there is
less heat available to drive convection at a given cooling rate. Together, (1) and (2) imply a contradiction for
dynamo action: as electrical conductivity increases, making magnetic induction more efficient, the thermal
conductivity should increase, decreasing the convective heat flux and velocity u, making induction less effi-
cient. So does magnetic induction grow with # or not? How does Rm depend on #? Is there an “optimal” #
for dynamo action?

To answer these questions we explore below how Rm depends on #, and, in particular, what determines the
convective velocity u in (1) and how it can depend on #. We will then apply this model to Earth's core and
discuss the implications.
2.1. Convection Model
To investigate the energetics of a planetary core we consider a two-layer planet with a silicate mantle over-
lying a metallic core that is a rotating and electrically conductive fluid shell (or sphere) of thickness D
undergoing Rayleigh-Bernard convection (Figure 1). The mantle is assumed to be less efficient at trans-
porting heat, thereby determining the core cooling rate and electrically insulating. We aim to derive an
expression for Rm in (1) that is a function of # and Tcmb (CMB temperature) that identifies the conductivity
limits of dynamo action. Previously, Rm conditions have been derived that describe bounds on the growth
rate of the magnetic field (e.g., Roberts, 2015), but they do not account for the global energetics or thermal
conductivity of the system.

First, we relate the convective velocity u in (1) to the energy available to drive convection via scaling laws
developed by a range of numerical and experimental fluid dynamical studies (e.g., Aurnou et al., 2015;
Christensen & Aubert, 2006; Olson & Christensen, 2006). To derive an expression for fluid velocity u we use
the dimensionless convective fluid velocity, or Rossby number (Ro),

Ro ≡ u
ΩD = Ro0Ra%

Q (3)
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where Ω is angular rotation rate, and the right-hand side is a scaling law where Ro0 is a coefficient of order
one, % depends on the assumed force balance, and RaQ is a reduced Rayleigh number related to the available
convective energy (Olson & Christensen, 2006). The predicted values of % = 2∕5 derived from a balance of
Coriolis, inertial, and buoyancy forces (Aubert et al., 2001) or % = 4∕9 from a balance of Coriolis, Lorentz,
and buoyancy forces (Davidson, 2013) bracket the range found in rotating convection simulations of % ≈ 0.41
in Boussinesq systems (Christensen & Aubert, 2006) and % ≈ 0.45 in anelastic systems (Yadav et al., 2013).
Acknowledging that there is a range of possible values, we adopt the nominal values from Christensen and
Aubert (2006) of Ro0 = 0.85 and % = 2∕5. A comparison of % = 2∕5 to % = 4∕9 shows that the scaled Rm
values differ by ∼7% (see supporting information).

Solving for u in (3)
u = Ro0ΩDRa%

Q . (4)

The reduced Rayleigh number RaQ is (and see supporting information; Aubert et al., 2009)

RaQ =
r2

o F
D4Ω3 (5)

where D = ro−ri, ro and ri are the radii of the outer and inner boundaries, and F is buoyancy flux. The buoy-
ancy flux F is in general a sum of thermal and compositional sources. For simplicity we initially consider a
purely thermal buoyancy F = FT so that Rm is a thermal magnetic Reynolds number, with

FT =
%T,cgcq′

&ccc
(6)

where convective heat flux q′ ,
q′ = qcmb − qa,c (7)

is the difference between the CMB heat flux

qcmb = kLM
dT
dr ≈ kLM

ΔTLM
'LM

(8)

and the adiabatic heat flux required to keep the top of the core isentropic,

qa,c = kc
dTa
dr = kc(a,cTcmb . (9)

In the above %T,c is core thermal expansivity, gc is gravity, &c is core density, cc is core specific heat, kLM and
kc are the lower mantle and core thermal conductivities,ΔTLM = Tcmb −TLM is temperature drop across the
lower mantle boundary layer of thickness 'LM, and (a,c = g%T,c∕cc is the inverse of the core adiabatic scale
height. q′ > 0 implies thermal convection while q′ < 0 implies thermal stratification.

2.2. Lower Mantle Thermal Boundary Layer
There are several possible approaches to estimating the thermal boundary layer heat flux qcmb in (8) (e.g.,
Sotin & Labrosse, 1999). The critical thermal boundary layer model has been found to be as accurate as
parameterized convection and mixing-length theory in predicting the lower boundary layer heat flow in
convection in a spherical shell (Tachinami et al., 2011). Here we adopt the critical thermal boundary layer
model from Driscoll and Bercovici (2014) because it relies only on local boundary layer properties, limiting
the number of assumptions required (see section S2 in the supporting information). To compute the lower
mantle thermal boundary layer thickness 'LM in (8) we adopt an Arrhenius law for lower mantle viscosity
)LM (see section S2 in the supporting information).

At this point there are two unknown temperatures: TLM at the top of the lower mantle thermal boundary
layer and Tcmb at the CMB. These temperatures can be related by assuming the mantle and core secular
cooling rates are equal, which implies

ΔTLM = Tcmb(1 − Γ) + Tcmb,0Γ − TLM,0 (10)

where Γ = Mccc
Mmcm

≈ 0.275 is the ratio of core to mantle heat capacity, Mm and Mc are mantle and core mass, cm
and cc are mantle and core specific heat, and Tcmb,0 and TLM,0 are the initial CMB and lower mantle tempera-
tures (see section S2). TLM,0 is computed from (10) for assumed present-day temperatures T∗cmb = 4,000 K and
T∗LM = 2,500 K and an arbitrary initial core temperature Tcmb,0. We have also assumed the thermal boundary
layers cool at the same rate as the mantle or core so that

.
Tm ≈

.
TLM and

.
Tc ≈

.
Tcmb.
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2.3. Conductivity Limits
The thermal magnetic Reynolds number Rm in (1) can now be rewritten by combining (1)–(10) to give

Rm = Rm0T2%
cmb#

1+ %
(#crit

#
− 1
)%

(11)

where the constant coefficient Rm0 is

Rm0 = "0Ro0r2%
o Ω

1−3%D2(1−2%)
[%T,cgcL(a,c

&ccc

]%
(12)

which has a value of Rm0 ≈ 5.09 × 10−8 K−4/5($m)7/5 for Earth's present-day core and % = 2∕5 ( a detailed
derivation and general form of (11) are in the supporting information). From (11) it can be seen that Rm has
two roots: # = #1 = 0 and # = #2 = #crit, where the “critical conductivity” is

#crit =
qcmb

L(a,cT2
cmb

=
k2∕3

LM
L(a,c

( %T,LMgLM&LMcm

Racrit

) 1∕3 ΔT4∕3
LM

)1∕3
LM T2

cmb

(13)

with units of conductivity (parameter values are in Table S1 in the supporting information). The root #1 = 0
describes a hypothetical system that conducts no electricity and, therefore, also cannot support a dynamo.
The root #2 = #crit in (13) corresponds to the case where qcmb = qa,c, which implies that the core is neutrally
stable (q′ = 0) and no pure thermal convection is possible.

Similarly, a set of critical conductivities for thermal dynamo action can be derived by setting Rm = RmD ≈ 40
and solving for #D, giving

#D1 =
RmD
Rm0

1
T2%

cmb#
%
crit

(14)

at the lower limit, and

#D2 =
#crit

1 + #D1
#crit

(15)

at the upper limit (see supporting information for details). The latter expression may be further simplified
by noting that typically #D1∕#crit ≪ 1 giving

#D2 ≈ #crit . (16)

Consequently, the conductivities #D1 and #D2 are lower and upper conductivity limits to a thermally driven
dynamo. It can also be shown from (11) that a peak in Rm occurs at

#3 =
[

1 − 1
1 + 1∕%

]
#crit ≈ 0.71#crit (17)

for % = 2∕5 (see supporting information for details).

In equation (13) #crit is inversely proportional to the Lorentz number L. It has been proposed that the Lorentz
number may differ from its ideal value L0 at high pressure (Konôpková et al., 2016; Pourovskii et al., 2017;
Secco, 2017), which can be accounted for by a substitution of L = cL0 in (13), where the constant coefficient
c accounts for the nonideality. For example, adopting the reduction of L proposed by Pourovskii et al. (2017)
of c = 1∕1.54 will increase #crit by a factor of 1.54 and make thermal dynamo action slightly easier.

3. Application to Earth's Core
Next, we apply this model to Earth's core for a range of plausible CMB temperatures Tcmb and derive the
electrical conductivity limits to thermal dynamo action. For nominal present-day values of T∗cmb = 4,000 K
and #* = 1× 106 $−1 ·m−1 the core adiabatic heat flow from (9) is Q∗a,c = 12 TW. This value of Q∗a,c is similar
to Nimmo (2015) and about 20% lower than the estimates of Davies et al. (2015) and Labrosse (2015) of
Q∗a,c = 15 TW, because our assumed adiabatic gradient (dTa∕dr = −%T,cgcmbT∗cmb∕cc ≈ −0.8 K/km) is about
20% lower than theirs (−1 K/km). The difference between these gradients reflects uncertainty in %T,c, cc, and
T∗cmb. We assume that the present-day CMB heat flow Q∗cmb is equal to Q∗a,c, implying that the present-day
core is neutrally stable for thermal convection and that compositional convection is driving the present-day
geodynamo.
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Figure 2. (top) CMB heat flow Qcmb (black) and adiabatic core heat flow
Qa,c (colors) as function of Tcmb (see legend). Qa,c is computed for a range
of electrical conductivities # = 0.6–1.4 × 106$−1 ·m−1 (see legend).
(bottom) Thermal magnetic Reynolds number Rm from (11) for the same
values of # in (Figure 2, top). CMB = core-mantle boundary.

Figure 2(top) compares CMB heat flow Qcmb = Acmbqcmb over a range
of Tcmb to the adiabatic heat flow Qa,c = Acmbqa,c for a plausible range
of #. Thermal convection is expected when Qcmb > Qa,c, which occurs
over all Tcmb when # is low (0.6 × 106 $−1 ·m−1) and only occurs at the
highest Tcmb when # is high (1.4× 106 $−1 ·m−1) (Figure 2). The thermal
magnetic Reynolds number Rm from (11) goes to zero when Qcmb = Qa,c
(i.e., where Qcmb and Qa,c intersect in Figure 2, top), which occurs at
higher Tcmb for higher # (Figure 2, bottom). This implies that higher elec-
trical conductivities require larger Qcmb to maintain a thermal dynamo,
as expected.

Figure 3 shows Rm in (11) as a function of # for several choices of Tcmb.
As expected there is a peak in Rm at intermediate conductivities followed
by a precipitous drop as # approaches #crit (Figure 3). Estimates of mod-
ern Earth-like Rm of 500–2,000 (Christensen et al., 2010) are about a
factor of 2 below the peak Rm at T∗cmb = 4000 K, implying that the mod-
ern geodynamo does not operate near its peak electrical conductivity. By
assumption a nominal present-day value of #* = 1 × 106Ω−1· m−1 at
T∗cmb = 4000 K gives a thermal magnetic Reynolds number of zero, leav-
ing compositional convection as the main driving mechanism. Numerical
dynamos have shown that a Rm larger than the Earth-like range pro-
duce less dipolar fields, while smaller values tend to produce more dipolar
fields compared to the geodynamo (Christensen et al., 2010), implying
that dynamos that operate near their peak # may not be dipolar.

Finally, the solutions in Figures 2 and 3 are combined into a # − T phase
diagram in Figure 4. For a present-day CMB heat flow of Q∗cmb = 12 TW
the upper limit conductivity for thermal dynamo action of #D2(Tcmb) =
#crit from (15) delineates the boundary below which thermal dynamos
are possible and above which they are not. Compositional convection is
expected as the inner core solidifies, which occurs when Tcmb < Ticn
and the core is cooling, where we assume Ticn ≈ 4100 K is the CMB
temperature when the inner core nucleates at the center of the Earth
(vertical boundary in Figure 4). Therefore, to the left of this boundary,
compositionally driven dynamos are expected.

Together the thermal and compositional driving mechanisms delineate four dynamo regions (see Figure 4
and Table 1): top right, where “no dynamo” occurs because the core is thermally stratified (# > #crit) and
fully liquid (Tcmb > Ticn); bottom right, where a purely thermal dynamo occurs (# < #crit, Tcmb > Ticn); top
left, where compositional convection associated with inner core solidification overcomes thermal stratifica-
tion to drive a purely compositional dynamo (# > #crit, Tcmb < Ticn); and bottom left, where both thermal
and compositional convection occur, driving a thermochemical dynamo (# < #crit, Tcmb < Ticn). Figure 4
also shows how #crit, that is, the boundary between “no dynamo” and a thermal dynamo, depends on the
assumed present-day CMB heat flow Q∗cmb. If Q∗cmb is less than 12 TW, then )r increases, #crit decreases by
(13), and the thermal dynamo region shrinks in Figure 4. Conversely, a larger value of Q∗cmb expands the
thermal dynamo region.

For the nominal case (Q∗cmb = 12 TW) an empirical estimate for the temperature-dependence of core elec-
trical conductivity #T from Ohta et al. (2016) (black curve in Figure 4, also see section S6 in the supporting
information) implies that, as the core has cooled, the geodynamo has transitioned from a purely thermal
dynamo (Tcmb > Ticn) to a thermochemical dynamo (Tcmb < Ticn) and eventually to a purely composi-
tional dynamo around Tcmb = 4000 K. The present-day core (yellow star in Figure 4) is near #crit = 1 × 106

$−1· m−1 at Tcmb = 4000 K because we have assumed that the present-day CMB heat flow is equal to the
adiabatic value. If instead Q∗cmb = 10 TW, then the geodynamo is predicted to have crossed into the “no
dynamo” regime around Tcmb = 4150 K, before the inner core nucleated; a scenario highlighted by Olson
(2013). Similarly, the core would pass through the “no dynamo” regime prior to inner core nucleation with
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Figure 3. Traces of thermal magnetic Reynolds number Rm(#) for several
core-mantle boundary (CMB) temperatures Tcmb (see legend) from
equation (11). Filled circles correspond to Rm at the critical dynamo
conductivities #D1 and #D2, and peak Rm(#3). The dark gray region
indicates the range of Rm expected for a modern Earth-like dynamo
(Christensen et al., 2010). Rm above (below) this range is expected to
produce less (more) dipolar magnetic fields (Christensen et al., 2010).

Q∗cmb = 12 TW if #T is about 20% higher. Recent estimates of #T by Xu
et al. (2018) are about 20% lower than Ohta et al. (2016) and imply that
thermal convection operated continuously prior to inner core nucleation.

Above we assumed that inner core solidification powers a compositional
dynamo when Tcmb < Ticn, which is an oversimplification. To address
this we estimate the thermal and compositional buoyancy fluxes, FT and
F+ , at the CMB following the model of Driscoll and Bercovici (2014) and
using Qcmb(Tcmb) from (8). For the nominal values # = 1 × 106$−1· m−1

and Tcmb = 4000 K we find that compositional buoyancy F+ = 9.9 ×
10−12 m2/s3 can overcome thermal stratification FT = −2.64×10−16 m2/s3

to drive a compositional dynamo (where negative buoyancy flux implies
stratification). However, compositional convection can be inhibited if
thermal stratification is severe enough, which may occur, for example,
if the thermal conductivity is too high or compositional buoyancy is
too weak. For an extreme case with Tcmb = 3550 K, where the core
is nearly entirely solid, and using a nominal electrical conductivity of
# = 1 × 106$−1· m−1, we find the compositional buoyancy flux F+ =
2.62×10−12 m2/s3 is still large enough to overcome the thermal stratifica-
tion FT = −4.09×10−13 m2/s3. Neutral buoyancy at Tcmb = 3550 K occurs
for # = 2.95 × 106$−1·m−1, which is the limiting electrical conductivity
for a compositional dynamo at these parameters and exceeds the expected
range of #T . This should be a lower bound on the limiting conductivity,
because at higher Tcmb and Qcmb the inner core is expected to grow faster

so that compositional buoyancy is stronger, and the thermal and compositional buoyancy flux balance at
even higher electrical conductivities (above the range in Figure 4). Therefore, it is safe to assume that a com-
positional dynamo will occur when Tcmb < Ticn even if the core is thermally subadiabatic. This analysis
applies only at the CMB, but the buoyancy sources and material properties are expected to be functions of
depth so that even when the core is stratified at the CMB, convection may occur deeper (Labrosse, 2015).

Figure 4. Geodynamo regime diagram: core electrical conductivity # versus
core-mantle boundary (CMB) temperature Tcmb. An experimental estimate
of temperature-dependent electrical conductivity #T (black line) from Ohta
et al. (2016) (see supporting information) intersects the critical electrical
conductivity #D2 = #crit (gray lines) from (13) around the present-day T∗cmb
(star) assuming Q∗cmb = 12 TW. Curves of #crit (gray lines) denote the upper
boundary for purely thermal convection and dynamo action, and is also
shown for Q∗cmb = 10 and 15 TW. Inner core nucleation at a CMB
temperature of Ticn ≈ 4100 denotes the boundary between thermal and
compositional convection and dynamo action.

Another important assumption of our model is that thermal cooling and
inner core growth are the only driving forces. Alternative mechanisms
to thermal and compositional convection have been proposed for Earth's
core, including the exsolution of a light species (e.g., Badro et al., 2016;
Du et al., 2017; Hirose et al., 2017; O'Rourke & Stevenson, 2016) or tidally
forced flows (e.g., Cébron & Hollerbach, 2014; Le Bars et al., 2015). In the
case of exsolution, the buoyancy source would be similar to compositional
convection associated with inner core solidification as it would occur over
a temperature range, and the exsolution rate would depend on the core
cooling rate. Therefore, depending on the solubility and initial concentra-
tion of the exsolving material, this mechanism has the potential to drive a
dynamo in the “no dynamo” region in Figure 4. Du et al. (2017) and Badro
et al. (2018) found exsolution of MgO in Earth's core to be possible, but it
does not produce sufficient heat to replace radiogenic decay in the ther-
mal budget of the core (Du et al., 2017), which is needed to resolve both
the cooling of the mantle and the driving of the core dynamo (Driscoll &
Bercovici, 2014). Tidal forcing could potentially drive core flows but they
are predicted to prefer thermally stratified regions (Cebron et al., 2010);
so it remains unclear whether they can power a dynamo (e.g., Cébron
et al., 2019).

4. Implications
In metallic regions of planetary interiors where the thermal and electri-
cal conductivity are related (e.g., via the Wiedemann-Franz Law), a high
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Table 1
Four Dynamo Regimes Based on Figure 4

Dynamo regime Tcmb < Ticn Tcmb > Ticn
# > #crit Compositional None
# < #crit Thermal-Compositional Thermal

thermal and electrical conductivity can have both positive and negative effects on dynamo action. A fluid
with low electrical conductivity will produce currents too weak to generate strong magnetic fields, which
is one of the main limitations to generating self-sustaining dynamos in the laboratory. However, fluids with
very high thermal conductivity can be so efficient at conducting heat that convection is inhibited or stopped
entirely, thereby prohibiting dynamo action. These are considered low- and high-conductivity-limited
dynamos and are quantified in terms of their magnetic Reynolds number in a simple two-layer planet
model. Together these limits imply a maximum Rm at intermediate thermal and electrical conductivities.
Using nominal values our model predicts that the core has evolved from a purely thermal dynamo to a
thermochemical dynamo, avoiding the high conductivity “no dynamo” limit prior to inner core nucleation
(Figure 4). This empirical electrical conductivity “path” avoids the “new core paradox” by maintaining a rel-
atively low conductivity in a hot core. However, the uncertainties of several important quantities are large
enough to allow a range of outcomes and permit paths that do cross the “no dynamo” region. These uncer-
tainties include the CMB heat flow, the electrical conductivity itself (e.g., Ohta et al., 2016; Xu et al., 2018),
the validity of the Wiedemann-Franz law and value of the Lorenz number at high pressure (e.g., Pourovskii
et al., 2017; Secco, 2017; Williams, 2018), and the material properties and heat transfer rate of the lower man-
tle. Among the variables that would make continuous dynamo action more likely include a large present-day
CMB heat flow, a low core thermal conductivity, a Lorenz number below the ideal value, a strong inverse
dependence of electrical conductivity on temperature, and a hotter inner core nucleation temperature. Inter-
estingly, a path where Earth's core conductivity comes close to, but does not cross, the “no dynamo” region
may be consistent with recent suggestions that the geodynamo lingered in a weak-field state prior to inner
core nucleation (Driscoll, 2016; Bono et al., 2019).

In summary, we have derived a dynamo regime diagram in # − T space that demonstrates the influence
of electrical conductivity on the geodynamo and quantified four dynamo regime boundaries. This regime
diagram could be used, for example, to interpret the implications of revisions to relevant material properties
or the cooling rate of the core. Analogous dynamo regimes and conductivity limits could be considered in
other planetary or astrophysical bodies that display some correlation between their thermal and electrical
conductivities, such as other rocky or gaseous planets or the interiors of stars.
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S1 Reduced Rayleigh number11

The reduced Rayleigh number in (5) can be written in terms of the standard non-dimensional12

dynamo parameters as (Aubert et al., 2009)13

RaQ =
⇣ro
D

⌘2 E3(1� 1/Nu)

Pr2
Ra (S1)

whereE = ⌫/⌦D2 is the Ekman number, ⌦ is angular velocity of rotation, Nu = (ro/D)2(qD/k�T )14

is the Nusselt number, Pr = ⌫/ is the Prandtl number, and Ra = ↵gqD4/k⌫ is the15

Rayleigh number (Olson and Christensen, 2006).16

S2 Core cooling models17

To compute the CMB heat flow we adopt the critical thermal boundary layer model from18

Driscoll and Bercovici (2014). According to this model the Rayleigh number at the top of19

the thermal boundary layer20

RaLM(�LM) =
↵T,LMgLM�TLM�3LM

LM⌫LM
(S2)

is equal to the critical value for convection Racrit ⇡ 660 (e.g. Turcotte and Schubert, 2014),21

implying the boundary layer thickness is22

�LM =

✓
RacritLM⌫LM
↵T,LMgLM�TLM

◆1/3

(S3)
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where subscript LM refers to the lower mantle, ↵T,LM is thermal expansivity, gLM is gravity,23

LM = kLM/⇢LMcm is thermal di↵usivity, cm is mantle specific heat, and ⌫LM is viscosity24

(Driscoll and Bercovici, 2014). We note that although Racrit may di↵er from this ideal value25

due to complex rheological and compositional e↵ects (e.g. Davaille and Limare, 2015), the26

value of Racrit is arbitrary here because it is only used to calibrate the reference viscosity27

for a chosen present day CMB heat flow Q⇤
cmb (see (S5)).28

For lower mantle viscosity ⌫LM in (11) we adopt an Arrhenius law,29

⌫LM = ⌫r exp


A⌫

RgTLM

�
(S4)

where TLM is the average of TLM and Tcmb, A⌫ is activation energy, and Rg is the gas30

constant. The reference viscosity is calibrated for a choice of present-day CMB heat flow by31

⌫r = ⌫⇤
LM/ exp

"
A⌫

RgT
⇤
LM

#
. (S5)

Adopting a present-day CMB heat flowQ⇤
cmb = 12 TW equations (S3-S5) give ⌫r = 1.41⇥101332

m2 s�1, ⌫⇤
LM = 9.32⇥ 1017 m2 s�1, and �⇤LM = 190 km.33

Here we compare two ways to estimate �TLM : (i) assume only the core is cooling, and34

(ii) assume the mantle and core secular heat loss rates are equal. In case (i) only the core is35

cooling and the lower mantle temperature is assumed to be constant at its present-day value36

T ⇤
LM = 2500 K, where the ⇤ implies present-day value. In case (ii) the core and mantle are37

3



assumed to lose secular heat at the same rate38

MmcmṪm = McccṪc (S6)

from which equation (12) is derived. A comparison of cooling models (i) and (ii) shows they39

give similar results for Qcmb over a wide range of Tcmb, deviating at most by 1.5 TW (Figure40

S1). In the manuscript we use cooling model (ii) where the mantle and core secular heat loss41

rates are equal as in (S6). Note that when the inner core nucleates the additional latent42

heat source will slow the core secular cooling rate, which could be modeled by adopting a43

larger cc.44

S3 Derivation of Rm(�, T )45

Here we derive the magnetic Reynolds number Rm in (16) by combining (1)-(11). Using (5)46

in (4) gives the fluid velocity u as47

u = Ro0⌦
1�3↵D1�4↵r2↵o F ↵ (S7)

and using (S7) in (1) gives48

Rm = µ0Ro0�⌦
1�3↵D2�4↵r2↵o F ↵. (S8)

4



Figure S1: Comparison of core cooling models with Q⇤
cmb = 12 TW. A: Lower mantle

temperature TLM as a function of Tcmb from (15). B: Same as (A) but for �TLM . C: CMB
heat flow Qcmb = Acmbqcmb from (8). Also shown is Qcmb(Tcmb) from the E model of DB14
(Driscoll and Bercovici, 2014). D: Electrical conductivity �crit and �T vs Tcmb as in Figure
4. Vertical dashed line correponds to the CMB temperature when the inner core nucleates
Ticb.

It is apparent from (S8) that Rm has roots when � = 0 and F = 0. For thermal convection49

we write F = FT in terms of � by using (7) in (6),50

FT =
↵T,cgc
⇢ccc

(qcmb � qa,c) (S9)
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and using the expressions for qcmb and qa,c in (8) and (9) in (S9),51

FT =
↵T,cgc
⇢ccc

"
k2/3
LM�T 4/3

LM

✓
↵T,LMgLM⇢LMcm

Rac⌫LM

◆1/3

� �L�a,cT
2
cmb

#
(S10)

which can be rearranged to52

FT =
↵T,cgcL�a,c

⇢ccc
�T 2

cmb

h�crit

�
� 1

i
(S11)

where the root �crit is defined in (18). Finally, using (S11) in (S8) gives Rm(�, T ) in (16).53

S4 Derivation of dynamo electrical conductivity limits54

To derive the electrical conductivity limits where the magnetic Reynolds number is at the55

critical value for dynamo action we set Rm = RmD = 40 in (16) and solve for �D. We56

consider the two limits separately because (16) is transcendental in �D. At the lower limit57

where � = �D1, �crit/� >> 1 so we can use the approximation58

{�crit/� � 1}↵ ⇡ {�crit/�}↵ (S12)

and solve for �D1 in (16), which is shown in (19). At the upper limit where � = �D2, Rm is59

dominated by the term in brackets so we approximate the first �-term in (16) as �1+↵ ⇡ �1+↵
crit60

and solve for �D2 in (16), which is shown in (20).61
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S5 General form of Rm62

The expression for Rm in (16) can be generalized to the form,63

f = x↵+1
�
x�� � 1

 ↵
(S13)

where the variables have been scaled as x = �/�2 and f = Rm�↵+1
2 /(Rm0T 2↵

cmb). There64

are two possible values of �. In application to the core where both the mantle and core65

conductivities are relevant (and di↵erent) the exponent is � = 1. In a case where a single66

thermal conductivity controls both heat loss and conduction this exponent becomes � = 1/3.67

The roots of (S13) are x1 = 0 and x2 = 1, and has a peak at68

x3 =


1� �

1 + 1/↵

�1/�
. (S14)

The general form in (S13) is shown in Figure S2 for two values of � and ↵. Interestingly69

the peak value of f is higher for � = 1 than � = 1/3, implying that dynamos overlain by70

an electrical and thermal insulators (such as Earth’s mantle) will tend to produce stronger71

magnetic fields. f di↵ers by ⇠7% between the Coriolis-inertia-buoyancy balance with ↵ =72

2/5 (Christensen and Aubert, 2006) and Coriolis-Lorentz-buoyancy balance with ↵ = 4/973

(Davidson, 2013).74
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Figure S2: General form f from (S13) for � = 1/3 or � = 1 and ↵ = 2/5 or ↵ = 4/9 .

S6 Temperature-dependent electrical conductivity75

In Figure 4 we show the temperature-dependent electrical conductivity of Earth’s core76

�(T ) = 1/⇢, where ⇢ is resistivity,77

⇢ = fmelt(⇢
�1
Fe + ⇢�1

Le )
�1 (S15)

where ⇢Fe and ⇢Le are the pure iron contribution to and light element depression of the78

resistivity, respectively, and fmelt = 1.2 is the increase in resistivity upon melting Ohta et al.79
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(2016). The pure iron conductivity is approximated by80

⇢Fe = 1.7⇥ 10�7 + 1.05⇥ 10�10(Tcmb � 1520) (S16)

and light element depression by81

⇢le = (fmelt/86.9⇥ 10�8 � 1/40.4⇥ 10�8)�1 (S17)

where the coe�cients are from Ohta et al. (2016). For Tcmb = 4000 K equations (S15-S17)82

give ⇢ = 97.5 µ⌦ cm and � = 1.02⇥ 106 ⌦�1 m�1.83

Parameter Value Definition Reference
A⌫ 3⇥ 105 J mol�1 Activation energy DB14
↵T,LM 1⇥ 10�5 K�1 Lower mantle thermal expansivity DB14
↵T,c 1.35⇥ 10�5 K�1 Core thermal expansivity D15
cm 1260 J kg�1 K�1 Mantle specific heat DB14
cc 715 J kg�1 K�1 Core specific heat D15
gLM , gcmb 10.68 m s�2 Lower mantle, CMB gravity DB14
� ⇠ 0.275 Ratio of core to mantle heat capacity Section 2
kLM 10 W m�1 K�1 Lower mantle thermal conductivity O12
L0 2.44⇥ 10�8 W⌦K�2 Ideal Lorentz number P17
⌫r 1.41⇥ 1013 m2 s�1 Viscosity coe�cient Section 3
Racrit 660 Critical Rayleigh number TS14
⇢LM 4418 kg m�3 Lower mantle density DB14
⇢c 9903 kg m�3 Core density DB14
�⇤ 1⇥ 106 ⌦�1 m�1 Core electrical conductivity O16
T ⇤
cmb 4000 K Present-day CMB temperature DB14

T ⇤
LM 2500 K Present-day lower mantle temperature DB14

Table S1: Constants used in the calculations. Reference abbreviation DB14 is Driscoll and
Bercovici (2014), D15 is Davies (2015), O12 is Ohta et al. (2012), O16 is Ohta et al. (2016),
P17 is Pourovskii et al. (2017), and TS14 is Turcotte and Schubert (2014).
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