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Abstract—A status updating system is considered in which a
variable length code is used to transmit messages to a receiver
over a noisy channel. The goal is to optimize the codewords
lengths such that successfully-decoded messages are timely. That
is, such that the age-of-information (Aol) at the receiver is
minimized. A hybrid ARQ (HARQ) scheme is employed, in which
variable-length incremental redundancy (IR) bits are added to
the originally-transmitted codeword until decoding is successful.
With each decoding attempt, a non-zero processing delay is
incurred. The optimal codewords lengths are analytically derived
utilizing a sequential differential optimization (SDO) framework.
The framework is general in that it only requires knowledge of an
analytical expression of the positive feedback (ACK) probability
as a function of the codeword length.

I. INTRODUCTION

Status updating over noisy communication channels calls
for careful coding design such that the delivered status up-
date messages are as timely as possible. Using an age-of-
information (Aol) metric to assess timeliness, defined as the
time elapsed since the latest successfully-decoded message
has been generated, our goal in this paper is to provide
an analytical framework to optimize codewords lengths for
variable length codes used in delivering timely updates.

Most previous work on systems that seek to optimize
codewords for Aol minimization, as in, e.g., [1]-[8], have
mainly focused on two distinct approaches, fixed redundancy
(FR), in which the message is communicated with a single
fixed-length transmission, and infinite incremental redundancy
(IIR) schemes in which the transmission length is increased
one symbol at a time until decoding is successful. Real systems
often use a hybrid ARQ (HARQ) approach, as in, e.g., [9]-
[11], in which the message length can be variable-length, but
not at a granularity of a single symbol. HARQ systems feature
an initial transmission followed by subsequent transmissions
(of possibly varying lengths) of incremental redundancy that
are guided by feedback from the receiver to the transmitter.

With no delay associated with decoding or requesting incre-
mental redundancy, the pure IIR scheme is expected to provide
a better Aol than the HARQ scheme that restricts the number
of incremental redundancy transmissions. However, most real

This research is supported by National Science Foundation (NSF) grant
CCF-1955660. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect views of the NSF.

systems include a nonzero processing delay g corresponding to
the time that it takes to decode the received codeword, transmit
a negative acknowledgement (NACK) to the transmitter, and
receive a subsequent incremental redundancy transmission. For
a large enough g, this overhead significantly increases the Aol
of the IIR approach and makes the HARQ approach preferable.
Optimizing the HARQ approach requires determination of
the length of the initial transmission and each subsequent
transmission of incremental redundancy. Sequential differen-
tial optimization (SDO) [12]-[14] identifies a sequence of
HARQ transmission lengths that optimizes throughput. For
a specified maximum number of feedback transmissions and
a maximum probability that the decoder fails to produce
a positive acknowledgement (ACK) even when all possible
incremental redundancy has been received, SDO finds the
transmission lengths that minimize average blocklength. SDO
requires a known probability distribution on the probability
of ACK at each cumulative blocklength, but works equally
well for the variety of distributions that arise from different
variable-length codes operating on different channels [14]-
[16]. The original formulation of SDO minimizes the average
blocklength for a fixed maximum number of feedback trans-
missions. The recent paper [17] re-frames the optimization
problem using a Lagrangian approach to provide a closed-
form expression for the optimal transmission lengths under a
constraint on the average number of feedback transmissions.
This paper extends the SDO approach to determine trans-
mission lengths that explicitly optimize Aol. Using Aol as the
SDO objective function yields different optimal transmission
lengths than using throughput as the objective function as in
[17], since the two objectives behave differently, see, e.g., [18].
One can differentiate between the works in [1]-[11] accord-
ing to 1) whether status updates are exogenous or generated
at will, depending on the ability to control transmission times;
and 2) whether or not replacements are allowed, depending on
the ability to let new updates replace the ones in service. Our
work in this paper is categorized as a generate-at-will HARQ
scheme without replacement, and is different from related
works in that a nonzero processing delay 3 is considered, and
that the optimal set of codewords lengths that minimize the
long-term average Aol is analytically derived.
Our case study for tail-biting convolutional codes shows
that optimized HARQ beats optimized IIR and FR without
replacement for all values of processing delay .



II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a transmitter-receiver pair communicating over
a noisy memoryless channel. The transmitter generates k-bit
measurements, at will, from a time-varying process. Mea-
surements are time-stamped and sent to the receiver using
£1-bit codewords, /1 > k. We use the term message to
denote a transmitted codeword. The receiver sends an ACK (a
NACK) feedback following successful (unsuccessful) decod-
ing attempts. Feedback messages are assumed to be free of
errors, which is a mild assumption given the low information
rate of the ACKs and NACKs. In addition to the time for
message transmission, a fixed § amount of time is consumed
per decoding attempt, which includes the roundtrip time for
sending feedback and processing it at the transmitter. We term
B the processing delay. A HARQ scheme is employed, in
which IR bits are transmitted to help the receiver re-attempt
decoding in case a NACK is fed back. IR lengths are denoted
by {l2,¢s,...,¢y}, where m is the maximum number of
transmission attempts per message. A system model overview
is shown in Fig. 1.

Let us denote the cumulative blocklength by

f
Ny 2> 4, 1<f<m, (1)
=1

and let ng]sz)( denote the probability of receiving an ACK

while using a blocklength of N bits. Clearly, such probability
increases with Ny. The value of N, is chosen to be large-
enough that PXZ}) ~ 1, which depends on the specific code
being used and the channel statistics.2 We note that N,,
is fixed, yet the value of m is not; it is to be optimally-
determined. Our SDO methodology, however, can be altered
to work for fixed N,,, and m (cf. Section V-B).3

Let 7; denote the ¢th service time: time consumed in
transmitting the sth message. We consider a normalized setting
in which sending a message using N; bits consumes Ny
time units. The channel is memoryless, and hence 7;’s are
independent and identically distributed (i.i.d.) ~ 7, which is
approximately given by

_J N1+ B, wp. Pichi 2
= Np) _ pNr1) gy gt P
Ny+[fB,  wp. Paog —Pack > [ =22

The above serves as a close approximation to 7 under the
reasonable assumption that receiving an ACK using N bits
implies receiving an ACK using Njyi, bits as well. For
instance, for f = 2, one can write

P (7 = Ny +28) = P (NACK at Ny, ACK at Ny)
= P(ACK at N) — P(ACK at Ny, ACK at Ny)
= P2 — PN 4 P(ACK at Ny, NACK at Ny), (3)

2We assume an ACK always corresponds to a successful (correct) decoding
event. We ignore events in which an error bypasses the receiver undetected.

30ther cases, such as when N, is variable and m is fixed, or when both
are variable, are to be studied in future work.
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Fig. 1. Overview of the considered HARQ system model. In this example, 3
transmissions are made before successful decoding, thereby requiring ¢2 + ¢3
IR bits to be transmitted on top of the original £1 bits. A processing delay of
30 time units is incurred in total (8 per decoding attempt).

whence the last term is assumed having probability ~ 0.
Similar arguments can be followed for f > 2.

Our goal is to design the blocklengths {N;} such that the
long-term average Aol is minimized. The Aol at time ¢ is

a(t) £t — u(t), )

where u(t) represents the time stamp of the latest successfully-
decoded message. To minimize Aol, therefore, the transmitter
should not acquire the (i 4+ 1)th measurement until the ith
message is transmitted successfully, i.e., after (at least) 7; time
units starting from the transmission time of the ith message.

Remark 1 It is important to note that we focus on analyzing
a HARQ scheme without replacement. Specifically, it might be
better, Aol-wise, to replace the current message in transmis-
sion after a certain number of NACKs, and replace it by a
new, fresher, one instead. This idea has been studied in, e.g.,
[11] for a system with fixed m = 2. In this paper, we do not
focus on systems that allow replacements. Instead, we aim at
providing an analytical framework to design the blocklengths
{N;} through a novel SDO approach discussed in Section III.

Let us denote by an epoch the time elapsed in between two
successful transmissions. At the beginning of the ith epoch,
the transmitter idly waits for W; time units before acquiring
a new sample. Idle waiting can indeed minimize the average
Aol as shown in various results of the literature, e.g., [19],
[20]. In Fig. 2, we show an example of how the Aol may
evolve during the ¢th epoch. From the figure, one can see that
the ith epoch length is given by

Li=W;+m, &)
and the corresponding area under the Aol curve is
1
Qi :Ti—lLi+§L12~ (6)

The sequence {W;} denotes a waiting policy. Our goal is find
the optimal blocklenghts and waiting policy that minimize the
long-term average Aol given by
J
I E[Q;
lim sup 3:17[62]
j=voo 3 iy E[Ld]
Since 7;’s are i.i.d., one can then conclude using the
results in [19] that the optimal waiting policy has a threshold
structure, in which

)

Wi=[y—ma", ¥
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Fig. 2. An example of how the Aol may evolve in the ith epoch.

where v > 0 is some threshold, and []T £ max(-,0).
This induces a stationary distribution L; ~ L and Q; ~ @
for all epochs, and thereby reduces the focus to a typical
epoch through removing the summations in the numerator and
denominator of (7). Let us define T as the starting Aol of such
an epoch. This allows us to write

E[L]=E [[y—7]*] +Elr], ©)
1 2
B0 =E[rby—71*]+ Bl 4 3E | (1 -1 +7) |
(10)
Our optimization problem is therefore given by
min ElQ]
{N;}, >0 E[L]
S.t. Nf>Nf_1, Nf€Z++, vf arn

with Ny £ k; E[L] and E[Q] given by (9) and (10),
respectively; and 7 and 7 i.i.d. as in (2).

One can possibly follow a decomposition approach to solve
problem (11) by fixing the threshold v and solving for the
blocklengths { N/} in terms of -, and then finding the optimal
threshold afterwards. We realize, however, that such approach
would not yield a clear analytical solution for the blocklengths,
which is one fundamental goal for this paper. Thereby, in
Section III, we focus on problem (11) in the special case
of a zero-wait policy, i.e., when v = 0, and present a novel
SDO framework to find the optimal blocklengths. After that, in
Section IV, we discuss how to find the threshold based on the
SDO solution (which may be suboptimal). Under a zero-wait
policy, the objective function of problem (11) is simplified to

E [7?]
2E[7]°
III. THE SDO APPROACH

po = E[r] +

(12)

In this section, we solve problem (11) for v = 0. The SDO
approach basically solves for all the blocklengths sequentially
in terms of Nj. A one-dimensional search is then followed
to find the optimal N, and subsequently all the other block-
lengths. Such approach, however, will not work if we optimize
po in its current fractional form. The reason, for instance, is
that the partial derivative of py with respect to N is a function
of all the blocklengths, while it should only be a function
of N; and N» so that the optimal N, can be completely

characterized in terms of Vj.

In fact, as we will show, the SDO approach will work
if po is represented in an equivalent yet non-fractional way.
Towards that end, we follow a Dinkelbach-like approach [21],
and introduce the following auxiliary problem for fixed A > 0:

p(\) = min - (1= VE[] + %E (]

S.t. Nf > fol» Nf €l V. (13)

Let p{ denote the optimal long-term average Aol in (12). We
now have the following result:

Lemma 1 Let {N }i\} denote the solution of problem (13), and
T be the corresponding service time. It then holds that

po=p A7)+ A%,
where \* £ argmin{p(\) + X : p(\) = E[n\]}.

(14)

Pro;)f: First, it is direct to see that p(A) = E[r\] <= A =
%, and that at such case pg would be equal to p(A) + . It
therefore follows that pgj is given by minimizing the expression
p(A) + A over all values of A that satisfy p(A) = E [7)]. Next,
one can show that p()\) is decreasing in \. In particular, there
exists some Apax such that p(Apax) < 0. This shows that the
set {\: p(A) =E|[r\]} is non-empty and \* exists. H

Lemma 1 shows that one can find the optimal long-term
average Aol in (12) by focusing on solving problem (13) at
a specific A*. The value of A\* can be found via, e.g., a one-
dimensional search over the interval [0, Apax], Where Amax
is a large-enough value of A such that p(Anax) < 0. We
observe that for the case of the convolutional codes studied
in Section V, such A\* is also unique (cf. Fig. 3).

Given this auxiliary result, we now discuss how to use SDO
to find the optimal codewords lengths for fixed A by solving
problem (13). First, let us relax the problem by ignoring the
integer constraints on the blocklengths and solving for real
values of {N;}. Imposing the integer constraints back on
the acquired solutions can be handled, e.g., via the dithering
approach proposed in [17, Section IV-B]. In our work, we
follow a rounding approach instead to project the optimal
blocklengths onto Z, ., yet we do so simultaneously after
solving for all of them. We observe that such rounding
approach has a negligible effect on optimality especially for
relatively large blocklengths, as discussed in Section V.

Next we elaborate on the partial derivatives of the first and
second moments of 7 with respect to the blocklenghts { N }.
Using (2), the first moment is given by

E[r] = (N1 + ) Pt
m—1
N Ny
+ (Ny + fB) (P,Excff)(_Pfxcfxlv
=2

4 (Ny, +mp) (1 —P%“;g”), (15)



whose partial derivatives are given by

OE [T ) :
3]\[,1] =Pigik + (N1 + 5= (No +28) Picy,  (16)
OE [7] N No_s
8Nf =P§;cf;§ - Pf(xch )
+ (Ny+ 8= Ny + (f +1)8)) Photl, a7

N ..
for 2 < f < m — 1, where P}le() denotes the derivative
(Ng)
dpP

#cf’(. Similarly, the second moment is expressed as

B[] = (v, + 97 P

m—1

2 (Ny) (Ng-1)

+ Z (Ny+fB) (PACfK_PACfK )
F=2

+ (N +mB)* (1= Pi)), (18)
whose partial derivatives are given by
8E [72] N,
+ (N + 87 = (V> +26)) PSR, (19)
OE [72] N Nf_q
o =2 (Np +79) (PAcie — Phcic”)
+ ((Nf+ 18" = (N1 + (f+D8)°) PACK, 20)

for2< f<m-—1.

Now let us take the partial derivative of the objective
function of problem (13) with respect to N; and equate it
to 0. Using the above, after some algebra we get that

(N2 +2B)* +2(1 = A) (N2 +2B) —c¢(Ni,\) =0 (21)

must hold, where

Py
/(M) + (N1 +5)

c(N1, M) 22(1—N) <

ACK
(N1)
P Ny +
+2(N1+6)( ’,‘}%Jr( 12 5)>. 22)
PAC'K

Now let us fix the value of V7 (> k). If the discriminant of
the quadratic equation in (21), i.e., if

(1= A% +c¢(Ny, A) (23)

is negative, then there do not exist any real solutions for N
that solve (21). This means that the fixed value of N; is not
optimal, and has to change. On the other hand, if the above
discriminant is non-negative, then one can get the following
two solutions for No:

Ny = — (1= ) 41/(1= 22 +c(N,\) - 28,

Similarly, one can show that taking the partial derivative of
the objective function of problem (13) with respect to Ny,
2 < f < m —1, and equating it to O results in a quadratic

(24)

equation to solve for Ny in terms of Ny and Ny_;. The
two solutions of such equation are given by

Npsr=— (1=X) & /(1= 2 e (N, Ny, A) = (F+1)5,

(25)
where
¢(Ny, Ny-1,2)
(Ny) (Ny-1)
P —-P
29(1-)) (W+<Nf+fﬁ>>
Piox
(Ny) (Ny-1) 2
P —P N
o (Ny+sp) | Fack=Pack  (SHIB) ) - (o)
P( £) 2
ACK
provided that the discriminant below is non-negative:
(1=N)?+c(NsNypp, ). 27)

Therefore, using (24) and (25), one can characterize optimal
solutions for {Ny, N3,...,N,,_1} in terms of N;j. These
sequential solutions would eventually stop if N1 surpasses
N,,, for some f*, at which point one may truncate the excess
IR bits and set Ny« 1 = Np,.

Now for the solutions to be meaningful, we need to
make sure that the obtained blocklengths are monotonically
increasing. In most scenarios, such as in the one discussed
in Section V, this would automatically cross-out the smaller
solutions in (24) and (25), especially for large values of f.

For 2 < f < m — 1, in case both solutions obtained for
Ny are smaller than Ny_q, or in case the discriminant of the
quadratic equation to solve for Ny, is negative, then the
whole solution sequence leading to such Ny is rejected. If
it so happens that all solution sequences are rejected, then
the fixed value of V7 is not optimal, and has to change. As
noted in Section V, we observe that for large values of [,
one needs to initiate SDO with a relatively large value of N;
to get meaningful (unrejected) solution sequences. Finally, in
case two or more solution sequences are obtained, we pick the
one that yields a smaller objective function of problem (13).

We now summarize the SDO approach used to characterize
the optimal long-term average Aol pj. For a given A, we first
fix N7 and sequentially solve for { Ny, Ns,..., N,,_1} using
equations (24) and (25). We then find the best N;, which
gives p(A). Finally, the optimal A\* is found as discussed in
Lemma 1, which gives p = p(\*) + A*.

IV. WAITING POLICY

We now consider optimizing the waiting policy by going
back to problem (11). As discussed towards the end of
Section II, jointly optimizing the waiting threshold ~ and
the blocklenghts { N} would not directly yield a sequential
solution as done in the previous section. We instead follow
a potentially-suboptimal approach in which we first find the
optimal blocklengths via SDO for a zero-wait policy, then we
optimize the waiting threshold based on that. Therefore, in this
section we assume that we already have a set of blocklengths
{N,}, with a corresponding service time random variable 7.



Now the task of finding the optimal v* can be accomplished by
the techniques introduced in [19]. In what follows, we reiterate
the procedure of finding v* according to our own notation, and
approach it slightly differently, for completeness.

To analytically determine the optimal threshold v*, one can
leverage (the original) Dinkelbach’s approach [21] for some
fixed n > 0 and define

q(n) = min B [Q] - nE [L],

with E [L] and E [Q] given by (9) and (10), respectively. Next,
one can show that the following holds:
dE [Q)] dE [L]

WZ(W—FE[T])P(TSV% W:P(Tﬁﬁ’)- 29)

(28)

Therefore, after setting %TE[LD = 0, the optimal thresh-
old will be given by

v =n"-E[7], (30)

where n* is the unique solution of ¢(n*) = 0, which can be
found via, e.g., a bisection search [21].

We note that v* > 0, and is therefore a meaningful
threshold. This can be seen by observing that

o E)=E[rl-71*]+ 3 |(-71*) |+ 52 60

which is strictly positive. Since ¢(n) is decreasing [21], we
must have n* > E[7] in order for ¢(n*) = 0 to hold.

V. CASE STUDY: CONVOLUTIONAL CODES

We apply the above analysis to the case of tail-biting con-
volutional codes over additive white Gaussian noise (AWGN)
channels. As shown in [14] for binary inputs with a signal-to-
noise ratio (SNR) of 2 dB, the Gaussian distribution closely-
approximates the ACK probability as follows:

Nt —0.
P(Nf) %Q(k/ [’ 05666)7

ACK 0.0573 (32)

_u2
where Q(z) £ —4= [ ™2 du is the Q-function. We set the
measurement length to & = 64 bits and N,, = 192 bits. Our

results are in the context of the model in (2) and (32).

A. Verifying Lemma 1

We first verify the results of Lemma 1. For a system with
8 = 10 time units, we plot both E [7*] and p()) versus A in
Fig. 3. We see that E[r,] is increasing with \. This makes
the set {A : p(A) = E[r\]} basically a singleton, which
further facilitates evaluating A* through a bisection search over
[0, Amax). We note that such case holds for all values of 3.

Next, we show how the optimal long-term average Aol
behaves as a function of Nj. That is, we solve for pg(Ny)
as opposed to pj. We do so via slightly modifying the SDO
approach. Specifically, now that N; is fixed, we substitute in
(12) to get a relatively new metric po(/N1) to be optimized
by choosing {Na, N3, Ny, ..., Np,—1}. For that, we follow
the same SDO approach discussed in Section III, yet after
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Fig. 4. Optimal long-term average Aol as a function of N1, with different
B’s. The optimal N7 is denoted by red circles. For = 10, the optimal
N = 119 bits, with p§(119) ~ 208 time units.

replacing N; with Ns. The result is shown in Fig. 4 for
B € {10,15,20}. We see that the optimal N; that minimizes
P (IN7) is relatively mid-range and, intuitively, increases with
(. Combining the results of Fig. 3 and Fig. 4, we observe that
at 8 =10, p(A\*) + X\* = pg (Ny), as asserted in Lemma 1.

B. A Methodology for fixed m

In Fig. 5, we show how the optimal blocklengths vary
with N; for 8 = 10. We see that as N7 increases, the set
of blocklengths becomes sparser, i.e., fewer number of IR
transmissions leads to reaching N,,. This figure, together with
Fig. 4 can be used to solve the problem with fixed number of
transmissions per message m, which may be relevant in some
practical systems. For instance, at N; = 119 we have m = 6
transmissions. If we have a constraint of only m = 5, then we
would have to use /N; > 137 according to Fig. 5. We would
then examine Fig. 4 to conclude that N; = 137 is the optimal
choice in this case since it attains the smallest Aol for 8 = 10
when compared to higher values of Nj.

C. Comparison to Baseline Schemes: IIR and FR

We compare the proposed HARQ scheme with other base-
line schemes. The first is IIR, in which incremental bits are
added one-by-one until success. This is a special case of
HARQ in which Nyiq = Ny + 1, Vf (presuming that m
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can be arbitrarily large). The second baseline scheme is FR,
for which we consider two subcases: with and without replace-
ment. FR without replacement is basically using a fixed Ny
to transmit each message, with repetition in case of failures.
This makes the service time given by (N; +3) M, where M is
a geometric random variable with parameter PX}?I)(. FR with
replacement is strictly better than FR without replacement in
the sense it uses fresh measurements after failures. This makes
the epoch length also given by (N7 +3)M, yet the service time
is fixed at N1 + 3. For IIR and FR without replacement, one
can jointly optimize /N7 and the optimal waiting threshold in
(30).% For FR with replacement, a zero-wait policy is optimal,
see [20, Theorem 2], and the long-term average Aol can be
shown to be equal to (N7 + 5) (1/PXZ}I)( + 1/2).

In Fig. 6, we show how the optimal long-term average Aol
for the proposed HARQ scheme performs as a function of
B, compared to the baselines. We also plot the Aol achieved
by HARQ after rounding the blocklengths to their nearest
integer values; we see that the performance is almost identical
after rounding as noted in Section III. The HARQ scheme
outperforms IIR and FR without replacement for all values
of B. In addition, it outperforms FR with replacement for
B < 120, and performs very close to it for 5 2 120. This
latter slight under performance is due to the fact that we do

4Different from HARQ, this joint optimization can be optimally solved.

not allow replacements in the current analysis of HARQ.

VI. CONCLUSION

An SDO-based analytical framework has been developed to
produce Aol-minimal HARQ transmission lengths. Different
from almost all of the Aol-related literature on coding design,
a nonzero processing delay is considered in our system, which
includes the time to decode a message, send feedback and
initiate the transmission of IR bits if needed. The optimized
HARQ scheme beats multiple baselines such as IIR and FR.

Future work includes developing an SDO-based framework
for HARQ in systems that allow message replacement.
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