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ABSTRACT
Community detection plays a key role in understanding graph

structure. However, several recent studies showed that community

detection is vulnerable to adversarial structural perturbation. In

particular, via adding or removing a small number of carefully se-

lected edges in a graph, an attacker can manipulate the detected

communities. However, to the best of our knowledge, there are no

studies on certifying robustness of community detection against

such adversarial structural perturbation. In this work, we aim to

bridge this gap. Specifically, we develop the first certified robustness

guarantee of community detection against adversarial structural

perturbation. Given an arbitrary community detection method, we

build a new smoothed community detection method via randomly

perturbing the graph structure. We theoretically show that the

smoothed community detection method provably groups a given

arbitrary set of nodes into the same community (or different com-

munities) when the number of edges added/removed by an attacker

is bounded. Moreover, we show that our certified robustness is tight.
We also empirically evaluate our method on multiple real-world

graphs with ground truth communities.
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1 INTRODUCTION
Graph is a powerful tool to represent many complex systems. For

example, an online social network can be viewed as a graph, where

nodes are users and edges represent friendships or interactions

between users. Community detection is a basic tool to understand

the structure of a graph and has many applications. For instance,

communities in a social graph may represent users with common in-

terests, locations, occupations, etc.. Therefore, many community de-

tection methods (e.g., [2, 14, 16, 23–25, 30, 41]) have been proposed

by various fields such as network science, applied physics, and
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bioinformatics. Roughly speaking, a community detection method

divides the nodes in a graph into groups such that nodes in the

same group are densely connected and nodes in different groups

are sparsely connected.

However, multiple recent studies showed that community de-

tection is vulnerable to adversarial structural perturbations [8, 9,

13, 29, 37]. Specifically, via adding or removing a small number of

carefully selected edges in a graph, an attacker can manipulate the

detected communities. For example, an attacker can spoof a commu-

nity detection method to split a set of nodes, which are originally

detected as in the same community, into different communities. An

attacker can also spoof a community detection method to merge a

set of nodes, which are originally detected as in different communi-

ties, into the same community. We call these two attacks splitting
attack and merging attack, respectively. However, to the best of our
knowledge, there are no studies to certify robustness of community

detection against such adversarial structural perturbation. We note

that several heuristic defenses [9, 29] were proposed to enhance the

robustness of community detection against structural perturbation.

However, these defenses lack formal guarantees and can often be

defeated by strategic attacks that adapt to them.

In this work, we aim to bridge this gap. In particular, we aim

to develop certified robustness of community detection against

structural perturbation. Given an arbitrary community detection

method, our techniques transform the method to a robust com-

munity detection method that provably groups a given arbitrary

set of nodes into the same community (against splitting attacks)

or into different communities (against merging attacks) when the

number of edges added/removed by the attacker is no larger than a

threshold. We call the threshold certified perturbation size.
Our robustness guarantees are based on a recently proposed

technique called randomized smoothing [11, 21, 26], which is the

state-of-the-art method to build provably robust machine learning

methods. Specifically, given an arbitrary function f , which takes x
as an input and outputs a categorial value. Randomized smoothing

constructs a smoothed function д via adding random noise to the

input x. Moreover, the output of the smoothed function is the func-

tion f ’s output that has the largest probability when adding random
noise to the input x. Suppose an attacker can add a perturbation to

the input x. The smoothed function provably has the same output

once the perturbation added to the input x is bounded.

We propose to certify robustness of community detection using

randomized smoothing. Specifically, given a graph, an arbitrary

community detection method, and an arbitrarily set of nodes in the

graph, we construct a function f , which takes the graph as an input

and outputs 1 if the community detection method groups the set of

nodes into the same community, otherwise the function f outputs

0. Then, we build a smoothed function д via adding random noise

https://doi.org/10.1145/3366423.3380029
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to the graph structure, i.e., randomly adding or removing edges

in the graph. Finally, we certify the robustness of the smoothed

function д against adversarial structural perturbation.

However, existing randomized smoothing methods are insuffi-

cient to certify robustness of community detection. Specifically,

they assume the input x is continuous and add Gaussian or Lapla-

cian noise to it. However, graph structure is binary data, i.e., a

pair of nodes can be connected or unconnected; and Gaussian or

Laplacian noise is not semantically meaningful for such binary data.

To address the challenge, we develop randomized smoothing for

binary data. We theoretically derive a certified perturbation size

via addressing several technical challenges. For instance, we prove

a variant of the Neyman-Pearson Lemma [31] for binary data; and

we divide the graph structure space into regions in a novel way

such that we can apply the variant of the Neyman-Pearson Lemma

to certify robustness of community detection. Moreover, we prove

that our certified perturbation size is tight if no assumptions on

the community detection method are made. Our certified perturba-

tion size is the solution to an optimization problem. Therefore, we

further design an algorithm to solve the optimization problem.

We empirically evaluate our method using multiple real-world

graph datasets with ground-truth communities including Email,

DBLP, and Amazon datasets. We choose the efficient community

detection method called Louvain’s method [2]. We study the impact

of various parameters on the certified robustness.

In summary, our key contributions are as follows:

• We develop the first certified robustness of community detec-

tion against adversarial structural perturbation. Moreover,

we show that our certified robustness is tight.

• Our certified perturbation size is the solution to an opti-

mization problem and we develop an algorithm to solve the

optimization problem.

• We evaluate our method on multiple real-world datasets.

2 BACKGROUND
2.1 Community Detection
Suppose we are given an undirected graph G = (V ,E), where V is

the set of nodes and E is the set of edges. A community detection

method divides the nodes in the graph into groups, which are called

communities. In non-overlapping community detection, a node

only belongs to one community, while in overlapping community

detection, a node may belong to multiple communities. Formally,

a community detection algorithm A takes a graph as an input

and produces a set of communities C = {C1,C2, · · · ,Ck }, where

V = ∪ki=1Ci andCi is the set of nodes that are in the ith community.

For simplicity, we represent the graph structure as a binary vector

x, where an entry of the vector represents the connection status

of the corresponding pair of nodes. Specifically, an entry xi = 1

if the corresponding pair of nodes are connected, otherwise xi =
0. Moreover, we denote by n the length of the binary vector x.
Therefore, we can represent community detection as C = A (x).

2.2 Attacks to Community Detection

Adversarial structural perturbation: We consider an attacker

can manipulate the graph structure, i.e., adding or removing some

edges in the graph. In particular, an attacker may have control of

some nodes in the graph and can add or remove edges among them.

For instance, in a social graph, the attacker-controlled nodes may

be fake users created by the attacker or normal users compromised

by the attacker. We denote by a binary vector δ the attacker’s

perturbation to the graph, where δi = 1 if and only if the attacker

changes the connection status of the corresponding pair of nodes.

x ⊕ δ is the perturbed graph structure, where the operator ⊕ is

the XOR between two binary variables. Moreover, we use | |δ | |0
to measure the magnitude of the perturbation because | |δ | |0 has
semantic interpretations. In particular, | |δ | |0 is the number of edges

added or removed by the attacker.

Two attacks: An attacker can manipulate the detected communi-

ties via adversarial structural perturbation [8, 9, 13, 29, 37]. Specifi-

cally, there are two types of attacks to community detection:

• Splitting attack. Given a set of nodes (called victim nodes)
Γ = {u1,u2, · · · ,uc } that are in the same community. A

splitting attack aims to perturb the graph structure such

that a community detection method divides the nodes in Γ
into different communities. Formally, we have communities

C′ = {C1,C2, · · · ,Ck ′ } = A (x ⊕ δ ′) after the attacker adds
perturbation δ ′ to the graph structure, but there does not

exist a community Ci such that Γ ⊂ Ci .
• Merging attack. Given a set of victim nodes Γ that are in

different communities. A merging attack aims to perturb the

graph structure such that a community detection method

groups the nodes in Γ into the same community. Formally,

we have communities C′′ = {C1,C2, · · · ,Ck ′′ } = A (x ⊕
δ ′′) after the attacker adds perturbation δ ′′ to the graph

structure, and there exists a communityCi such that Γ ⊂ Ci .

We aim to develop certified robustness of community detection

against the splitting and merging attacks.

2.3 Randomized Smoothing
Randomized smoothing is state-of-the-art method to build provably

secure machine learning methods [6, 11]. Suppose we are given a

function f , which takes x̂ as an input and outputs a categorical value
in a domain {1, 2, · · · ,d }. Randomized smoothing aims to construct

a smoothed function д via adding random noise ϵ̂ to the input x̂.
Moreover, the output of the smoothed function is the output of the

function f that has the largest probability when adding random

noise to the input x̂. Formally, we have:

д(x̂) = argmax

ŷ∈{1,2, · · · ,d }
Pr( f (x̂ + ϵ̂ ) = ŷ), (1)

where ϵ̂ is random noise drawn from a certain distribution. Sup-

pose an attacker can add perturbation
ˆδ to the input x̂. Existing

studies [11, 21, 26] assume x̂ is continuous data. Moreover, they

showed that, when the random noise is drawn from a Gaussian

distribution or Laplacian distribution, the smoothed function prov-

ably has the same output when the L2-norm or L1-norm of the

perturbation
ˆδ is bounded. However, in our problem, the graph

structure is binary data. Gaussian or Laplacian noise is not seman-

tically meaningful for such binary data. To address the challenge,

we will develop randomized smoothing for binary data and apply

it to certify robustness against the splitting and merging attacks.
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3 CERTIFIED ROBUSTNESS
3.1 Randomized Smoothing on Binary Data
We first construct a function f to model the splitting and merging

attacks. Specifically, given a graph whose structure we represent

as a binary vector x, a community detection algorithm A, and a

set of victim nodes denoted as Γ, the function f outputs 1 if the

nodes in Γ are grouped into the same community detected by A

and outputs 0 otherwise. Formally, we define f as follows:

f (x) =



1, if ∃i, Γ ⊂ Ci ,where Ci ∈ A (x)
0, otherwise.

(2)

We simply use x as an input for the function f because we study

structural perturbation and other parameters–such as the commu-

nity detection algorithm A and the set of victim nodes Γ–can be

assumed to be constants. An attacker adds a perturbation vector δ
to the graph structure, i.e., x⊕δ is the perturbed structure.When the

nodes in Γ are in the same community before attack (i.e., f (x) = 1)

and f (x ⊕ δ ) produces 0, a splitting attack succeeds. When the

nodes in Γ are in different communities before attack (i.e., f (x) = 0)

and f (x ⊕ δ ) produces 1, a merging attack succeeds.

We construct a smoothed function д via adding random noise to

the graph structure x. Specifically, we define a noise distribution in

the discrete space {0, 1}n as follows:

Pr(ϵi = 0) = β, Pr(ϵi = 1) = 1 − β,∀i ∈ {1, 2, · · · ,n}, (3)

where n is the length of x and ϵi is the random binary noise added

to the ith entry of x. Formally, x ⊕ ϵ is the noisy graph structure.

Our random noise means that the connection status (connected or

unconnected) of a pair of nodes is preserved with a probability β
and changed with a probability 1 − β .

We note that the detected communities C = A (x⊕ϵ ) are random
since ϵ is random. Therefore, the output f (x⊕ϵ ) is also random. The

smoothed function д outputs the value that has a larger probability.

Formally, we have:

д(x) = argmax

y∈{0,1}
Pr( f (x ⊕ ϵ ) = y)

=



1, if Pr( f (x ⊕ ϵ ) = 1) > 0.5

0, otherwise.
(4)

Certifying robustness against a splitting attack is to certify that

д(x ⊕ δ ) = 1 for all | |δ | |0 ≤ L1, while certifying robustness against

a merging attack is to certify that д(x⊕δ ) = 0 for all | |δ | |0 ≤ L2. In
other words, we aim to certify that д(x ⊕ δ ) = y for all | |δ | |0 ≤ L,
where y ∈ {0, 1} and L is called certified perturbation size.

3.2 Deriving Certified Perturbation Size
In this section, we derive the certified perturbation size of the

smoothed function д theoretically for a given graph, community

detection algorithm, and a set of victim nodes. In the next section,

we will design algorithms to compute the certified perturbation

size in practice. Our results can be summarized in the following

two theorems.

Theorem 1 (Certified Perturbation Size). Given a graph-
structure binary vector x, a community detection algorithmA, and a
set of victim nodes Γ. The function f , random noise ϵ , and smoothed

function д are defined in Equation 2, 3, and 4, respectively. Assume
there exists p ∈ [0, 1] such that:

Pr( f (x ⊕ ϵ ) = y) ≥ p > 0.5, (5)

where p is a lower bound of the probability p = Pr( f (x⊕ ϵ ) = y) that
f outputs y under the random noise ϵ . Then, we have:

д(x ⊕ δ ) = y,∀||δ | |0 ≤ L, (6)

where L is called certified perturbation size and is the solution to the
following optimization problem:

L = argmax l , (7)

s.t. | |δ | |0 = l , (8)

µ−1∑
i=1

Pr(x ⊕ δ ⊕ ϵ ∈ Hi )

+ (p −

µ−1∑
i=1

Pr(x ⊕ ϵ ∈ Hi )) ·
Pr(x ⊕ δ ⊕ ϵ ∈ Hµ )

Pr(x ⊕ ϵ ∈ Hµ )
> 0.5, (9)

where we define region H (e ) = {z ∈ {0, 1}n :
Pr(x⊕ϵ=z)

Pr(x⊕δ ⊕ϵ=z) =( β
1−β

)e
} and density ratio h(e ) =

( β
1−β

)e
, where e = −n,−n +

1, · · · ,n − 1,n. We rank the regionsH (−n),H (−n + 1), · · · ,H (n)
in a descending order with respect to the density ratios h(−n),h(−n +
1), · · · ,h(n). Moreover, we denote the ranked regions asH1,H2, · · · ,

H2n+1. Furthermore, µ is defined as follows:

µ = argmin

µ′∈{1,2, · · · ,2n+1}
µ ′, s .t .

µ′∑
i=1

Pr(x ⊕ ϵ ∈ Hi ) ≥ p

Proof. See our technical report [19]. □

Next, we show that our certified perturbation size is tight.

Theorem 2 (Tightness of the Certified Perturbation Size).

For any perturbation δ with | |δ | |0 > L, there exists a community
detection algorithm A∗ (and thus a function f ∗) consistent with
Equation 5 such that д(x ⊕ δ ) , y or there exists ties.

Proof. See our technical report [19]. □

We have the following observations from our two theorems:

• Our certified perturbation size can be applied to any com-

munity detection method.

• Our certified perturbation size depends on p and β . When

the probability lower bound p is tighter, our certified per-

turbation size is larger. We use the probability lower bound

p instead of its exact value p because it is challenging to

compute the exact value.

• When using the noise distribution defined in Equation 3

and no further assumptions are made on the community

detection algorithm, it is impossible to certify a perturbation

size that is larger than L.
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3.3 Computing Certified Perturbation Size
Given a graph-structure binary vector x, a community detection

algorithmA, and a set of victim nodes Γ, we aim to compute the cer-

tified perturbation size in practice. We face two challenges. The first

challenge is to estimate y and obtain the probability lower bound p.

The second challenge is how to solve the optimization problem in

Equation 7. To address the first challenge, we first estimate a value

of y, and then use the one-sided Clopper-Pearson method [5] to

estimate the probability bound with probabilistic guarantees. To

address the second challenge, we develop an efficient algorithm to

solve the optimization problem.

Estimating y and p: We leverage a Monte-Carlo method to esti-

mate y and p with probabilistic guarantees. Specifically, we first

randomly sample N noise, and we use ϵ1,ϵ2, · · · ,ϵN to denote

them. Then, we compute the frequency of the output 0 and 1

for the function f , i.e., m0 =
∑N
i=1 I( f (x ⊕ ϵi ) = 0) and m1 =∑N

i=1 I( f (x ⊕ ϵi ) = 1), where I is an indicator function. We esti-

mate ŷ = argmaxi ∈{0,1}mi . Then, we estimate p by leveraging the

one-sided Clopper-Pearson method. Estimating p can be viewed

as estimating the parameter of a Binomial distribution. In partic-

ular,mŷ can be viewed as a sample from a Binomial distribution

Bin(N ,p), wheremŷ is the frequency of the value ŷ and Bin(N ,p)
denotes a Binomial distributionwith parametersN andp. Therefore,
we can estimate p by leveraging the one-sided Clopper-Pearson

method. Specifically, we have:

p = B (α ;mŷ ,N −mŷ + 1), (10)

where 1−α represents the confidence level and B (α ;mŷ ,N −mŷ+1)
denotes the α th quantile of the beta distribution with parameters

mŷ and N −mŷ + 1.

Solving the optimization problem: After obtaining the proba-

bility bound p, we solve the optimization problem in Equation 7

to obtain L. The key to solve the optimization problem is to com-

pute Pr(x ⊕ ϵ ∈ H (e )) and Pr(x ⊕ δ ⊕ ϵ ∈ H (e )) for each e ∈
{−n,−n + 1, · · · ,n} when | |δ | |0 = l . Specifically, we have:

Pr(x ⊕ ϵ ∈ H (e )) =

min{n,n+e }∑
i=max{0,e }

βn−(i−e ) (1 − β ) (i−e ) · θ (e, i ) (11)

Pr(x ⊕ δ ⊕ ϵ ∈ H (e )) =

min{n,n+e }∑
i=max{0,e }

βn−i (1 − β )i · θ (e, i ), (12)

where θ (e, i ) is defined as follows:

θ (e, i ) =




0, if (e + l ) mod 2 , 0,

0, if 2i − e < l,( n−l
2i−e−l

2

) ( l
l−e
2

)
, otherwise

(13)

The calculation details can be found in our technical report [19].

Once we can compute the probabilities Pr(x ⊕ ϵ ∈ H (e )) and
Pr(x ⊕ δ ⊕ ϵ ∈ H (e )), we can iteratively find the largest l such
that the constraint in Equation 9 is satisfied. Such largest l is our
certified perturbation size L.

Complete certification algorithm: Algorithm 1 shows our com-

plete certification algorithm. The function SampleUnderNoise

randomly samples N noise from the noise distribution defined in

Equation 3, adds each noise to the graph structure, and computes the

Algorithm 1: Certify
Input: f , β , x, N , α .
Output: ABSTAIN or (ŷ,L).

1 m0,m1 = SampleUnderNoise( f , β, x,N )

2 ŷ = argmaxi ∈{0,1}mi

3 p = B (α ;mŷ ,N −mŷ + 1)

4 if p > 0.5 then
5 L = CertifiedPerturbationSize(p)

6 return (ŷ,L)

7 else
8 return ABSTAIN

frequency of the function f ’s output 0 and 1. Then, our algorithm

estimates ŷ and p. Based on p, the function CertifiedPerturba-

tionSize computes the certified perturbation size by solving the

optimization problem in Equation 7. Our algorithm returns (ŷ, L) if
p > 0.5 and ABSTAIN otherwise. The following proposition shows

the probabilistic guarantee of our certification algorithm.

Proposition 1. With probability at least 1− α over the randomness
in Algorithm 1, if the algorithm returns an output value ŷ and a
certified perturbation size L (i.e., does not ABSTAIN), then we have
д(x ⊕ δ ) = ŷ,∀||δ | |0 ≤ L.

Proof. See our technical report [19]. □

4 EVALUATION
4.1 Experimental Setup
Datasets:We consider three undirected graph datasets with “ground-

truth” communities, i.e., Email, DBLP, and Amazon. We obtained

the datasets from SNAP (http://snap.stanford.edu/). Due to limited

space, we only show the results on the Email dataset. Note that

we have similar observations on the other two datasets, and the

experimental results can be found in our technical report [19]. The

Email dataset describes the communications between members in

a research institution. The graph consists of 1,005 nodes, each of

which represents a member; and 25,571 edges, indicating the email

communications between members. The 42 departments in the in-

stitution are considered as the ground-truth communities and each

node belongs to exactly one of them.

Community detection algorithm:We use the popular Louvain’s

method [2] to detect communities. The method optimizes modu-

larity in a heuristic and iterative way. We note that the method

produces communities in multiple hierarchical levels, and we take

the last level since in which the maximum of the modularity is

attained. We use a publicly available implementation.
1

Evaluation metric: We use certified accuracy as the metric to

evaluate our certification method. We take defending against the

splitting attack as an example to illustrate certified accuracy. Sup-

pose we are givenM sets of victim nodes Γ1, Γ2, · · · , ΓM . The nodes

in each victim set Γi are in the same ground-truth community. The

goal of a splitting attack is to perturb the graph structure such that

the Louvain’s method groups the victim nodes in a set Γi into at

1
https://sites.google.com/site/findcommunities/
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least two communities. Our certification algorithm in Algorithm 1

produces an output yi and a certified perturbation size Li for each
victim set Γi . yi = 1 means that we can provably guarantee that

the nodes in Γi are grouped into the same community. Given a

perturbation size l , we define the certified accuracy CK (l ) at the
perturbation size l as the fraction of sets of victim nodes whose

output yi = 1 and certified perturbation size is at least l . Our certi-
fied accuracy CK (l ) is the fraction of sets of victim nodes that our

method can provably detect as in the same community when an

attacker adds or removes at most l edges in the graph. Formally,

we have:

Certified Accuracy for Defending against Splitting Attacks:

CK (l ) =

∑M
i=1 I(yi = 1)I(Li ≥ l )

M
, (14)

where I is an indicator function. For merging attacks, the nodes

in a victim set Γi are in different ground-truth communities. The

goal of a merging attack is to perturb the graph structure such

that the Louvain’s method groups the victim nodes in a set Γi into
the same community. Given a perturbation size l , we define the
certified accuracyCK (l ) at the perturbation size l as the fraction of

sets of victim nodes whose output yi = 0 and certified perturbation

size is at least l . Our certified accuracy CK (l ) is the fraction of sets

of victim nodes that our method can provably detect as in more

than one communities when an attacker adds or removes at most l
edges in the graph. Formally, we have:

Certified Accuracy for Defending against Merging Attacks:

CK (l ) =

∑M
i=1 I(yi = 0)I(Li ≥ l )

M
. (15)

Parameter setting: Our method has the following parameters:

the noise parameter β , the confidence level 1 − α , and the number

of samples N . Unless otherwise mentioned, we use the following

default parameters: β = 0.7, 1 − α = 0.999, and N = 10, 000. To

estimate certified accuracy for defending against splitting attacks,

we randomly sample two sets of |Γ | nodes from each ground-truth

community whose size is larger than |Γ |, and we treat them as

victim sets. To estimate certified accuracy for defending against

merging attacks, we randomly sample 1,000 victim sets, each of

which includes nodes randomly sampled from |Γ | different com-

munities. By default, we assume each set of victim nodes includes

2 nodes, i.e., |Γ | = 2. We also study the impact of each parameter,

including β , 1− α , N , and |Γ |. When studying the impact of one pa-

rameter, we fix the remaining parameters to be their default values.

We randomly pick 100 nodes as attacker-controlled nodes for each

dataset, and the attacker perturbs the edges between them.

4.2 Experimental Results
Impact of the number of victim nodes |Γ |: Figure 1a shows

the certified accuracy vs. perturbation size for defending against

splitting attacks with different number of victim nodes on the Email

dataset, while Figure 1b shows the results for defending against

merging attacks. We observe that as the number of victim nodes

increases, the curve of the certified accuracy becomes lower for

splitting attacks and higher for merging attacks. This is because

it is harder to provably guarantee that a larger set of nodes are
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(b) Merging attacks
Figure 1: Impact of the number of victimnodes |Γ | on defend-
ing against splitting attacks and merging attacks on Email.

detected as in the same community (defending against splitting

attacks); and it is easier to provably guarantee that a larger set of

nodes are detected as in more than one communities (defending

against merging attacks).

Impact of the noise parameter β : Figure 2a shows the certified
accuracy vs. perturbation size for defending against splitting at-

tacks with different noise parameter β on Email. We observe that β
provides a tradeoff between normal accuracy without attacks and

robustness. Specifically, when β is larger, the normal accuracy, i.e.,

certified accuracy at perturbation size 0, is larger, while the certified

accuracy decreases more quickly as the perturbation size increases.

We also have similar observations for defending against merging

attacks, and thus we omit the results for simplicity.

Impact of the number of sampled noise N : Figure 2b shows

the certified accuracy vs. perturbation size for defending against

splitting attacks with different numbers of sampled noise N on the

Email dataset. We observe that the curve is higher as N increases.

This is because a larger N makes the estimated probability bound

p tighter and thus the certified perturbation size is also larger.

Impact of the confidence level 1−α : Figure 2c shows the certified
accuracy vs. perturbation size for defending against splitting attacks

with different confidence levels 1 − α on the Email dataset. We

observe that as the confidence level 1 − α increases, the curve of

the certified accuracy becomes lower. The reason is that a higher

confidence level causes a looser estimated probability bound p and

thus the certified perturbation size is smaller. However, we note that

the differences between different confidence levels are negligible

when the confidence levels are large enough.

5 RELATEDWORK
Adversarial attacks to non-graph data and their defenses: For
non-graph data, adversarial example is a well-known adversarial

attack. Specifically, an attacker adds a carefully crafted perturbation

to an input example such that a machine learning classifier makes

predictions for the perturbed example as the attacker desires. The in-

put example with carefully crafted perturbation is called adversarial

example [17, 35]. Various empirical defenses (e.g., [17, 28, 32]) have

been proposed to defend against adversarial examples. However,

these defenses were often soon broken by adaptive attacks [1, 7].

In response, various certified defenses (e.g., [10, 15, 33, 34, 38])

against adversarial examples have been developed. Among these

methods, randomized smoothing [6, 11, 18, 21, 26, 27] is state-of-the-

art. Randomized smoothing turns an arbitrary classifier/function

into a robust one via adding random noise to the input. Our work
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Figure 2: Impact of the parameters β , N , and 1 − α on defending against splitting attacks on Email.

uses randomized smoothing. However, different from the existing

randomized smoothing methods, which assume continuous input

and add continuous noise, we propose randomized smoothing on

binary data and leverage it to certify robustness of community

detection against splitting and merging attacks. We note that a

concurrent work [22] generalized randomized smoothing to discrete

data. The major difference between our approach and [22] is that

we leverage a variant of the Neyman-Pearson Lemma to derive the

certified perturbation size.

Adversarial attacks to graph data and their defenses: Com-

pared to non-graph data, adversarial attacks to graph data and

their defenses are much less studied. Adversarial structural pertur-
bation is a recently proposed attack to graph data. For instance,

several recent studies [3, 12, 36, 43, 44] showed that Graph Neural

Networks (GNNs) are vulnerable to adversarial structural pertur-

bations. Specifically, an attacker can slightly perturb the graph

structure and/or node features to mislead the predictions made

by GNNs. Some empirical defenses [39, 40, 42] were proposed to

defend against such attacks. However, these methods do not have

certified robustness guarantees. Zügner & Günnemann [45] devel-

oped the first certified robustness guarantee against node-feature

perturbations for graph convolutional network [20]. Bojchevski &

Günnemann [4] proposed the first method for verifying certifiable

(non-)robustness of graph convolutional network against structural

perturbations. These work is different from ours as we focus on

certifying robustness of community detection.

Multiple studies [8, 9, 13, 29, 37] have shown that community de-

tection is vulnerable to adversarial structural perturbation. Several

heuristic defenses [9, 29] were proposed to enhance the robustness

of community detection against adversarial structural perturba-

tions. However, these defenses lack formal guarantees. Our work

is the first certified robustness guarantee of community detection

against adversarial structural perturbations.

6 DISCUSSION AND LIMITATIONS
Given a set of nodes that are in the same ground-truth community

(or in different ground-truth communities), our certified robustness

guarantees that the nodes are provably detected as in the same

community (or in different communities) when the number of added

or removed edges in the graph is at most a certain threshold (called

certified perturbation size). We note that when we add or remove

enough edges in a graph, the “ground-truth” communities may

change, and thus we may expect the set of nodes to be detected as

in different communities (or in the same community). Therefore,

the certified perturbation size should not be too large. We believe it

is an interesting future work to explore what certified perturbation

size should be expected for a particular application scenario.

Our work shows that we can provably guarantee that a set of

nodes are or are not in the same community when an attacker adds

or deletes a bounded number of edges in the graph. However, it

is still an open question on how to obtain communities from our

smoothed community detection method. One possible way to ob-

tain communities is as follows: we first randomly pick a node as

the initial community C. For each remaining node, we compute

the probability of the node being clustered into the same commu-

nity with each node in C under randomized smoothing. Then, we

compute the average probability and if it is larger than a threshold,

we add the node to C. When no more nodes can be added to C,

we randomly pick another node from the remaining nodes and

repeat the above process until all nodes are clustered into certain

communities. We believe it is an interesting future work to explore

how to derive communities from the smoothed method. We note

that the communities derived from the smoothed community de-

tection method may be less accurate than those derived from the

base community detection method. In other words, there may be a

tradeoff between accuracy and robustness.

7 CONCLUSION
In this work, we develop the first certified robustness guarantee of

community detection against adversarial structural perturbations.

Specifically, our results show that a set of nodes can be provably

detected as in the same community (against splitting attacks) or

in different communities (against merging attacks) when the num-

ber of edges added or removed by an attacker is no larger than a

threshold. Moreover, we show that our derived threshold is tight

when randomized smoothing with our discrete noise is used. Our

method can turn any community detection method to be provably

robust against adversarial structural perturbation to defend against

splitting and merging attacks. We also empirically demonstrate the

effectiveness of our method using three real-world graph datasets

with ground-truth communities. Interesting future work includes

leveraging the information of the community detection algorithm to

further improve the certified robustness guarantees and exploring

what certified perturbation size should be expected for a particular

application scenario.
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