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ABSTRACT

Community detection plays a key role in understanding graph
structure. However, several recent studies showed that community
detection is vulnerable to adversarial structural perturbation. In
particular, via adding or removing a small number of carefully se-
lected edges in a graph, an attacker can manipulate the detected
communities. However, to the best of our knowledge, there are no
studies on certifying robustness of community detection against
such adversarial structural perturbation. In this work, we aim to
bridge this gap. Specifically, we develop the first certified robustness
guarantee of community detection against adversarial structural
perturbation. Given an arbitrary community detection method, we
build a new smoothed community detection method via randomly
perturbing the graph structure. We theoretically show that the
smoothed community detection method provably groups a given
arbitrary set of nodes into the same community (or different com-
munities) when the number of edges added/removed by an attacker
is bounded. Moreover, we show that our certified robustness is tight.
We also empirically evaluate our method on multiple real-world
graphs with ground truth communities.
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1 INTRODUCTION

Graph is a powerful tool to represent many complex systems. For
example, an online social network can be viewed as a graph, where
nodes are users and edges represent friendships or interactions
between users. Community detection is a basic tool to understand
the structure of a graph and has many applications. For instance,
communities in a social graph may represent users with common in-
terests, locations, occupations, etc.. Therefore, many community de-
tection methods (e.g., [2, 14, 16, 23-25, 30, 41]) have been proposed
by various fields such as network science, applied physics, and
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bioinformatics. Roughly speaking, a community detection method
divides the nodes in a graph into groups such that nodes in the
same group are densely connected and nodes in different groups
are sparsely connected.

However, multiple recent studies showed that community de-
tection is vulnerable to adversarial structural perturbations [8, 9,
13, 29, 37]. Specifically, via adding or removing a small number of
carefully selected edges in a graph, an attacker can manipulate the
detected communities. For example, an attacker can spoof a commu-
nity detection method to split a set of nodes, which are originally
detected as in the same community, into different communities. An
attacker can also spoof a community detection method to merge a
set of nodes, which are originally detected as in different communi-
ties, into the same community. We call these two attacks splitting
attack and merging attack, respectively. However, to the best of our
knowledge, there are no studies to certify robustness of community
detection against such adversarial structural perturbation. We note
that several heuristic defenses [9, 29] were proposed to enhance the
robustness of community detection against structural perturbation.
However, these defenses lack formal guarantees and can often be
defeated by strategic attacks that adapt to them.

In this work, we aim to bridge this gap. In particular, we aim
to develop certified robustness of community detection against
structural perturbation. Given an arbitrary community detection
method, our techniques transform the method to a robust com-
munity detection method that provably groups a given arbitrary
set of nodes into the same community (against splitting attacks)
or into different communities (against merging attacks) when the
number of edges added/removed by the attacker is no larger than a
threshold. We call the threshold certified perturbation size.

Our robustness guarantees are based on a recently proposed
technique called randomized smoothing [11, 21, 26], which is the
state-of-the-art method to build provably robust machine learning
methods. Specifically, given an arbitrary function f, which takes x
as an input and outputs a categorial value. Randomized smoothing
constructs a smoothed function g via adding random noise to the
input x. Moreover, the output of the smoothed function is the func-
tion f’s output that has the largest probability when adding random
noise to the input x. Suppose an attacker can add a perturbation to
the input x. The smoothed function provably has the same output
once the perturbation added to the input x is bounded.

We propose to certify robustness of community detection using
randomized smoothing. Specifically, given a graph, an arbitrary
community detection method, and an arbitrarily set of nodes in the
graph, we construct a function f, which takes the graph as an input
and outputs 1 if the community detection method groups the set of
nodes into the same community, otherwise the function f outputs
0. Then, we build a smoothed function g via adding random noise
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to the graph structure, i.e., randomly adding or removing edges
in the graph. Finally, we certify the robustness of the smoothed
function g against adversarial structural perturbation.

However, existing randomized smoothing methods are insuffi-
cient to certify robustness of community detection. Specifically,
they assume the input x is continuous and add Gaussian or Lapla-
cian noise to it. However, graph structure is binary data, i.e., a
pair of nodes can be connected or unconnected; and Gaussian or
Laplacian noise is not semantically meaningful for such binary data.
To address the challenge, we develop randomized smoothing for
binary data. We theoretically derive a certified perturbation size
via addressing several technical challenges. For instance, we prove
a variant of the Neyman-Pearson Lemma [31] for binary data; and
we divide the graph structure space into regions in a novel way
such that we can apply the variant of the Neyman-Pearson Lemma
to certify robustness of community detection. Moreover, we prove
that our certified perturbation size is tight if no assumptions on
the community detection method are made. Our certified perturba-
tion size is the solution to an optimization problem. Therefore, we
further design an algorithm to solve the optimization problem.

We empirically evaluate our method using multiple real-world
graph datasets with ground-truth communities including Email,
DBLP, and Amazon datasets. We choose the efficient community
detection method called Louvain’s method [2]. We study the impact
of various parameters on the certified robustness.

In summary, our key contributions are as follows:

o We develop the first certified robustness of community detec-
tion against adversarial structural perturbation. Moreover,
we show that our certified robustness is tight.

e Our certified perturbation size is the solution to an opti-
mization problem and we develop an algorithm to solve the
optimization problem.

e We evaluate our method on multiple real-world datasets.

2 BACKGROUND

2.1 Community Detection

Suppose we are given an undirected graph G = (V, E), where V is
the set of nodes and E is the set of edges. A community detection
method divides the nodes in the graph into groups, which are called
communities. In non-overlapping community detection, a node
only belongs to one community, while in overlapping community
detection, a node may belong to multiple communities. Formally,
a community detection algorithm A takes a graph as an input
and produces a set of communities C = {C1,C2, -+, Cy}, where
V= Ui?:lCi and C; is the set of nodes that are in the ith community.
For simplicity, we represent the graph structure as a binary vector
x, where an entry of the vector represents the connection status
of the corresponding pair of nodes. Specifically, an entry x; = 1
if the corresponding pair of nodes are connected, otherwise x; =
0. Moreover, we denote by n the length of the binary vector x.
Therefore, we can represent community detection as C = A(x).

2.2 Attacks to Community Detection

Adversarial structural perturbation: We consider an attacker
can manipulate the graph structure, i.e., adding or removing some
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edges in the graph. In particular, an attacker may have control of
some nodes in the graph and can add or remove edges among them.
For instance, in a social graph, the attacker-controlled nodes may
be fake users created by the attacker or normal users compromised
by the attacker. We denote by a binary vector § the attacker’s
perturbation to the graph, where §; = 1 if and only if the attacker
changes the connection status of the corresponding pair of nodes.
x @ 6 is the perturbed graph structure, where the operator @ is
the XOR between two binary variables. Moreover, we use ||J|[o
to measure the magnitude of the perturbation because [|8]]p has
semantic interpretations. In particular, ||8||o is the number of edges
added or removed by the attacker.

Two attacks: An attacker can manipulate the detected communi-
ties via adversarial structural perturbation [8, 9, 13, 29, 37]. Specifi-
cally, there are two types of attacks to community detection:

¢ Splitting attack. Given a set of nodes (called victim nodes)
I' = {ug,u2,- -+ ,uc} that are in the same community. A
splitting attack aims to perturb the graph structure such
that a community detection method divides the nodes in T’
into different communities. Formally, we have communities
C’' ={C1,Cy, -+ ,Cpr} = A(x @ §’) after the attacker adds
perturbation &’ to the graph structure, but there does not
exist a community C; such that " ¢ C;.

e Merging attack. Given a set of victim nodes I that are in
different communities. A merging attack aims to perturb the
graph structure such that a community detection method
groups the nodes in I into the same community. Formally,
we have communities C” = {C1,Cz,- -+ ,Cpr} = A ®
8'’) after the attacker adds perturbation 8" to the graph
structure, and there exists a community C; such thatT' c C;.

We aim to develop certified robustness of community detection
against the splitting and merging attacks.

2.3 Randomized Smoothing

Randomized smoothing is state-of-the-art method to build provably
secure machine learning methods [6, 11]. Suppose we are given a
function f, which takes % as an input and outputs a categorical value
in a domain {1, 2, - - - ,d}. Randomized smoothing aims to construct
a smoothed function g via adding random noise € to the input %.
Moreover, the output of the smoothed function is the output of the
function f that has the largest probability when adding random
noise to the input %. Formally, we have:

g(%) = argmax Pr(f(x+¢€)=7), (1)

ge(1,2,---,d}

where € is random noise drawn from a certain distribution. Sup-
pose an attacker can add perturbation 5 to the input %. Existing
studies [11, 21, 26] assume X is continuous data. Moreover, they
showed that, when the random noise is drawn from a Gaussian
distribution or Laplacian distribution, the smoothed function prov-
ably has the same output when the Ly-norm or Li-norm of the
perturbation 5 is bounded. However, in our problem, the graph
structure is binary data. Gaussian or Laplacian noise is not seman-
tically meaningful for such binary data. To address the challenge,
we will develop randomized smoothing for binary data and apply
it to certify robustness against the splitting and merging attacks.
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3 CERTIFIED ROBUSTNESS

3.1 Randomized Smoothing on Binary Data

We first construct a function f to model the splitting and merging
attacks. Specifically, given a graph whose structure we represent
as a binary vector x, a community detection algorithm (A, and a
set of victim nodes denoted as T', the function f outputs 1 if the
nodes in T are grouped into the same community detected by A
and outputs 0 otherwise. Formally, we define f as follows:

1, if 3i,T c C;, where C; € A(x
Foo = { ®

0, otherwise.

We simply use x as an input for the function f because we study
structural perturbation and other parameters—such as the commu-
nity detection algorithm A and the set of victim nodes I'-can be
assumed to be constants. An attacker adds a perturbation vector &
to the graph structure, i.e., x®8 is the perturbed structure. When the
nodes in T are in the same community before attack (ie., f(x) = 1)
and f(x @ &) produces 0, a splitting attack succeeds. When the
nodes in T are in different communities before attack (i.e., f(x) = 0)
and f(x & 8) produces 1, a merging attack succeeds.

We construct a smoothed function g via adding random noise to
the graph structure x. Specifically, we define a noise distribution in
the discrete space {0, 1}" as follows:

Pr(e; =0) = B,Pr(e; =1) =1-B,Vie {1,2,--- ,n}, 3)

where n is the length of x and ¢; is the random binary noise added
to the ith entry of x. Formally, x & € is the noisy graph structure.
Our random noise means that the connection status (connected or
unconnected) of a pair of nodes is preserved with a probability
and changed with a probability 1 — f.

We note that the detected communities C = A (x®e€) are random
since € is random. Therefore, the output f(x®e) is also random. The
smoothed function g outputs the value that has a larger probability.
Formally, we have:

g(x) = argmaxPr(f(x® €) = y)
ye{0,1}

3 1, if Pr(f(x®e€) =1) > 0.5 @
- 0, otherwise.

Certifying robustness against a splitting attack is to certify that
g(x® 8) = 1forall ||8]|o < L1, while certifying robustness against
a merging attack is to certify that g(x® 8) = 0 for all ||§]|op < L2.In
other words, we aim to certify that g(x ® §) = y for all ||8]]p < L,
where y € {0, 1} and L is called certified perturbation size.

3.2 Deriving Certified Perturbation Size

In this section, we derive the certified perturbation size of the
smoothed function g theoretically for a given graph, community
detection algorithm, and a set of victim nodes. In the next section,
we will design algorithms to compute the certified perturbation
size in practice. Our results can be summarized in the following
two theorems.

THEOREM 1 (CERTIFIED PERTURBATION SI1ZE). Given a graph-
structure binary vector X, a community detection algorithm A, and a
set of victim nodes I'. The function f, random noise €, and smoothed
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function g are defined in Equation 2, 3, and 4, respectively. Assume
there exists p € [0, 1] such that:

Pr(f(x®e€) =y) >p>05, (5)

where p is a lower bound of the probability p = Pr(f(x ® €) = y) that
f outputs y under the random noise €. Then, we have:

9(x@8) =y.Y||8llo < L, (6)

where L is called certified perturbation size and is the solution to the
following optimization problem:

L = argmax, 7)
st |18l =1, (®)

p—1

ZPr(xEBS@e € H;)

i=1

p—1
Prix®ed®ecH,)
+(p - Pr(x® e € ‘Hj)) - > 0.5, (9)
£ ; ! Pr(x® e € Hy)
Pr(x®e=z)

where we define region H(e) = {z € {0,1}" : Prx@d®e=2)

(%)e} and density ratio h(e) = (%)e, where e = —n,—n +
1,---,n—1,n. We rank the regions H(-n), H(-n+1),--- ,H(n)
in a descending order with respect to the density ratios h(—n), h(—n +
1), - -, h(n). Moreover, we denote the ranked regions as Hy, Hy, - - -,
Hopn+1. Furthermore, u is defined as follows:

’

u
u=  argmin g, s.t. ZPV(X ®ecH;)=p
ez, ,2n+1} i=1 -

ProoF. See our technical report [19]. o

Next, we show that our certified perturbation size is tight.

THEOREM 2 (TIGHTNESS OF THE CERTIFIED PERTURBATION SIZE).
For any perturbation § with ||8||o > L, there exists a community
detection algorithm A* (and thus a function f*) consistent with
Equation 5 such that g(x @ 8) # y or there exists ties.

PRroOF. See our technical report [19]. ]

We have the following observations from our two theorems:

o Our certified perturbation size can be applied to any com-
munity detection method.

Our certified perturbation size depends on p and . When
the probability lower bound p is tighter, our certified per-
turbation size is larger. We use the probability lower bound
p instead of its exact value p because it is challenging to

Eompute the exact value.

e When using the noise distribution defined in Equation 3
and no further assumptions are made on the community
detection algorithm, it is impossible to certify a perturbation
size that is larger than L.
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3.3 Computing Certified Perturbation Size

Given a graph-structure binary vector x, a community detection
algorithm (A, and a set of victim nodes I', we aim to compute the cer-
tified perturbation size in practice. We face two challenges. The first
challenge is to estimate y and obtain the probability lower bound p.
The second challenge is how to solve the optimization problem in
Equation 7. To address the first challenge, we first estimate a value
of y, and then use the one-sided Clopper-Pearson method [5] to
estimate the probability bound with probabilistic guarantees. To
address the second challenge, we develop an efficient algorithm to
solve the optimization problem.

Estimating y and p: We leverage a Monte-Carlo method to esti-
mate y and p with probabilistic guarantees. Specifically, we first
randomly sa_mple N noise, and we use €1, €2, -+ ,€en to denote
them. Then, we compute the frequency of the output 0 and 1
for the function f, ie., my = Zﬁl I(fx®e€) = 0)and m; =
Zﬁl I(f(x @ €;) = 1), where I is an indicator function. We esti-
mate § = argmax; ¢ 1) ;. Then, we estimate p by leveraging the
one-sided Clopper-Pearson method. Estimating p can be viewed
as estimating the parameter of a Binomial distribution. In partic-
ular, my can be viewed as a sample from a Binomial distribution
Bin(N, p), where my; is the frequency of the value § and Bin(N, p)
denotes a Binomial distribution with parameters N and p. Therefore,
we can estimate p by leveraging the one-sided Clopper-Pearson
method. Speciﬁcale, we have:

p= B(a;mg, N —mg + 1), (10)

where 1—a represents the confidence level and B(a; my, N—m+1)
denotes the ath quantile of the beta distribution with parameters
myand N —my + 1.

Solving the optimization problem: After obtaining the proba-
bility bound p, we solve the optimization problem in Equation 7
to obtain L. The key to solve the optimization problem is to com-
pute Pr(x ® € € H(e)) and Pr(x ® 6 ® € € H(e)) for each e €
{-n,—n+1,---,n} when ||8]|o = L. Specifically, we have:

min{n,n+e}

Pr(x®e € H(e)) = Z

i=max{0, e}

ﬁn—(i—e)(l _ ﬁ)(i—E) -0(e,i) (11)

min{n,n+e}
Pr(x@8@e € Hle)) = Z

i=max{0, e}

B - B) - 0(e,i),  (12)

where (e, i) is defined as follows:
0, if (e + ) mod 2 # 0,
0(e, i) =1{0 . . if2i—e <1, (13)
(2i’i25—[ ) ( I_Te ), otherwise

The calculation details can be found in our technical report [19].
Once we can compute the probabilities Pr(x @ € € H(e)) and
Pr(x @ 6 ® € € H(e)), we can iteratively find the largest I such
that the constraint in Equation 9 is satisfied. Such largest [ is our
certified perturbation size L.

Complete certification algorithm: Algorithm 1 shows our com-
plete certification algorithm. The function SAMPLEUNDERNOISE
randomly samples N noise from the noise distribution defined in
Equation 3, adds each noise to the graph structure, and computes the
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Algorithm 1: CERTIFY

Input: f, f,x, N, a.
Output: ABSTAIN or (7, L).
1 mg, m; = SAMPLEUNDERNOISE( f, 3, x, N)
2 = argmax;¢ o, 1} Mi
3 p= B(a;mg,N—mg +1)
4 i_fp > 0.5 then
s | L= CERTIFIEDPERTURBATIONSIZE(D)

6 return (g, L)

7 else
s | return ABSTAIN

frequency of the function f’s output 0 and 1. Then, our algorithm
estimates §j and p. Based on p, the function CERTIFIEDPERTURBA-
TIONSIZE compujfes the certified perturbation size by solving the
optimization problem in Equation 7. Our algorithm returns (g, L) if
p > 0.5 and ABSTAIN otherwise. The following proposition shows
the probabilistic guarantee of our certification algorithm.

Proposition 1. With probability at least 1 — a over the randomness
in Algorithm 1, if the algorithm returns an output value §j and a
certified perturbation size L (i.e., does not ABSTAIN), then we have
9(x® 8) = §,VII8lo < L.

PRroOF. See our technical report [19]. m]

4 EVALUATION
4.1 Experimental Setup

Datasets: We consider three undirected graph datasets with “ground-
truth” communities, i.e., Email, DBLP, and Amazon. We obtained
the datasets from SNAP (http://snap.stanford.edu/). Due to limited
space, we only show the results on the Email dataset. Note that
we have similar observations on the other two datasets, and the
experimental results can be found in our technical report [19]. The
Email dataset describes the communications between members in
a research institution. The graph consists of 1,005 nodes, each of
which represents a member; and 25,571 edges, indicating the email
communications between members. The 42 departments in the in-
stitution are considered as the ground-truth communities and each
node belongs to exactly one of them.

Community detection algorithm: We use the popular Louvain’s
method [2] to detect communities. The method optimizes modu-
larity in a heuristic and iterative way. We note that the method
produces communities in multiple hierarchical levels, and we take
the last level since in which the maximum of the modularity is
attained. We use a publicly available implementation.!
Evaluation metric: We use certified accuracy as the metric to
evaluate our certification method. We take defending against the
splitting attack as an example to illustrate certified accuracy. Sup-
pose we are given M sets of victim nodes I, I3, - - - ,I'ps. The nodes
in each victim set I; are in the same ground-truth community. The
goal of a splitting attack is to perturb the graph structure such that
the Louvain’s method groups the victim nodes in a set I; into at

Uhttps://sites.google.com/site/findcommunities/
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least two communities. Our certification algorithm in Algorithm 1
produces an output y; and a certified perturbation size L; for each
victim set I. y; = 1 means that we can provably guarantee that
the nodes in I; are grouped into the same community. Given a
perturbation size [, we define the certified accuracy CK(I) at the
perturbation size [ as the fraction of sets of victim nodes whose
output y; = 1 and certified perturbation size is at least I. Our certi-
fied accuracy CK(!) is the fraction of sets of victim nodes that our
method can provably detect as in the same community when an
attacker adds or removes at most [ edges in the graph. Formally,
we have:

Certified Accuracy for Defending against Splitting Attacks:

S I = DIL: > 1)

M )
where I is an indicator function. For merging attacks, the nodes
in a victim set I; are in different ground-truth communities. The
goal of a merging attack is to perturb the graph structure such
that the Louvain’s method groups the victim nodes in a set I into
the same community. Given a perturbation size I, we define the
certified accuracy CK([) at the perturbation size [ as the fraction of
sets of victim nodes whose output y; = 0 and certified perturbation
size is at least I. Our certified accuracy CK(I) is the fraction of sets
of victim nodes that our method can provably detect as in more
than one communities when an attacker adds or removes at most /
edges in the graph. Formally, we have:

CK(l) = (14)

Certified Accuracy for Defending against Merging Attacks:

SM Iy = 0)I(L; > 1)
P .

CK(l) = (15)
Parameter setting: Our method has the following parameters:
the noise parameter f, the confidence level 1 — «, and the number
of samples N. Unless otherwise mentioned, we use the following
default parameters: f = 0.7, 1 —a = 0.999, and N = 10, 000. To
estimate certified accuracy for defending against splitting attacks,
we randomly sample two sets of |T'| nodes from each ground-truth
community whose size is larger than |T'|, and we treat them as
victim sets. To estimate certified accuracy for defending against
merging attacks, we randomly sample 1,000 victim sets, each of
which includes nodes randomly sampled from |T'| different com-
munities. By default, we assume each set of victim nodes includes
2 nodes, i.e., |I'| = 2. We also study the impact of each parameter,
including f, 1 — @, N, and |T'|. When studying the impact of one pa-
rameter, we fix the remaining parameters to be their default values.
We randomly pick 100 nodes as attacker-controlled nodes for each
dataset, and the attacker perturbs the edges between them.

4.2 Experimental Results

Impact of the number of victim nodes |T'|: Figure la shows
the certified accuracy vs. perturbation size for defending against
splitting attacks with different number of victim nodes on the Email
dataset, while Figure 1b shows the results for defending against
merging attacks. We observe that as the number of victim nodes
increases, the curve of the certified accuracy becomes lower for
splitting attacks and higher for merging attacks. This is because
it is harder to provably guarantee that a larger set of nodes are
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Figure 1: Impact of the number of victim nodes |I'| on defend-
ing against splitting attacks and merging attacks on Email.

detected as in the same community (defending against splitting
attacks); and it is easier to provably guarantee that a larger set of
nodes are detected as in more than one communities (defending
against merging attacks).

Impact of the noise parameter j: Figure 2a shows the certified
accuracy vs. perturbation size for defending against splitting at-
tacks with different noise parameter  on Email. We observe that
provides a tradeoff between normal accuracy without attacks and
robustness. Specifically, when f is larger, the normal accuracy, i.e.,
certified accuracy at perturbation size 0, is larger, while the certified
accuracy decreases more quickly as the perturbation size increases.
We also have similar observations for defending against merging
attacks, and thus we omit the results for simplicity.

Impact of the number of sampled noise N: Figure 2b shows
the certified accuracy vs. perturbation size for defending against
splitting attacks with different numbers of sampled noise N on the
Email dataset. We observe that the curve is higher as N increases.
This is because a larger N makes the estimated probability bound
p tighter and thus the certified perturbation size is also larger.

Impact of the confidence level 1—a: Figure 2c shows the certified
accuracy vs. perturbation size for defending against splitting attacks
with different confidence levels 1 — a on the Email dataset. We
observe that as the confidence level 1 — « increases, the curve of
the certified accuracy becomes lower. The reason is that a higher
confidence level causes a looser estimated probability bound p and
thus the certified perturbation size is smaller. However, we note that
the differences between different confidence levels are negligible
when the confidence levels are large enough.

5 RELATED WORK

Adversarial attacks to non-graph data and their defenses: For
non-graph data, adversarial example is a well-known adversarial
attack. Specifically, an attacker adds a carefully crafted perturbation
to an input example such that a machine learning classifier makes
predictions for the perturbed example as the attacker desires. The in-
put example with carefully crafted perturbation is called adversarial
example [17, 35]. Various empirical defenses (e.g., [17, 28, 32]) have
been proposed to defend against adversarial examples. However,
these defenses were often soon broken by adaptive attacks [1, 7].
In response, various certified defenses (e.g., [10, 15, 33, 34, 38])
against adversarial examples have been developed. Among these
methods, randomized smoothing [6, 11, 18, 21, 26, 27] is state-of-the-
art. Randomized smoothing turns an arbitrary classifier/function
into a robust one via adding random noise to the input. Our work
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Figure 2: Impact of the parameters 5, N, and 1 — « on defending against splitting attacks on Email.

uses randomized smoothing. However, different from the existing
randomized smoothing methods, which assume continuous input
and add continuous noise, we propose randomized smoothing on
binary data and leverage it to certify robustness of community
detection against splitting and merging attacks. We note that a
concurrent work [22] generalized randomized smoothing to discrete
data. The major difference between our approach and [22] is that
we leverage a variant of the Neyman-Pearson Lemma to derive the
certified perturbation size.

Adversarial attacks to graph data and their defenses: Com-
pared to non-graph data, adversarial attacks to graph data and
their defenses are much less studied. Adversarial structural pertur-
bation is a recently proposed attack to graph data. For instance,
several recent studies [3, 12, 36, 43, 44] showed that Graph Neural
Networks (GNNs) are vulnerable to adversarial structural pertur-
bations. Specifically, an attacker can slightly perturb the graph
structure and/or node features to mislead the predictions made
by GNNs. Some empirical defenses [39, 40, 42] were proposed to
defend against such attacks. However, these methods do not have
certified robustness guarantees. Ziigner & Glinnemann [45] devel-
oped the first certified robustness guarantee against node-feature
perturbations for graph convolutional network [20]. Bojchevski &
Giinnemann [4] proposed the first method for verifying certifiable
(non-)robustness of graph convolutional network against structural
perturbations. These work is different from ours as we focus on
certifying robustness of community detection.

Multiple studies [8, 9, 13, 29, 37] have shown that community de-
tection is vulnerable to adversarial structural perturbation. Several
heuristic defenses [9, 29] were proposed to enhance the robustness
of community detection against adversarial structural perturba-
tions. However, these defenses lack formal guarantees. Our work
is the first certified robustness guarantee of community detection
against adversarial structural perturbations.

6 DISCUSSION AND LIMITATIONS

Given a set of nodes that are in the same ground-truth community
(or in different ground-truth communities), our certified robustness
guarantees that the nodes are provably detected as in the same
community (or in different communities) when the number of added
or removed edges in the graph is at most a certain threshold (called
certified perturbation size). We note that when we add or remove
enough edges in a graph, the “ground-truth” communities may
change, and thus we may expect the set of nodes to be detected as
in different communities (or in the same community). Therefore,
the certified perturbation size should not be too large. We believe it

is an interesting future work to explore what certified perturbation
size should be expected for a particular application scenario.

Our work shows that we can provably guarantee that a set of
nodes are or are not in the same community when an attacker adds
or deletes a bounded number of edges in the graph. However, it
is still an open question on how to obtain communities from our
smoothed community detection method. One possible way to ob-
tain communities is as follows: we first randomly pick a node as
the initial community C. For each remaining node, we compute
the probability of the node being clustered into the same commu-
nity with each node in C under randomized smoothing. Then, we
compute the average probability and if it is larger than a threshold,
we add the node to C. When no more nodes can be added to C,
we randomly pick another node from the remaining nodes and
repeat the above process until all nodes are clustered into certain
communities. We believe it is an interesting future work to explore
how to derive communities from the smoothed method. We note
that the communities derived from the smoothed community de-
tection method may be less accurate than those derived from the
base community detection method. In other words, there may be a
tradeoff between accuracy and robustness.

7 CONCLUSION

In this work, we develop the first certified robustness guarantee of
community detection against adversarial structural perturbations.
Specifically, our results show that a set of nodes can be provably
detected as in the same community (against splitting attacks) or
in different communities (against merging attacks) when the num-
ber of edges added or removed by an attacker is no larger than a
threshold. Moreover, we show that our derived threshold is tight
when randomized smoothing with our discrete noise is used. Our
method can turn any community detection method to be provably
robust against adversarial structural perturbation to defend against
splitting and merging attacks. We also empirically demonstrate the
effectiveness of our method using three real-world graph datasets
with ground-truth communities. Interesting future work includes
leveraging the information of the community detection algorithm to
further improve the certified robustness guarantees and exploring
what certified perturbation size should be expected for a particular
application scenario.
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