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Abstract

Our goal is to establish lower bounds on the communication

required to perform the Matricized-Tensor Times Khatri-

Rao Product (MTTKRP) computation on a distributed-

memory parallel machine. MTTKRP is the bottleneck com-

putation within algorithms for computing the CP tensor de-

composition, which is an approximation by a sum of rank-

one tensors and frequently used in multidimensional data

analysis. The main result of this paper is a communication

lower bound that generalizes previous results, tightening the

bound so that it is attainable even when the tensor dimen-

sions vary (the tensor is not cubical) and when the number

of processors is small relative to the tensor dimensions. The

attainability of the bound proves that the algorithm that at-

tains it, which is based on a block distribution of the tensor

and communicating only factor matrices, is communication

optimal. The proof technique utilizes an established inequal-

ity that relates computations to data access as well as a novel

approach based on convex optimization.

1 Introduction

The CP decomposition approximates a tensor by a
sum of rank-one tensors, where a rank-one tensor is
an outer product of a collection of vectors. CP,
which is also known as canonical polyadic and CAN-
DECOMP/PARAFAC, is used for example to discover
latent patterns or detect anomalies in multidimensional
data sets. It is particularly useful when the underlying
components are to be interpreted, and adding domain-
specific constraints to CP can help identify meaningful
representations of the data.

While there are many popular algorithms for com-
puting CP decompositions, nearly all of them are
computationally bound by an operation known as
Matricized-Tensor Times Khatri-Rao Product, or MT-
TKRP [11]. This operation is expensive compared to
others within the algorithms because it involves the orig-
inal data tensor, which is typically much larger than
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the CP approximation. The computational cost of MT-
TKRP scales linearly with the number of tensor entries
as well as the rank of the decomposition, or the num-
ber of rank-one components to be computed. Not only
is MTTKRP the computational bottleneck for CP algo-
rithms, it also tends to require the most communication.
Thus, in order to e�ciently compute CP decomposi-
tions, it is necessary to use MTTKRP algorithms that
minimize both computation and communication.

The goal of this paper is to establish communication
lower bounds for MTTKRP in the case of large, dense
tensors that are distributed across the memories of a
parallel computer. Lower bounds set targets for algo-
rithmic development, and identifying communication-
optimal algorithms that attain them can guide lower-
level and more hardware-specific optimizations. Previ-
ous work by Ballard, Knight, and Rouse [4] establishes
lower bounds for sequential and parallel MTTKRP com-
putations. While the parallel bound is generally appli-
cable, it is not attainable when either (1) the number
of processors is not su�ciently large or (2) the di↵er-
ent dimensions of the tensor are not su�ciently cubical
(nearly equal). Our main result, given in Section 5,
generalizes this previous bound and tightens it in those
cases so that it is attainable for nearly all tensor dimen-
sions and numbers of processors. We show that the new
lower bound is tight by proving that an existing algo-
rithm can attain it (to within constant factors) with the
right tuning parameters and is therefore optimal.

The basic idea of the communication-optimal al-
gorithm is to organize the processors into a multidi-
mensional grid with as many modes as the data ten-
sor and assign tensor entries to processors in a block,
or Cartesian, fashion. Given this tensor distribution,
the algorithm follows an owner-computes rule based on
tensor entries so that only the matrices that represent
the CP decomposition are communicated and the ten-
sor remains stationary. The algorithm can be tuned
by varying the processor grid dimensions, which a↵ects
the amount of communication performed. In the case
that all the dimensions of the optimal processor grid are
larger than 1, the previous communication lower bound
is attained. However, when some set of dimensions of
the optimal processor grid is equal to 1, that bound is
not attained. We show in this paper that the algorithm
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using such a processor grid is indeed communication op-
timal by tightening the lower bound for that case. We
give more details of this algorithm in Section 3.

The proof of the lower bound has two main ingredi-
ents. The first ingredient is a Hölder-Brascamp-Lieb-
type inequality [5] that has previously been demon-
strated to be useful in relating the volume of a sub-
set of computation to the size of projections of that
computation onto the data it requires [7, 10]. The sec-
ond ingredient is a novel technique that casts commu-
nication costs as the objective function value in a con-
strained optimization problem, where the constraint set
corresponds to valid algorithms (subject to certain as-
sumptions). We show that the optimization problem
is convex, and we use results from convex optimization
to establish the global minimum, which serves as the
lower bound. We believe this lower bound technique
can be applicable for other computations as well. Sec-
tion 4 details the result for the 3D case, which allows for
cleaner notation and intuition, and the general result is
presented in Section 5. We argue the optimality of the
algorithm and tightness of the lower bound in Section 6.

The main result states that, for a given number
of processors, the factor matrices can be divided into
J “small” matrices and N � J “large” matrices. Any
MTTKRP algorithm that does not communicate the
tensor requires that each processor must communicate
all of the small matrices and equal amounts of (parts
of) the large matrices. This yields a cost of
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words communicated, where P is the number of proces-
sors, R is the CP rank, and the tensor dimensions {In}
are ordered from smallest to largest. We state this in
full detail in Theorem 5.1.

2 Preliminaries

2.1 CP and MTTKRP Notation We’ll use the
notation T to represent an N -way tensor of dimensions
I1 ⇥ I2 ⇥ · · · ⇥ IN where N > 2, and we’ll assume
throughout that the tensor modes are ordered so that
I1  I2  · · ·  IN . A CP decomposition of T will be
represented by a rank R and set of N factor matrices
{U(n)}n2[N ] such thatU(n) has dimension In⇥R, where

T(i1, . . . , iN ) ⇡
RX

r=1

U(1)(i1, r) · · ·U(N)(iN , r).

The notation [N ] denotes the set {1, 2, . . . , N}, and
[N ] � {n} denotes the set {1, . . . , n � 1, n + 1, . . . , N}.

For illustrative examples (and to simplify notation), we
will use 3-way tensors with dimensions I ⇥ J ⇥K that
are approximated by factor matrices U,V,W.

We next define the MTTKRP operation, which
involves the tensor and the factor matrices of a CP
decomposition. MTTKRP is often presented in matrix
notation as T(n)(U

(N)� · · ·U(n+1)�U(n�1) · · ·�U(1)),
where T(n) is a matricization, or flattening, of the
tensor and � is the Khatri-Rao product, which can be
thought of as a column-wise Kronecker product or a
row-wise Hadamard (elementwise) product. We show
in Section 3.1 why MTTKRP is central to algorithms
for computing CP.

Definition 2.1. [4, Definition 2.1] An MTTKRP al-
gorithm maps

✓
T,
n
U(k)

o

k2[N ]�{n}

◆
7! M(n)

,

where for each (in, r) 2 [In]⇥ [R],

M(n)(in, r) =
X

i

T(i)
Y

k2[N ]�{n}

U(k)(ik, r),

where the summation occurs over all i 2 [I1]⇥ · · ·⇥ [IN ]
with n-th entry in. We require that the N �1 multiplies
for each i are evaluated atomically as an N -ary multiply.

Each N -ary multiply performed by an MTTKRP
algorithm corresponds to a point (i1, . . . , iN , r) in the
iteration space [I1] ⇥ · · · ⇥ [IN ] ⇥ [R]. We let F be
some subset of points in the iteration space corre-
sponding to a subset of N -ary multiplies. We de-
fine the projections of F onto the tensor and fac-
tor matrices by �0(F ) = {(i1, . . . , iN )|(i1, . . . , iN , r) 2
F}, the projection onto the tensor T, and �m(F ) =
{(im, r)|(i1, . . . , im, . . . , iN , r) 2 F}, the projection onto
U(m) if m 6= n, or M(n) if m = n. This means that
�0(F ) corresponds to the set of the tensor entries re-
quired to perform the N -ary multiplies of F , and �m(F )
corresponds to the set of mth matrix entries required to
perform the N -ary multiplies of F .

2.2 HBL Inequality

Lemma 2.1. Let F be a subset of N -ary multiplies
within an MTTKRP computation, �0(F ) be the projec-
tion of F onto the tensor T, and �m(F ) the projection
of F onto the m-th factor matrix. Then

|F |  |�0(F )|1�1/N · |�1(F )|1/N · · · |�N (F )|1/N .

Proof. Consider the matrix � defined by the projec-
tions �i for i = 0 and i 2 [N ],

� =

✓
1N⇥1 IN⇥N

0 11⇥N

◆
.

Copyright c� 2020
Copyright retained by principal author’s organization.



Let s⇤ = (1� 1/N, 1/N, . . . , 1/N)T , then �s⇤ � 1, and
the result holds by [4, Lemma 4.1].

Note that while the inequality is true for all feasible s,
we see that s⇤ is optimal, after reordering the columns
of � and entries of s⇤, by [4, Lemma 4.2].

2.3 Quasiconvexity We use the following result in
Sections 4 and 5 to prove that the constrained optimiza-
tion problem central to the lower bound argument is a
convex problem.

Lemma 2.2. The function g(x1, . . . , xN ) = L �Q
i2[N ] xi, for some constant L, is quasiconvex on the

positive orthant.

Proof. By [15, Theorem 21.14] a function g is qua-
siconvex on a convex set S if and only if for any
x, y 2 S, g(x)  g(y) implies rg(y) · (x � y)  0.
Thus we want to show that

Q
i2[N ] yi 

Q
i2[N ] xi im-

plies �
P

i2[N ]

Q
j2[N ]�{i} yj(xi � yi)  0, or equiva-

lently, N
Q

i2[N ] yn 
P

n2[N ]

⇣
xn
Q

i2[N ]�{n} yi

⌘
. Be-

cause all entries are positive, this is also equivalent to

1  1
N

⇣P
n2[N ]

xn
yn

⌘
, or that the arithmetic mean of

the ratios x1/y1, x2/y2, . . . , xN/yN is at least 1. The
assumption

Q
n2[N ] yn 

Q
n2[N ] xn implies that the ge-

ometric mean of these ratios is at least 1, so the result
follows from the arithmetic mean–geometric mean in-
equality.

3 MTTKRP Algorithms

3.1 CP Algorithms Multiple algorithms are used to
compute CP decompositions. We will consider those
that minimize the residual in terms of the tensor norm
that generalizes the matrix Frobenius and vector `2

norms (this corresponds to a least-squares objective
function). The simplest is known as Alternating Least
Squares (CP-ALS), which uses a block coordinate de-
scent approach. Each factor matrix corresponds to a
block, which is updated while holding all other factor
matrices fixed. With a least-squares CP objective func-
tion, each subproblem is a linear least squares problem
that can be solved in closed form.

For example, in the 3-way case, CP-ALS repeats
the following iteration:

1. solve (WTW ⇤VTV)U = T(1)(W �V) for U

2. solve (WTW ⇤UTU)V = T(2)(W �U) for V

3. solve (VTV ⇤UTU)W = T(3)(V �U) for W

The ⇤ notation represents Hadamard (elementwise)
multiplication. These linear systems are the normal

equations for each linear least squares subproblem. Note
that the right-hand-side matrices for these systems are
the results of MTTKRPs in each mode. For more details
and the general algorithm, see [6, 11], for example.

CP decompositions can also be computed using
other optimization algorithms, such as Gauss-Newton
for nonlinear least squares problems. Rather than up-
date factor matrices individually in alternating fashion,
factor matrix entries are updated all at once each itera-
tion. Nearly all gradient-based optimization algorithms
are bottlenecked by the computation of the gradient.
Expressed in matrix form, the gradients with respect to
each factor matrix are as follows:

1. GU = T(1)(W �V)� (WTW ⇤VTV)U

2. GV = T(2)(W �U)� (WTW ⇤UTU)V

3. GW = T(3)(V �U)� (VTV ⇤UTU)W

Again, note the appearance of the MTTKRPs in each
mode, which require the bulk of the computation within
the gradient computation. For more details on gradient-
based CP optimization, see [1, 14, 17], for example.

While there are multiple algorithms for computing
CP, nearly all of them require computing MTTKRPs in
each mode. Because the MTTKRP operation involves
the data tensor, while the other computations involve
only the factor matrices, it is nearly always the bottle-
neck. Thus, to e�ciently parallelize algorithms for CP,
it is necessary to use an e�cient parallel algorithm for
MTTKRP.

We note that there exist important optimizations
that exploit the overlap among all N MTTKRPs per-
formed in each iteration of a CP algorithm, such as the
use of “dimension trees” to organize temporary values
that can be re-used across MTTKRPs [8, 3]. The results
of this paper focus on a single MTTKRP rather than all
N , but the e�cient algorithms for a single MTTKRP
can be easily adapted to employ such optimizations. We
discuss this issue further in Section 7.

3.2 Parallel MTTKRP Ballard, Knight, and
Rouse propose the Parallel General MTTKRP Algo-
rithm [4, Algorithm 3]. In this algorithm, the pro-
cessors are organized into an (N + 1)-dimensional grid
with dimensions P0 ⇥ P1 ⇥ · · · ⇥ PN . The tensor is
first distributed in block (Cartesian) fashion over the
last N dimensions of the processor grid, so that each
block has dimension approximately In/Pn in the nth
mode. Then, each block of the tensor is distributed
across the P0 processors whose indices correspond to
the block. The nth factor matrix is first distributed in
block fashion (2D matrix dimension) over dimensions 0
and n, so that each block has dimension approximately
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In/Pn ⇥ R/P0. Then, each block is distributed across
P/(P0Pn) processors whose indices correspond to the
block. The algorithm works by first gathering data nec-
essary for local computation (this is organized into All-
Gather communication collectives), performing the local
computation (which corresponds to a local MTTKRP),
and then summing the output over multiple processors
(via Reduce-Scatter communication collectives).

We will refer to this as the “General Algorithm”
and classify instantiations of the algorithm based on the
processor grid dimensions:

• (N + 1)-D: P0 > 1, Pn > 1 for all 1  n  N

• N -D: P0 = 1, Pn > 1 for all 1  n  N

• K-D: P0 = 1, Pn = 1 for all 1  n  N �K, and
Pn > 1 for all N �K < n  N

• 1-D: P0 = 1, Pn = 1 for all 1  n  N�1, PN = P .

This implies that a K-D algorithm has K processor
grid dimensions larger than 1. We note the arbitrary
order imposed on these definitions corresponds to the
assumption that I1  · · ·  IN .

The tensor distribution corresponding the N -D al-
gorithm is natural for parallel tensor computations and
has been used before for dense [2, 3, 13] and sparse [9, 16]
tensors, where it is known as “medium-grained distri-
bution.” The N -D algorithm is also referred to as the
“Stationary Tensor” algorithm, because it corresponds
to not computing tensor entries (because P0 = 1) [4]. In
the sparse case, alternatives are the “fine-grained” dis-
tribution, which is not an instantiation of the General
Algorithm, and “coarse-grained” distribution, which
corresponds to the 1-D algorithm.

We illustrate this classification for 3-way tensors
(N = 3) in Figure 1. The 1-D algorithm example
corresponds to a 1 ⇥ 1 ⇥ 1 ⇥ 5 processor grid. In
this case, U is not communicated, but all of V and
W must be shared across all processors. The 2-D
algorithm example corresponds to a 1⇥1⇥4⇥4 processor
grid. In this case, each processor must gather parts
of U and V and all of W must be shared across all
processors. The 3-D algorithm example corresponds to
a 1 ⇥ 3 ⇥ 3 ⇥ 3 processors grid. Parts of all matrices
must be communicated, but no full matrix needs to be
shared across all processors.

The examples given in Figure 1 show local subten-
sors that are perfectly cubical. Indeed, to minimize
communication within the constraints of the general al-
gorithm, the processor grid should be chosen so that
local tensors are as cubical as possible. This may not
be possible if the tensor dimensions vary widely and P

is not su�ciently large, which is precisely the case when

U

V

W

(a) 1D Algorithm

U

V

W

(b) 2D Algorithm

U

V

W

(c) 3D Algorithm

Figure 1: Algorithm classification for 3-way tensors.
Shading highlights data required by given processor.
Submatrices within shaded regions correspond to data
already owned. Two matrices are input and one is
output, depending on the mode of the MTTKRP.

Copyright c� 2020
Copyright retained by principal author’s organization.



K-D algorithms (withK < N) are more communication
e�cient. We show in the following sections that optimiz-
ing the processor grid of the general algorithm achieves
the optimal communication across all MTTKRP algo-
rithms.

4 Example: N = 3 case

For clarity and to help build intuition, we prove our
main result in this section for the 3-way case specifically.
We prove the result for general N in Section 5.

The basic argument of the lower bound is that,
given a subset of computation assigned to a processor,
the structure of the MTTKRP computation requires
that the processor must have access to certain data
from the tensor and factor matrices. The MTTKRP
structure yields an HBL-like inequality (Lemma 2.1)
that relates the amount of the computation to the
product of sizes of projections onto the tensor and each
matrix (these quantities are also raised to fractional
exponents in the bound). To obtain a communication
lower bound, we would like to lower bound the sum of
these projections, as this corresponds to the amount of
data the processor must access (either already owning
or receiving from other processors). Previous work
used unconstrained optimization techniques (Lagrange
multipliers) to convert the bound on the product to a
bound on the sum to obtain communication bounds for
MTTKRP [4].

In order obtain tighter bounds for more rectangular
tensors, we apply constraints to the optimization prob-
lem based on the fact that the projection onto a matrix
cannot be larger than the matrix itself. Adding these
constraints yield a constrained optimization problem
which can still be solved using more sophisticated tech-
niques than Lagrange multipliers. We first present the
abstract constrained optimization problem along with
its solution. Although not all of the constraint func-
tions are convex, the feasible region is convex, and the
objective function has a global minimum that satisfies
the Karush-Kuhn-Tucker (KKT) conditions.

Figure 2 provides a visualization of the optimization
problem for N = 2: it shows the feasible region, contour
lines of the objective function, and optimal solution for
three di↵erent cases.

Lemma 4.1. Consider the constrained optimization
problem for x =

⇥
x1 x2 x3

⇤
:

min
x

x1 + x2 + x3,

s.t. L  x1x2x3, 0  x1  K1, 0  x2  K2, 0  x3 
K3 for some positive constants L and K1  K2  K3.
The global minimum x⇤ depends on the relative sizes of
the constants, yielding five cases.

1. If L
1/3

< K1  K2  K3, then x⇤ =⇥
L
1/3

L
1/3

L
1/3
⇤
with objective function value

3L1/3.

2. If K1  L
1/3 and (L/K1)1/2 < K2  K3, then

x⇤ =
⇥
K1 (L/K1)1/2 (L/K1)1/2

⇤
with objective

function value K1 + 2(L/K1)1/2.

3. If K1  K2  (L/K1)1/2 and L/(K1K2) < K3,
then x⇤ =

⇥
K1 K2 (L/K1K2)

⇤
with objective

function value K1 +K2 + L/(K1K2).

4. If K1  K2  K3 = L/(K1K2), then x⇤ =⇥
K1 K2 K3

⇤
with objective function value K1 +

K2 +K3.

5. If K1  K2  K3 < L/(K1K2), then the optimiza-
tion problem is infeasible.

Proof. In order to use the KKT conditions to find
a global minimum, we must verify that the feasible
region is convex, Slater’s condition holds, and that the
constraint functions are nondegenerate on the feasible
region [12, Theorem 2.3]. We note that while the first
constraint function is not convex, it is quasiconvex by
Lemma 2.2. A quasiconvex function has convex lower
level sets, so a quasiconvex constraint function yields a
convex feasible region. All other functions are a�ne and
therefore convex, and the intersection of convex regions
is convex.

Slater’s condition, that the feasible region has an
interior point, and the nondegeneracy condition are
satisfied as long as L < K1K2K3. (See the proof of
Lemma 5.1 for a rigorous argument.)

To state the KKT conditions, we first convert the
constrained optimization problem to standard notation.
The objective function is f(x) = x1 + x2 + x3, and the
constraint functions are defined as g0(x) = L� x1x2x3

and gi(x) = xi � Ki for i = 1, 2, 3, so that the
constraints can be written as g(x)  0. (We do not
include the nonnegativity constraints as they are never
active.) The gradients are as follows: rf =

⇥
1 1 1

⇤
,

rg0 =
⇥
�x2x3 �x1x3 �x1x2

⇤
, rg1 =

⇥
1 0 0

⇤
,

rg2 =
⇥
0 1 0

⇤
, rg3 =

⇥
0 0 1

⇤
.

For dual variables µ, the stationarity condition is

�rf(x⇤) =
3X

i=0

µirgi(x
⇤),

the feasibility conditions are µ � 0 and g(x⇤)  0, and
the complementary slackness condition is µigi(x⇤) = 0
for i = 0, 1, 2, 3. We now prove each case separately.

(Case 1) Suppose L
1/3

< K1  K2  K3. Then
for x

⇤
1 = x

⇤
2 = x

⇤
3 = L

1/3, the only active constraint
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x1

x2

(a) L = 4

1 2 3 4 5

1

2

3

4

5

6

7

8

9

x⇤

x1

x2

(b) L = 16

1 2 3 4 5

1

2

3

4

5

6

7

8

9

x⇤

x1

x2

(c) L = 21

1 2 3 4 5

1

2

3

4

5

6

7

8

9

x⇤

x1

x2

(d) L = 25

Figure 2: Three cases of 2D constrained optimization problem minx x1+x2, s.t. L  x1x2, 0  x1  3, 0  x2  7.
The solid lines represent constraints, the feasible region is shaded, the dotted lines are contours of the objective
function, and the optimal solution x⇤ is highlighted. In (a), the optimal solution is achieved with one active
constraint, in (b) there are two active constraints, in (c) all constraints are active, and in (d) there is no solution.

is g0, and the stationarity condition is satisfied by
µ0 = L

�2/3, which is positive. Note that x⇤ is feasible
by the assumptions of this case.

(Case 2) Suppose K1  L
1/3 and (L/K1)1/2 <

K2  K3. Then for x1 = K1 and x2 = x3 = (L/K1)1/2,
the active constraints are g0 and g1. The stationarity
condition is satisfied by µ0 = (LK1)�1/2 and µ1 =
(L/K3

1 )
1/2 � 1. Note that µ1 � 0 because K1  L

1/3,
and x

⇤
2 and x

⇤
3 are also feasible, by the assumption of

this case.
(Case 3) Suppose K1  K2  (L/K1)1/2 and

L/(K1K2) < K3. Then for x⇤
1 = K1, x⇤

2 = K2, and x
⇤
3 =

L/(K1K2), the active constraints are g0, g1, and g2. The
stationarity condition is satisfied by µ0 = 1/(K1K2),
µ1 = L/(K2

1K2) � 1, and µ2 = L/(K1K
2
2 ) � 1. Note

that µ1 and µ2 are both nonnegative because K
2
1K2 

K1K
2
2  K1((L/K1)1/2)2 = L, and x

⇤
3 is also feasible,

by the assumptions of this case.
(Case 4) Suppose K1  K2  K3 = L/(K1K2).

Then x
⇤
1 = K1, x

⇤
2 = K2, and x

⇤
3 = K3 is the only

feasible point and is therefore optimal.
(Case 5) Suppose K1  K2  K3 < L/(K1K2).

Then by constraints g1, g2, and g3, x1x2x3 <

K1K2K3 < K1K2(L/(K1K2)) = L, which contradicts
constraint g0, and therefore the problem is infeasible.

Given the result for the abstract convex optimiza-
tion problem, we now state and prove the general com-
munication lower bound for N = 3. The three cases
of the result correspond to when the 3-D, 2-D, and 1-

D algorithms are the most communication e�cient. For
example, the first case (3-D) reproduces the bound from
previous work [4, Theorem 4.3], but the other two cases
(2-D and 1-D) provide tighter bounds when the tensor
dimensions and number of processors satisfy the corre-
sponding conditions. We also note that a tighter bound
exists when the number of processors is very large [4,
Theorem 4.2], which can be attained by the 4-D algo-
rithm.

Theorem 4.1. Any parallel MTTKRP algorithm in-
volving a 3D tensor with dimensions I1  I2  I3 that
evenly distributes one copy of the input and output com-
municates either ((3/2)1/2�1)I/P words of tensor data
or at least the following amount of factor matrix data:

✓
2

3

◆1/3

3

✓
I1I2I3

P

◆1/3

R�
X

k

IkR/P

if I1 �
�
2I2I3
3P

�1/2
,

I1R+

✓
2

3

◆1/2

2

✓
I2I3

P

◆1/2

R�
X

k

IkR/P

if I1 <
�
2I2I3
3P

�1/2
and I2 � 2

3
I3
P ,

I1R+ I2R+
2

3
I3R/P �

X

k

IkR/P

if I1 <
�
2I2I3
3P

�1/2
and I2 <

2
3
I3
P .
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Proof. Some processor must perform at least IR/P N -
ary multiplies. Let F be the set of N -ary multiplies
performed by this processor, so that |F | � IR/P . We
let �0(F ) be the projection of F onto the entries of the
tensor required to complete the computation, and we
let �i(F ) be the projection of F onto the required ith
factor matrix entries for i = 1, 2, 3. By [4, Lemma 4.1],
with s =

⇥
2/3 1/3 1/3 1/3

⇤
, we have

(4.1)
IR

P
 |�0(F )|2/3 |�1(F )|1/3 |�2(F )|1/3 |�3(F )|1/3 .

We consider two cases based on the size of the
projection onto the tensor entries �0. If |�0(F )| >

(3/2)1/2I/P , then by the assumption on load balanced
input, the processor starts with only I/P tensor entries
and must receive ((3/2)1/2 � 1)I/P tensor entries. If
|�0(F )|  (3/2)1/2I/P , then eq. (4.1) simplifies to

(4.2) |�1(F )| |�2(F )| |�3(F )| � 2

3

I

P
R

3
.

Given this constraint on the product, we wish to lower
bound the sum of the sizes of projections onto the
factor matrices. However, we also observe that no factor
matrix projection can exceed the number of entries in
that matrix, or |�i(F )|  IiR for i = 1, 2, 3. Given
these constraints, along with eq. (4.2), we obtain a
lower bound on |�1(F )|+ |�2(F )|+ |�3(F )| by applying
Lemma 4.1. Because the processor can start and end
with its fair share of the factor matrices, to obtain
a communication lower bound we subtract from the
objective function value the quantity

P3
k=1 IkR/P .

Since either of the two cases may apply, the applicable
lower bound is the minimum of the two expressions, and
the result follows.

5 General MTTKRP Lower Bound

We prove our main results in this section, following the
proof structure of the N = 3 example in Section 4.
We first state the solution to the convex optimization
problem in N variables.

Lemma 5.1. Consider the constrained optimization
problem for x =

⇥
x1 x2 · · · xN

⇤
:

min
x

X

n2[N ]

xn

s.t. L 
Q

n2[N ] xn, 0  xn  Kn for all n 2 [N ] for
some positive constants L and K1  K2  · · ·  KN .
We consider three cases.

1. If L >
Q

i2[N ] Ki, then the optimization problem is
infeasible.

2. If L =
Q

i2[N ] Ki, the minimum value of the
objective function,

P
i2[N ] Ki, is achieved at the

only feasible point x⇤ =
⇥
K1 · · · KN

⇤
.

3. If L <
Q

i2[N ] Ki then the minimum value of the
objective function is

X

j2[J]

Kj + (N � J) (L/QJ)
1/(N�J)

,

where 0  J < N is defined such that

(5.3)
Kj  (L/Qj�1)

1/(N�j+1) for 0  j  J

Kk > (L/Qk�1)
1/(N�k+1) for J < k  N,

and Qn =
Q

i2[n] Ki (with Q0 = 1). The minimum
is achieved at the point x⇤ defined by xj = Kj for
j 2 [J ], and xk = (L/QJ)1/(N�J) for k > J .

Proof. Let f(x) =
P

i2[N ] xi, g0(x) = L�
Q

i2[N ] xi, and
gn(x) = xn�Kn. (We do not include the nonnegativity
constraints as they are never active.) We prove the cases
separately:

(Case 1) Suppose L >
Q

i2[N ] Ki, and let x sat-
isfy constraints gn for all n 2 [N ]. Then

Q
i2[N ] xi Q

i2[N ] Ki < L, which contradicts constraint g0. There-
fore the problem is infeasible.

(Case 2) Suppose L =
Q

i2[N ] Ki. Clearly x⇤ =⇥
K1 · · ·KN

⇤
is feasible. Consider any point x 6= x⇤ that

satisfies gn for all n 2 [N ], then there exists i such that
xi < Ki and thus

Q
i2[N ] xi < L so x is not feasible.

Hence the only feasible point is x⇤ implying that the
global minimum occurs at x⇤ and is

P
i2[N ] Ki.

(Case 3) Suppose that L <
Q

i2[N ] Ki. We use suf-
ficiency of the KKT conditions for convex optimization
problems to identify the global minimum. Although g0

is not a convex function, because it is quasiconvex by
Lemma 2.2 and {gn} are all a�ne, the feasible region is
convex. In order to use the KKT conditions to find a
global minimum, we must also verify that Slater’s con-
dition holds and demonstrate the nondegeneracy condi-
tion [12, Theorem 2.3]

We begin by showing that Slater’s condition holds:
we will show that there exists a region of points near
the point

⇥
K1 · · ·KN

⇤
. Let d =

Q
i2[N ] Ki � L, and let

� = d/

⇣
2N
Q

i2[N ] Ki

⌘
. All the points in the box with

side dimension � and largest corner at
⇥
K1 · · ·KN

⇤
are

feasible because the nth coordinate is less than Kn (and
greater thanKn��), and

Q
i2[N ](Ki��i) �

Q
i2[N ](Ki�

�) �
Q

i2[N ] Ki � 2N�
Q

i2[N ] Ki =
Q

i2[N ] Ki � d = L.

We now demonstrate that gn are nondegenerate
for n = 0 and n 2 [N ] [12, Assumption 2.1]. Note
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that for n 2 [N ], nondegeneracy is implied by Slater’s
condition as gn are a�ne. To see that g0 also satisifies
the nondegeneracy assumption, we note that g0(x) = 0
implies xi 6= 0 for all i 2 [N ], while rg0(x) = 0
implies that there exist i, k 2 [N ], i 6= k such that
xi = 0 = xk. Thus, for all x such that g0(x) = 0
we have that rg0(x) 6= 0.

To state the KKT conditions, we consider the
gradients:

rf =
⇥
1 · · · 1

⇤

rg0 =
⇥
�
Q

i2[N ]�{1} xi · · · �
Q

i2[N�1] xi
⇤

rgn = en, n 2 [N ].
For dual variables µ, the stationarity condition is

�rf(x⇤) =
P

n2[N ] µnrgn(x⇤), the feasibility condi-
tions are µ � 0 and g(x⇤)  0, and the complementary
slackness condition is µngn(x⇤) = 0 for all n.

We now show that there exists a J that satisfies
eq. (5.3). Let J be one less than the smallest k such

that Kk > (L/Qk�1)
1/(N�k+1). Note that there is at

least one such k as L <
Q

i2[N ] Ki = QN�1KN implies
that k = N has this property. By the definition of J , we
have that Kj  (L/Qj�1)

1/(N�j+1) for all j 2 [J ]. We

prove that Kk > (L/Qk�1)
1/(N�k+1) for all k > J by

induction. Our base case, k = J+1, holds by the defini-
tion of J . Assume that Kk > (L/Qk�1)

1/(N�k+1), then

Kk+1 � KK > (L/Qk�1)
1/(N�k+1)

> (L/Qk)
1/(N�k).

The first inequality holds by our assumptions about
the order of the Ki, the second inequality is the in-
duction hypothesis, and the third inequality follows
from the second inequality and the definition of Qk

and Qk+1. Thus by induction on k, we can see that

Kk > (L/Qk�1)
1/(N�k+1) for all k > J .

Now we identify the global maximizer. Let x⇤ be
defined such that x

⇤
n = Kn if n 2 [J ], x⇤

J+1 = · · · =
x
⇤
N = (L/QJ)

1/(N�J). Then the active constraints are
g0, g1, . . . , gJ . The stationarity condition is satisfied
by µ0 = (L/QJ)

1
N�J /L which is positive, and µj =

(1/Kj) (L/QJ)
1

N�J � 1 for j 2 [J ]. To see that µj is
positive recall the assumptions that Kj  KJ for all

j 2 J and that KJ  (L/QJ�1)
1/(N�J+1). Then

µj =
1

Kj

✓
L

QJ

◆1/(N�J)

� 1

>
1

K

N�J+1
N�J

J

✓
L

QJ�1

◆1/(N�J)

� 1

� (L/QJ�1)
1/(N�J)

(L/QJ�1)
1/(N�J)

� 1 = 0.

Thus x⇤ satisfies the KKT conditions and hence is a
global minimum.

Given the solution to the convex optimization prob-
lem, we now apply it to obtain our main result. In short,
the result states that if an algorithm does not commu-
nicate (much of) the tensor, then it must communicate
significant amounts of the factor matrices. Depend-
ing on the relative sizes of the tensor dimensions and
P , an algorithm must communicate all of the smallest
factor matrices and part of the largest factor matrices,
where the distinction between small and large matrices
depends on the number of processors.

Theorem 5.1. Any parallel MTTKRP algorithm in-
volving an N dimensional tensor with dimensions I1 
· · ·  IN that evenly distributes one copy of the input

and output communicates either
⇣
(3/2)

1
N�1 � 1

⌘
I/P ,

where I =
Q

i2[N ] Ii, words of tensor data or at least
the following amount of factor matrix data:

X

j2[J]

IjR+
2

3
(N � J)R

 QN
k=J+1 Ik

P

! 1
(N�J)

�
X

i2[N ]

IiR

P

where J is the value that satisfies
(5.4)

Ij 
✓
2

3

◆ 1
N�j

 QN
i=j+1 Ii

P

! 1
N�j

for all 0  j  J

Ik >

✓
2

3

◆ 1
N�k

 QN
i=k+1 Ii

P

! 1
N�k

for all J < k  N.

Proof. Some processor must perform at least IR/P N -
ary multiplies. Let F be the set of N -ary multiplies
performed by this processor, so that |F | � IR/P . We
let �0(F ) be the projection of F onto the entries of the
tensor required to complete the computation, and we
let �i(F ) be the projection of F onto the required ith
factor matrix entries for i 2 [N ]. By [4, Lemma 4.1],
with s =

⇥
(N � 1)/N 1/N · · · 1/N

⇤
, we have

(5.5)
IR

P
 |�0(F )|(N�1)/N

Y

i2[N ]

|�i(F )|1/N .

We consider two cases based on the size of the
projection onto the tensor entries �0. If |�0(F )| >

(3/2)
1

N�1 I/P , then by the assumption on load balanced
input, the processor starts with only I/P tensor entries

and must receive
⇣
(3/2)

1
N�1 � 1

⌘
I/P tensor entries. If

|�0(F )|  (3/2)
1

N�1 I/P , then eq. (5.5) simplifies to

(5.6)
Y

i2[N ]

|�i(F )| � 2

3

IR

P
.
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Given this constraint on the product, we wish to lower
bound the sum of the sizes of projections onto the
factor matrices. However, we also observe that no factor
matrix projection can exceed the number of entries in
that matrix, or |�i(F )|  IiR for i 2 [N ]. Given these
constraints, along with eq. (5.6), we obtain the lower
bound

X

i2[N ]

|�i(F )| �
X

j2[J]

IjR+
2

3
(N�J)R

 QN
k=J+1 Ik

P

! 1
(N�J)

by applying Lemma 5.1. Note that we used
(2/3)1/(N�J) � 2/3 to simplify the constant factor.

Because the processor can start and end with its fair
share of the factor matrices, to obtain a communication
lower bound we subtract from the objective function
value the quantity

P
i2[N ] IiR/P . Since either of the

two cases may apply, the applicable lower bound is the
minimum of the two expressions, and the result follows.

Corollary 5.1. Assume without loss of generality
that I1  · · ·  IN . If the J that satisfies eq. (5.4)
is smaller than N � 1, then any parallel MTTKRP al-
gorithm where each processor initially and finally owns
at most IiR/P entries of factor matrix i for all i 2 [N ],
I/P entries of the tensor, some processor performs at
least

⌦

0

@min

8
<

:
X

j2[J]

IjR+ (N � J)R

 QN
k=J+1 Ik

P

! 1
N�J

,

 ✓
3

2

◆ 1
N�J

� 1

!
I

P

)!

sends and receives

Proof. This follows from Theorem 5.1 by showing that
the subtractive terms are dominated by the positive
terms when J < N � 1. We note that the smallest
J subtractive terms are clearly dominated by the initial
sum of the sizes of the J smallest factor matrices. To see
that the remaining N � J terms are dominated by the
final term, we need only see that the largest INR/P is

dominated by R

⇣QN
k=J+1 Ik/P

⌘ 1
N�J

. This follows by

a similar induction argument used in the proof of the
existence of J in Lemma 5.1.

Note that Corollary 5.1 is not applicable to the one
dimensional case, when J = N � 1 as (2/3)INR/P <

INR/P . This implies that the largest factor matrix
need not be communicated in this case (indeed, 1D algo-
rithms avoid communicating the largest factor matrix).

However, this negative term may also dominate the pro-
jections onto the smaller factor matrices. We present an
alternative proof of the one dimensional lower bound
(J = N � 1 case).

Theorem 5.2. Assume without loss of generality that
I1  · · ·  IN . In any parallel MTTKRP algorithm
where each processor initially and finally owns at most
IiR/P entries of factor matrix i for all i 2 [N ] and
at most I/P tensor entries, some processor performs at
least

⌦

0

@min

8
<

:
X

j2[N�1]

IjR,
INR

P

9
=

;

1

A

sends and receives, assuming that INR <

2
⇣�

3
2

�1/(N�1) � 1
⌘
I.

Proof. Some processor must perform at least IR/P N -
ary multiplies, and we let F be the set of the N -ary
multiplies it performs. Let �0(F ) be the projection
corresponding to the tensor elements the processor must
access to complete the computation, and let �i(F ) be
the projection onto the ith factor matrix elements the
processor must access, for i 2 [N ]. By Lemma 2.1,
(5.7)
IR

P
 |F |  |�0(F )|1�1/N · |�1(F )|1/N · · · |�N (F )|1/N .

We consider three cases based on the sizes of
the projection onto the tensor and the largest fac-
tor matrix, �0(F ) and �N (F ). Suppose |�0(F )| >

(3/2)1/(N�1)
I/P . Then by assumption, the processor

starts out with only I/P tensor elements, so it must
receive at least

�
(3/2)1/(N�1) � 1

�
I/P tensor elements.

Suppose |�N (F )| > 3INR/2P . Then by assumption,
the processor starts out and ends with only INR/P ma-
trix entries, so it must communicate at least INR/2P
matrix entries (or unreduced sums).

If neither of those cases apply, then |�0(F )| 
(3/2)1/(N�1)

I/P and |�N (F )|  3INR/2P . By

eq. (5.7), this implies 4
9
IRN�1

IN
 |�1(F )| · · · |�N�1(F )|.

Furthermore, we have |�j(F )|  IjR for all j 2 [N � 1],
so for each j 2 [N � 1] we have

4

9

IR
N�1

IN
 I1R · · · Ij�1R · |�j(F )| · Ij+1R · · · IN�1R,

or (4/9)IjR  |�j(F )|. By assumption, the processor
has access to only IjR/P at the start and end of the
algorithm, so it must communicate (4/9)IjR � IjR/P

entries of the jth factor matrix, for each j 2 [N �
1]. Thus, the processor must send or receive at least
(4/9)

P
j2[N�1] IjR�

P
j2[N�1] IjR/P words of data.

Because any of the three cases is possible, the
result is the minimum of the three bounds. Assuming

Copyright c� 2020
Copyright retained by principal author’s organization.



INR < 2
⇣�

3
2

�1/(N�1) � 1
⌘
I, which is expected or else

the largest factor matrix would be nearly as large as the
tensor, the bound involving the tensor entries is never
the minimum, yielding a minimum of the two other
bounds.

6 Optimality

In order to know which dimension algorithm to use,
one can recover the relevant ranges of P from the
definition of J in Theorem 5.1. Specifically, the K-D
algorithm with K = N � J should be applied whenQN

k=J+2 Ik

IN�J�1
J+1

< P 
QN

k=J+1 Ik

IN�J
J

.

Theorem 6.1. Let J be as defined in Theorem 5.1,

and assume that
⇣QN

k=J+1 Ik/P

⌘1/(N�J)
divides Ik for

all J < k  N . Under these assumptions, and the
assumption that the tensor is not communicated, the
General Parallel MTTKRP algorithm [4, Algorithm 3]
is communication optimal with the correct processor
grid.

Proof. We specify the processor grid as P0 =
1, Pj = 1 for all j 2 [J ], and for all i > J ,

Pi = IiP
1/(N�J)

/

⇣QN
k=J+1 Ik

⌘1/(N�J)
. Note that

Pi > 1 because Ii >

⇣QN
k=i+1 Ik/P

⌘1/(N�i)
>

⇣QN
k=J+1 Ik/P

⌘1/(N�J)
.

Filling in the appropriate values to [4, Equation 11]
and simplifying the terms involving processor dimen-
sions, we obtain

X

j2[J]

(P�1)
IjR

P
+

NX

i=J+1

0

@P

Ii

 QN
k=J+1 Ik

P

! 1
N�J

�1

1

A IiR

P

which simplifies to

X

j2[J]

IjR+ (N � J)R

 QN
k=J+1 Ik

P

! 1
N�J

�
X

i2[N ]

IiR

P

matching Corollary 5.1 (for J < N � 1) or Theorem 5.2
(for J = N � 1) to within constant factors.

7 Conclusion

The main result of this paper is the tightening of the
parallel communication bound for MTTKRP in the
cases that K-D algorithm (for K < N) is preferred
to an N -D algorithm. While 1-D and 2-D algorithms
have been used for 3-way and higher dimensional ten-
sors before [13, 3], they did not attain the previously

established lower bounds [4]. The new lower bounds
prove that algorithms based on block (Cartesian) dis-
tributions of the tensor that avoid communicating the
tensor are communication optimal even when P is so
small that some of the tensor dimensions are not split
across processors.

The convex optimization approach to establishing
the lower bound is a novel proof technique that can
be applied more broadly. In particular, the use of
HBL-like inequalities proposed in [7] implicitly assumes
that the number of loops that define the computation
is constant and that the loop bounds are su�ciently
large. Our approach uses optimization to convert the
HBL-like inequality, which is based on a product of
projections onto data, to a sum of the projections in
order to obtain the quantity related to communication
cost. Furthermore, we use the loop bounds to constrain
the optimization problem, excluding sizes of projections
that are infeasible for algorithms, and establishing a
tighter bound over the space of feasible projections and
algorithms.

We note that the bounds here apply to a single MT-
TKRP computation, while algorithms for CP require
computing an MTTKRP for each mode of the tensor
every iteration. In addition, the N MTTKRPs across
modes share both data and computation. For exam-
ple, the MTTKRPs in the first two modes both involve
the tensor and the 3rd through Nth factor matrices.
This implies that those matrices need not be communi-
cated twice and that some temporary computation can
be saved. Communicating each factor matrix only once
per iteration (which involves all N MTTKRPs) means
that the communication for all N MTTKRPs is only
a constant factor more than performing a single MT-
TKRP [9, 3]. Avoiding the computation can be done
by organizing the temporary values into a “dimension
tree” and saves a factor of O(N) flops [14, 8, 3].

Optimizations over multiple MTTKRPs are there-
fore crucial to e�cient algorithms for CP, and the lower
bounds presented here do not apply to these optimiza-
tions. This is because saving factor matrix data across
MTTKRPs violates the assumption that one copy of
the inputs are evenly distributed across processors, and
dimension tree optimizations break the atomicity as-
sumption in the definition of MTTKRP (Definition 2.1).
However, the optimal algorithm for a single MTTKRP
is easily adapted to the N MTTKRP case (dimension
trees can be employed locally to reduce computation).
Future work will apply this lower bound technique to
entire iterations of CP decomposition algorithms, tak-
ing into account the overlap across MTTKRPs.
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