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Abstract

Quantization optimizes machine learning inference for re-
source constrained environments by reducing the precision
of its computation. In the extreme, even single-bit computa-
tions can produce acceptable results at dramatically lower
cost. But this ultra-low-precision quantization is difficult
to exploit because extracting optimal performance requires
hand-tuning both high-level scheduling decisions and low-
level implementations. As a result, practitioners settle for a
few predefined quantized kernels, sacrificing optimality and
restricting their ability to adapt to new hardware.

This paper presents a new automated approach to imple-
menting quantized inference for machine learning models.
We integrate the choice of how to lay out quantized val-
ues into the scheduling phase of a machine learning com-
piler, allowing it to be optimized in concert with tiling and
parallelization decisions. After scheduling, we use program
synthesis to automatically generate efficient low-level op-
erator implementations for the desired precision and data
layout. We scale up synthesis using a novel reduction sketch

that exploits the structure of matrix multiplication. On a
ResNet18 model, our generated code outperforms an opti-
mized floating-point baseline by up to 3.9×, and a state-of-
the-art quantized implementation by up to 16.6×.

CCS Concepts · Software and its engineering→Com-

pilers.
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1 Introduction

Machine learning has seen successes in a wide variety of ap-
plication areas. These successes come at the cost of dramatic
increases in the memory and compute demands of new mod-
els such as convolutional neural networks. For example, per-
forming a single prediction (an inference) with state-of-the-
art image recognition models use tens of millions of parame-
ters and billions of floating-point operations [22, 26]. Quan-
tization techniques reduce the scale of these models to make
them practical in resource-constrained environments such as
smartphones and edge devices [17]. Quantization reduces the
bit-width of both the data (weights) and the computations
(additions and multiplications) used to execute the model. In
the extreme, even single-bit weights and computations can
still yield an effective model (with under 10% accuracy loss)
while being orders of magnitude more efficient [12, 30]. This
trade-off is appropriate for applications such as facial recog-
nition, which may use a lower-accuracy, on-device model
as a low-pass filter to decide whether to offload to the cloud
for more expensive, more accurate prediction [24].

Quantized inference evokes a classic accuracyśperformance
trade-off across a large space of potential configurations. At
training time, users must select quantized bit-widths to meet
their performance and accuracy targets (we do not consider
training in this paper). They must then efficiently implement
inference at that chosen quantization level for the target
platform. Commodity hardware rarely supports ultra-low-
bitwidth operations, and so naive quantized implementations
can easily be slower than full-precision versions. These chal-
lenges are exacerbated by pressures across the stack. Rapid
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progress in new machine learning models demands new spe-
cialized quantized operations (e.g., new matrix sizes or new
combinations of precisions). Meanwhile, a broad spectrum of
hardware backends each require different implementations
to best realize performance gains from quantization.
In practice, users deploying quantized inference are re-

stricted to a small class of pre-set configurations with cor-
responding hand-tuned inference implementations. Devel-
oping these hand-tuned implementations is a tedious and
labor-intensive process that requires intimate knowledge
of the target architecture. One developer estimated that im-
plementing and tuning a single quantization configuration
on a single smartphone platform [42] required four person-
months of work [40]. Similarly, the authors of another li-
brary [39] spent about a month implementing a single con-
figuration [38]. These hand-tuned implementations are often
brittle and difficult to extend with new optimizations; both
authors reported difficulty with multi-threading and new
vector extensions. With the proliferation of new models and
hardware backends, investing this level of effort for every
configuration is not a scalable approach.

This paper presents a new automated approach to generat-
ing efficient code for quantized machine learning inference.
Our approach comprises two parts. First, we integrate the
choice of how to perform bit-slicing (i.e., how to arrange
quantized values in memory) into the scheduling phase of
a machine learning compiler [4]. Our insight is that quanti-
zation is best viewed as a scheduling decision, in the same
way that tensor libraries treat tiling and parallelism as part
of the schedule space [29]. The bit-slicing choice is critical
to generating efficient code: different layouts influence both
spatial locality and the ability to apply different low-level
operators for efficient computation (e.g., without scatter or
gather operations on vector lanes). Making quantization a
scheduling decision also allows us to extract better perfor-
mance using holistic schedules that combine quantization
with other transformations such as loop tiling and paralleliza-
tion. Finally, integrating quantization into scheduling allows
us to apply existing automated scheduling techniques [5] to
optimize a model for a given quantization configuration and
hardware architecture. This automation supports flexible
experimentation and retargeting to new hardware without
reengineering operator implementations by hand each time.

Second, to provide quantized low-level kernels for the ma-
chine learning compiler to target, we apply program synthe-
sis [35] to automatically generate efficient implementations
of each desired quantized operator. Our synthesis approach
builds on the new notion of a reduction sketch, which cap-
tures domain knowledge about the structure of an operator’s
computation and allows the synthesis to scale to real-world
implementations. The synthesis process takes as input a
specification of the hardware’s instruction set, the desired
operator output, the layout of input data, and a cost function,
and automatically synthesizes a sequence of straight-line

assembly code that produces the desired output while mini-
mizing the cost function. We implement reduction sketches
and our synthesis engine in the Rosette solver-aided lan-
guage [37], and integrate the generated code into the TVM
machine learning compiler [4]. Using program synthesis
further supports our goal of retargetabilityÐporting the op-
erators to a new hardware architecture (e.g., new vector
extensions) requires only a specification of that hardware’s
instruction set, from which the necessary implementations
can be automatically synthesized.

We evaluate our approach by using it to implement quan-
tized ResNet-18 [15] image classification models. The re-
sulting implementation on a low-power ARM CPU outper-
forms a floating-point version by 3.9× and is comparable
to a state-of-the-art hand-written quantized implementa-
tion [39] when configured in the same way. However, our
automated approach allows us to apply optimizations such as
parallelizationÐwhereas the hand-written implementation
is single-threadedÐthat yield up to a 16.6× speedup over
the hand-written quantized implementation. We show that
our quantized implementations shift the Pareto frontier of
the accuracyśperformance trade-off, offering 2.3× higher
throughput than existing implementations at the same 22%
accuracy loss. in edge applications such as video process-
ing [24]. Automation also allows us to explore the space
of possible quantization configurations, performing a limit
study of the potential speedups available from quantization.

In summary, this paper makes the following contributions:

• Quantization-aware scheduling for compilation of ma-
chine learning models

• An automated scheduling approach to tuning quan-
tized implementation for new models and hardware

• Anewprogram synthesis approach to generating quan-
tized low-level tensor kernels

• Results showing we can automatically generate code
that executes quantized models up to 12.4× faster than
state-of-the-art hand-written code.

2 Quantized Models

Quantized machine learning models promise to reduce the
compute and memory demands of inference while maintain-
ing acceptable accuracy. In this paper, we focus on both fully
connected and convolutional neural networks. In these net-
works, computing the output of a layer involves a matrix
multiplication followed by an activation function. For ex-
ample, in a fully connected network, we can compute the
activations for layer k +1 as the matrix-vector product of the
weights for layer k and activations for layer k , as shown in
Figure 1. A convolutional network is similar but with higher-
dimension tensors for the weights and activations (i.e., more
dot products required).

In a regular implementation of such a model, the weights
wi j and activations ai would each be represented as a floating
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Figure 1. In a fully connected neural network, computing
the activations for layer k + 1 involves a matrix-vector mul-
tiplication, which reduces to a series of vector dot products.

point number. This representation allows the machine learn-
ing compiler (e.g., TensorFlow [1]) to leverage decades of
work on optimized floating point linear algebra operators in
libraries such as Intel’s MKL [11] and NVIDIA’s cuDNN [8].

However, recent results have shown that the full dynamic
range of a floating point representation is rarely necessary
to achieve good inference accuracy. It is now common for
inference to use 8- or 16- bit fixed point representations [18].
Taking this trend even further, reducing the bitwidths of
the weights and activations to between two and four bits
achieves competitive accuracy on image recognition prob-
lems [17, 45]. In the extreme, even models with single-bit
weights and activations can achieve near state-of-the-art
results on some problems [12, 30].

Single-bit quantization. The advantage of quantized mod-
els is their lower memory and compute requirement, mak-
ing them suitable for resource-constrained environments. In
principle, their memory footprint is 32× smaller (going from
single-precision floats to 1-bit values). They require less com-
pute because they can use inexpensive bitwise operations
rather than floating point. In Figure 1, computing each output
activation ak+1i requires a vector dot product, which reduces
to 4 floating-point multiplications and 3 floating-point addi-
tions. But if the activations and weights are quantized to one
bit, we can replace each multiplication with logical ANDs
and the additions with a single population count. If we pack
the bits for each weight wk

i j in row i into a single four-bit

bit-vector ŵk , and likewise pack the activations aki into a

four-bit bit-vector âki , then we can compute:

ŵk · âk = popcount(ŵk & âk )

If implemented efficiently for the target architecture, this
quantized version uses only simple bitwise operations and
can be much faster than a floating-point version. Because it
packs multiple weights and activations into a single vector,
it can also exploit data parallelism for higher performance.

Multi-bit quantization. Quantizing to single-bit weights
and activations may yield unacceptable accuracy loss for
some models. We can extend the above approach to larger
weights and activations by slicing the bits of the weights and
activations into bitplanes and then packing them into vectors.
Figure 2 shows an example in which we quantize weights to
3 bits and activations to 2 bits. The first step is to decompose
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Figure 2. Slicing the values of weights and activations into
bitplanes enables vector dot products to be computed with
bitwise operations.

each value in the vectorsw and a into their constituent bits at
the corresponding bitwidth. The resulting vectors are called
bitplanes; for example, the first bitplane vectorw0 holds the
least-significant bit of each weight in the vectorw . We can
then pack each bitplane into larger elementsÐin this case,
a single uint4 value, but other configurations such as two
uint2s or four uint1s are possible. Given these bitpacked
values ŵi and âi , we can compute

ŵ · â =

N−1∑

n=0

M−1∑

m=0

2n+m popcount(ŵn & âm)

where N and M are the bitwidths for weights and activa-
tions, respectively (N = 3 andM = 2 in the example). This
approach maintains the benefits of the single-bit version
(bitwise operations and data parallelism), but the number of
popcount operations scales with the productO(NM), and so
it is only practical for ultra-low-precision quantizationÐin
this paper, we consider quantizations to three bits or fewer.
The above equations assume a unipolar encoding of ŵ

and â values, in which bits represent {0, 1} values. These
values can instead be bipolar encoded, mapping {0, 1} bits
to {−1,+1} values. Recent quantization work [3, 9, 45] uses
unipolar encoding for activations and bipolar encoding for
weights, making the dot product more complex:

ŵ · â =

N−1∑

n=0

M−1∑

m=0

2n+m[ popcount(ŵn & âm) −

popcount(¬ [ŵn] & âm)]

This variation improves the accuracy of quantized models, at
the cost of extra popcount operations. In this paper we focus
on generating implementations for this hybrid encoding,
although our approach can be extended to other encodings.

3 Quantization Schedules

Quantization promises to improve the performance of infer-
ence by using simpler bitwise operations on smaller values.
However, a naive implementation of a quantized model is
unlikely to be more efficient than a full-precision version.
Mapping quantized computations onto commodity hardware
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requires careful data layout to make effective use of hard-
ware resources and cannot leverage optimized floating point
linear algebra libraries. This section introduces our approach
to scheduling quantized computation on commodity hard-
ware, and presents an automated workflow for identifying
the optimal schedule for a given model on a chosen platform.

3.1 Bit-Slicing Schedules

A machine learning compiler such as TVM [4] reduces a
model to a graph of operator invocations. An operator is a
linear algebra primitive such as matrix multiplication or con-
volution, and is the fundamental building block of a model. In
a strategy introduced by Halide [29], each operator has both
a declarative specification of its output and a schedule describ-
ing how to lower it to implementation code. The schedule
captures transformations such as tiling and vectorization that
preserve semantic equivalence but change the implementa-
tion to execute efficiently on a specific hardware target.

We observe that quantization, and in particular, the choice
of how to lay out data by slicing values into bitplanes, is
best viewed as a scheduling decision. Bitserial algorithms
such as the dot products in Section 2 operate on each bit of a
tensor element independently. They extract performance via
data parallelism, packing the sliced bits of many elements
together into a single element and computing on them to-
gether. But enabling this data parallelism requires choosing
an axis along which to slice values into bits, in much the
same way as loop tiling requires choosing which axes to
tile. This choice critically influences performance, as it must
balance spatial locality with the new optimization potential
exposed by separating the bits.

To put this observation into action, we introduce a parame-
terizable bit-packing layout transformation to the scheduling
process. It takes as input a d-dimensional tensor and returns
a d + 1-dimensional tensor, with a new bit axis that indexes
the bitplanes of the original values. Bit-packing is parame-
terized by the reduction axis, bit axis, and datatype of the
packed values (e.g. uint4 in Figure 2). The reduction axis cor-
responds to the axis to slice and pack into bitplanes, and the
bit axis is the location of the new slices. Bit-packing enables
other data-layout transformations to operate at single-bit
granularity by exposing the bit axis for use in scheduling.

Just as with tiling and other scheduling decisions, the ap-
plication of the bit-packing transformation does not affect
the semantics of the operator it is applied to, only how it
is computed. The bit-packing transformation does not de-
termine the desired quantization bitwidths of the values in
the model. That choice is made at training time and is a
known constant that cannot be changed during scheduling
(as we would expect, since changing the bitwidth changes
the output of the operator).
Figure 3 shows an example of applying the bit-packing

transformation to a two-dimensionalM×K tensor, withK as
the reduction axis. Each resulting tensor is three-dimensional,
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Figure 3. The bit-packing transformation transforms a d-
dimensional tensor into ad+1-dimensional one by slicing the
bits of elements into a new bit axis. Here the two-dimensional
tensorM ×K is transformed in different ways depending on
the chosen location of the new bit axis B.

with a new bit axis B that indexes the bits of each original
element. TheK ′ axis after transformation hasK ′ ≤ K , as bits
from multiple contiguous values in the K dimension may be
packed together into a single element in the transformed ten-
sor according to the schedule’s chosen datatype for packed
values (e.g., in Figure 2, four contiguous values were packed
into a single uint4 element). The different results of the
transformation reflect different choices of the location of the
bit axis within the tensor. For example, theM ×K ′×B layout
indexes the bits as the innermost dimension, placing bits
from the same original element contiguously in the tensor.

Operators supporting bit-packing scheduling. We have
implemented a library of operators that support the bit-
packing transformation as part of their schedules. The li-
brary targets common neural network operators such as
2D convolutions and dense matrix multiplication (GEMM).
The operators are implemented in TVM’s tensor expression
language [4], which is similar to those of Halide [29] and
TACO [21]. For convolutions, our library contains variants
that accept different high-level data layouts such as NCHW
andNHWC, two common data layouts used inmachine learn-
ing compilers. All operators are also parameterized by their
quantization precision.We show in Section 4 how to automat-
ically synthesize implementations for each such precision.

3.2 End-to-End Scheduling

Making quantization a scheduling decision allows us to in-
tegrate it with other scheduling choices and make holistic
optimizations that consider the entire computation. In con-
trast, existing approaches to implementing quantized models
intertwine the application of optimizations such as vectoriza-
tion with the semantics of the quantized operator [39]. This
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Figure 4. The cumulative effects of adding scheduling prim-
itives, starting from an un-optimized quantized convolution.
AXW Y denotes an x-bit activation, y-bit weight quantized
convolution. Speedup is relative to 32-bit floating point on
ResNet-18 layer C6.

ad hoc approach to scheduling tightly couples the implemen-
tation to a specific model and platform; new models or plat-
forms might benefit from different optimizations, but explor-
ing them would require new hand-tuned implementations.
We reuse the scheduling primitives of TVM [4], which

itself uses the scheduling primitives of Halide [29]. In partic-
ular, a number of common scheduling primitives are useful
in conjunction with bit-packing:

• Loop tiling splits input tensors into tiles that each fit
in the cache, improving temporal locality and reducing
memory traffic.

• Loop unrolling replicates loop bodies to reduce the
overhead ofmaintaining induction variables and check-
ing exit conditions

• Vectorization takes advantage of hardware SIMD in-
structions to operate on multiple elements at once

• Parallelization takes advantage of hardware MIMD
facilitiesÐin our low power use cases, this means mul-
tiple cores on a single multiprocessor

Each of these primitives is parameterized by the tensor axis
along which to transform the implementation.
Figure 4 shows the importance of these optimizations to

the performance of a quantized model (Section 5 will detail
the methodology). Without any optimizations, quantized
models perform much worse than an optimized floating-
point baseline. By integrating quantization into scheduling,
we can compose these standard optimizations without rewrit-
ing the quantized implementation. Almost all these optimiza-
tions are necesssary for the quantized versions to outperform
floating point. Finally, adding a synthesized microkernel
(the final column of Figure 4) improves performance by an-
other 1.5ś2× over the optimized quantized model; Section 4
presents our approach to generating this kernel.

Automated scheduling. Bringing quantization into the sched-
uling domain also allows us to use automated scheduling
techniques (e.g., autotuning) to tune a given quantized model

for a particular hardware architecture. Each scheduling prim-
itive has a number of parameters (e.g., which axis to trans-
form) that have critical influence on the performance of the
resulting code. We use the AutoTVM automatic scheduling
framework to choose the values of these parameters [5]. Au-
toTVM searches the space of possible schedules (tiling, vec-
torization, etc.) and learns a cost model that maps schedules
to predicted performance based on trials executed on the tar-
get hardware. Using AutoTVM allows practitioners to exper-
iment with quantization on new hardware and new models
without manual effort to hand-tune the schedule each time.

We do not use AutoTVM to choose the bit axis for the
bit-packed schedule primitive because AutoTVM requires
output tensor shapes to be static. Our schedules all use fixed
bit axes we found to work well. AutoTVM was used during
this process to quickly optimize over different iterations,
reducing much of the work in selecting the axis.

4 Microkernel Synthesis

After scheduling a computation, the machine learning com-
piler must map it down to the target hardware architecture.
This process requires lowering the computation onto avail-
able low-level microkernels that implement primitives such
as matrix multiplication. For a quantized model, these primi-
tives must operate at ultra low precision (e.g., multiplying
matrices with 2-bit values). Off-the-shelf linear algebra li-
braries do not offer kernels with such low precisions, and
writing them by hand is tedious since each additional bit
of precision requires a different implementation to extract
maximal performance.

This section introduces a new automated approach to im-
plementing low-level primitives for the compiler to target.
The key idea is to reduce the problem to program synthesis,
the task of automatically generating a program that imple-
ments a desired specification [14, 35]. We show how to de-
compose the matrix multiplication primitive into orthogonal
parts that can be synthesized separately, and layer a cost
function over the synthesis process that drives it towards
efficient kernels. Together with automated scheduling, us-
ing program synthesis for automated low-level primitives
enables an end-to-end automated pipeline for compiling
quantized models on any desired hardware platform.

4.1 Specifications

A program synthesizer takes as input a specification of the
desired program behavior, and outputs a program that im-
plements that behavior in a chosen language. We focus on
synthesizing implementations of matrix multiplication, since
it is the common low-level primitive for the convolutional
and fully connected neural network models we consider in
this paper. Our goal is to synthesize vectorized kernels that
efficiently implement the matrix multiplication primitive
with the desired shapes and precisions.
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Kernel specification. To define the desired behavior of the
synthesized microkernel, our synthesis engine takes as input
an unoptimized bitserial matrix multiplication implementa-
tion written in the target assembly language. This reference
implementation fully specifies the desired behavior, including
the shape and precision of each input and output matrix as
determined by the schedule. For example, the schedule might
require a matrix multiplication between an 8 × 16 matrix
with 2-bit values (the weights) and a 16× 1 matrix with 1-bit
values (the activations). We can easily generate a reference
implementation to use as the specification for this kernel
by translating the declarative tensor expression generated
by the compiler. To avoid reasoning about memory layout
during synthesis, we use the reference implementation to
pre-define the registers that hold the input matrix and the
registers that should hold the output matrix.

Architecture specification. Our synthesis engine outputs
straight-line assembly code that implements the desired mi-
crokernel, and so it requires a specification of the target
architecture. We follow the Rosette solver-aided language ap-
proach [36, 37], in which we specify the target architecture
by writing an interpreter for concrete assembly syntax in
Racket. Rosette uses symbolic execution to automatically lift
this concrete interpreter for use in program verification and
synthesis. The interpreter also serves a second role, giving
a semantics to the reference implementation that we use as
the kernel specification.
While writing an interpreter for an instruction set may

seem more expensive than writing a microkernel, ISA de-
signers are increasingly publishing reference semantics for
their instruction sets that can be used as interpreters [31],
and in practice only a small subset of the instruction set
is required. For example, to synthesize code for the ARM
NEON vectorized instruction set, we write an interpreter in
Racket for NEON instructions:

(define (interpret prgm state)
(for ([insn prgm])

(match insn
[(vand dst r1 r2)
(state-set! state dst

(bvand (state-ref state r1)
(state-ref state r2)))]

[(vor dst r1 r2)
...]

...)))

The interpreter iterates over the instructions in the input pro-
gram prgm. For each instruction, it uses pattern matching to
dispatch to an implementation that manipulates the machine
state state. The implementation of the vand instruction up-
dates the destination register dst to hold the bitwise-and of
the two source registers r1 and r2 (in fact, vand is a vector
operation and so should update every element of the vector
register dst, but we elide the details for simplicity).

Cost function. We want the synthesizer to find the most

efficient implementation of the desired kernel on the target

architecture (i.e., we are essentially superoptimizing the ref-
erence implementation [23, 27]). The synthesis engine thus
takes as input a cost function, mapping each program to an
integer cost, and finds the program with minimum cost [2].
Statically estimating program performance is difficult, so
out cost function is simply program length. More realistic
cost functions might guide the synthesizer to more efficient
implementations, but this simple cost function still generates
high-quality code in practice.

4.2 Compute and Reduction Sketches

Given the inputs above, our synthesis engine searches for a
program (a straight-line assembly sequence) that implements
the desired specification. To define the search space for the
synthesis tool to explore, we write a sketch [35], a syntactic
program template containing holes that the synthesizer will
try to fill in with program expressions.
To make the synthesis problem tractable, we decompose

it into two separate phases and write a sketch for each. The
compute sketch implements the initial computation for the
matrix multiplication, while the reduction sketch implements
the reduction that collects the computed results into the right
locations in registers. This separation echoes the two phases
of matrix multiplication: first compute the dot products for
each necessary pair of vectors, and then arrange them in the
right places in memory.

Compute sketch. The compute sketch performs the neces-
sary vector dot products on quantized values, as defined in
Section 2. The sketch is a straight-line sequence of assembly
code, where each instruction can be either a bitwise opera-
tion (and, or, not, addition, etc.) or a special population count
intrinsic instruction. In both cases, the synthesizer is free to
choose any live registers as the inputs to the instruction, and
any register as the output. To break symmetries in the search,
output registers must be written to in increasing order. In
Rosette, we represent this sketch with functions that evaluate
nondeterministically using the choose* built-in form:

(define (??insn) ; choose an arbitrary instruction
(choose* vadd vand vcnt ...))

(define (??reg n) ; choose a register in range [0,n)
(reg (apply choose* (range n))))

; sketch of length k with n inputs
(define (sketch k n)

(define (r i) (??reg (+ i n))) ; input or live reg
(list

((??insn) (r 1) (r 1) (r 1))
((??insn) (r 2) (r 2) (r 2))
((??insn) (r 3) (r 3) (r 3))
...)) ; k lines

The compute sketch has considerable freedom to find novel
efficient implementations. For example, it can manipulate
packed quantized values at the bit level, decide when and
how to reuse intermediate values, etc.
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Figure 5. A reduction sketch is a tree that reduces input
registers down to a single register. Each level applies an
instruction to each pair of live registers. Here the output
types have already been synthesized; each level is free to
decide the types (vector lane widths) of its outputs.

Reduction sketch. The reduction sketch takes as input the
dot products from the compute sketch and sums them along
the reduction axis of the matrix multiplication. This reduc-
tion phase is difficult because we are targeting vectorized
code. To avoid overflowing hardware vector lanes, additions
must be performed in the correct order, and values promoted
to different vector lane widths as necessary. This datatype
polymorphism is challenging for synthesis.
To scale up this reasoning, the reduction sketch exploits

the tree-like structure of the reduction computation, similar
to the common reduction tree parallel programming pattern.
The reduction sketch, illustrated in Figure 5, is a tree that
takes as input the live registers, the datatype of each live
register, and the depth of the tree to be synthesized. At each
level of the tree, the reduction sketch contains a single hole
defining the instruction to apply at that level. The sketch ap-
plies the same instruction, in order, to every register pair that
remains live at that level. The selected instruction dictates
the output datatypes and the number of output registers
(which varies depending on whether the instruction pro-
motes to a wider bit-width); in Figure 5, the output types
are already synthesized, to show their effects on the output
registers. The final output of the reduction sketch is a single
vector register that holds the entire (packed) result of the
matrix multiplication.

4.3 Implementation

We implement our synthesis engine in the Rosette solver-
aided language [37], which extends Racket with support for
verification and synthesis. After synthesizing a desired mi-
crokernel, we integrate it into TVM’s microkernel library for
use when compiling models. Rather than directly integrating
assembly code, we instead emit the corresponding SIMD in-
trinsics inside a C function that TVM compiles using LLVM.
This abstraction allows the compiler to perform register al-
location and interprocedural optimizations such as inlining.

vand.8    d0, d0, d1
vcnt.8    d0, d0

vadd.8    d0, d0, d1
vadd.8    d0, d0, d1
vadd.8    d0, d0, d1
vadd.8    d0, d0, d1

vpadd.8   d0, d0, d1
vpadd.8   d0, d0, d1

vpadal.8  q1, {d0, d1}

vst1.16   q1, addr

8× 

(a) Synthesized (24 insns)

vmovl.8   q0, d0
vmovl.8   q2, d1
vand      q0, q0, q2
vcnt.8.   q0, q0
vpaddl.8  q0, q0
vadd.16   q1, q0, q0

vst1.16   q1, addr

8× 

(b) TVM-generated (49 insns)

Figure 6. Microkernels for 8 × 8 by 8 × 1 matrix multiply
with 1-bit values, generated by (a) our synthesis tool and
(b) TVM’s tensorization. The synthesized version is half the
length (ł8×ž code is unrolled 8 times) and twice as fast.

ARM NEON. To target low-power ARM processors, we
synthesize code in a subset of the ARM NEON vectorized
instruction set. NEON machine state consists of 16 128-bit
vector registers known as quad registers. Each quad register
also has two aliases from 64-bit double registers that point
to its upper and lower halves. Most NEON instructions can
reference either register type; our synthesized kernels have
the freedom to use the two interchangeably, and mixing the
two modes leads to shorter, more efficient code.

Figure 6 shows an example of our synthesized microkernel
formultiplying twomatrices of shape 8×8 and 8×1, eachwith
1-bit quantized values. It also shows an equivalent micro-
kernel generated by TVM’s tensorization schedule primitive,
which lowers tensor operations to LLVM IR in a template-
driven fashion. Our synthesized kernel is half the length of
TVM’s version, and is more efficient for two main reasons.
First, the TVM-generated version operates only on quad-
precision registers because it eagerly promotes all values to
16 bits, giving up some of the benefit of quantization. Second,
TVM cannot vectorize across the reduction axis, and so needs
to perform broadcast loads into the vector lanes for at least
one of the inputs. The last column of Figure 4 shows that
the synthesized kernel is 1.5ś2.5× faster on an ARM CPU.

Other platforms. We have also implemented a synthesis
backend for x86’s AVX2 vector instruction set. The imple-
mentation took only a few days of work for one author, and
only required developing a specification of relevant AVX2
instructions. While we can successfully synthesize microker-
nels for this architecture, AVX2 lacks a vectorized popcount
instruction, and so the kernels are not competitive in perfor-
mance with floating-point implementations. However, our
experience with x86 suggests that synthesis enables rapid
porting to new architectures, including potentially to pro-
grammable accelerators (as we discuss more in Section 6).
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Table 1. Configurations of 2D-convolution operators in
ResNet18 [15]. H and W are height and width, IC and OC are
input and output channels, K is kernel size, and S is stride
size. Layer 1 is omitted as its input channel depth is too small
to allow efficient packing.

Name Operator H, W IC, OC K, S

C2 conv2d 56, 56 64,64 3, 1

C3 conv2d 56, 56 64,64 1, 1

C4 conv2d 56, 56 64,128 3, 2

C5 conv2d 56, 56 64,128 1, 2

C6 conv2d 28, 28 128,128 3, 1

C7 conv2d 28, 28 128,256 3, 2

C8 conv2d 28, 28 128,256 1, 2

C9 conv2d 14, 14 256,256 3, 1

C10 conv2d 14, 14 256,512 3, 2

C11 conv2d 14, 14 256,512 1, 2

C12 conv2d 7, 7 512,512 3, 1

5 Evaluation

To evaluate the effectiveness of our automated approach to
implementing quantized models, we address three research
questions:

1. Do our automatically generated implementations out-
perform non-ultra-low-precision versions?

2. How do our implementations compare to hand-written
quantized kernels?

3. Does our automation help to explore new quantization
configurations efficiently?

Methodology. We test our quantized implementations on a
low-power Raspberry Pi 3B with an ARM Cortex-A53 pro-
cessor. The ARM processor has four cores at 1.2 GHz and
supports NEON SIMD extensions. All experiments report
the average of 10 runs with 95% confidence intervals.
We focus our evaluation on quantized versions of the

ResNet18 model [15], because it is small enough to deploy
in resource-constrained environments. ResNet18 is a neural
network model for image classification comprising 18 layers.
Its compute time is dominated by the convolutional layers
described in Table 1.

We refer to quantized kernels generated by our approach
as AxW y , where x is the bitwidth of activations and y the
bitwidth of weights [42]. Each kernel we generate, including
floating-point baselines, is optimized independently using
AutoTVM [5]. For each convolutional layer, we runAutoTVM
for a total of 100 trials in parallel across 10 hosts. Our per-
formance measurements include the cost of bitpacking the
activation values, but not the weights, as they can be done
offline before deployment.
Ultra-quantized model architectures differ slightly from

floating point models (e.g., by adding quantization layers),
but maintain the number and sizes of convolutions, which
dominate the compute cost. Quantized models are trained
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Figure 7. End-to-end inference times for ResNet18 on an
ARM CPU, with and without synthesized microkernels.
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Figure 8. Accuracy versus performance for quantized
ResNet18 models, with and without synthesized microker-
nels. Higher is better on both axes.

from scratch, and each desired quantization level requires
retraining to maintain accuracy (so an A2W 1 model cannot
be quantized down from aA2W 2 model). However, the shape
of the model stays the same, and we so can compare run-time
performance across quantization levels.

5.1 Quantization versus Floating Point

To demonstrate the performance benefits of quantization,
Figure 7 shows end-to-end inference times on the ARM plat-
form for both non-quantized and quantized models. The
quantized results use our synthesized kernels and bit-packed
schedules, while the 32-bit floating point result uses a pre-
existing schedule in TVM. We find that the quantized model
outperforms the floating-point version by up to 3.9×, con-
firming that quantization yields speedups in practice and a
significant memory footprint reduction.
Figure 7 also shows the importance of our synthesized

microkernels for extracting performance from quantized
models. Without the synthesized microkernels, TVM fol-
lows its default code generation strategy (lowering tensor
expressions to LLVM IR). This strategy yields inefficient im-
plementations that barely outperform floating point atA2W 2.
End-to-end inference is an average of 1.9× faster using our
synthesized microkernels.
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The improved performance of our synthesized microker-
nels shift the Pareto frontier of the accuracyśperformance
trade-off for quantization. Figure 8 shows the image classifi-
cation accuracy (measured as top-1 accuracy, i.e., the frac-
tion of images correctly classified) of the quantized ResNet18
models against their inference performance. Without synthe-
sized microkernels, the accuracy loss of quantization offers
little performance benefit. Our synthesized implementations
shift the Pareto frontier outwards, offering a choice of points
in the design space for quantized models. For example, an
8% accuracy loss from FP32 yields 1.9× higher inference
throughput (A2W 2), and an additional 14% loss yields a fur-
ther 2.1× throughput (A1W 1). Newer training techniques can
further reduce the accuracy loss, as we survey in Section 6.

Limitations. While our generated implementations offer
significant speedups over the floating-point baseline, they
are lower than the theoretical performance gain we would
expect, due to a number of inefficiencies. First, quantized
models still execute some layers in floating point, including
the initial convolution (which we exclude from Table 1) , that
limit potential speedups. For example, in the A1W 1 model,
the initial convolution is performed in floating-point and
consumes 32% of total running time, versus only 8% in the
floating-point model. Similarly, the operations between con-
volutions are often performed in floating point, requiring
conversions from integer to floating point and back.

Second, our implementations must spend instructions re-
packing bits into the appropriate data layout, whereas ARM
has native support for single-precision floating-point sized
data. This bitpacking consumes 2ś3% of the end-to-end run
time, and 13ś21% of an individual convolution’s run time.
Finally, in the floating-point implementation, the model

compiler can take advantage of hardware fused multiply-add
instructions and of alternative floating-point convolution
algorithms. We could recoup some of these inefficiencies
with more work on higher-level optimizations.

5.2 Comparison to Hand-Written Code

Our automatically generated quantized kernels a outper-
form hand-written quantized implementations developed
by experts. Figure 9 compares our implementation to the
hand-written ultra-low-precision convolution library in Py-
Torch [39]. The library was written specifically for the ARM
architecture, and makes extensive use of NEON SIMD intrin-
sics and loop tiling for performance; it reaches about 70%
of peak theoretical single-thread performance. The library
focuses exclusively on A2W 1 quantized convolutions and
does not provide an end-to-end implementation of ResNet,
so we compare performance on the individual convolutions
rather than end-to-end inference time.

When we restrict our approach to single-threaded imple-
mentations, the performance of our synthesized kernels is
generally comparable to the expert-written code, which is
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Figure 9. Layer-by-layer speedups for A2W 1 convolutions
normalized to PyTorch’s hand-optimized A2W 1 kernel for
ARM [39]. The PyTorch kernels are single-threaded, so we
compare against both single- and multi-threaded versions
generated by our approach.
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Figure 10. Quantized convolution speedups for various
quantization configurations, normalized to 32-bit floating
point.

single-threaded. Our version does outperform PyTorch on
some layers by up to 7× (C5, C8, C11); these layers are łdown-
samplingž convolutions that the PyTorch library does not
optimize for. In contrast, our scheduling abstraction allows
us to independently optimize each convolution.

Because our approach integrates scheduling and code gen-
eration, we can easily generate an optimized multi-threaded
implementation without manual code changes. In Figure 9,
our multi-threaded A2W 1 convolution outperforms PyTorch
by an average of 5.3× and up to 16.6×. This result demon-
strates the flexibility of our automated approach to adapt to
new hardware resources and new optimizations that were
missing from hand-written kernels.

5.3 Exploring Quantization Configurations

Our automation allows us to rapidly explore the potential
benefits of different quantization configurations without
hand-tuning for each new configuration and platform. We
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Figure 11. Relative speedup over 32-bit floating point, and
kernel synthesis time, for convolutional layer C2 at different
quantization configurations.

Table 2.Microkernel synthesis and scheduling times. Syn-
thesis time is broken down into time spent solving the
compute and reduction sketches and verifying the solution.
Scheduling time is the total across all convolutional layers.

Config
Synthesis Time (s) Scheduling

Time (s)
Compute Reduction Verify Total

A1W 1 2.4 9.0 5.8 17.2 344

A2W 1 21.0 13.9 10.6 45.5 328

A1W 2 62.2 12.7 15.2 90.1 352

A3W 1 62.2 18.9 15.2 158.3 435

A1W 3 63.8 32.1 15.4 109.7 460

A2W 2 90.4 52.4 15.5 158.3 334

exploited this automation to perform a limit study of the
possible speedups available at reduced precisions.
Figure 10 shows the performance of different configura-

tions generated with our approach compared to a 32-bit
floating-point baseline. The results support the intuition
that smaller quantizations (e.g., A1W 1) perform better. How-
ever, the performance benefit of quantization varies between
layersÐfor example,A1W 1 speedups vary from 3.6× to 14.7×.
The speedup of a layer is correlated with the number of in-
put channels in the convolution (Table 1). In our generated
schedules, tensors are both bit-packed and vectorized along
the input channel axis. Increasing the input channels there-
fore improves utilization of the available hardware resources.
The larger convolutions also expand the working set beyond
the ARM CPU’s cache size in the floating-point version.
To further explore the limits of quantization, Figure 11

shows the performance of all configurations up to A3W 3 on
layer C2, which is representative of the average performance
profile in Figure 10. The missing configurations require com-
bining 8-bit and 16-bit arithmetic during the compute phase,
which our compute sketch does not support. The potential

performance benefit of quantization degrades rapidly as the
number of bits increases, due to theO(NM) scaling shown in
Section 2. But even at A2W 2, quantization offers a consider-
able speedup over floating point; coupled with the reduction
in memory footprint, this result confirms the value of quan-
tization in resource-constrained environments.

Figure 11 also shows the performance of our synthesis en-
gine for each configuration, with more detail in Table 2. Syn-
thesis performance worsens as the number of bits increasesÐ
from 17 seconds at A1W 1 (two bits total) to 158 seconds at
A2W 2 (four bits total). This poor scaling is because we allow
the synthesizer to reason about individual bits, which gives it
maximum freedom to find optimizations, but makes reason-
ing expensive. Increases in the number of weight bits cause
more dramatic performance degradation than increases in
activation bits (e.g.,A1W 2 is slower to synthesize thanA2W 1),
because weight matrices are larger than activation matrices
and so more total bits are necessary.

Table 2 also shows the time required for AutoTVM sched-
uling of each configuration. Each time is the total scheduling
time across all convolutional layers. Scheduling is largely
independent of the number of bits, and so does not degrade
as dramatically as the number of bits increases. However,
scheduling time dominates synthesis time in all cases, and
so we could narrow the scope of AutoTVM’s search if faster
end-to-end synthesis was necessary.

6 Related Work

Quantized Neural Networks. Whereas this paper focuses
on efficiently executing quantized networks, most prior work
focuses on the orthogonal problem of training suchmodels to
minimize accuracy loss due to quantization. BinaryNet [12]
presents a training algorithm for binary neural network with
weights and activations quantized to 1-bit. The resulting net-
works are competitive in accuracy to floating point networks
on simple image recognition tasks such as hand written digit
recognition. XNORNet [30] improved the accuracy of bi-
nary neural networks through architectural changes, but
had much worse accuracy than floating point on complex
recognition tasks, such as classification on ImageNet [33].

More recent quantized neural networks focus on reducing
the accuracy gap on ImageNet by increasing the precision.
DoReFa-Net [45] and HWGQ [3] quantize activations down
to 2- to 4-bits while keeping 1-bit weights, and trained mod-
els with accuracy within 5% to 9% of floating point on the
same model architecture. By quantizing both weights and ac-
tivations to 2 bits, Choi et al. [9] further reduced the accuracy
gap to 3.4% below floating point.

Quantized Machine Learning Kernels. Quantized neural
networks are trained in floating point so that iterative small
adjustments to the model can be made; even the forward pass
during training only simulates quantization. There has been
comparably little work on efficient inference for quantized
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neural networks, or on implementing the quantized opera-
tors they depend on. Umuroglu and Jahre [42] and Tulloch
and Jia [39] present implementations of quantized machine
learning kernels for ARM CPUs with hand-optimized code.
Both implementations use ARM NEON instrinsics and rely
on careful tiling to match register and cache sizes of their
target devices. As a result, their peak performance is closely
tied to their target device’s microarchitecture.

BitFlow [16] is a hierarchical framework for implementing
binary neural networks on CPUs. They present a code gen-
erator that efficiently maps 1-bit quantized operators to the
appropriate SIMD compute kernels based on the operator
dimensions, and divides work among the available cores to
exploit MIMD parallelism. In contrast, we take a more holis-
tic approach: our scheduling phase encompasses a variety of
optimizations, including choices about how to bit-pack quan-
tized data, that can be applied in any (valid) combination. Our
approach also extends easily to quantizations beyond 1 bit.

Earlier versions of TVM [4] supported ultra-low-precision
quantization using hand-written microkernels for ARM’s
NEON vector extensions [13]. These implementations are
no longer supported because of the difficulty of maintain-
ing them; recent TVM versions instead use the LLVM code
generation approach to quantization that we outlined in Sec-
tion 5. Performance of the old implementations is not directly
comparable to ours, because they used unipolar encodings
for quantization, whereas we use the more modern hybrid
unipolarśbipolar encoding (which requires twice the pop-
counts). Nonetheless, our synthesized microkernels are an
average of 10% and up to 2.2× faster than TVM’s previous
hand-written kernels.

Automatic Generation of Kernels. Automatic generation
of efficient floating-point tensor kernels is a long-standing
problem. Tensor compilers such as TACO [21] andHalide [29]
automatically generate kernels for sparse linear algebra and
image processing, respectively. Machine learning compil-
ers such as Tensor Comprehensions [44], GLOW [32], and
TVM [4] generate efficient code specifically for machine
learning models using domain-specific optimizations at both
the graph and operator level. Our work extends this ap-
proach by focusing on quantized models, allowing us to ex-
ploit domain-specific knowledge (e.g., the bit-packing axis)
to generate efficient implementations.

Specialized Hardware Backends. The emergence of ma-
chine learning accelerators in ASICs [6, 7, 19] and FPGAs [10,
25, 41] has led to increased specialization of both hardware
intrinsics (e.g. single instruction matrix multiplication) and
data type selection. Accelerators that expose a quantized
programming interface [20, 34, 43] offer new opportunities
for our synthesis approach to extract performance. For ex-
ample, an accelerator could offer specialized operations for
AnWm quantizations, and our synthesis engine could com-
pose these operations to reach the desired configuration

for a given model. Since the optimal scheduling of a work-
load on an accelerator is a function of compute, memory
bandwidth, and on-chip storage, our automated scheduling
approach would benefit accelerators by delivering the best
performance at all quantization settings.

Program Synthesis. Our approach uses program synthesis
to generate quantized tensor kernels, following the lead of
many existing tools. Spiral [28] is a tool for generating high-
performance implementations of fast Fourier transforms and
other DSP primitives. Chlorophyll [27] is a superoptimizer
for a low-power spatial architecture. Synapse [2] is a pro-
gram synthesis framework for compiling low-level programs
optimally with respect to a cost function. Our work further
demonstrates the potential for program synthesis as a tool for
generating efficient implementations of small performance-
critical kernels that a regular compiler is unable to find.

7 Conclusion

Our automated approach to compiling quantized models
combines the strengths of both machine learning (for sched-
uling [5]) and program synthesis (for code generation [37]).
The result is a workflow that generates kernels that out-
perform than both optimized floating-point and state-of-
the-art quantized implementations. Automation also helps
machine learning practitioners experiment with new quanti-
zation regimes, model designs, and hardware architectures,
all without having to re-engineer low-level kernels with each
change. Our work makes quantized models practical to de-
ploy in resource-constrained settings, bringing the successes
of machine learning to a plethora of new environments.
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