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Abstract: Drifters deployed in close proximity collectively provide a unique observational data set
with which to separate mesoscale and submesoscale flows. In this paper we provide a principled ap-
proach for doing so by fitting observed velocities to a local Taylor expansion of the velocity flow field.
We demonstrate how to estimate mesoscale and submesoscale quantities that evolve slowly over time,
as well as their associated statistical uncertainty. We show that in practice the mesoscale component
of our model can explain much first and second-moment variability in drifter velocities, especially
at low frequencies. This results in much lower and more meaningful measures of submesoscale
diffusivity, which would otherwise be contaminated by unresolved mesoscale flow. We quantify
these effects theoretically via computing Lagrangian frequency spectra, and demonstrate the use-
fulness of our methodology through simulations as well as with real observations from the LatMix
deployment of drifters. The outcome of this method is a full Lagrangian decomposition of each drifter
trajectory into three components that represent the background, mesoscale, and submesoscale flow.

Keywords: drifters; mesoscale; submesoscale; diffusivity; strain; vorticity; divergence; Lagrangian;
frequency spectra; bootstrap; uncertainty quantification; splines

1. Introduction

Recent field experiments targeting submesoscale motions (100 m-10 km) include
the deployment of dozens to hundreds of GPS tracked surface drifters in close proximity,
e.g., ‘LatMix’ [1], “"GLAD’ [2], ‘LASER’ [3] and ‘CALYPSO’ [4]. These deployments are
designed to sample a narrow spatiotemporal window, but with high enough data density
to resolve submesoscale motions. However, even when submesoscale motions are resolved,
separating those motions from the larger, often more energetic mesoscale motions remains
a significant challenge.

One approach to disentangling the submesoscales from the mesoscales with high
resolution drifter data is to use the results from turbulence theory. For example, Ref. [2]
showed results using two-particle statistics consistent with local dispersion at subme-
soscales. Ref. [5] found ambiguous results until inertial oscillations were filtered from
the trajectories. This suggests, not surprisingly, that realistic flow fields contain a combina-
tion of flow features that can be linearly separated in some contexts. In a detailed modelling
study, Ref. [6] showed that, even with some filtering, these Lagrangian statistics are far
more sensitive than similar Eulerian measures, and called into question the interpretation
of previous studies that use variations of two-particle statistics.

An alternative approach is to parameterise the energetic mesoscale flow features
from the Lagrangian trajectories, in order to disentangle them from the unparameterised,
possibly submesoscale, flows. The notion of accounting for, or parameterising, the mesoscale
strain in order to measure the submesoscale diffusivity, appears to originate with tracer
release experiments [7,8], and is based on ideas introduced in [9]. The basic idea is that one
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axis of the tracer grows exponentially with a rate proportional to the strain rate, ¢, while
the other axis reaches a steady state balanced by the compressing effect of o and the elongat-
ing effect of diffusivity, x. In the dye experiments, the mesoscale strain rate is determined by
measuring the rate of elongation of the patch, which is then used to deduce the diffusivity.
The key idea to this approach is that the mesoscale strain rate is parameterised, in order
to separate its effect from the submesoscale motions.

This manuscript extends the idea of parameterising mesoscale features, in order
to disentangle submesoscale flow, to a more principled and robust framework appropriate
for Lagrangian particles. Our work is complementary to, but distinct from, the recent
works of [3,10] who developed a method for projecting clustered drifter trajectories to re-
construct local Eulerian velocity fields using Gaussian Process regression. The goal of our
work is to disentangle the trajectories in a Lagrangian sense, and explicitly separate each
drifter trajectory into background, mesoscale and submesoscale components—where each
decomposed drifter can then be analysed further within the Lagrangian framework. A key
benefit is that our Lagrangian separation allows for the explicit estimation of submesoscale
diffusivity as we shall show.

The structure of this paper is as follows. In Section 2, we first introduce a conceptual
Lagrangian flow model, and then show how this can be parameterised using a local Tay-
lor expansion. Then in Section 3 we show how these parameters can be estimated from
clustered drifter deployments. We pay particular focus to building a hierarchy of models,
where each layer in the hierarchy adds extra parameters (e.g. strain/vorticity /divergence)
that represent additional flow features. We provide novel methodology for selecting
between hierarchies based on the evidence from the data. In Section 4, we go further
and incorporate nonstationary flow features, by allowing mesoscale parameters to slowly
evolve over time. We provide methodology for estimating this evolution using splines,
and then we provide techniques for quantifying the uncertainty of all parameter esti-
mates using the bootstrap. We detail how this quantification of uncertainty provides
the ideal mechanism from which to select the key parameter of the temporal window
length. Throughout Sections 3 and 4 we perform detailed simulation analyses to pro-
vide further insight and motivation. Then in Section 5 we test and perform our novel
methodologies on data collected from drifters in the LatMix deployment, which reveals
new insights and discovers previously hidden mesoscale and submesoscale structures.
Discussion and conclusions can be found in Section 6. We also perform a sensitivity
analysis against the number of drifters, as well as the configuration of the initial deploy-
ment, in Appendix A. Code to replicate all results and figures in this paper is available
at https://github.com/]JeffreyEarly / GLOceanKit.

Overall, the principle contribution of this paper is a general framework for analysing
Lagrangian data from clustered drifter deployments. Specifically, this methodology pro-
vides a tool to detect for the presence of various mesoscale flow features and separate
those features from the submesoscale flow—while allowing such features to evolve over
time—together with providing quantified statistical uncertainty of output.

2. Modelling Framework

The primary conceptual model used throughout this manuscript is that the total
velocity of a Lagrangian particle u'®?! can be decomposed into three components,

utotal _ ubg 4 gMmeso us™, 1)

where uP8 is a large scale background flow, u™*° is the mesoscale flow (>10 km, >10 days)
and u®™ is the submesoscale flow (100 m-10 km, 1 h-10 days). The background flow is
assumed to be spatially homogeneous in some local region around the drifters, and thus
includes motions such as inertial oscillations and large scale currents. The terminology used
here is appropriate for a range of oceanographic contexts, but arguably the separation into
mesoscale and submesoscale are more precisely related to non-local and local dynamics,
respectively. We thus use the term mesoscale to describe structures that behave non-locally
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across the drifters, and are therefore the smoothly varying fluid structures that will be
parameterised, such as the constant strain rate used in the tracer release experiments [8].
The submesoscale currents are simply the residual motion, not captured by the background
or mesoscale flow. If any statistically significant submesoscale signal remains, its energy
spectrum will likely be shallower than the mesoscale portion and therefore be consistent
with local dynamics. In practice, the scales captured by these three types of motion will vary
depending on the deployment details and the limitations of the data, as much as the actual
physical processes themselves, as we shall show. The proposed methodology therefore
ultimately remains agnostic to the scales and physical processes governing the motions,
but instead focuses on the statistical significance of the model.

Surface drifter motion is constrained to a fixed depth near the ocean surface, where the
two-dimensional positions are measured in geographic coordinates longitude and latitude.
For the work here it is necessary to use map coordinates {x(t),y(t)} with a projection
that locally preserves area and shape. Following [11] we use the transverse Mercator
projection with central meridian placed between the minimum and maximum longitude
of the drifter experiment and add a false northing and easting to shift the origin to the
southwest corner. The total velocity u'°t! of a drifter is then two-dimensional and assumed
to represent the velocity at the depth of the drifter drogue. The work here will also be
generally applicable to clustered deployments of RAFOS floats with minor modification,
but we will use the terminology of drifters throughout the manuscript.

2.1. Local Taylor Expansion

One of the simplest models for separating flow components is to perform a local Taylor
expansion of the velocity field. Suppose we have observations from K clustered drifters
at time ¢, where the position of drifter k (1 < k < K) in x and y orthogonal directions
is given by {x¢(t),yx(t)}, measured in metres, and the corresponding velocity is given
by %{xk(t), yx(t)}, measured in metres per second. We then take a Taylor series expansion
of the velocity field evaluated at the position of drifter k, such that we model its velocity as

d{xku)}:[ubg(t)} +[uo+u1t}+1[an+5 vs—c} {ka)—xo%[“iH‘“)} @)

dt [yx(t) oP8(t) vo+oit]  2|os+C S—on) [yk(t) —yo| [T (H)
——— ——— ~—
utotal ubg umeso usm
where

e {xx(t),yx(t)} are observations from drifter k at time ¢;

o {uP8(t),vP8(t)} is the spatially homogeneous time-varying background flow;

e {up,vp,11,v1,0u,05,(,0} are the model parameters for the mesoscale flow;

e {x0,y0} is the expansion location and has no consequence to the model, other than re-
defining {ug, v };

o {ug™(t) o™ (t)} are the residual ‘submesoscale’ velocities for each drifter, assumed to
be zero-mean in time, but also zero-mean in space across drifters.

The mesoscale parameters are simply re-definitions of the standard spatial gradients:
the divergence is 6 = uy + vy, the vorticity is { = vy — uy, the normal strain rate is
0n = uy — vy, and the shear strain rate is 0; = vy + uy. The normal and shear strain rates
can be combined to a scalar value for the strain rate ¢ = /02 + ¢2 and rotation angle
6 = arctan [05/0y] /2, where 0, = 0 cos(20), 05 = o sin(26).

Equation (2) therefore separates background, mesoscale, and submesoscale features
in the data, following the conceptual model of Equation (1). For the moment, the eight
mesoscale parameters are assumed to be sufficiently slowly varying that we can treat them
as constant over some time window, although we will relax this restriction later. In practice,
the mesoscale component of the model will capture any coherent feature that has constant
spatial gradient across the cluster of drifters, whether that is a large scale more permanent
feature like a Western boundary current or a transient mesoscale eddy—or nothing at all.
The spatially homogeneous time-varying ‘background’ flow will capture inertial and tidal
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oscillations, but may also erroneously include parts of a time or spatially varying mesoscale
flow. Finally, the residual ‘submesoscale’ velocity will include any velocity contributions
not captured by the other components.

The model of Equation (2) was applied to drifter observations in [12] to obtain esti-
mates of the spatial gradient parameters, but with two key differences from the approach
taken here. First, the spatial gradients were allowed to vary at each observational time
point, without any constraints on the rate of fluctuation. Second, the expansion point
{x0,y0} was chosen to be the time-varying centre-of-mass of the cluster of drifters. The con-
sequence of this choice is quite significant and is worth considering in more detail. Defining
the centre-of-mass (or first moment) as m,(t) = & YK x(t) and my(t) = 4 YR (), it
follows from Equation (2) that the centre-of-mass velocity includes contributions from both
the homogeneous background as well as the spatial gradients such that

d [my(t)] _ [ub8(¢) ug+urt| | 1o+ 05— [me(t) —x0 3
72 | R R A 1 | o ] S
where no submesoscale is assumed to be present as we have defined % ZkK:1 uy™(t) = 0.
That the mesoscale spatial gradients have a (potentially) significant impact on the velocity
of the centre-of-mass is evident in the top row of simulated drifter trajectories shown in
Figure 1, where the entire cluster of drifters is advected by the linear flow. Now if the
expansion point is taken to be the centre-of-mass, {xo(t), yo(t)} = {mx(t), m,(t)}, then
Equation (3) reduces the background velocity to the sample mean velocity, such that
ubs(t) ~ %mx(t). As a result, after subtracting Equation (3) from (2), the velocities
of the individual particles in the centre-of-mass frame,

il i) =zlote SoallnG ] RG] @

only depend on the spatial gradients and submesoscale flow. In some sense, the difference
between Equations (2) and (4) is quite remarkable: simply by changing to centre-of-mass
coordinates, the potentially complicated form of the background flow, {u8, 28}, is elim-
inated, along with all the velocity variance associated with mesoscale advection of the
centre-of-mass from Equation (3). With this choice of reference frame, the spatial gradients
in the model now only characterise the spreading of particles, i.e., the second moment,
as shown in the second row of Figure 1, along with any spreading caused by the subme-
soscale process.
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Figure 1. Simulation of nine drifters from Equation (2) over 6.25 days, with starting positions, number of drifters, and ex-
periment length taken to match LatMix Site 1. In each panel the submesoscale velocities {u3™ (t), o™ ()} follow a Wiener
increment process with diffusivity equal to 0.1 m?/s. The top row shows drifter positions, and the bottom row shows
positions with respect to centre-of-mass at each time step. From left to right we include the following model compo-
nents. Left: diffusivity only. Centre left: strain and diffusivity. Centre right: strain, vorticity, and diffusivity (strain
dominated). Right: strain, vorticity, and diffusivity (vorticity dominated). In each plot where a parameter is present,
it has been set as 0 = 7 x 107%/s, 8 = 30°, { = 6 x 107%/s (centre right), and { = 8 x 1076/s (right). We have set
uy = vy = uy = vq =ub8 =P8 = 0. The trajectories are simulated using the Euler-Maruyama scheme [13] and we include
quivers in all plots representing the underlying velocity field.

2.2. Diffusivity

A key measure with which we evaluate our techniques is to measure the diffusivity
of observed and modelled velocities. We define the submesoscale diffusivity for each
drifter k as in Equation (21) of [14], such that

14d t

) = 3 2 = [, (50)
14d t

KER(E) = 5 Vi (1) = /0 o™ (£) o™ (1), (5b)

where x§™(t) is calculated from residual velocities, u{™(t), such that x;™(t) = fg up™ (t)dt,
and similarly for y3™(t). As in Equation (10) of [14], a joint diffusivity measure across all
drifters could be defined by averaging the positions/velocities before applying the deriva-
tives/integrals in Equations (5a) and (5b); however, we initially choose to calculate dif-
fusivity separately for each drifter k to reflect the fact that drifters are spatially spread
in a clustered deployment, and hence their diffusivity values may depend on spatial scale
within a spatially inhomogeneous flow field.

In general, it is also useful to consider the isotropic diffusivity as this is rotationally
invariant, and as such, does not depend on our choice of coordinate system. The isotropic
submesoscale diffusivity for drifter k is defined as

t
20 = § A0 = 3 [ i oun (o, ©

where 7™ () = 1™ (t) +iyg™ (), wi™(t) = up™(t) +ivy™(t), and i = v/ —1. The isotropic
diffusivity is the average of x}"% (t) and K,’;I;‘(t) such that 17 (t) = %{K;T(t) + Kzr;‘(t)}
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The diffusivity is also related to the power spectral density of complex velocity
wy (t) where
1| /T ot 12
S(w) = ’/ wi(t)e it . (7)
TlJo
S(w) is known as the Lagrangian frequency spectrum and is related the isotropic
diffusivity in Equation (6) with

(1) = 45(0), ®

as shown in [15]. Formally, diffusivity requires the process to be stationary and is defined
in the limit as T — oo, but in practice we are always limited to finite observation times.
The total variance of a complex particle velocity is conserved with the Lagrangian frequency
spectrum, % S wy (t)?dt = J S(w)dw, and in this sense it will be useful to think of how
the model components in Equation (2) each describe the distribution of variance in the
frequency spectrum.

Equations (5)—(7) are theoretical constructs as they require submesoscale velocities
to be observed continuously in time. In practice, drifter observations are only observed
at discrete time points. In Section 3, we will discuss how to estimate submesoscale diffusiv-
ity from clustered drifter data using our modelling and estimation approach.

We note that diffusivities could also be calculated directly from raw velocities {%xk (1),
% yk(t)}, or from centre-of-mass velocities that have only had the background removed
and still contain mesoscale flow contribution (as in Equation (4)), and such values of diffu-
sivity will in general be much larger than the submesoscale diffusivities. This highlights
the scale-dependent nature of diffusivity, as well as the challenges in comparing different
measurements of diffusivity.

2.3. Model Solutions

The mesoscale component of Equation (2) is a linear ordinary differential equation
with tractable analytical solutions, e.g., [16,17]. However, the submesoscale component
of Equation (2) is assumed unknown, and may represent a range of different phenomena.
Thus, for our simulation analyses that follow in this paper we generate the submesoscale
process stochastically using trajectory paths defined by

T e R i | e U

where the function dW represents an increment of a two-dimensional Wiener process
(a random walk in the discrete-time limit) that forms the submesoscale component. The La-
grangian frequency spectrum of the submesoscale process is therefore simply that of a white
noise process:

S(w) = 4x. (10)

The frequency spectrum of internal waves (perhaps the best known submesoscale
process) will have either more or less contribution to the total variance, depending on the fre-
quency. We thus consider a white noise velocity process to be a reasonably agnostic choice.
Notably absent from Equation (9) is the spatially homogeneous background flow. In prac-
tice this contains a significant amount of power from inertial and tidal oscillations, but does
not significantly impact the estimation of mesoscale quantities as we shall show. The par-
ticle trajectories shown in Figure 1 are sampled from Equation (9), where each column
contains different choices for the mesoscale parameters, but the submesoscale diffusivity x
is held constant (the first column has no mesoscale and hence the particles follow a random
walk).

In the absence of the stochastic submesoscale white noise process, the Lagrangian
trajectories from Equation (9) are purely deterministic and thus their Lagrangian frequency
spectra can be computed exactly, as we shall now show. For the following analytical solu-
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tions we set 6 = 0, but make no such assumption in the estimation procedure that follows.
To integrate Equation (9) with x = 0, note that simply re-positioning a particle’s initial
location can be used to redefine {9, vy }. Specifically, if the initial position of the particle
is given by {x(0),y(0)} with nonzero {ug,vp}, the {up,vp} can be set to zero, so long
as the initial position is set to {x(0) — x,, y(0) — v, } where

Xy 2 on 05— |ug
== , 11
b =3l L &
and the Okubo-Weiss parameter is defined by s?> = ¢ — ¢?. Thus, without loss of generality,

we can simply take {ug, v} and the expansion point to be zero. The complex path z(t) =
x(t) + iy(t) with initial position given by {x(0),y(0)} = {rcosa, rsina} is therefore

o Lel (scosh (%) + ((Teiz(e*‘” —i—ig) sinh(%t)) if o > 7?2 12)
z(t) = . - . <
Lel*(5cos(¥) + (0’6‘2(9_”‘) +i§) sin(%t)) ifo? < 72
and the associated velocity w(t) = u(t) + iv(t) is given by
0 s (ssinh(¥) + (0620 1-i¢ ) cosh(§) ) if o? > 2 )
w(t) = - . <
Lel*(—ssin(¥) + <(Te12(9”") —I—ig) cos(%)) if o2 < 2

where we have defined the complementary Okubo-Weiss parameter by 5> = {2 — ¢
The mean-square distance of a particle from the origin is given by

%/(]Tz(t)zdt _ { smh(%) [(TACOSh(ST) +sBsmh(5Tf} - @CC ifo? > 72 1)

o sm(%) { cA cos(ST) +3B s1n(ST> Tszgc if o2 < 72

and total velocity variance,

1 /Tw(t)z 2sT sinh(§T) [cAcosh(5T) + sBsinh(5T)] + 2§C if o2 > 2 -
rh =T Sm(gT) [cAcos(5T) —5Bsin(5T)] + ’5 if o2 < 22
where
A=0+4{sin2(0 —a), B=0cos2(0 —a), C=_+0sin2(6 —u), (16)

and T is the length of time that has passed since the particle has moved from its initial posi-
tion.

The Lagrangian frequency spectrum of a particle in a linear velocity field can now be
computed using Equations (13) and (7) which yields

%sinhz(%) ercosh(iT)JrsBsinh(zT)f(fC 48 C(w+§/2)] ol > gz

2+£ 2 52
S(w) = oo (%) 17)
2, 5T\ | —cAcos 8L +8Bsin L +¢C | 2C(w+(/2 .
’Tsmz(%) l iz,é 2 + (w(2 5)2) if o2 < 77
4 1

where the Lagrangian frequency spectra of complex-valued velocities are permitted to be
asymmetric in w (see [18]), which will occur in Equation (17) when  # 0. Asymmetric spec-
tra arise when the rotary spectra are unequal and there is a preferred direction of spin [19].
With no strain and after sufficiently long observation time (T >> 1/(), Equation (17)
becomes a single frequency delta function, reflecting the rotation of a particle from the vor-
ticity. However, for the cases considered here, observation times are at most O(1/s,1/5),
and often much less. The result is a spectrum that is generally very red (S(w) ~ w™2),
with total power increasing in observation time T.
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The Lagrangian frequency spectrum in Equation (17) would appear to indicate that par-
ticles advected by a linear velocity field have a non-zero diffusivity, following the definition
of Equation (8). However, while it is true that the linear velocity field causes particles
to disperse, increasing their second moment with T, this spreading is entirely deterministic
with correlations between particles spatially and across time, and thus does not formally
meet the requirement that diffusivity results from a stationary random velocity process.
From the perspective of trying to isolate and estimate the diffusivity of submesoscale
processes (which may be stationary at these scales), the linear velocity field may be viewed
as contaminating the lowest frequencies in the spectrum, providing erroneously high
values of diffusivity if not removed correctly.

Figure 2 shows the one-sided Lagrangian frequency spectrum of a single particle simu-
lated using Equation (9). The Lagrangian frequency spectrum thus has two distinguishing
parts: the white noise submesoscale process given by Equation (10) and the deterministic
red process given by Equation (17). In Figure 2 the observed particle spectrum is very nearly
the linear addition of the theoretical Lagrangian frequency spectra of the mesoscale and
submesoscale models of Equations (10) and (17) respectively. In terms of Figure 2, the ob-
jective of the methodology is to remove the deterministic contribution of the mesoscale
flow (in blue), in order to study the submesoscale process that remains.

10° 10’

frequency (cycles/day)
Figure 2. The one-sided frequency spectrum for a particle integrated with Equation (9) is shown
in black. The particle is initially placed at {x(0),y(0)} = {1 km,1km} and integrated for 5 days
in a strain-only model with simulation parameters set to x = 0.1 m?/s and ¢ = 1 x 1075/s. The the-
oretical spectrum of the mesoscale process, Equation (17), is shown in blue, and the theoretical
spectrum of the white noise process, Equation (10), is shown in red.

3. Estimation and Hierarchical Modelling

The spreading of particles in the ocean can be categorised into three distinct stages
of diffusivity according to the size of the drifter separation (or the tracer patch) relative
to the size of mesoscale features [7]. At the smallest spatial scales, the mesoscale features
may be so weak that the submesoscale processes dominate across all resolved scales and
therefore completely control the spreading (e.g., when the mesoscale spectrum in Figure 2
is below the submesoscale spectrum). At the other extreme, where drifters are separated
by distances that exceed the size of mesoscale features such as with the Global Drifter
Program, the motions between any two drifters are uncorrelated and there are no com-
mon features to parameterise. We are interested in the middle stage, where the spread
of the drifters is within the size of the mesoscale features. The upper bound of separation
is dictated by the requirement that the spatial gradients in Equation (2) must be similar be-
tween drifters, while the lower bound is simply determined by lack of statistical significance
of the mesoscale parameters. We place no upper bound on the number of drifters required,
however there should be at least two drifters to remove the background part of the flow.
The drifters should be sampled frequently enough that there is enough data to obtain
estimates which are statistically significant whilst keeping the spread of the drifters within
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the mesoscale. Further discussion of how to ensure significance of results will be given in
Section 4 and Appendix A.

3.1. Parameter Estimation

Estimates for the mesoscale parameters in Equation (2) from observations will be
obtained using least squares regression, by minimising the sum of the squared residuals
representing the non-mesoscale flow, as we shall now show. This approach therefore
fits as much of the data to the mesoscale part of the model as possible. To perform the
fits, we make the important step of decomposing the K drifter velocities into K drifter
velocities relative to the centre-of-mass, plus a centre-of-mass velocity, as represented in
Equations (3) and (4) respectively. In other words the summation of Equations (3) and (4)
recovers Equation (2). When put into matrix-vector notation for observations these models
can be jointly written as

U=XA+e, (18)
where we have defined
Xi(tn) up™ ()
d | gx(tn o™ (ty,)
= — = 1
U=t lme(tn) | € u]@g(tn) ' (19)
1y (tn) 0P8 (t,)
—_—— ———
2(K+1)Nx1 2(K+1)Nx1
and
e
0o
Ok Okn Okn Oxn Xi(tn)  k(tn)  —Tk(tn)  Zi(tn) Uy
_lioky Oknv Okw Okn —Fk(fn)  Ek(tn)  Tk(ba)  Tk(tn) |, _ @ (20)
2(2-1y On 2ty On mx(tn> my(tn) _my(tn) mx(tn) ’ On
On 2-1y On 2ty —riy(ty) 7x(ty) 1x(tn)  1y(tn) s
2(K+1)Nxp g
L6
px1

In this notation, X (ty) = xk(tn) — mx(tn), Ux(tn) = yi(tn) — my(t,) are length KN
column vectors of the N observations at times f; < t,, < fy from each of the K drifters in
a chosen time window of width W = ty — t1. Similarly 17, (t,) = my(t,) — xo, 1y (ty) =
my(t,) —yo are length N column vectors of the moving centre-of-mass at times t; < t, < ty.
The particular ordering of the observations within each vector in Equations (19) and (20)
does not matter, so long as it is consistent, and in fact, there is no restriction that the drifter
observations occur at the same time, despite our choice of notation. We have defined 0y
and 1y to be KN X 1 column vectors of zeros and ones, respectively. Under each matrix we
have given its size, where p is the number of parameters, and in this case p = 8. The vector
A contains model parameters which are estimated using the least squares solution

A= (X'X)"X'U. (21)

By combining Equations (18) and (21) the residual submesoscale and background

velocities can be estimated by taking
e=[1-X(X'X)"'x'|u. (22)

The least-squares solution is equivalent to the optimal maximum likelihood solution
when the residuals are Gaussian and independent and identically distributed. In general,
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weighted least squares solutions should be used if residuals are correlated or have unequal
variance, and although this will likely be the case here, weighted-least squares requires
prior knowledge of the distributional structure of the residuals which we do not wish
to assume is known. Overall, we found the (non-weighted) least squares solution of
Equations (21)—(22) to be robust in simulation experiments and real data analysis, and to
perform better than performing least squares directly on the representation of Equation (2)
on raw velocities for each drifter without removing centre-of-mass. This is due to the fact
that the K drifter velocities in centre-of-mass coordinates, with the addition of the centre-of-
mass velocity, can be thought of as a collection of K + 1 drifters that are more independent
of each other than the K drifters in fixed-reference frame coordinates. This leads to errors
that are more uncorrelated over drifters yielding better least squares parameter fits.

3.2. Flow Decomposition

Once the parameters have been estimated using Equation (21), the constituent parts
of the conceptual model of Equation (1) can be computed. The mesoscale contribution
to each drifter is computed using

umeso (£ [ug + uqt 1[on+6 05— [xk(tn) — %0
|:U£neso(tn)] = |:U0+Ult:| + 2|:0's—|—€ 5—Un:| |:yk(tn) —3/0] (23)

The background is assumed to be spatially homogeneous, and thus can be recovered
from the residuals by averaging across drifters at each time,

[ bg(t } =— i(dt [yk )] - [ g:zzg: ﬂ) (24)

Finally, the submesoscale contribution to each drifter is all that remains,

] = [ - [sheot)] - [t @)
v ()] dt [yi(ta) (Ea)] 078 (tn)

This accomplishes the conceptual decomposition of velocities proposed in Equa-
tion (1). We emphasise that the fits of Equations (18)—(22) could be performed without
the centre-of-mass velocity by removing the bottom two rows of U, € and X in Equa-
tions (19) and (20). This is in effect only fitting observations to the second-moment model
of Equation (4), as also proposed in [12]. While this fit still obtains estimates of mesoscale
quantities {0, 6, {, 6}, and disentangles the submesoscale {u*™(t), v°™(¢) }, the first-moment
mesoscale parameters {1, 11,09, v1 } and the background {u8,vP8} can no longer be esti-
mated directly (unless fitted a posteriori). This means a full decomposition of the flow as
performed in Equations (23)—(25) is not directly accomplished using the K drifters in centre-
of-mass frame only. We shall refer to this reduced technique as the second-moment fitting
method. In contrast, we refer to the full estimation technique from Equations (18)—-(25)
as the first and second-moment fitting method.

Regardless of the fitting method, we estimate the isotropic submesoscale diffusiv-
ity k37 (t), defined in Equation (6), by measuring the implied square displacement of
the submesoscale velocities within the window. This yields

2

where A is the sampling interval of drifter observations measured in seconds. Equation (26)
is equivalent to taking 1/4 of the periodogram of the velocities—or the absolute square
of the Fourier Transform—at frequency zero. This is consistent with the fact that the the-
oretical diffusivity of a stationary complex-valued process is determined by 1/4 of the
zero-frequency of the Lagrangian frequency spectrum as per Equation (8).



Fluids 2021, 6, 14

11 of 34

The above equations produce estimates of the background, mesoscale and subme-
soscale parts of the flow over some choice of temporal window length W = ty — f;.
A small value of W results in a reduced number of data points in the regression caus-
ing potentially noisy parameter estimates. Conversely, a large value of W incorporates
more distant observations in time and smooths over this noise, but may lead to poor
estimates if the underlying mesoscale parameters are evolving over time. This is the clas-
sic bias-variance trade-off in statistical estimation. In Section 4, we address the issue of
choosing an appropriate window length, and we introduce a principled estimation method
using splines that allow parameters to evolve slowly over time, resulting in smoother
less-variable estimates.

3.3. Hierarchical Modelling

The Taylor series model of Equation (2) specifies eight mesoscale parameters, specified
by {ug,vo, u1,v1,0,0,7,6}, and these can be estimated from clustered drifter data using
the machinery of Section 3.1. However, not every clustered set of drifters will necessarily
experience all of these effects (as we illustrated in Figure 1), or the data might not give
statistically significant estimates of some of the parameters even if they are truly present.
Alternatively, we might already know the true values of some of the parameters and so
we do not wish to estimate these. Motivated by this, we now introduce a simple method
of removing certain parameters from the model, by either setting them to be zero or a
pre-specified fixed value, and then estimating only the remaining unspecified parameters.
If we were to instead set parameters to zero (or fixed values) after estimation, we would
sub-optimally lose part of the data contained in the removed estimate.

To remove a parameter from the model, one simply removes the parameter from
the vector A in Equation (20) and the corresponding column from the matrix X. In a similar
vein, multiple parameters can be removed by repeating this procedure. Ultimately, de-
pending on the number of parameters removed, the matrix X will be sized 2(K 4+ 1)N x p,
and the column vector A, will be sized p x 1, where p is the number of free parameters
that remain in the model. If p = 8, as presented in Equation (19), then this represents
the full mesoscale solution. If any parameter values are known a priori then they should
be inserted as fixed values into A and then multiplied by the corresponding respective
columns from X and then subtracted from the vector U, before proceeding with the least
squares minimisation of Equation (21) to estimate remaining parameters.

We now consider the special case of only estimating the mesoscale quantities {c, 6, , 0}
using the second-moment fitting method discussed in Section 3.2. If we estimate all
quantities in {c, 0, {, 6} then p = 4. In contrast, if we remove all mesoscale parameters such
that {c,6,{,6} = {0,0,0,0}, then p = 0, and only submesoscale velocities remain in the
centre-of-mass frame of Equation (4). If 0 < p < 4, this represents scenarios where some
mesoscale components from {c, 6, {, 6} are present, and some are not, and we display this
schematically in Figure 3. We consider strain rate and strain angle (or equivalently shear
and normal strain rates) to be either jointly present or both missing. Overall, there are
therefore eight possible models we might consider, shown explicitly in Figure 3. Regardless
of the choice of model, the remaining non-zero parameters are estimated using Equation (21)
as before.
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p Second-moment fitting method model hierarchy

Figure 3. Hierarchy of mesoscale models using the second-moment fitting method where p indicates
the number of parameters. A model with increased complexity is used only if it explains significantly
more variance than the lower complexity model. Models with fewer parameters are favoured when
a choice must be made.

Figure 3 also shows that the eight models exist in a hierarchy. The simplest model,
the null hypothesis shown at the top of Figure 3, corresponds to velocities in a centre-of-
mass frame that are submesoscale only. There are three direct descendants of this model
in the hierarchy, the addition of vorticity or divergence, each of which requires one more
parameter, or strain, which requires two additional parameters. The central philosophy is
that a descendent in the hierarchy should only be used if it shows meaningful improvement
in some relevant error metric, essentially disproving the null hypothesis. Because adding
parameters will always produce at most the same residual (which may itself be the error
metric), this approach avoids using too many degrees-of-freedom and producing meaning-
less or noisy parameter estimates.

It is worth noting that estimating all four mesoscale parameters {(T, 0,7, (5} at each
time point (as is often done in the literature) would benefit from this conceptual approach.
With K drifters there are 2K position observations at a given time point, from which four
parameters must be estimated at each time point. For modestly sized drifter deployments,
this computation runs the risk of producing estimates with no statistical significance.

In general, when selecting between the model hierarchies for all eight mesoscale
parameters {ug, vo,u1,v1,0,0,(,0} then we are faced with an increased complexity of
selecting between reduced permutations of the full specification. Motivated by this,
in Section 4.3 we will introduce methodology for estimating time-varying parameters us-
ing splines, which allows for a natural mechanism from which to build a full hierarchy of
first and second-moment candidate models, as we shall show.

3.4. Selecting between Hierarchies

We have provided a mixed background-mesoscale-submesoscale modelling frame-
work in Equation (2) and a corresponding estimation framework in Section 3.1. Then in Sec-
tion 3.3 we discussed how to estimate parameters using different hierarchies of mesoscale
components in the overall model. The appropriateness of a chosen model in the hierarchy,
for a given set of observational drifter data, can be evaluated by estimating the error
resulting from the fitted model at a given point in time. We argue there is more than one
meaningful way in which error can be computed—and in this section we shall define two
such ways that prove to be very useful in terms of model evaluation.
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3.4.1. Fraction of Variance Unexplained (FVU)

The first method is perhaps the most intuitive. Here we calculate how much variance
remains in the ‘unexplained’ residual submesoscale velocities found in Equation (25).
This value in itself, however, is not a meaningful quantity unless it is presented in reference
to some other quantity. Therefore, to provide a normalised and meaningful metric we
introduce the notion of the Fraction of Variance Unexplained (FVU), which is defined as

Z:S]:tl 25:1 {”lscm(tn)2 + Uim(t”)z}

FVU = ,
I fo_l{ [%(xk(tn) - mx(tn))} g [% (v (ta) — my(tn))]z}

(27)

and hence quantifies the proportion of the variability remaining in the submesoscale
model, as compared to velocities that have only had the centre-of-mass removed (and will
hence still contain second-moment mesoscale effects present in Equation (4)). The FVU will
therefore in general be some value between zero and one. An FVU value close to one occurs
when there is little to no mesoscale component estimated from the data. In contrast, an FVU
value equal to zero means the mesoscale model successfully explains all variability in the
data after the background is removed, and there is no residual submesoscale process left
behind. For mixed mesoscale and submesoscale flow the FVU will be somewhere between
zero and one, and this will vary dependent on the magnitude and number of mesoscale
components present in the model fit.

In Figure 4, in the left column we display FVU values obtained from our simu-
lation setup shown in Figure 1. Specifically, we generate 100 replicated simulations
of each of the four model scenarios shown in Figure 1—diffusivity only, strain+diffusivity,
strain+vorticity+diffusivity (strain dominated), strain+vorticity+diffusivity (vorticity dom-
inated) —where the stochasticity between replicates occurs from simulating submesoscale
velocities from a Gaussian white noise process as in Equation (9). Again, as in LatMix
Site 1, we simulate nine drifters within each simulation with matching initial positions,
but this time we just simulate half-hourly records for one day. We use the procedures
described in Section 3.3 to fit four hierarchies of models to each simulation within each
scenario. Note that we perform a global fit by setting the window length W to be the full
length of the observations (one day). The FVU values are calculated from Equation (27)
and the resulting spread of values across simulations are shown by box and whisker plots
in Figure 4. We also provide the spread of observed FVU values in an oracle case where
the true mesoscale parameters are known.
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Figure 4. FVU (left column) and FDU (right column) for candidate models fitted to trajectories
generated from the four model scenarios from Figure 1. Each subplot here is for a different true
model scenario (the y-axis), and each box and whisker within a subplot provides the spread of
FVU/FDU values from a fitted candidate model (the x-axis). The final box and whisker in each
subplot is using the true mesoscale parameter values. The spread of results is over 100 repeated
simulations using nine drifters sampled every 30 min for one day. The estimated theoretical FVU,
obtained from Equation (28), and the estimated theoretical FDU, obtained from Equation (30), are
overlaid by a red horizontal line in each subplot. Parameters are estimated using the second-moment
fitting method, where results using the first and second-moment fitting method yield near identical
results as 1y = vy = 1y = v; = uP8 = vP8 = 0 in these simulations.

In the figure we have also indicated the estimated theoretical FVU value obtained by
combining the mesoscale variance obtained from Equation (15) for each drifter k (let us
denote this 02 meso (k)) with the submesoscale variance of a white noise process given from
the spectral form of Equation (10) yielding 02 = 4x(1 — 1/K), which is the same for each
drifter, where the (1 — 1/K) rescaling is required to account for moving to a centre-of-mass
@_@‘enee frame. We can then obtain an estimated theoretical FVU value, which we denote
FVU, by taking

o 2
FVU = Tapem : (28)

(%2 o ()} + 02

This an estimated theoretical FVU, rather than an exact solution, because we have
ignored the co-dependence between the mesoscale and submesoscale processes and as-
sumed these variances aggregate separately. The results however indicate remarkable
agreement between theoretical and observed quantities for FVU over all scenarios (except
when insufficient mesoscale parameters are proposed in the candidate model), suggesting
Equation (28) is an accurate approximation for the spatial and temporal scale of the simula-
tion performed.

Overall, the key finding of Figure 4 (left column) is that the FVU helps identify
the correct model in all true model scenarios considered, and correctly estimates how
much of the variance is explained by the mesoscale and submesoscale components in
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agreement with the theory. The addition of a mesoscale parameter which is truly present
significantly reduces the FVU, but adding further unnecessary mesoscale parameters (such
as the divergence which is not present in any of the scenarios) does not significantly reduce
FVU. This diagnostic tool therefore shows utility as a method for detecting the presence
of mesoscale effects on drifter velocities, and for selecting between mesoscale model
hierarchies. We shall scrutinise this further when we apply our procedures to LatMix data
in Section 5.

3.4.2. Fraction of Diffusivity Unexplained (FDU)

The FVU is a measure of how much of the variability of the data remains in the subme-
soscale residuals. However, we argue this is not the only metric with which to ultimately
select from a model hierarchy. First of all, as the residual velocities are being directly min-
imised (along with the background) in the least squares fits of Equations (18)—(22), the more
complex models will generally have a lower FVU than nested simpler models with fewer
or no mesoscale components (as seen in Figure 4). This may lead to over-fitting models
unless parameter penalisation methods are introduced. Secondly, mesoscale processes are
primarily low frequency processes with decaying Lagrangian velocity frequency spectra,
as we showed in Figure 2. Submesoscale processes, on the other hand, will likely have
Lagrangian velocity frequency spectra that are spread across frequencies and concentrated
away from frequency zero. For example, white noise submesoscale residuals will have a
flat spectrum, and an internal wave process, represented by the Garrett—-Munk spectrum
for instance, will have significant energy at the inertial frequency fy, but very small energy
at frequency zero.

For these reasons, we now motivate a second metric with which to evaluate different
model hierarchies. Specifically, we measure the diffusivity of the residual process for each
drifter, and compare this with the implied total diffusivity of each drifter when no mesoscale
is removed. In other words, we compare the variability of the aggregated and submesoscale-
only components in terms of their respective diffusivities, with a view that submesoscale
diffusivity should be much lower than total diffusivity when even a mild mesoscale
component is present (as mesoscale energy is dominant at low frequencies in the velocity
spectra). To quantify this effect we introduce the notion of the Fraction of Diffusivity
Unexplained (FDU), which we define by

t K &
):tfl]:tl Y1 K]Sé?(tn)

FDU = =i ol ,
Yty L K™ ()

(29)

where #}7(t,) has already been defined in Equation (26). &;:2™ (t,) is the diffusivity
for drifter k with only centre-of-mass removed, which is defined by replacing u;™(t)
with & (x¢(tn) — my(ta)) and o3 (t) with 4 (yy(t,) — my(t,)) in Equation (26). The FDU
measures how much diffusivity is present in the submesoscale residual after removing
the mesoscale, as compared to the diffusivity that is observed relative to the centre-of-
mass when no mesoscale has been explicitly removed. An FDU value of zero means
that the submesoscale process has no observed diffusivity, and an FDU of one will occur
when either no mesoscale is present, or the mesoscale does not create any diffusive-type
behaviour on the particles.

We display observed FDU values across our simulations in the right column of Figure 4,
mirroring the simulation setup used for FVU described in Section 3.4.1. The estimated
theoretical FDU values are overlaid by a red horizontal value from computing

o xSm
FDU = : , (30)
{RTiCange 4
where the expected submesoscale diffusivity for all drifters is k3™ = «(1 — 1/K) where again

the (1 — 1/K) rescaling is required to account for moving to a centre-of-mass reference
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frame. We obtain «}'?* by taking 1/4 of the zero-frequency value from Equation (17) (as per
the definition of Equation (8)). Similarly to Equation (28), Equation (30) is an estimated
theoretical FDU because we are assuming independent dispersion caused by the mesoscale
and submesoscale. Nevertheless, Figure 4 indicates consistent agreement between observed
and theoretical FDU values (when the correct model is fitted), highlighting the accuracy
of this approximation.

The main finding of the FDU analysis in Figure 4 is that the mesoscale explains
significantly more of the total diffusivity than the total variance. This is as expected
because of the low-frequency nature of mesoscale processes (see Figure 2) and highlights
the usefulness of computing FDU values to test for mesoscale presence. In all cases we
can see that FDU analysis reveals the correct generating mesoscale model even better than
FVU does. We shall further use this diagnostic method of assessing model fits with LatMix
data in Section 5.

4. Uncertainty Quantification and Capturing Temporal Evolution
4.1. Uncertainty Quantification

We now provide a method for estimating the uncertainty of parameter estimates when
applied to observational datasets. In a simulation setting, uncertainty estimates can be
obtained by repeating experiments several times stochastically or with different initial
conditions, but this cannot be done in the real world where clustered drifter deployments
are scarcely repeated in the same region of the ocean, and will likely be measuring different
mesoscale and submesoscale features each time.

Instead, we resort to the bootstrap, which resamples the observed data in such a way as
to provide a population of different datasets with which to measure uncertainty. Specifically,
the bootstrap is implemented by taking a random sample of K trajectories from the K
drifters with replacement, such that the same trajectories may be selected multiple times
as if they were different drifters. Then the mesoscale parameters are estimated for this
random sample of trajectories. Let us denote any one of these parameter estimates as py.
The process is then repeated B times, every time randomly resampling a set of K trajectories
with replacement, such that we obtain B parameter estimates {p1, ..., pp}. These replicated
bootstraps can be used to form quantiles which then provide confidence intervals for the
parameter of interest, often set to values such as 90% or 95%. Alternatively, we can also
estimate the standard error of §, the parameter estimate for p, by measuring the sample
standard deviation of p; given by

1/2
SE5(p) [B 1%{ ) - P }Z] , (31)

i=1

where () = 5 T2 p(7)-
In F1gure 5 we show a histogram of bootstrap parameter estimates for {c,0,{},

with a red vertical line at the true value, and a blue vertical line showing the average
bootstrap estimate. The purpose of this simulation is simply to show that bootstrap param-
eter estimates are centred at their true values and symmetrically distributed, despite the fact
that drifter trajectories are sampled with replacement. We found this to be a consistent
feature across different true parameter values and simulation settings.
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Figure 5. Histogram of bootstrap parameter estimates for strain rate, strain angle, and vorticity,
over 100 repeated simulations where B = 100 for each simulation, thus obtaining 10,000 total boot-
strapped parameter values. The trajectories are generated as in Figure 1 in the strain-dominated
model for 1 day, and the parameters are estimated using the second-moment fitting method. Any boot-
strap estimates outside the range of the x-axis are placed in the limiting visible bar in the histogram
on each side. The red vertical line is the true parameter value, and the blue vertical line is the average
bootstrap estimate.

Next we establish that the bootstrap estimate for the standard error of parameter
estimates, given in Equation (31), agrees with standard errors of parameter estimates
observed from repeated simulations. In Table 1 we compare simulated and bootstrap
standard errors for two experiments: the strain-only and the strain-dominated simulations
of Figure 1. The standard errors from simulations are across 100 repeated simulations,
but the bootstrap standard error approximation is just from 1 simulation of drifters each
time (as we would have with real data). Despite this, the average bootstrap standard
error estimate is very close to the standard error from repeated simulations (with the
standard deviation of the bootstrap standard error accounting for any difference). Notice
also that the bootstrap standard error estimates are usually conservative, which is better
than the converse, and correctly increase when more parameters need to be estimated. This
demonstrates the accuracy of Equation (31) in estimating the standard error of parameter
estimates obtained from Equation (21). We will make use of the bootstrap in the analysis of
LatMix data in Section 5.

Table 1. Observed standard errors from simulation, and average bootstrap standard error estimates
from Equation (31) (where B = 100), over 100 repeated simulations, for both the strain-only and strain-
dominated simulations of Figure 1 over 1 day. We also provide the standard deviation of bootstrap
standard error estimates across the 100 simulations, as indicated after the &= symbol.

o (s71) x 10° 0 (°) C(s™1) x 100
Strain-only
Simulation
Simulated 1.17 6.68 N/A
Bootstrap 1.32+0.365 6.29 +£2.47 N/A

Strain-dominated

Simulation
Simulated 1.22 6.78 1.61
Bootstrap 1.55 4+ 0.459 8.08 +3.43 1.94 +0.572

4.2. Time-Evolving Parameters Using Rolling Windows

To estimate the temporal evolution of mesoscale features across a drifter deployment
we allow the mesoscale parameters to evolve over time. In this section we first introduce
a simple method for doing so where we use a rolling time window of width W and estimate
the parameters {uo(tn), vo(tn), 1(tn), v1(tn), 6(tn), C(tn), on(tn), os(tn)} in Equation (20)
over time using velocity observations contained in the interval [%xk (ta— %), %xk (tn + )]
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and [Lyi(tn — %), Sy (tn + %)) using the exact approach outlined in Section 3.1, repeated
at every observation time-step ¢, in the experiment.

In general, the window width parameter W should be chosen to be large enough
to ensure we have reduced variance and statistically significant estimates of each mesoscale
parameter, but not so large that resolution is lost from over-smoothing. To examine this
effect we display simulated trajectories in Figure 6 which exactly follows the strain-only
simulation from Figure 1, except that the strain rate parameter now decreases linearly
by a factor of 10 across the length of the 6.25 day simulation, and we have increased x
to 0.5m?/s. We then use the second-moment fitting method with the strain-only model
over rolling windows with three choices of W (6-hours, 1-day, or 3-days). In Figure 7 we
display the time-varying strain rate estimate over time from the data in Figure 6, alongside
the standard error of this estimate over time (obtained over 100 repeated simulations).
With this increased diffusivity, the inherent trade-off with the rolling-window method
becomes apparent. Long window lengths provide low uncertainty, but the parameter
estimates are only provided in the temporal centre of the experiment (and would be biased
if extended outwards). Short windows, on the other hand, provide variable estimates
with large standard errors that exceed half the parameter value, as we see on the right
panel—meaning such estimates cannot be statistically distinguished from zero in a “two
sigma” sense. A daily window length is perhaps the most appropriate balance here.

. 77 BRI N
~——— 7 T = 2’wr§£3~f NN
7 2 7 t ,Ll“\x\\\\\
R s B NN ooz
= I ~fk‘~\\.\\\\\ -
Sttt R TR R EE R R R RN f 5
ekt 4;‘;//; X S
oo < 07770077 M
A 555501 Y
RS BEERE
////? _175///%2;‘ “ ;fzri
VA A A //??‘i—/’ | TA»;
YAV AV VAV ?;/?/ ! f‘i;l
R cias SEREEEE
‘ ‘ ' ' . : -2 s NP
10 20 30 40 50 60 2 0 2
km km

Figure 6. Simulation of nine drifters using the identical configuration of Figure 1 (strain only)
except that the strain rate changes linearly across time from ¢ =1 x 107> /sto o = 1 x 107%/s and
x = 0.5m?/s. The left panel displays drifter positions. The right panel displays drifter positions
with respect to their centre-of-mass. The quiver arrows indicate the velocity field at the beginning of

the simulation.
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Figure 7. The left panel shows rolling-time window estimates of the varying strain rate from the
data presented in Figure 6 over three choices of window lengths using the second-moment fitting
method. The right panel shows the standard error of these time-varying estimates over 100 repeated

simulations, plotted against the true value of /2.

Motivated by these challenges, we shall shortly provide a more principled approach to
generating smoothly-evolving parameter estimates using splines in Section 4.3. Before do-
ing so, we present results of a large simulation analysis which we will use to guide our
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window length selection choices in the LatMix experiment. Specifically, in Figure 8 we
plot a heatmap of standard errors in strain rate estimation, over a grid of values of true
constant strain rate, ¢, and estimation window length, W. We repeat the analysis for a low
diffusivity x = 0.1 m?/s and high diffusivity setting x = 1 m?/s. Otherwise the settings
are the LatMix-type settings used in Figure 1, using nine drifter trajectories with matching
starting locations. The standard errors are in units of the true strain rate, and we have
marked with a red line the point at which the standard error is approximately equal to half
the true strain rate. The way in which this plot should be interpreted is that for a given
strain rate (and diffusivity), the window length should be at least as long as the red line
marking the point at which estimates become statistically significant. For example, higher
diffusivities, or lower strain rates, will require longer windows with which to estimate the
parameters significantly. We focus on strain in these simulations, as this was found to be
the most pronounced mesoscale effect in the LatMix analysis that follows, but this analysis
could be repeated with other mesoscale parameters to inform window length selection for
other drifter deployments. In Appendix A we perform a brief sensitivity analysis of these
results for varying numbers of drifters and initial deployment configurations, to help
generalise our findings to wider settings.
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Figure 8. Estimated standard errors for the strain rate (in the units of the true strain rate) across a
dense grid of fixed strain rate values ¢ and window lengths W in a strain-only simulation mirroring
the setup in Figure 1. In the left panel we have set x = 0.1 m?/s and in the right x = 1 m?/s.
The strain rate estimates are obtained using the second-moment fitting method of a strain-only
model, and the standard errors are obtained over 100 repeated simulations. The standard errors
in the heatmap are upper-bounded by 0.9 for representation purposes. We draw a red line where the
standard error is approximated to be half the true parameter value for each value of the strain rate.

4.3. Slowly-Evolving Parameters Using Splines

To generalise the idea of time windowing to estimate the mesoscale parameters, we
represent the parameters as coefficients as a finite sum of B-splines,

M

o(t) = Y "B (1), (32)

m=1

where M is the total number splines over the experiment window and 0™ are the M
coefficients. A B-spline (or basis spline) of degree S is a local piecewise polynomial that
maintains nonzero continuity across S knot points placed at times 7;. These knot points
define the extent of the B-splines, and therefore let us choose an effective window length for
parameter fluctuations. The lowest degree (S = 0) splines are boxcar functions between the
knot points, and are thus identical to non-overlapping windows in Section 4.2. At degree
S =1, B-splines are triangle functions that span two knot points, thus providing continuity
in time as well as a piecewise first derivative. This generalises to higher degrees, where a
B-spline of degree S has S non-zero derivatives, as reviewed in [11]. The key benefit to this
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approach is that we can allow for time variation in the parameters while simultaneously
choosing an effective window length—all while adding only a few coefficients to the model.

To extend the estimation method presented in Section 3.1, we now require M coeffi-
cients for each of the p parameters, resulting in pM total coefficients to estimate. Rewriting
vector A from Equation (20) we have that

/ (33)

pMx1

where each coefficient, e.g., u{', is a column vector of the M B-spline coefficients (we will
shortly discuss why u; and v; can be dropped here). The data matrix X correspondingly
expands from p to pM columns,

OxN Oxn Xk (tn) B" () Gi(tn)B™ (tn) G(tn)B™(tn)  Zx(tn)B™(tn)
1| oOxy Okn  —Tk(ta)B™(tn)  Xic(tn)B™ (tn) (t )B™(tn)  Fk(tn)B™ (tn) (34)
2 |2B™(ty) (\JN; 1ty (£,) B™ (1) my(tn)Bm(tn) frhy( n)B™(ty) 1y (ty)B™(ty) |’
On  2B™(tn) —1iy(tn)B™(tn) 1ix(tn)B™(tn)  1x(tn)B™ (tn) 1ty (tn) B™ (tn)
2(K+1)NxpM

where each column is repeated for each of the M B-splines. Note that, because the B-splines
are local functions, the resulting matrix may be relatively sparse.

Parameter estimation is as before, but Equation (23) for the mesoscale flow is re-
placed by,

{u?‘“" (tn)]

vkrneso ( tn )

ém} {(xk(tn) — X0)B" (tn)
oM — ot | | (yk(tn) —yo)B™(tn) ]

The background flow and submesoscale flow are still recovered using Equations (24)
and (25), respectively.

One of the advantages of using B-splines is that the model hierarchy is simplified.
Figure 9 shows the complete model hierarchy that includes the first and second-moment
fitting method, unlike Figure 3 which only showed the hierarchy for the second-moment
fitting method. The key simplification is that with B-splines we can drop (11, v1) from X
when going from Equation (20) to Equation (34), since time dependence is encoded in the
B-spline estimates for (1, vp). Choosing the appropriate model from Figure 9 proceeds
exactly as in Section 3.3, but with the additional caveat that one must choose the spline
degree S and the number of splines M. With the restriction that the spline degree S < M,
a reasonable upper bound is S = 3, the cubic spline. The number of splines M can be
chosen by assuming a minimum window length (as discussed in Section 4.2), treating the
centre of each window as a data point, and then applying the formula for the canonical
interpolating spline in [11]. To compute this explicitly, assume a time series of length
T, with minimum window length W, then this results in a total of M = max(|T/W],1)
evenly sized windows of minimum length. Now apply Equations (7) and (8) in [11] using
pseudo points at {t,t; + T/M(j —1/2),ty} where j = 2,..., M — 1. When the drifters
are evenly sampled in time, this will result in M splines that each have support from the
same number of data points, and each data point will intersect S + 1 splines. As a result,
there is really only one parameter to adjust: the effective window length or, alternatively,
the number of splines M. Because setting M = 1 exactly reproduces the approach in
Section 3.1 using fixed parameters, the freedom for parameters to vary over time can be
systematically increased by increasing M.

_ % ull B (t,)] | 1fom +6m o —
o 2|0+ 0™

L | (t,) (35)
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Figure 9. Hierarchy of first and second-moment mesoscale models where p indicates the number
of parameters. A model with increased complexity is used only if it explains significantly more
variance than the lower complexity model. Models with fewer parameters are favoured when
a choice must be made.

Quantifying uncertainty with spline solutions requires a modification to the approach
in Section 4.1. This is because the resulting bootstrapped parameter estimates are no
longer pointwise estimates of each parameter, but rather time-varying global solutions.
This means that computing the mean of each mesoscale parameter at each instant in time
will not, in general, result in a valid solution since each solution is a global fit to the
data. As a result, rather than considering a mean value from bootstrap solutions, as in
Figure 5, we must establish the most likely bootstrap solution. Applying the bootstrap B
times results in B continuous time varying model solutions of the parameters. Thus, we
compute the most likely solution (of the B solutions) from an estimated joint probability
distribution function (PDF). Specifically, for each estimated parameter in the model, we
use a kernel density estimator to estimate a PDF from the bootstrap replicates for each
parameter at each point in time using the methodology in [20]. For example, at time t, we
estimate a one-dimensional PDF P (t,, {) using the B bootstrap parameter estimates for
¢ and a two-dimensional PDF pgn,gs (tn, 7t (tn), G.b (tn)) for 0y, 0s. The likelihood of each
path is then found with

N
L(6", 5%, 8%) = T Poro (b, 00" (£0), 858 (8)) - Py (£, 8 (1)), (36)

n=1

where, in practice, we include probabilities from all estimated parameters. The most likely
solution is that with maximum L, where confidence intervals are similarly calculated by
including the Y percent of the B most likely solutions.

5. Application to the Latmix Experiment

The lateral mixing (LatMix) field campaign of 2011 [1,21] deployed drifters and dye
with the aim of understanding what causes mixing at the submesoscale, and how this
varies both spatially and temporally. The experiment consisted of two drifter deployments
in the Sargasso Sea, where the drifters were deployed in a cluster. The first deployment,
which we refer to as 'Site 1’, consisted of nine drifters tracked for 6.1 days in an area of low
strain, and the second deployment, 'Site 2’, consisted of eight drifters tracked for 6.3 days
in an area of moderate strain. There has been a large amount of interest and research from
the experiment, e.g., [22].

In Figure 10 we plot the drifter trajectories for each site both in terms of their {x,y}
positions, but also with respect to the time-varying centre-of-mass across drifters. The effect
of the mesoscale, especially strain, can already be seen visually by inspecting this plot,
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both in the absolute and centre-of-mass reference frames. There are also possible signs of
divergence in Site 1 (the drifters spreading in a non-random way), and vorticity in Site
2. We will now inspect this in more rigorous statistical detial using the methodology of
this paper.
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Figure 10. LatMix trajectories of Site 1 (nine drifters) and Site 2 (eight drifters). Top row are
the positions in {xx (), yx ()}, bottom row are relative to centre-of-mass {x(t), 7x(t)} = {xx(t) —
LYK (1), e (t) — £ 2K, yx(t)}. The black and red star in the top row of plots indicate the re-
spective starting and ending centre-of-mass positions. {0,0} in the {x,y} components corresponds to
{—73.0234,31.7424} degrees longitude-latitude for Site 1 and {—73.6776,32.2349} degrees longitude-
latitude for Site 2.

5.1. Fixed Mesoscale Parameter Estimates

We first fit fixed (i.e., non-time-varying) mesoscale parameters to Equation (4) at
each site using the second-moment fitting method described in Section 3. We present
the results in the top half of Table 2 using several model hierarchies. For each model
hierarchy we present the estimated mesoscale quantities, and the resulting submesoscale
diffusivity. We also present FVU and FDU values (Equations (27) and (29) respectively) to
assess model fit, where we remind the reader that lower values correspond to model fits
with reduced error. To select the best model we use the conceptual approach illustrated
earlier in Figure 3.

For Site 1 we see reasonable evidence for adding the parameters {¢, 0} ahead of vor-
ticity ¢ or divergence ¢, as this creates the lowest FDU values thereby creating low sub-
mesoscale diffusivities of x ~ 0.2m? /s, as reported in [1]. Next, we follow the hierarchy
and consider adding vorticity or divergence to the strain. Here we see little evidence for
vorticity, but some for divergence, with a marginal reduction in the FDU value for the latter.
Finally, just for completion, we show the full hierarchy. While this full hierarchy will always
yield the lowest FVU compared to all simpler models (as this is the objective function being
minimised)—the FVU value does not appear to drop significantly, and the FDU value has
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in fact increased, suggesting this to be an overfitted choice if we are only selecting among
fixed mesoscale parameters.

For Site 2 we see mixed evidence for either initially adding divergence or strain,
but the vorticity-only fit performs poorly and in fact adds diffusivity as compared to raw
centre-of-mass velocities. As divergence is only one parameter (vs two for strain), we
would normally proceed this way down the hierarchy using Figure 3. However, as we shall
see when we account for time-variation in the mesoscale parameters, there will be more
evidence for a strain-only model than a divergence-only model, therefore for comparison
we follow this route down the hierarchy. When considering adding vorticity or divergence,
then now there is interestingly more evidence for vorticity, with reduced FVU and FDU
values. Overall however, we note that diffusivity values are much larger at Site 2 using
fixed parameters, with ¥ ~ 2m?/s. This is likely due to the presence of time-varying
mesoscale features not being account for, as we shall now explore.

Table 2. LatMix submesoscale diffusivity estimates and associated FVU and FDU, estimated over
candidate models in the hierarchy at each site using either fixed, rolling window, or spline parameter
estimates. For fixed estimates we also show the mesoscale parameter estimates (scaled by the inertial
frequency, fp). The fixed and rolling-window estimates use the second-moment fitting method,
whereas the spline estimates uses the first and second-moment fitting method.

Fixed Estimates (Site 1)

model ¢ (fy) 0(°) {(f)  6(f) x@m/s)  FVU FDU
{C} 0 0 —0.000137 0 0.974 1.000 1.001
{6} 0 0 0 0.0493 0.361 0.983 0.371
o {o0} 00591 278 o o 0.188 0976 0193
{c,0,(} 0.0785 —15.3 —0.0443 0 0.229 0.971 0.235
_ o606} 00489 = -256 0 00137 0174 0976 0179
{0,0,7,6} 0.0711 —-122 —0.0443 0.0137 0.216 0.971 0.221
Fixed Estimates (Site 2)
model 7 (fo) 6 (°) ¢ (fo) 6(fo)  x(m?/s) FVU FDU
{C} 0 0 0.00613 0 4.011 0.999 1.000
{0} 0 0 0 0.0125 1.886 0.997 0.470
__le,8} __00131  -670 o o 1906 09% 0475
{c,0,(} 0.0642 78.0 0.0650 0 1.950 0.985 0.486
_Ae88} 00107 679 0 000258 1874 096 0467
{0,6,,6}  0.0637 77.0 0.0650 0.00258 1.919 0.985 0.478
Rolling Estimates (Site 1) Rolling Estimates (Site 2)
model K (m?/s) FVU FDU Kk (m2/s) FVU FDU
{C} 0.995 0.992 1.022 2.924 0.872 0.729
{6} 0.325 0.974 0.334 2.341 0.838 0.584
__to,6} __018 091 __ 018 _________ 1680 0710 0419
{c,0,(} 0.282 0.937 0.290 0.825 0.675 0.206
_Ae8d} 0147  0%6_ 0151 1758 0704 0437
{0,6,7,6} 0.248 0.941 0.255 0.722 0.669 0.180
Spline Estimates (Site 1) Spline Estimates (Site 2)
model Kk (m?2/s) FVU FDU K (m?/s) FVU FDU
{C} 1.742 1.025 1.791 3.059 0.973 0.697
{06} 0.342 0.983 0.352 3.438 0.831 0.783
__te,8} __0178 0976 018 _________ 2118 087 0483
{c,0,(} 1.433 0.997 1.473 1.041 0.808 0.237
{0,0,5} 0.159 0.974 0.163 2.501 0.783 0.570

{0,0,0,5} 1.446 0.996 1.487 1.466 0.770 0.334
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5.2. Time-Evolving Parameters Using Rolling Windows

We now apply the rolling-window estimates using the second-moment fitting method,
as discussed in Section 4.2. To pick a suitable window length W, we see from Table 2
that diffusivity scales as order 0.1—1 m?/s, and the strain rate when converted to days
is approximately 1/3 days. Therefore, using Figure 8 as a guide we choose a window
length of W = 1 day (corresponding to 49 observations over 30 min sampling intervals
for each drifter). This choice also coincides approximately with the inertial and diurnal
periods meaning inertial oscillations and tides will be relatively close to zero mean within
the window, thus being closer to satisfying the zero-mean assumption of the average
submesoscale residuals across drifters made in Equations (2)-(4).

Within Table 2 we provide the estimated submesoscale diffusivity, and FVU and FDU
error metrics, using rolling one-day windowed mesoscale parameter estimates for each
hierarchy. As expected, the FVU decreases everywhere (as more parameters are being
fitted) in comparison to the fixed-parameter fits. The FDU values, on the other hand,
decrease in some but not all cases, providing mixed evidence for time-variation. We notice
the reductions in FVU and FDU are most pronounced for Site 2, indicating this is the
site most likely to have a time-evolving mesoscale. Overall, there is now evidence for
a time-varying strain-vorticity model. Including divergence is now a less favourable choice
than with the earlier analysis with fixed estimates.

In Figure 11 we display some examples of the time-varying parameter estimates using
this approach. In the top panels we show the strain rate over time at each respective site
using a strain-only model, where the evidence for temporal evolution at Site 2 is clear.
We overlay bootstrap trajectories of these time series (as well as the fixed parameter esti-
mates from Table 2) which indicates this variation appears significant at Site 2, but largely
not at Site 1. Furthermore, the low values for strain rate of ~0.01fj in the fixed-parameter
estimate appears to be a misfit due to model misspecification from not allowing time-
variation. The values for the strain rate are now larger at Site 2 than at Site 1 when allowing
time evolution, as expected. In the bottom panels we show the time-varying strain rate and
vorticity estimates using a strain-vorticity model. Again there is evidence for time-variation
which we will explore further with spline fitting.

Although the parameter estimates obtained using rolling windows are overfitted
and not slowly varying, these fits however provide an extremely useful lower bound,
in terms of interpreting estimated submesoscale diffusivities and FVU/FDU values. This will
help guide the implementation for modelling time-variation more smoothly using signif-
icantly fewer parameters in the spline methodology that follows. In contrast, the fixed
parameter estimates provide a useful upper bound on diffusivities and FVU/FDU values,
as this approach is the most parsimonious.
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Figure 11. Fixed (red) and time-varying (blue) parameter estimates, where the latter are generated
with a one-day rolling window using the second-moment fitting method. Top-Left: strain rate
estimates with the strain-only model (Site 1). Top-Right: strain rate estimates with the strain-only
model (Site 2). Bottom-Left: strain rate estimates with the strain-vorticity model (Site 2). Bottom-
Right: vorticity estimates with the strain-vorticity model (Site 2). 100 bootstrapped time-varying
trajectories are shown in grey in each subplot.

5.3. Slowly-Evolving Parameters Using Splines

We continue our analysis of the LatMix data by fitting time-evolving mesoscale
parameters using the splines approach defined in Section 4.3. We will use the full first and
second-moment fitting method allowing us to make a complete decomposition of the flow
at both sites into background, mesoscale, and submesoscale components.

First, in Figure 12 we compare estimates of strain rate between the second-moment
and the first and second-moment fitting methods during the first two days of the LatMix
Site 1 experiment. This particular window has relatively low strain rates that may not be
distinguishable from zero, as seen in the top-left panel of Figure 11. Using the bootstrap
estimates and a kernel density estimator, the left panel of Figure 12 shows the distribution
of strain rates using the second-moment fitting method. While the peak of the distribution
is consistent with the strain rate estimated over the entire six day experiment, the 90%
contour of the distribution includes an enormous range of strain rates, including zero.
In contrast, by including the first-moment as part of the fitting method, the right-panel
of Figure 12 shows a narrower range of strain rates that do not include zero. Thus, at least
in this example, the combined first and second-moment fitting method provides more
robust estimation than the second-moment fitting method by including extra information
in the fit.
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Figure 12. Distribution of strain rate parameters estimated for the first two days of the LatMix

experiment at Site 1. Contours indicate the percentage of samples enclosed. The left panel shows

estimated strain rate parameters using only the second-moment fitting method, where the right panel

shows estimates using the first and second-moment fitting method.

In Figure 13 we display the time-evolving parameter estimates at Sites 1 and 2 using
a strain-only and strain-vorticity model respectively. We overlay confidence intervals
obtained using the bootstrap procedure outlined in Section 4.3. The time evolution of the
strain-vorticity parameters is clear at Site 2, where all three mesoscale parameters {c, 6, { }
are seen to change in a smooth fashion across the 6 days. In contrast, at Site 1, evidence
of time variability for the strain rate is less clear, as the estimate of constant strain rate
(dashed-line) fits entirely within the confidence intervals. Figure 13 also shows estimates
of {up, vo}, but their particular values are not directly interpretable, as they depend on the
location of the expansion point, {xg, o }. Instead, from Equation (3), it can be seen that they
contribute to the mesoscale description of the flow at the location of the centre-of-mass.

We include the submesoscale diffusivity estimates, as well as FVU and FDU values,
in the bottom portion of Table 2, along with comparison values from a hierarchy of models
at each site. What we observe is quite remarkable: we can achieve FVU and FDU values
that are very close to the rolling window estimates, despite using significantly fewer
parameters to describe the evolution of the mesoscale velocity field. The evidence from
Table 2 continues to support the choice of a strain model at Site 1 (with minor evidence for
the additional presence of divergence), and a strain-vorticity model at Site 2. The estimated
submesoscale diffusivities after performing the fits are around x = 0.2 m? /s at Site 1 and
x = 1.0 m?/s at Site 2, nearly an order-of-magnitude difference.
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Figure 13. Parameters of the spline based strain model fits to Site 1 (left panel) and strain-vorticity
model fits to Site 2 (right panel) using the first and second-moment fitting method. The most likely
solution is highlighted, with 90% and 68% most likely solutions shown in grey and dark grey,
respectively. The models are fit using four degrees of freedom per parameter with the splines shown
in the bottom row.

Finally, we complete our analysis of the LatMix data by using the spline fits of Figure 13
to decompose the flow into the three components of our conceptual model of Equa-
tion (1)—background, mesoscale, and submesoscale—and then integrate over time to
construct an implied set of drifter trajectories for each component. This is displayed
in Figures 14 and 15 for Site 1 and Site 2 respectively. We have also included the mesoscale
component in centre-of-mass coordinates. We observe that the mesoscale components
meander in the fixed reference frame and follow the observed particle paths explaining
most of their displacement and explain some of the spreading in the centre-of-mass frame.
This can be seen by directly comparing Figures 14 and 15 with Figure 10. The submesoscale
components are random-walk like and broadly resemble a diffusive process. The back-
ground components contain inertial oscillations and tides which create looping trajectories
with roughly daily periodicity.



Fluids 2021, 6, 14

28 of 34

35+
meso (centre-of-mass)

30

251

20 -

km

o s 10 1 2 s 4 5 o 05 1 15 2 G e o o5
km km km

Figure 14. Decomposition of the flow at LatMix Site 1 using the strain-only model fitted with splines
using the first and second-moment fitting method. The left panel shows the the mesoscale solution in
the fixed coordinate reference frame (compare to the upper-left panel of Figure 10). The centre panel
shows the same solution in the centre-of-mass frame (compare to the lower-left panel of Figure 10).
The top-right and bottom-right panels show the path-integrated background and submesoscale
flow, respectively.
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Figure 15. Same as Figure 14, but for LatMix Site 2 using the strain-vorticity model. The mesoscale
solution in fixed frame can be compared to the upper-right panel of Figure 10), and the mesoscale
solution in centre-of-mass frame can be compared to the lower-right panel of Figure 10.

Figure 16 shows the Lagrangian spectra of the background flow, the mean (across
drifters) of the mesoscale flow, and the mean (across drifters) of the submesoscale flow,
for Sites 1 and 2 respectively. A number of features standout in Figure 16. The Cori-
olis frequency is almost exactly the diurnal frequency at this latitude, and this has the
effect of creating a relatively substantial peak of energy on the anticyclonic side of the
spectrum of the background flow at Site 1, with no corresponding peak on the cyclonic
side. This means that the oscillation is anticyclonic and nearly circular. Furthermore,
the semi-diurnal tide appears primarily on the cyclonic side, although with some energy
on the anticyclonic side. The background flow at Site 2 shows significantly more power,
especially at lower frequencies and also has a strong inertial signal. The mesoscale flow
at Site 2 is much stronger than Site 1, as expected.
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Figure 16. The top and bottom panels show the power spectra of the decomposed flow for Sites 1
and 2, respectively. The spectra shown are the spatially homogeneous background flow ub8 (black),
the average of the mesoscale component of the flow u™*° (blue), and the average of the subme-
soscale component u®™ (magenta). Anticyclonic oscillations are indicated by negative frequencies
and cyclonic oscillations by positive frequencies. The vertical lines indicate the semi-diurnal tidal
frequency and the inertial frequency on the positive and negative side, respectively.

If the drifters were governed by the stochastic model given with Equation (9), then re-
moving the effects of the strain in centre-of-mass coordinates would reveal a submesoscale
signal given by increments of the Wiener process. The Lagrangian power spectrum would
show a (flat) white noise process. However, Figure 16 shows that the submesoscale spectra
from both Site 1 and 2 have significantly more structure. The spectra are characterised
by low power at sub-inertial frequencies, roughly an order of magnitude more power on
the anticyclonic side than the cyclonic side at near inertial frequencies, and a decay of
power at higher frequencies. In our subsequent paper we will argue that these spectra are
consistent with the spectrum that one would expect from internal waves.

6. Discussion and Conclusions

The separation in Equation (1) is a compelling conceptual model, based on the ideas
of non-local spreading in turbulence theory—but is the separation actually doing something
useful in practice? This idea can be tested by considering the cross-terms in the total energy
of the model, as was done in [23]. Specifically, the cross terms in the kinetic energy equation,

2 2 2 2
UWiotal = Upg + Uheso T Wsm +2 (ubgumeso + UmesoUsm + ubg“sm) ’ (37)

should remain small if this is truly an orthogonal linear decomposition. To assess this quan-
tity we compute the coherence between the complex submesoscale signal and the complex
mesoscale signal in the centre-of-mass frame, as shown in Figure 17. The results show
remarkably low coherence (O(0.1)) at Site 1, across all frequencies, suggesting no relation
between the two signals. In contrast, Site 2 does show more coherence between the two sig-
nals, likely reflecting the challenges of the separation in time-varying conditions. Despite
this, the average coherence across frequency bands is ~0.2, suggesting the decomposition
is successfully separating two mostly distinct signals. The validity of this separation can be
made precise using the methodology that unambiguously separates waves and geostrophic
motions at each instant in time in an Eulerian reference frame [24].
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Figure 17. Coherence between the mesoscale signal in the centre-of-mass frame and the submesoscale
signal at Site 1 and Site 2, using the disentangled velocities corresponding to the trajectories shown
in Figures 14 and 15 respectively.

One of the key strengths of this methodology is how few parameters are needed to
estimate the mesoscale parameters and perform the decomposition. For example, at Site 1
there are N = 294 observations of position from K = 9 drifters, resulting in 2NK degrees-
of-freedom. The second-moment fitting method uses 2N degrees-of-freedom to remove
the centre-of-mass. Using a single window across the entire time series to estimate the two
parameters in the strain model, such as Site 1 which is well described by a single set of
strain rate parameters across the entire window, leaves 2N (K — 1) — 2 degrees-of-freedom
to describe the submesoscale flow. In contrast, daily rolling windows with Ny, = 49 points
(corresponding to one day) that estimate strain rate parameters at each of the N — Ny time
points, leaves only 2N (K — 2) + 2N}y degrees-of-freedom to describe the submesoscale
flow. As is evident in Figure 11, these extra degrees of freedom capture time-variability
in the parameters that may not be appropriate. Finally, the spline fits require estimating
M coefficients per mesoscale parameter, and thus the spline based time-varying fits leave
2N(K — 1) — 2M degrees-of-freedom to describe the submesoscale flow using the second-
moment fits. With M = 4 sufficient to capture any time variability at Sites 1 and 2, this
approach uses remarkably few parameters to perform this estimation. The benefit of which
is that the decomposed submesoscale trajectory will contain rich statistical information
with which to do further Lagrangian analysis.

As discussed in the introduction, we view this works as complementary to that of [3,10]
who recently developed a method for projecting clustered drifter trajectories to local
Eulerian velocity fields using Gaussian Process regression. The ultimate goal of [10] was to
compute horizontal velocity gradients with which to better understand vertical transport.
The method was applied to the CALYPSO an LASER drifter deployments. Applying
our method to these datasets is a natural avenue for further investigation. More broadly
speaking, what our method provides to complement [3,10], is not the Eulerian velocity field,
but rather the Lagrangian decomposition of the trajectories into various components. This
allows us to extract the specific submesoscale component from the trajectory for further
analysis within the Lagrangian setting. This allows for the estimation of submesoscale
diffusivity, which is not a topic covered in [3,10]. However, there is certainly scope to merge
and compare our methodologies, particular because the constructed Eulerian velocity field
can be directly compared with the mesoscale parameters we estimate locally over time
(and hence space) using our slowly-evolving spline fits. Again, this is certainly a topic that
warrants further investigation. We also see potential for our work to naturally follow-on
from the recent methodology developed in [25] who identify clusters of drifter trajectories
that share coherent structures. For example, such clustering could be used to divide larger
deployments into smaller clusters, after which our method can then be applied to each
cluster to separate flow components within coherent structures.
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Appendix A. Sensitivity Analyses

In this section we include some supplementary simulation findings which investigate
the sensitivity of the results with respect to the number of drifters in the cluster, as well
as the cluster morphology (i.e., the spatial distribution of the initial deployment config-
uration). Our simulation results in the main body of the paper are using nine drifters
configured to start as at Latmix site 1—and we used these results to motivate and help
interpret our real data analysis of the Latmix data. In other drifter deployments however,
the number of drifters and the configuration will vary, and we now investigate what impact
this may have.

First we vary the number of drifters K. In Figure A1 we report the relative standard
error of mesoscale parameters in the strain-dominated simulation of Figure 1. We have
included a reference line that scales as 1/+/K which is the asymptotic limit we expect
to see standard errors reduce by according to the central limit theorem. For this simula-
tion environment we see that the scaling behaviour is approximately correct for K > 5.
We emphasise that in practice this scaling behaviour will not apply to real deployments.
Here we have simulated drifters that experience independent submesoscale errors across
drifters, which is an idealised scenario. In reality an increasing number of densely packed
co-located drifters will experience correlated motions thus eventually limiting the amount
of information that can be gained by adding more drifters to a cluster. Nevertheless,
the simple rule from the observed scaling behaviour is that one must have approximately
four times as many drifters to reduce the standard error by a factor of two.
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Figure A1. Relative standard error of stain rate, strain angle and vorticity over 100 repeated simula-
tions for a varying number of drifters K. The simulation setup is as in Figure 1 in the strain-dominated
model with trajectories simulated for 1 day. The initial drifter positions are sampled isotropically
with expected distance to centre-of-mass fixed over all experiments to be identical to Latmix Site
1. Relative standard error is computed by dividing the observed sample standard error by the true
parameter value. Therefore in this experiment we require approximately three drifters in the cluster
before the standard errors are approximately half the true parameter value (and hence significantly
non-zero).

We now vary the cluster morphology in our simulated environment. In Figure A2
we consider two classes of configurations. In the left panel we will contrast Latmix Site
1 configurations (in blue dots) versus two other deployment configurations: one that is
parallel to the true strain angle (red dots), and another that is orthogonal to the true strain
angle (green dots). To see how this affects parameter estimation we repeat the analysis
of Figure 8 to find the required window length to get significant estimates of the strain
rate over a range of true strain rate values—these are displayed for each configuration
in the left panel of Figure A3. We see that the required window length is significantly
reduced when the configuration is aligned parallel to the strain angle (red drifters), and con-
versely the required window length is increased when this is orthogonal (green drifters).
The results with the Latmix configuration, which is more isotropic, are sandwiched in
between. This analysis shows that in a strain-only field (with no vorticity or divergence),
then the optimal morphology is to align drifters along the expected strain angle—but more
investigation is needed to understand how the optimal configuration may change in the
presence of vorticity and/or divergence, as well as background and submesoscale effects.
For example, [26] showed that an isotropic configuration has the lowest error for estimating
divergence, whereas configurations along a straight line, such as those in Figure A2, have
the largest errors. This is in contrast to our results for a strain-only field, where the LatMix
configuration is the most isotropic yet has higher error than aligning drifters along the
strain angle. Therefore, the optimal morphology is dependent upon the mesoscale features
present in the data, and unless these are known a priori then the best model-agnostic
morphology is likely to be an isotropic cluster. We leave a thorough analysis of this for
future work.



Fluids 2021, 6, 14

33 0f 34

1000 | | | 2000 [ ¥ '
by R I
\ 1500 | bbb
A J
5007 | ] | 100041
A Vo
1 500 / //
- L /i
S oL N
= /A A
= "y
7/ -500 S
S LS
Y as
-500 -1000 f o2 -~
-1500 |
~1000 £ SR D
-1000  -500 0 500 1000 -2000  -1000 0 1000
x(m) x(m)

Figure A2. Different cluster morphologies (deployment configurations) we shall consider. In the left
panel we consider nine drifters deployed as at Latmix Site 1 (blue dots), together with nine drifters
deployed parallel and orthogonal to the strain angle (red and green dots respectively). In the right
panel we again consider nine drifters deployed as at Latmix Site 1 (blue dots), but this time the red
and green dots are the same morphologies but with the respective distances to the centre-of-mass
either doubled or halved. In both panels the velocity field is as in the strain-only simulation of
Figure 1, and the positions are given in centre-of-mass coordinates.

6 6
5r 5r
® ®
) )
S T4
< <
2,0 25
93 93
g g
227 227
H 2
1r 1r
0 0
1/0 (days) 1/0 (days)

Figure A3. Required window lengths to obtain significant strain rate estimates for different drifter
configurations. The lines in the left/right panels correspond to the drifter configurations considered
in the left/right panels of Figure A2 respectively, with the colours matching the corresponding
configurations. Each line corresponds to the level where the standard error of the strain rate estimate
is approximately half the true strain rate value. These lines are found as in Figure 8 over 100 repeated
simulations over a grid of true strain rates and window lengths.

Finally, we consider deployments where the drifters are initially configured to be
closer or farther apart than in Latmix site 1, as shown in Figure A2 (right). Specifically,
the red drifters are twice as far from the centre-of-mass as Latmix site 1 drifters (in blue),
and the green drifters are half this distance. We repeat the same analysis over different true
strain rates to find the required window lengths in the right panel of Figure A3. We observe
that drifters initialised far apart require shorter window lengths to obtain significant strain
rate estimates, and conversely require longer window lengths when initialised closer
together. This phenomenon is easily understood in the idealised simulation scenario where
spacing drifters farther provides richer information on mesoscale features as distances to
centre-of-mass are increased. In practice the flow field is not homogeneous, so as with the
number of drifters, there will be a practical limit as to how far apart drifters should be
initially placed to ensure they are sampling the same homogeneous background flow field.



Fluids 2021, 6, 14 34 of 34

References

1. Shcherbina, A.Y.; Sundermeyer, M.A.; Kunze, E.; D’Asaro, E.; Badin, G.; Birch, D.; Brunner-Suzuki, A M.E.G.; Callies, J.;
Cervantes, B.TK,; Claret, M.; et al. The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bull. Am. Meteorol.
Soc. 2015, 96, 1257-1279. [CrossRef]

2. Poje, A.C,; Ozgékmen, T.M.; Lipphardt, B.L.; Haus, B.K.; Ryan, E.H.; Haza, A.C.; Jacobs, G.A.; Reniers, A.J.H.M.; Olascoaga,
M.J.; Novelli, G.; et al. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA 2014,
111, 12693-12698. [CrossRef] [PubMed]

3. Gongalves, R.C.; Iskandarani, M.; Ozgékmen, T.; Thacker, W.C. Reconstruction of submesoscale velocity field from surface
drifters. J. Phys. Oceanogr. 2019, 49, 941-958. [CrossRef]

4. Mahadevan, A,; Pascual, A.; Rudnick, D.L.; Ruiz, S.; Tintoré, J.; D’Asaro, E. Coherent pathways for vertical transport from
the surface ocean to interior. Bull. Am. Meteorol. Soc. 2020, 101, E1996-E2004. [CrossRef]

5. Beron-Vera, FJ.; LaCasce, J.H. Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr. 2016,
46,2183-2199. [CrossRef]

6.  Pearson, J.; Fox-Kemper, B.; Barkan, R.; Choi, J.; Bracco, A.; McWilliams, ]J.C. Impacts of convergence on structure functions
from surface drifters in the Gulf of Mexico. J. Phys. Oceanogr. 2019, 49, 675-690. [CrossRef]

7. Sundermeyer, M.A; Price, ].F. Lateral mixing and the North Atlantic Tracer Release Experiment: Observations and numerical
simulations of Lagrangian particles and a passive tracer. . Geophys. Res. 1998, 103, 21481-21497. [CrossRef]

8. Sundermeyer, M.A.; Ledwell, J.R. Lateral dispersion over the continental shelf: Analysis of dye release experiments. J. Geophys. Res.
2001, 106, 9603-9621. [CrossRef]

9.  Garrett, C. On the initial streakness of a dispersing tracer in two-and three-dimensional turbulence. Dyn. Atmos. Ocean. 1983,
7,265-277. [CrossRef]

10. Lodise, J.; Ongkmen, T.; Gongalves, R.C.; Iskandarani, M.; Lund, B.; Horstmann, J.; Poulain, PM.; Klymak, J.; Ryan, E.H.;
Guigand, C. Investigating the formation of submesoscale structures along mesoscale fronts and estimating kinematic quantities
using Lagrangian drifters. Fluids 2020, 5, 159. [CrossRef]

11. Early, ].J.; Sykulski, A.M. Smoothing and interpolating noisy GPS data with smoothing splines. J. Atmos. Ocean. Technol. 2020,
37,449-465. [CrossRef]

12.  Okubo, A.; Ebbesmeyer, C.C. Determination of vorticity, divergence, and deformation rates from analysis of drogue observations.
Deep Sea Res. Oceanogr. Abstr. 1976, 23, 349-352. [CrossRef]

13.  Kloeden, PE.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer Science & Business Media: Berlin, Germany,
2013; Volume 23.

14. LaCasce, J. Statistics from Lagrangian observations. Prog. Oceanogr. 2008, 77, 1-29. [CrossRef]

15. Lilly, J.M.; Sykulski, A.M.; Early, ].].; Olhede, S.C. Fractional Brownian motion, the Matérn process, and stochastic modeling
of turbulent dispersion. Nonlinear Process. Geophys. 2017, 24, 481-514. [CrossRef]

16. Haynes, PH. Vertical Shear Plus Horizontal Stretching as a Route to Mixing. Available online: http://www.soest.hawaii.edu/PubSer
vices/2001pdfs/Haynes.pdf (access on 30 December 2020).

17.  Lilly, ].M. Kinematics of a fluid ellipse in a linear flow. Fluids 2018, 3, 16. [CrossRef]

18.  Sykulski, A.M.; Olhede, S.C.; Lilly, ].M.; Danioux, E. Lagrangian time series models for ocean surface drifter trajectories. J. R. Stat.
Soc. Ser. C 2016, 65, 29-50. [CrossRef]

19. Sykulski, A.M.; Olhede, S.C.; Lilly, ].M.; Early, ].J. Frequency-domain stochastic modeling of stationary bivariate or complex-
valued signals. IEEE Trans. Signal Process. 2017, 65, 3136-3151. [CrossRef]

20. Botev, Z.1; Grotowski, J.F.; Kroese, D.P. Kernel density estimation via diffusion. Ann. Stat. 2010, 38, 2916-2957. [CrossRef]

21. Sundermeyer, M.A.; Birch, D.A.; Ledwell, ].R.; Levine, M.D.; Pierce, 5.D.; Cervantes, B.T.K. Dispersion in the open ocean seasonal
pycnocline at scales of 1-10 km and 1-6 days. |. Phys. Oceanogr. 2020, 50, 415-437. [CrossRef]

22. Shcherbina, A.Y.; D’Asaro, E.A.; Lee, CM.; Klymak, J.M.; Molemaker, M.].; McWilliams, J.C. Statistics of vertical vorticity,
divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett. 2013, 40, 4706-4711. [CrossRef]

23. Lelong, M.P; Cuypers, Y.; Bouruet-Aubertot, P. Near-inertial energy propagation inside a Mediterranean anticyclonic eddy.
J. Phys. Oceanogr. 2020, 50, 2271-2288. [CrossRef]

24. Early, ].J.; Lelong, M.P,; Sundermeyer, M.A. A generalized wave-vortex decomposition for rotating Boussinesq flows with
arbitrary stratification . J. Fluid Mech. 2021. [CrossRef]

25. Vieira, G.S.; Rypina, L.I; Allshouse, M.R. Uncertainty quantification of trajectory clustering applied to ocean ensemble forecasts.
Fluids 2020, 5, 184. [CrossRef]

26. Ohlmann, J.C., Molemaker, M.]., Baschek, B., Holt, B., Marmorino, G., Smith, G. Drifter observations of submesoscale flow
kinematics in the coastal ocean. Geophys. Res. Lett. 2017, 44, 330-337. [CrossRef]



	Introduction
	Modelling Framework
	Local Taylor Expansion
	Diffusivity
	Model Solutions

	Estimation and Hierarchical Modelling
	Parameter Estimation
	Flow Decomposition
	Hierarchical Modelling
	Selecting between Hierarchies
	Fraction of Variance Unexplained (FVU)
	Fraction of Diffusivity Unexplained (FDU)


	Uncertainty Quantification and Capturing Temporal Evolution
	Uncertainty Quantification
	Time-Evolving Parameters Using Rolling Windows
	Slowly-Evolving Parameters Using Splines

	Application to the Latmix Experiment
	Fixed Mesoscale Parameter Estimates
	Time-Evolving Parameters Using Rolling Windows
	Slowly-Evolving Parameters Using Splines

	Discussion and Conclusions
	Sensitivity Analyses
	References

