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Abstract

Debate continues on whether encoding of symbolic number is grounded in nonsymbolic numerical magnitudes.

Nevertheless, fluency of perceiving both number formats, and translating between them, predicts math skills across the life

span. Therefore, this study asked if numbers share cortical activation patterns across formats and tasks, and whether neural

response to number predicts math-related behaviors. We analyzed patterns of neural activation using 7 Tesla functional

magnetic resonance imaging in a sample of 39 healthy adults. Discrimination was successful between numerosities 2, 4, 6,

and 8 dots and generalized to activation patterns of the same numerosities represented as Arabic digits in the bilateral

parietal lobes and left inferior frontal gyrus (IFG) (and vice versa). This indicates that numerosity-specific neural resources

are shared between formats. Generalization was also successful across tasks where participants either identified or

compared numerosities in bilateral parietal lobes and IFG. Individual differences in decoding did not relate to performance

on a number comparison task completed outside of the scanner, but generalization between formats and across tasks

negatively related to math achievement in the parietal lobes. Together, these findings suggest that individual differences in

representational specificity within format and task contexts relate to mathematical expertise.

Key words: math achievement, multivoxel pattern analysis, number representation, numerical cognition, ultra-high field
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Introduction

Working with numbers in a variety of representational formats

is an important skill that children typically master early in

development, and one that serves as a precursor tomathematical

thinking (Dehaene 2011). Some representations of number are

nonsymbolic, such as items in a set or beeps in a sequence, and

are evident early in infancy (Izard et al. 2009). The perception of

nonsymbolic number is likely rooted in an innate, evolutionarily

ancient neural system that abstracts the property of numerical

magnitude (i.e., the number of items) from continuous percep-

tual properties (i.e., object contours, overall surface area, density,

etc.) (Feigenson et al. 2004; Dehaene 2011), though details of this

system remain controversial (Leibovich et al. 2016; Knops 2017;

Núñez 2017). Other representations of number are symbolic in
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nature, such as Arabic numerals or spoken words, and develop

alongside language skills (Wiese 2003; Ansari 2008). There is cur-

rently no consensus view on whether the encoding of symbolic

number is grounded in the nonsymbolic neural system (Piazza

2010), is developmentally independent, but may eventually be

integrated (Carey et al. 2017; Carey and Barner 2019), or is perhaps

linked at one point but then decoupled over developmental time

(Lyons et al. 2012). Further, it is well-documented that individ-

ual differences in the fluency of perceiving both formats, and

translating between them, is associated with superior mathe-

matical skills across the life span (Iuculano et al. 2008; Maz-

zocco et al. 2011; Fazio et al. 2014; Price et al. 2017; Price and

Wilkey 2017; Schneider et al. 2017; Wilkey et al. 2018), but what

drives this relation is not well understood (for a critical review,

see Wilkey and Ansari 2019).

Accordingly, several gaps in our current understanding of

what drives individual differences in numerical processing

remain. First, do symbolic and nonsymbolic representations

of number share cortical patterns of activation? Second, are

representations of number task-dependent? Third, do patterns

of neural response to number relate to numerical ability?

Shared Versus Independent Representation of Number
Across Formats

A recent meta-analysis indicates that processing of nonsymbolic

and symbolic number both activate bilateral regions of the pari-

etal lobe and right frontal lobe (Sokolowski et al. 2017). Given

the wide range of tasks, however, it is difficult to determine if

this shared activity is attributable specifically to the processing

of numerical magnitude, or other domain-general task-related

features such as attention or response selection.

To address this problem, some studies have used adaptation

paradigms that measure brain response during passive viewing

rather than active, response-based tasks. This research has led

to mixed evidence for either shared or distinct neural repre-

sentation between number formats (Shuman and Kanwisher

2004; Piazza et al. 2007; Roggeman et al. 2007; Kadosh et al.

2011; Sokolowski et al. 2019). These mixed findings may be due

to a reliance in this field on traditional univariate functional

magnetic resonance imaging (fMRI) analytic approaches that

require overlap of functional regions across participants in nor-

malized space to reveal shared neuralmechanisms across a sam-

ple. While this approach has proved informative, and univariate

analyses conducted in subject-specific regions of interest (ROIs)

or native space are becoming more common, it may be that

the issue of shared versus distinct representations requires a

more fine-grained approach that takes into account individual

variability in cortical organization.

One alternative to the univariate group-averaging approach is

to analyze patterns of activity across multiple voxels within an

individual using multivariate pattern analysis (MVPA, Norman

et al. 2006). Studies that have employed various types of MVPA

analyses have provided conflicting evidence,with some showing

evidence of cross-format classification (Eger et al. 2009; Teich-

mann et al. 2018; Bankson et al. 2019), particularly with smaller

numbers (Damarla and Just 2013), while others suggest format-

dependent patterns of neural activity (Bulthé et al. 2014, 2015;

Lyons et al. 2015; Lyons and Beilock 2018; Sokolowski et al. 2019).

The reasons for the contradictory findings and the conse-

quent lack of consensus, however, remain unclear. It is possible

that relatively low sample sizes have increased variability in

findings, or that the signal-to-noise ratio afforded by 3 Tesla fMRI

is nonoptimal for detecting subtle spatial activation patterns.

The current study addresses these 2 issues by collecting fMRI

data at 7 Tesla (which increases the signal-to-noise ratio of the

BOLD response, Yacoub et al. 2001; van der Zwaag et al. 2009; De

Martino et al. 2011, 2008) with a larger sample size (n=39).

Shared Versus Independent Representation of Number
Across Tasks

Beyond the issue of shared representation across formats,

another outstanding and previously unexplored question is—are

neural representations of number task-dependent? Depending

on the scenario, numerical information may be acted upon in

very different ways (e.g., using nominal, ordinal, or cardinal

properties of number), and it remains unclear whether the

same neural representations of number are engaged across

differing task contexts. Some behavioral research suggests that

representations of number are task-dependent. For example,

the numerical distance effect (Moyer and Landauer 1967),

whereby numbers further apart in magnitude are more easily

compared than numbers that are closer together, is a common

property of comparing numbers. In one study comparing task-

dependent numerical properties, the distance effect was evident

in symbolic number comparison tasks, but not in a visual

numeral matching task (Goldfarb et al. 2011). Similarly, the

spatial-numerical associations of response codes (SNARC) effect

are task-dependent. In a study that manipulated verbal or

spatial working memory load during a parity judgment and

magnitude comparison task, the SNARC effect disappeared in

the parity judgment task under verbal load and disappeared in

the comparison task under spatial load (van Dijck et al. 2009).

Together, these results suggest that task context affects the way

in which we process numbers.

There is also a background of neurological case studies that

support task-dependent aspects of number processing. Study-

ing 2 individuals with pure alexia, Cohen and Dehaene (1995)

reported that number identification performance differed con-

siderably depending on task demands. Both patients could name

digits in the context of a simple naming task or when com-

paring numbers but frequently misidentified the same digits as

operands of addition problems. However, it is still unknown how

shared or distinct neural mechanisms that encode numerical

information relate to different task behaviors and to what extent

they are independent. To address this question, the current study

employs 2 tasks, a number identification task and a number com-

parison task to investigate whether number-specific patterns of

neural activation are generalizable across task contexts.

Representation of Number and Numerical Ability

A dominant theory in the field suggests that precision of numer-

ical magnitude representations is directly related to the devel-

opment of math skills (Butterworth 2005; Halberda et al. 2008a;

Dehaene 2011; Wilkey et al. 2017; Wilkey and Price 2018). While

a large body of behavioral research has investigated this link

between performance on basic number processing tasks, such

as the number comparison task, and individual differences in

math abilities, there is a high degree of inconsistency in results

across studies (for meta-analyses, see Chen and Li 2014; Fazio

et al. 2014; Schneider et al. 2017, 2018). This inconsistencymay, in

part, be driven by variations in the myriad factors that influence

performance on any given cognitive task. Neuroimaging, and

in particular MVPA, offers the potential to investigate number-

specific representational precision more directly.
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To date, 2 fMRI studies have demonstrated a relation between

neural responses to numerical magnitudes and behavioral mea-

sures of nonsymbolic numerical processing acuity. In a sample of

3–4-year-old children, Kersey and Cantlon (2017) found that neu-

ral tuning curves in the right intraparietal sulcus (IPS) predicted

discrimination sensitivity in a nonsymbolic number comparison

task. In adults, Lasne et al. (2018) showed that MVPA decoding

performance classifying nonsymbolic numerosities correlated

with individual differences in behavioral measures of nonsym-

bolic numerical acuity. The extent to which these results hold

true for symbolic numbers, or to which behavioral performance

is related to cross-format generalization, is unknown. To address

this, the current study conducts a similar analysis as Lasne

et al. (n=12) with a larger sample (n=39) assessing the relation

between neural representations of nonsymbolic and symbolic

formats and behavioral number comparison performance. We

further explore whether decoding accuracy within each format

relates to math achievement. If representational acuity of num-

ber does underlie math skill development, we should expect

higher classification accuracy rates to correlatewith highermath

ability.

In regard to format generalization and math ability, Bulthé

et al. (2018) reported that the degree of representational over-

lap, as indexed by MVPA generalization, between symbolic and

nonsymbolic number in the parietal lobe negatively correlated

with arithmetic ability. Such findings support the idea that with

increasing expertise in symbolic numerical abilities, such as

arithmetic, the neural systems used to represent symbolic num-

ber decouples from, or becomes “estranged” from, nonsymbolic

representation (Lyons et al. 2012). However, Bulthé et al. limited

their analysis to a combined left and right parietal ROI.Questions

remain, therefore, about whether this pattern holds true for left

and right parietal regions independently, and whether it can also

be observed in frontal and temporal regions associated with the

representation and processing of numerical information.

The Current Study

In summary, to address the 3 questions outlined above, we use 7

Tesla fMRI to assess (1) whether patterns of neural response to

specific numerical magnitudes in one format can generalize to

the other, (2) whether patterns of neural response can generalize

across tasks (i.e., number identification to number comparison),

and (3) whether precision of neural representation is related

to behavioral outcomes in basic number processing and math

performance.

Materials and Methods

Participants

Forty neurologically healthy, right-handed individuals (screened

via self-report) participated in the study for undergraduate

course credit. Of those recruited, one participant was excluded

from analyses due to poor data quality (see Data Quality

Assessment), resulting in final sample of 39 participants (Mean

age=19.8 years, Range=18.4–22.3, 20 females). All participants

had normal or corrected-to-normal vision. Informed consent

was obtained from each participant in accordance with the

Institutional Review Board policy. A portion of the neuroimaging

data (i.e., the Compare task) has been reported on previously with

a different analytic method and study goal (Conrad et al. 2020).

Procedure

The study consisted of 2 testing sessions, a behavioral session

conducted in a quiet room and an MRI session conducted at the

university’s imaging center. In the first session,participants com-

pleted a battery of academic, intelligence, and cognitive mea-

sures including a single-digit and double-digit symbolic number

comparison task (only the single-digit task was analyzed since it

wasmost comparablewith the fMRI task), a nonsymbolic number

comparison task, 2 math subtests of the Woodcock Johnson-III,

a forward and backwards versions of the Corsi digit-span, and

the Kaufman Brief Intelligence Test (second Edition). fMRI was

acquired on the participants’ second session as soon as possible

thereafter (Mean time between sessions=7.9 days, Range=1–28).

All computer-based tasks were presented using E-Prime 2.0 (Psy-

chology Software Tools). Preregistration of our analytic approach

is archived here: https://osf.io/9uz72.

Behavioral Assessment

Nonsymbolic Number Comparison

Participants were presented with 2 sets of dots simultaneously

and asked to indicate via button press which set was more

numerous (i.e., which set contained more dots). The set on the

left side of the screen contained yellow dots and the set on

the right side contained blue dots, which corresponded to color-

coded left and right buttons, on a gray background.Response side

was fully counterbalanced. Trials consisted of 1000 ms stimulus

presentation followed by 2000 ms of a fixation cross. Seven

ratios were presented, ranging from 0.33 (5 vs. 15) to 0.9 (9 vs.

10), for further details, see Supplementary Table S1. The number

of dots in each stimulus ranged from 5 to 15. Each ratio was

presented 10 times for a total of 70 trials. Ratios, stimulus pre-

sentation times, and order of presentation were modeled after

Odic et al. (2014). To control for the possibility that participants

might choose a strategy based on visual cues rather than number

of dots, the following visual properties of dot sets were varied

using a modified version of the MATLAB code recommended

by Gebuis and Reynvoet (2011) to generate stimuli: convex hull

(area extended by a stimulus), total surface area (aggregate value

of dot surfaces), average dot diameter, and density (convex hull

divided by total surface area). In approximately, one quarter of

the trials all 3 visual properties were congruent with greater

numerosity (i.e., the greater number of dots had a greater con-

vex hull, surface area, etc.). In another approximate quarter of

the trials, all 4 visual properties were incongruent with greater

numerosity. In the remaining trials, visual properties weremixed

congruent and incongruent. All stimuli were presented on a

21.5′′ monitor driven at a refresh rate of 60 Hz and resolution

of 1920× 1080 pixels also using E-Prime 2.0. The 47.7×26.8 cm

screen subtended 44.7◦ ×26.0◦ at the viewing distance of about

58 cm. The arrays of dots centered at 12.6◦ left and right of the

center fixation point. Dot arrays were presented within square

506× 506 pixel images (8.35◦ ×8.35◦). The average dot diameter

was 36.3 pixels (0.62◦), theminimumdot diameterwas 22.5 pixels

(0.39◦), and the maximum dot diameter was 56.8 pixels (0.97◦).

Further details of the visual parameters of the dot set (i.e., area

subtended, surface area, diameter, and circumference of each dot

array) can be found on the project page on the Open Science

Framework: https://bit.ly/30A8Nj3.

To capture participants’ performance on the symbolic and

nonsymbolic number comparison tasks,we adopted Lyons et al.’s

(2014) performance metric P=RT(1+2ER), where RT is response

time in milliseconds and ER is error rate. This metric expresses
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response time adjusted for error rate, such that response time

is unchanged for students without errors, and response time is

doubled for students who perform at chance (i.e., 50% error rate).

Accordingly, a greater P score represents worse performance.

The performance metric affords one outcome that combines

response time and accuracy, and it adjusts for speed-accuracy

trade-offs. We calculated error rate using all trials; to calculate

mean response time we used correct trials, excluding outlier

trials that were ±3 standard deviations from each student’s

average response time. We also computed a second metric

to index performance that is more closely related to previous

analyses of the nonsymbolic number comparison task, ‘weber

fraction’(w). w is derived from the Weber–Fechner law and is a

metric of the noise in an individual’s representation of numerical

magnitude. To compute our w scores, we used the method and

formula employed by Halberda et al. (2008a). The percentage

correct on the ANS task was modeled for each individual subject

as 1—error rate, where error rate is defined as: 1
2erfc

(

n1−n2√
2w

√
n21+n21

)

,

where erfc(x) is the complementary error function related to the

integration of the normalized Gaussian distribution. The model

fits percentage correct as a function of the Gaussian approximate

number representations for the 2 sets displayed on a trial (n1 and

n2) with a single free parameter for w.

Symbolic Number Comparison

Participants were simultaneously presented with single-digit

Arabic numerals and asked to indicate via button press which

of the 2 was numerically larger (e.g., 7 is larger than 6). The

ratios presented, order of ratios, and stimuli durations were

identical to those in the nonsymbolic number comparison

task. Numerals ranged from 2 to 9. For further details, see

Supplementary Table S1. Arabic digits were presented in Courier

New font in light gray (i.e., “silver” in E-Prime) on a black

background. Like the nonsymbolic stimuli, digits were presented

at 12.6◦ left and right of center fixation, but were 72×132 pixels

(1.23◦ ×2.25◦) in size, on average.

Mathematics Achievement

Mathematical competence was assessed using the math fluency

and calculation subtests of the Woodcock-Johnson III Tests of

Achievement (WCJ-III) (Woodcock et al. 2001). The Math Fluency

subtest requires participants to answer asmany simple addition,

subtraction, and multiplication problems as possible within a

3-min period. The calculation subtest, on the other hand, is

untimed, and requires participants to complete as many calcu-

lation items as possible that increase in difficulty, ranging from

simple arithmetic to calculus. A weighted, composite calculation

skills cluster score comprising both subtests was computed for

each participant using the WCJ scoring software. Grade-normed

standard scores were used for all analyses. A Shapiro–Wilk test

of normality demonstrated that the math measure was not

normally distributed (P=0.016), with a negative skew of −0.855

(se =0.378). Therefore, in order to conduct correlational analyses

that assume a normal distribution of measures, we squared the

standard scores which resulted in a normally distributed sample

of abilities (Shapiro–Wilk P=0.159).

MRI Session

MRI Acquisition Parameters

Imaging was performed using a 7 Tesla (7 T) Philips Achieva

scannerwith a 32-channel head coil. AnMP2RAGE (Marques et al.

2010) image was acquired for anatomical reference, aligned to

the anterior/posterior commissures, with the following parame-

ters: TR=4.315 ms, TE=1.92 ms, flip angle = 7, 240 coronal slices,

voxel size =1 mm3, imaging matrix = 240 x 240 x 192, acquisition

time=1010 s. These images were corrected for B1-field inhomo-

geneities, as well as proton density and T2∗ effects according

to the procedure described by Marques et al. (2010). For the

event-related experiment, functional T2∗-weighted images were

acquired over 2 runs of 243 volumes each, with the following

parameters: TR=2000 ms, TE=25 ms, flip angle = 63, 46 axial

slices (with no interslice gap), voxel size = 2.5 mm3, imaging

matrix = 96 x 96 x 46, acquisition time=500 s per run (33:20 m

of functional data total).

fMRI Tasks

Participants completed in order: a scout scan, 2 runs of an event-

related number identification paradigm (Identify), an anatomical

scan, and then 2 consecutive runs of an event-related num-

ber comparison paradigm (Compare). Tasks were not counter-

balanced because we anticipated that completing the compar-

ison task first may induce a lasting cognitive effect to automat-

ically assess the quantity and compare it with the standard.

Accordingly, participants always completed the Identify task first.

Further, as our analysis plan involved individual differences,

varying the task order across participants may introduce irrel-

evant variance in our measures of interest.

Identify. For each trial, participants judged whether an Arabic

digit (“symbolic”) or dot array (“nonsymbolic”) could be identified

as 2, 4, 6, or 8 by pressing one of 4 buttons on their right hand

as quickly and accurately as possible, Fig. 1. A total of 160 trials

were presented, composed of 80 symbolic trials and 80 nonsym-

bolic trials (20 per number, per format) which were intermixed

and pseudorandomly ordered (i.e., no more than 3 consecutive

trials were of the same number and same format). Nonsymbolic

stimuli were created using the MATLAB package first described

by Piazza et al. (2004). Nonsymbolic stimuli were controlled for

total surface area across numerosities by reducing dot size with

increasing numerosity. Additionally, all stimuli were controlled

for total occupied area and luminance across formats (i.e., on

average, dots sets contained the same number of pixels as Arabic

digits) in an effort to control for non-numerical visual parameters

across trials. Dot sets and digits were presented in black [RGB: 0,

0, 0] on a gray background [RGB: 180, 180, 180] encircled by a black

border. Locationwithin the gray circle varied across trials butwas

balanced for quadrant between all conditions. Stimulus duration

was 500 ms and interstimulus intervals (ISI) ranged from 3300 to

7300 ms, in 1000 ms increments, with an average of 5300 ms. ISI

was counterbalanced across numerosities and conditions.

Compare. The same stimuli were used for the “compare”

condition, except in this task, participants were instructed to

indicate whether the number they saw was less than or more

than 5 by pressing a button with either their right index or right

middle finger, respectively.

MRI Data Processing

fMRI Preprocessing

FMRI data were preprocessed in AFNI using the afni_proc.py

program, including despiking, slice-time and motion correction,

coregistration, normalization to a MNI152 template, and scaling

(Cox 1996). No spatial smoothing was applied. Participant-level

activation analyses to estimate the effect of all trials versus

baseline were carried out using 3dREMLfit, which accounts
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Figure 1. FMRI task paradigms and stimulus examples for all 4 numerical magnitudes in both formats.

for time series autocorrelation. Baseline regressors included 6

motion parameters and their derivatives, and zeroth- to fourth-

order Legendre polynomials to model low-frequency drifts

(per run).

Machine Learning Methods

MVPA decoding and generalization pattern classification were

implemented in MATLAB (Mathworks, Natick, MA) using the

linear discriminant analysis (LDA) classifier in the CoSMo MVPA

toolbox (cosmomvpa.org, Oosterhof et al. 2016). Statistics were

conducted in R (R Core Team 2018) using the ggplot2 (Hadly

Wickham 2016), vioplot (Adler and Kelly 2018), and tidyverse

packages (Wickham2017) for graphical display anddata handling

as well as jamovi (2019, https://www.jamovi.org, version 0.9).

Preprocessing Betas for Classification

Per-trial beta maps (i.e., activation maps) were created using a

second, participant-level GLM and estimated with AFNI’s 3dDe-

convolve function. Separate regressors were included for each

of the 320 trials, modeling trial-wise BOLD responses, as well

as all nuisance regressors described above (Rissman et al. 2004).

As a final step, to ensure that potential differences in activation

magnitude between tasks (i.e., identify vs. compare) did not

confound pattern classification across tasks (or within tasks,

across runs), we implemented a spatial normalization procedure

involving subtraction of the voxel-wise mean and division by

the voxel-wise standard deviation, across voxels within each

ROI (Misaki et al. 2010). In other words, we z-normalized each

set of voxel-wise betas at the trial level. The resulting series of

normalized beta vectors were sorted by condition and served

as inputs for subsequent MVPA’s. Each per-trial beta map is

considered a sample in the analysis.

Regions and Voxels of Interest

MVPA classification analysis was conducted in the 8 regions of

interest, 4 regions of interest per hemisphere. Inferior frontal

and parietal regions were chosen due to the convergence of

evidence across seminal works and meta-analyses that they are

involved in numericalmagnitude representations (Arsalidou and

Taylor 2011; Arsalidou et al. 2017; Sokolowski et al. 2017). Recent

work, including meta-analyses has converged on the presence

of a “number form area” (NFA) located in the posterior (Yeo

et al. 2017), inferior temporal lobe that is integral for processing

Arabic numerals andmay relate to individual differences inmath

achievement (Pollack and Price 2019), so this region was also

selected. Lastly, based on evidence from electrocorticography

studies that show the coupling between parietal regions and

inferior temporal regions during number-related tasks (Daitch

et al. 2016; Baek et al. 2018), we hypothesized that the NFA and

parietal mechanisms may reveal patterns together that provide

more information than either region independently. To explore

neural patterns of number representation as the 2 ROIs func-

tion together, we created an ROI that was the combination of

our selected parietal region and the NFA region. If spatial pat-

terns of activation span the 2 regions in a way that provides

more number-specific decoding information, the “NFA + pari-

etal” region should have significantly higher classification accu-

racy rates than either region independently.

Regions were defined as follows: (1) the inferior frontal gyrus

(IFG) (left and right), (2) the parietal lobe (left and right), (3) the

NFA (left and right), and (4) the combination of the NFA and

the parietal lobe ROIs (left and right) (Fig. 2). Anatomical masks

for the IFG and the parietal region were derived from the WFU

PickAtlas (Maldjian et al. 2003, 2004). Parietal ROIs were formed

from combining the “superior parietal lobule” and “inferior pari-

etal lobule”, and “inferior frontal gyrus” was selected for the IFG,

split by hemisphere. The right NFA ROI was defined from the

Yeo et al. meta-analysis (2017) by creating a spherical ROI with a

10 mm radius centered at the peak coordinate of convergence in

the meta-analysis. The left NFA ROI was defined as the mirrored

homologue of the right NFA ROI. To reduce features, a contrast of

all stimuli versus implicit baseline was run and voxel-wise maps

of t-statistics for each participant were computed. Within each

ROI, we selected the 600 most significantly active voxels based

on the highest t-statistics from the all versus baseline contrast

as in Lasne et al. (2018). When the NFA and Parietal ROIs were

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/1/1/tgaa038/5878839 by guest on 19 February 2021

cosmomvpa.org
https://www.jamovi.org


6 Cerebral Cortex Communications, 2020, Vol. 1, No. 1

combined, we selected 300 voxels with the highest t-statistics

in this contrast from each region (600 total). We should note

that because this contrast involves all conditions, no condition-

specific selection bias is involved in the selection of these voxels.

The feature-selection and classification analyses are sufficiently

independent, a fact that was supported by the random permuta-

tion testing we conducted.

Data Quality Assessment

To validate that the current data were of sufficient quality and

sensitivity to enable our MVPA classification analyses, we con-

ducted an analysis of button presses in a spherical ROI of 1200

voxels (2.5 mm3) in the M1 motor strip on the precentral gyrus,

corresponding to neurosynth.org’s peak t-statistic for the search

term “fingermovement” (MNI coordinates:−36,−28, 52). Training

and testing conditions were separable button responses (sep-

arate fingers, all 4 fingers) with 20 trials per finger using a

leave-one-out cross-validation technique with data on the iden-

tify condition. Twenty trials represent the minimum number of

trials we expected to run our classifier on in the main anal-

ysis. If a participant did not have above-chance classification

according to separate finger movements in a cortical location

with a well-known spatial topography related to motor control,

then data were not expected to be valid for classification of

higher-level cognitive processes. According to this criterion, only

one participant did not demonstrate above-chance classifica-

tion in the motor regions. Upon inspection, this participant did

have a considerable amount ofmovement during data collection.

Therefore, the one participant for whom this was the case was

excluded from further analyses. To make sure more fine-grained

movements did not affect our analyses, we checked to see if

overall movement correlated with classification accuracy rates

by correlating movement with the classification accuracy rates

in the M1 ROI. Movement was indexed by flagging volumes that

demonstrated between-volumemovement of >0.3mmEuclidian

normdistance or if>5%of voxelswithin a brainmaskwere deter-

mined to be outliers (signal >5.5 median absolute deviations).

Results indicated no significant correlation between number of

flagged volumes and classification accuracy rate [r (37) =−0.089,

P =0.588].

Analyses

Decoding

Before asking if patterns of neural activity generalized across

formats or tasks, we needed to establish that the LDA classifier

implemented in the current study could accurately decode the

numerosity of a stimulus within the same format and within

the same task. Therefore, the first step was to decode the 4

numerosities (2, 4, 6, and 8) within each condition (format x task)

using trial-level beta maps (voxelwise maps per trial derived

from event-related design). This resulted in four, 4 x 4 decod-

ing/confusion matrices for each ROI. Higher decoding accuracies

indicate more discriminable patterns of activation. Decoding

accuracies were then averaged over numerosities to attain a

single classification accuracy pertaining to conditions of interest

(i.e.,mean accuracy for symbolic, nonsymbolic, identify task, and

compare task).

For all classification in the current study, we followed the

same procedure. We followed a leave-three-out, cross-validation

procedure where the classifier was trained on all but 3 sets

of trial-level beta maps (set =one beta map per numerosity, or

“chunk” in CoSMo’s terminology) in order to keep the number of

training samples and test samples balanced. All possible combi-

nations of training samples for left-out sets were used. For exam-

ple, when decoding Symbolic number, where there were 40 trials

per number, 3 trials of each number were left out for training,

leaving 37 trials of each condition to train on, and 3 of each to

test on (i.e., leave-three-out). Classification results were tested

for significance (P<0.05) across participants with a 2-tailed t-

test, testing against the null of a chance-level classification (25%,

given the 4 numerosities). All reported decoding P-values result-

ing from the t-tests against chance are Bonferroni-corrected

by multiplying the uncorrected P-value by the number of ROIs

for that test (n=8). All classification results were examined for

bias by random permutation tests (1000 permutations) for each

analysis. In this process, the labels for training the LDA classifier

are scrambled at each iteration, and, if the algorithm is unbiased,

it should produce a normal distribution of classification accuracy

centered around chance (25%). For all of the classifications in the

current study, themean of the deviation from 25%was negligible,

indicating no bias in our algorithm. The permutation testing is

reported with our data, but is not analyzed further.

In short, a result of numerosity decoding significantly above

25% averaged across numerosities and across individuals would

indicate that, on average,neural activity in the ROI contains infor-

mation related specifically to numerical magnitudes. Statistical

tests are reported as one-sample, 2-tailed t-tests where the null

being tested is a chance rate of decoding (25%).

Generalization

Our first 2 questions of interest, regarding shared neural repre-

sentation for number between (1) numerical format and (2) task

were addressed by testing whether classifiers can train on one

format or task and generalize to the other. If the classifier can

generalize number classification from one condition to the other,

and there is no other alternative explanation for shared neural

activity between numbers such as response selection or another

confound, then the 2 formats (or tasks) can be assumed to share

numerosity-specific patterns of neural activity. The same general

procedures were used to test generalization as were used for

decoding, except, rather than remove sample sets in an n-fold

fashion, the classifierwas trained on all samples of one condition

and tested on all of the samples of the other. Therefore, rather

than average over the thousands of n-fold test combinations,

classifier performance within an individual is the mean num-

ber of correct predictions per condition. The same classifier,

statistical tests, and random permutation testing were used for

classification and generalization. All reported P-values for the t-

test against chance classification are Bonferroni-corrected.

Classification–Behavior Correlation Analyses

Our third question of interest was whether patterns of neural

response to number relate to (a) number comparison perfor-

mance, and (b) math achievement.

To examine if individual differences in numerosity decoding

predicted number comparison performance, a commonmeasure

of numerical acuity, we ran bivariate correlations between each

participants’ mean within-format decoding classification accu-

racy rate (i.e., averaged across numerosities 2, 4, 6, and 8) and

the behavioral performance metric for each participants’ per-

formance in the number comparison task completed outside of

the scanner. Correlations were run within formats. For example,

decoding accuracy for nonsymbolic stimuli was correlated with

performance on the nonsymbolic number comparison task.

Next, we investigated if decoding accuracy rates correlated

with math achievement. Mean decoding classification accuracy
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rates for both nonsymbolic and symbolic stimuli were correlated

with grade-normed standard scores of math achievement that

had been squared to achieve a normal distribution.

Lastly, using bivariate correlations we tested whether par-

ticipant’s mean format generalization values (from symbolic

to nonsymbolic and vice-versa, averaged together) and mean

task generalization values (from Identify to Compare and vice-

versa, averaged together) correlated with math achievement,

again squared.

In order to more directly compare with significance level of

previous studies that ran similar correlations with various num-

bers of tests, none of the P-values for brain–behavior correlations

are corrected for multiple comparisons.

Results

Decoding

Within-Format Numerosity Classification

Classification accuracy rates for nonsymbolic numerosities were

above chance in 7 of the 8 ROIs (Bonferroni-adjusted p-value

reported) (see Fig. 2 for means): L parietal [t(38) = 12.06, P<0.001],

R parietal [t(38) = 10.21, P<0.001], L IFG [t(38) = 6.77, P<0.001], R

IFG [t(38) = 5.54, P<0.001], L NFA [t(38) = 4.78, P<0.001], R NFA

[t(38) = 2.23, P=0.056], L parietal and NFA [t(38) = 7.13, P<0.001],

R NFA and parietal [t(38) = 6.04, P<0.001]. Only decoding in the

right NFA failed to show above-chance classification accuracy.

This indicates that in 7 of 8 ROIs there were distinguishable

neural patterns for nonsymbolic stimuli of different magnitudes.

These data are in overall agreementwith the decoding accuracies

obtained in previous research in the parietal lobe (Eger et al.

2009; Bulthé et al. 2015) and frontal regions (Bulthé et al. 2014).

Comparing classification rates in parietal ROIs versus parietal

+ NFA ROIs indicated that including the NFA with parietal data

had a significant negative impact on classification accuracy [left:

t(38) = 5.50, P<0.001, Cohen’s d=0.88; right: t(38) = 5.50, P<0.001,

Cohen’s d=0.88], indicating that parietal ROIs carried all of the

important information about numerosity-specific processing in

the combined ROI. Therefore, the combined parietal + NFA ROIs

are not analyzed further in the classification–behavior correla-

tions.

Decoding of symbolic numerosities followed the samepattern

of results as nonsymbolic stimuli. Classification accuracy rates

for symbolic numerosities were above chance in 7 of the 8 ROIs

(Bonferroni-adjusted p-value reported) (see Fig. 2 for means): L

parietal [t(38) = 11.00, P<0.001], R parietal [t(38) = 7.64, P<0.001],

L IFG [t(38) = 4.03, P=0.002], R IFG [t(38) =5.05, P<0.001], L NFA

[t(38) = 4.32, P<0.001], R NFA [t(38) = 2.41, P=0.167], L parietal

and NFA [t(38) = 5.72, P<0.001], R NFA and parietal [t(38) = 4.47,

P<0.001]. Only decoding in the right NFA failed to show above-

chance classification accuracy. Again, this indicates that in 7 of 8

ROIs there were distinguishable neural patterns for symbolic

stimuli of different numerosities. Comparing classification

rates in parietal ROIs versus parietal + NFA ROIs indicated

that including the NFA with parietal data had a significant

negative impact on classification accuracy [left: t(38) = 4.39,

P<0.001, Cohen’s d=0.70; right: t(38) = 3.46, P=0.001, Cohen’s

d=0.55], indicating that parietal ROIs carried all of the important

information about task generalization. Therefore, the combined

parietal+NFAROIs are not analyzed further in the classification–

behavior correlations.

For detailed plots of means and ranges of decoding perfor-

mance within conditions across numerosities, see Supplemen-

tary Figure S1.

Within-Task Numerosity Classification

Mean classification accuracy rates for numerosities in the

identify task collapsed across formats were above chance in 7 of

the 8 ROIs (Bonferroni-adjusted p-value reported) (see Fig. 2 for

means): L parietal [t(38) = 13.03, P<0.001], R parietal [t(38) = 9.06,

P<0.001], L IFG [t(38) = 6.37, P<P<0.001], R IFG [t(38) = 5.33,

P<0.001], L NFA [t(38) = 3.95, P=0.003], R NFA [t(38) = 1.70,

P=0.778], L parietal and NFA [t(38) = 7.47, P<0.001], R NFA and

parietal [t(38) = 5.40, P<0.001]. As above, only decoding in the

right NFA failed to show above-chance classification accuracy,

indicating that in 7 of 8 ROIs, there were distinguishable neural

patterns for stimuli of different numerosities within the identify

task across numerical formats.

Decoding of numerosities in the Compare task followed the

same pattern of results as in the Identify task, albeit with some-

what lower mean accuracy rates. Classification accuracy rates

for numerosities in the Compare task were above chance in 7 of

the 8 ROIs (Bonferroni-adjusted p-value reported) (see Fig. 2 for

means): L parietal [t(38) = 9.04, P<0.001], R parietal [t(38) = 6.18,

P<0.001], L IFG [t(38) = 5.03, P<0.001], R IFG [t(38) = 3.93, P=0.003],

LNFA [t(38) = 3.84,P=0.004],RNFA [t(38) = 1.71,P=0.762], L parietal

and NFA [t(38) = 4.78, P<0.001], R NFA and parietal [t(38) = 4.08,

P=0.002]. Only decoding in the right NFA failed to show above-

chance classification accuracy, indicating that in 7 of the 8 ROIs,

therewere distinguishable neural patterns for stimuli of different

numerical magnitudes within the Compare task across numeri-

cal formats.

For detailed plots of means and ranges of decoding perfor-

mance within conditions across numerosities, see Supplemen-

tary Figure S2. Forwithin-task,within-format classification accu-

racy rates, see Supplementary Tables S2–S5.

Generalization

Generalization Between Numerical Formats

To test for shared patterns of activation during Symbolic and

Nonsymbolic numerical stimuli, we tested if the classifier could

train in one format and predict patterns of activation in the

other. The following results collapse across tasks (i.e., assuming

that there is some shared number-specific pattern because both

tasks require common identification (visual and verbal encoding)

processes) and take the average of training/testing in both the

Nonsymbolic → Symbolic and Symbolic → Nonsymbolic direc-

tions. Mean classification accuracy rates were above chance in 4

of the 8 ROIs (Bonferroni-adjusted p-value reported) (see Fig. 3

for means and distributions): L parietal [t(38) = 7.47, P<0.001],

R parietal [t(38) = 4.46, P<0.001], L IFG [t(38) = 3.34, P=0.015], R

IFG [t(38) = 1.42, P=1.000], L NFA [t(38) = 0.77, P=1.000], R NFA

[t(38) =−0.18, P=1.000], L parietal and NFA [t(38) = 4.65, P<0.001],

R NFA and parietal [t(38) = 1.20, P=1.000]. Comparing classifica-

tion rates in parietal ROIs versus parietal + NFA ROIs indicated

that including the NFA with parietal data had a significant neg-

ative impact on classification accuracy [left: t(38) = 3.21, P=0.003,

Cohen’s d=0.51; right: t(38) = 3.41, P=0.002, Cohen’s d=0.55], indi-

cating that parietal ROIs carried all of the important information

about task generalization. Therefore, the combined parietal +
NFA ROIs are not analyzed further for format generalization in

the classification–behavior correlations.

To ensure that above generalization resultswere not driven by

generalization from one format to another unidirectionally, we

also calculated generalization between numerical formats sep-

arated by direction (Nonsymbolic → Symbolic and Symbolic →
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Figure 2. Numerosity decoding within formats and tasks. Confusion matrices for MVPA classification in 8 regions of interest used for MVPA classification averaged

across participants. Mean=average classification across numerosities (diagonal squares); x-axis =predicted values; y-axis = target values; L = Left; R =Right; IFG= inferior

frontal gyrus; NFA=number form area. Color bar represents classification rate as a percentage.
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Shared Numerosity Representations Across Formats and Tasks Revealed with 7 Tesla fMRI Wilkey et al. 9

Figure 3. Generalization of activation patterns for numerosities between formats (top) and between tasks (bottom). Color of ROIs corresponds to brain map in Figure 2.

Classification accuracy rate =average classification across numerosities within ROI; L = left; R = right; IFG= inferior frontal gyrus; NFA=number form area. Box plot hinges

represent 25th and 75th percentile of distributions,whiskers extend fromhinge to the largest value not beyond 1.5 times the interquartile range.All points plotted beyond

whiskers. Dotted horizontal line= classification accuracy rate at chance (25%).
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Nonsymbolic). Results are reported in Supplementary Tables S6

and S7. The pattern of above-chance generalizations across ROIs

is identical to the results averaged across directions with one

exception, Nonsymbolic numerosities did not generalize to Sym-

bolic numerosities in the left IFG (P=0.146). Although it is valid

to assume a shared number-specific pattern across tasks due

to a common identification process, there could be a greater

proportion of unshared than shared patterns as a function of

the task, so we also investigated how the classifier performed

generalizing between formats within each task to see if there

were task-level differences, albeit with lower power (20 training

trials per condition instead of 40). The primary difference of

note in this analysis was that across-format generalization of

numerosity-specific activation was limited to the L Parietal ROI

in the Compare task (for both Nonsymbolic → Symbolic and

Symbolic → Nonsymbolic), whereas generalization was above

chance in both the L and R Parietal ROI in the Identify task (L

parietal: Nonsymbolic → Symbolic and Symbolic → Nonsym-

bolic; R parietal: Symbolic → Nonsymbolic only). Taken together,

task-related differences seem to be limited to the R Parietal ROI.

Detailed results are reported in Supplementary Tables S8–S12.

However, it should be mentioned that the primary analyses and

supplementary analyses are not directly comparable due to (A)

a considerable difference in power, and (B) the fact that training

was collapsed across tasks in the primary analysis, which inher-

ently means that the LDA classifier was trained on a broader set

of cognitive factors.

Generalization Between Tasks

To test for shared patterns of activation for numerosities in

the context of both a comparison task and an identification

task, we tested if the classifier could train in one task and

predict patterns of activation in the other. The following

results collapse across numerical format (i.e., assuming that

there is some shared number-specific pattern because both

formats require common verbal-encoding processes) and take

the average of both the Identify → Compare and Compare

→ Identify directions. Mean classification accuracy rates were

above chance in 5 of the 8 ROIs (all Bonferroni-adjusted P<0.05)

(see Fig. 3 for means and distributions): L parietal [t(38) = 6.48,

Bonferroni-adjusted P<0.001], R parietal [t(38) = 5.87, P<0.001],

L IFG [t(38) = 4.87, P<0.001], R IFG [t(38) = 3.37, P=0.014], L NFA

[t(38) = 1.74, P=0.715], R NFA [t(38) = 1.06, P=1.000], L parietal

and NFA [t(38) = 3.46, P=0.011], R NFA and parietal [t(38) = 2.42,

P=0.162]. As above, comparing classification rates in parietal

ROIs versus Parietal + NFA ROIs indicated that including the

NFA with parietal data had a significant negative impact on

classification accuracy [left: t(38) = 3.36, P=0.002, Cohen’s d=0.54;

right: (38) = 2.78, P=0.008, Cohen’s d=0.45], indicating that

parietal ROIs carried all of the important information about task

generalization.

As in the cross-format generalization analysis, to ensure that

above generalization results were not driven by generalization

fromone task to another unidirectionally,we also calculated gen-

eralization between numerical formats separated by direction

(Identify → Compare and Compare → Identify). Results are

reported in Supplementary Tables S13 and S14. Results are

similar, with no differences in parietal regions, but there

were lateralization differences in the IFG. Whereas patterns of

numerosity-related neural activity generalized from the Identify

task to the Compare task in the L IFG (but not R IFG), the reverse

was evident (Compare to Identify) in the R IFG (but not L IFG).

Again, as with cross-format generalization, we also investigated

how the classifier performed generalizing between tasks within

each format to see if there were format-level differences. The

primary difference of note in this analysis was that across-

task generalization of numerosity-specific activation in the L

and R IFG was limited to Nonsymbolic numerosities (L IFG:

both Identify → Compare and Compare → Identify; R IFG:

Compare → Identify only). Detailed results are reported in

Supplementary Tables S15–S19. Again, it should be mentioned

that the primary analyses and supplementary analyses are not

directly comparable due to differences (A) power and (B) the

fact that training was collapsed across formats in the primary

analysis, which means that the classifier was trained on a

broader set of cognitive factors that may be shared between

number formats.

Classification–Behavior Correlations

Decoding of Nonsymbolic Number and Nonsymbolic Number

Comparison

Across the 6 ROIs investigated, no region showed a correlation

between decoding accuracy of Nonsymbolic numerosities and

performance (P) on the behavioral nonsymbolic number com-

parison task (Table 1). We had preregistered running the cor-

relation with performance score in order to compare similar

metrics across task formats and avoid poor-fitting Weber mod-

els in the symbolic task, since symbolic number comparison

task accuracy rates typically suffer from ceiling effects. How-

ever, since previous studies have shown a significant correla-

tion between decoding and nonsymbolic number comparison

Weber fractions (Lasne et al. 2018), for the sake of comparison

across studies, we replicated our analysis using Weber fractions

and again found no significant correlations across any of the

selected ROIs. To provide measurable evidence in support of

both positive and null findings, we conducted complementary

Bayesian correlations in jamovi using the jsq—BayesianMethods

package (version 0.9.2), and their default priors (stretched beta

priorwidth=1).We report the Bayes Factor (BF01),which indicates

the likelihood that the evidence is in favor of the null hypoth-

esis relative to the alternative hypothesis. For instance, a BF01

of 3 suggests that the data were 3 times more likely to occur

under the null than the alternative hypothesis. BFs>3, 10, 30,

and 100 are considered “moderate,” “strong,” “very strong,” and

“extreme” evidence in support of the null hypothesis (Wagen-

makers et al. 2018). Bayes factors (Table 1) suggestedmostlymod-

erate support for the null hypothesis of no correlation between

either of the nonsymbolic performance metrics and decoding

accuracy of Nonsymbolic numerosities. The decision to include

Bayes factors was made after finding mostly null results, which

contrasted with previously published results using a smaller

sample size (Lasne et al. 2018). In order to more directly com-

pare to the significance level of previous studies that ran sim-

ilar correlations with various numbers of tests, none of the P-

values for brain-behavior correlations are corrected for multiple

comparisons.

Decoding of Symbolic Number and Symbolic Number Comparison

Using the same analytic approach described above, we tested

for relations between neural decoding of Symbolic numbers

and performance on the out-of-scanner symbolic comparison

task. Similar to the Nonsymbolic analysis, none of the 6 ROIs

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/1/1/tgaa038/5878839 by guest on 19 February 2021

https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa038#supplementary-data


Shared Numerosity Representations Across Formats and Tasks Revealed with 7 Tesla fMRI Wilkey et al. 11

Table 1.Correlations between decoding accuracy and performance on independent, same-format number comparison task (e.g.,mean symbolic
decoding accuracy across numerosities ∼ symbolic comparison P), n=39

Decoding accuracy rates

Task performance L Par R Par L IFG R IFG L NFA R NFA

Nonsymbolic comparison P Pearson r 0.073 0.093 −0.013 −0.103 −0.04 0.053

P-value 0.657 0.575 0.936 0.533 0.809 0.750

BF01 4.56 4.31 5.00 4.16 4.88 4.77

Nonsymbolic comparison w Pearson r 0.066 −0.054 0.101 0.083 −0.014 −0.124

P-value 0.688 0.745 0.541 0.617 0.93 0.453

BF01 4.64 4.77 4.19 4.45 5.00 3.82

Symbolic comparison P Pearson r −0.185 −0.156 −0.156 −0.217 −0.018 0.018

P-value 0.259 0.344 0.344 0.184 0.912 0.912

BF01 2.71 3.26 2.08 2.14 4.99 4.99

Notes: BF01 =Bayes factor for Pearson’s r correlation indicating probability of support for the null hypothesis (less than 1 indicates support for alternative, greater than
1 support for the null).

showed a correlation between decoding accuracy and behav-

ioral performance.Bayes factors suggestedmostlymoderate sup-

port for the null of no correlation between symbolic compari-

son performance and Symbolic numerosity decoding accuracy,

although Bayes Factors <3 in parietal and IFG ROIs should be

interpreted as inconclusive evidence with the current sample

size (Table 1).

Decoding of Number and Mathematics Achievement

We tested for a relation between neural representation of

number and math achievement by correlating decoding accu-

racy rates for each ROI and number format with mathe-

matics achievement scores. Across the 6 ROIs investigated,

no region showed a correlation between decoding accu-

racy rates and math achievement scores for either format

(Table 2). This was true when considering math achievement

composite scores and when considering subtests individu-

ally (Supplementary Table S23). Again, due to a pattern of

mostly null results, we explored the evidence in favor of

the null by computing Bayes factors. Bayes factors sug-

gested mostly moderate support for the null hypothesis of

no correlation between math achievement and decoding

performance.

Cross-Format Generalization and Mathematics Achievement

Our next correlation between classification metrics and math-

ematics achievement scores closely mirrored the analysis of

Bulthé et al. (2018). Bulthé et al. conducted a one-tailed, spear-

man rho correlation and reported a significant negative corre-

lation between math achievement and cross-format generaliza-

tion accuracy (spearman rho=−0.23, P=0.036, n=63). In Table 3,

we report Pearson correlations, which are consistent with our

previous analyses (and Lasne et al.), and Spearman correlations,

which are consistent with the Bulthé et al. analysis and are less

susceptible to the influence of outliers. We also report 2-tailed

P-values and one-tailed P-values in order to compare directly to

our previous analyses and the Bulthé et al. analysis. Given Bulthé

et al.’s findings, it would be acceptable to hypothesize a negative

correlation a priori and specify a one-tailed test, but the effect

size of the relation coupled with a Bayes factor is ultimately

more informative and thus all information is presented. The cur-

rent results indicate a small but consistent negative correlation

between generalization across number formats in the parietal

lobes and math achievement scores that are very similar to the

strength of Bulthé et al.’s results. While Bulthé et al. combined

Figure 4. Individual scores for generalization between formats plotted against

math achievement. Individual differences in generalization show a negative

trending relation tomath achievement scores,with effect sizes in linewith Bulthé

et al. (2018), in both the left parietal (teal) and the right parietal ROI (blue). Dots

represent individual classification scores averaged across numerosities.

the left and right parietal lobe ROIs,we split the ROIs into left and

right (Fig. 4). Therewas a slightly stronger correlation for the right

parietal region, where math achievement negatively correlated

with generalization accuracy rate [Spearman rho (37) =−0.319,

one-tailed P=0.024, Kendall’s tau Bayes factor−0 =3.43, indicat-

ing moderate support for the negative correlation (3.43 times

more likely than the null)]. IFG correlations were not signifi-

cant and were not accompanied by conclusive evidence for or

against the null hypothesis from Bayes factors. Bayes factors for

the NFA correlation indicated moderate to strong support for

the null. Kendall’s tau Bayes factors were computed in lieu of

Spearman rho because a Bayesian version of the Spearman tests

does not exist in any known software package and Kendall’s

tau is an alternative nonparametric test that is robust to the

influence of outliers.
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Table 2. Correlations between decoding accuracy rates and measures of math achievement (e.g., mean symbolic decoding accuracy across
numerosities ∼ math achievement), n=39

Nonsymbolic decoding accuracy Math achievement Symbolic decoding accuracy Math achievement

L Parietal Pearson r −0.067 L Parietal Pearson r −0.036

P-value 0.687 P-value 0.827

BF01 4.64 BF01 4.90

R Parietal Pearson r 0.183 R Parietal Pearson r −0.060

P-value 0.266 P-value 0.717

BF01 2.76 BF01 4.71

L IFG Pearson r −0.062 L IFG Pearson r 0.173

P-value 0.708 P-value 0.293

BF01 4.69 BF01 2.94

R IFG Pearson r −0.086 R IFG Pearson r −0.067

P-value 0.603 P-value 0.684

BF01 4.40 BF01 4.63

L NFA Pearson r 0.270 L NFA Pearson r 0.179

P-value 0.096 P-value 0.276

BF01 1.32 BF01 2.83

R NFA Pearson r −0.102 R NFA Pearson r 0.127

P-value 0.535 P-value 0.440

BF01 4.17 BF01 3.76

Notes: BF01 =Bayes factor for Pearson r correlation indicating probability of support for the null hypothesis (less than 1 indicates support for alternative, greater than
1 support for the null).

Table 3. Correlations between nonsymbolic and symbolic generalization accuracy rates and measures of math achievement

Math achievement Math achievement

L Parietal Pearson r −0.172 Spearman rho −0.267a

P-value 0.295/0.148 P-value 0.100/0.050

BF10
Pr/BF−0

Pr 0.34/0.57 BF10
Kt/BF−0

Kt 0.94/1.81

R Parietal Pearson r −0.228 Spearman rho −0.319a

P-value 0.163/0.082 P-value 0.048/0.024

BF10
Pr/BF−0

Pr 0.51/0.93 BF10
Kt/BF−0

Kt 1.75/3.43

L IFG Pearson r −0.164 Spearman rho −0.182

P-value 0.318/0.159 P-value 0.269/0.135

BF10
Pr/BF−0

Pr 0.32/0.54 BF10
Kt/BF−0

Kt 0.41/0.71

R IFG Pearson r −0.228 Spearman rho −0.190

P-value 0.163/0.082 P-value 0.248/0.124

BF10
Pr/BF−0

Pr 0.51/0.93 BF10
Kt/BF−0

Kt 0.39/0.68

L NFA Pearson r 0.172 Spearman rho 0.111

P-value 0.296/0.148 P-value 0.502/0.251

BF10
Pr/BF−0

Pr 0.39/0.10 BF10
Kt/BF−0

Kt 0.24/0.14

R NFA Pearson r 0.008 Spearman rho 0.008

P-value 0.959/0.480 P-value 0.960/0.480

BF10
Pr/BF−0

Pr 0.20/0.19 BF10
Kt/BF−0

Kt 0.21/0.20

Notes: aSignificant correlation at P< 0.05. P-values are reported for both 2-tailed and one-tailed tests of correlation. BF10 indicates probability of support for a correlation
in any direction (similar to 2-tailed test) and BF−0 indicates support for the proposed negative correlation (similar to a one-tailed test). PrBayes factor for Pearson r

correlation. KtBayes factor for Kendall’s tau correlation.

Cross-Task Generalization and Mathematics Achievement

Lastly, we investigated whether cross-task generalization

(defined as mean task generalization values from Identify

to Compare and vice-versa, averaged together) related to

mathematics achievement. Analyses and reporting of results

follow the same approach as format generalization (Table 4).

Results indicate negative correlation between generalization

across number formats in the L parietal lobes and math

achievement similar to that reported in the cross-format results

across both parietal lobes (Spearman rho (37) =−0.375, one-tailed

P=0.009, Kendall’s tau Bayes factor−0 =5.38, indicating moderate

support for the negative correlation [5.38 times more likely than

null]) (Fig. 5).

Button Response Check

Both of our tasks require a button press and, as a result, have a

significant motor and planning component. In the Identify task,

each numerosity required an independent button response. In

the Compare task, 2 and 4 shared a button (numbers <5) while 6

and 8 shared a button (numbers>5).Motor planning, propriocep-

tive space, and response selection are known to involve parietal

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/1/1/tgaa038/5878839 by guest on 19 February 2021



Shared Numerosity Representations Across Formats and Tasks Revealed with 7 Tesla fMRI Wilkey et al. 13

Table 4. Correlations between generalization accuracy rates between tasks and measures of math achievement

Math achievement Math achievement

L Parietal Pearson r −0.267a Spearman rho −0.375a

P-value 0.100/0.050 P-value 0.019/0.009

BF10
Pr/BF−0

Pr 0.73/1.39 BF10
Kt/BF−0

Kt 2.72/5.38

R Parietal Pearson r 0.099 Spearman rho 0.082

P-value 0.548/0.726 P-value 0.622/0.689

BF10
Pr/BF−0

Pr 0.24/0.13 BF10
Kt/BF−0

Kt 0.23/0.15

L IFG Pearson r 0.053 Spearman rho 0.056

P-value 0.750/0.625 P-value 0.736/0.632

BF10
Pr/BF−0

Pr 0.21/0.16 BF10
Kt/BF−0

Kt 0.21/0.17

R IFG Pearson r 0.063 Spearman rho 0.046

P-value 0.741/0.649 P-value 0.786/0.607

BF10
Pr/BF−0

Pr 0.21/0.15 BF10
Kt/BF−0

Kt 0.22/0.17

L NFA Pearson r −0.230 Spearman rho −0.261

P-value 0.159/0.080 P-value 0.109/0.054

BF10
Pr/BF−0

Pr 0.52/0.95 BF10
Kt/BF−0

Kt 0.70/1.31

R NFA Pearson r −0.042 Spearman rho 0.070

P-value 0.798/0.399 P-value 0.672/0.664

BF10
Pr/BF−0

Pr 0.21/0.25 BF10
Kt/BF−0

Kt 0.21/0.18

Notes: aSignificant correlation at P< 0.05. P-values are reported for both 2-tailed and one-tailed tests of correlation.BF10 indicates probability of support for a correlation
in any direction (similar to 2-tailed test) and BF−0 indicates support for the proposed negative correlation (similar to a one-tailed test). PrBayes factor for Pearson r

correlation. KtBayes factor for Kendall’s tau correlation.

Figure 5. Individual scores for generalization between tasks plotted against math

achievement. Individual differences in generalization show a negative trending

relation to math achievement scores in the left parietal ROI (teal). Dots represent

individual classification scores averaged across numerosities.

cortex (Simon et al. 2002; Göbel et al. 2004; Grefkes and Fink

2005) and some of the variance in decoding is likely attributable

to motor activity. To ensure that numerosity decoding was not

simply due to non-numerical, motor, and motor-planning neural

activity in the most likely ROI to suffer this confound, we com-

pared confusion rates (i.e., prediction rates when the classifier is

incorrect) between numerosities that shared buttons, and those

that did not, to check for a bias according to button press in both

the left and right parietal ROIs in the Compare task collapsed

across formats. In these conditions we can compare variance

in models predicted by distance to variance predicted by button

response. Since numerosities 2 and 4 share a button, then a clas-

sifier capturing neural activity associated with button response

rather than number would confuse 2 and 4, but not 6 and 8. On

the other hand, numerosity encoding is also expected to follow

a confusion distribution based on the distance effect, where 4

is equally likely to be confused with 2 and 6 (distance=2), but

not with 8 (distance=4) (Bulthé et al. 2014; Bulthé et al. 2015).

It should be stated that these analyses were completed posthoc

and were not included as part of the original preregistration of

analyses.

In the left parietal ROI, when 4 was the presented numerosity,

on average, the classifier predicted numerosity 2 at a rate of

25.1% and 6 at a rate of 24.2%, which did not differ signifi-

cantly [t(38) = 0.54, P=0.593] (Fig. 6, left). In the right parietal ROI,

when 4 was the presented numerosity, the classifier predicted

numerosity 2 at an accuracy rate of 26.5% and 6 at a rate of

23.5%, which did not differ significantly [t(38) = 1.89, P=0.067]

(Fig. 6, right). When 6 was the numerosity seen by a participant,

in the left parietal ROI the classifier predicted numerosity 4 at

an accuracy rate of 23.3% and 8 at a rate of 25.5%, which did not

differ significantly [t(38) =−1.33, P=0.191].

To explore the linear effect of distance on accuracy rate,

prediction rate was run as a mixed model, one model for the

left parietal ROI and one for the right parietal ROI, predicting rate

of classifier prediction from the numerical distance from 4 and

6 (e.g., distance of 2 from 4=2, distance of 4 from 4=0, distance

of 6 from 4=2, distance of 8 from 4=4), where the intercepts

and slopes of participants were allowed to vary randomly in

the model to account for the within-subject nature of the

data (for further model details, see Supplementary Tables S21

and S22). In the left parietal lobe, distance was significant

predictor of confusion rate [t(38) =−7.30, P<0.001], but button

response was not [t(38) = 0.57, P=0.573]. In the right parietal
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Figure 6. Average classification predictions for target values 4 and 6 in left and

right parietal ROI during comparison task across participants. The comparison

task shares only some button response values but demonstrates a linear distance

effect, indicating that classification was likely capturing numerical information

in activation patterns. Confusion matrices are the same as those presented in

Figure 2 for the comparison task, but numerical values are detailed here for

variables that were of interest for the “button response check”. Boxes in bold

orange outline indicate target values that were included as variables in the tests

for a linear effect of distance on accuracy rate; see also Supplementary Tables S21

and S22. Color bar represents classification rate as a percentage.

lobe, again distance was a significant predictor of confusion rate

[t(38) =−4.64,P<0.001], but button responsewas not [t(38) = 0.488,

P=0.628].

The pattern of results in both the t-tests above and mixed

linear models exploring the distance effect indicate that neu-

ral patterns of activation were successfully capturing informa-

tion about numerosity and were not significantly influenced by

button response.

Discussion

The current study addressed 3 questions. First, does number

representation share cortical patterns of activation across

formats (Nonsymbolic versus Symbolic)? To investigate, we

assessed whether multivariate patterns of neural response to

specific numerical magnitudes in one format can generalize to

the other using MVPA at 7 T fMRI. Second, are representations of

number task-dependent? Again, we assessed whether neural

activation patterns can generalize across the Compare and

Identify tasks. Third, do patterns of neural response to number

(i.e., decoding performance and generalization across formats

and tasks) correlate with behavioral metrics of numerical ability

measured by (a) out-of-scanner number comparison tasks and

(b) math achievement.

Decoding

We first established that decoding of numerosities within task

and within format was successful in 7 of the 8 ROIs, including

the bilateral parietal lobes, bilateral IFG, left NFA, and bilateral

parietal + NFA (a combination of both ROIs within-hemisphere),

excluding only the right NFA. Classification accuracy in both left

and right NFA regionswas the lowest of all ROIs for all conditions.

Given the field’s newly emerging understanding of the role of

the NFA (Yeo et al. 2017), we tested the hypothesis that patterns

of activation in the parietal lobe combined with the NFA might

provide higher rates of discriminability than either region alone.

This hypothesis can be rejected. Though decoding in the parietal

+ NFA ROI was higher than the NFA region alone, it was not

higher than the parietal region alone, indicating that information

from the parietal lobe was driving decoding performance in the

parietal + NFA ROI. Lower decoding performance of the parietal

+ NFA ROI than the parietal ROI alone is likely due to the loss

of informative voxels from the parietal lobe when the 2 regions

were combined. In order tomaintain ROIs of 600 voxels, themost

active 300 voxels from each ROI (based on the all conditions vs.

baseline contrast) were selected to ensure equal representation

across ROIs. Of note, however, is that we found evidence of

successful decoding within the left NFA even for Nonsymbolic

numerosities, indicating that the left NFA may have some role

beyond symbol recognition. Recent work has found evidence a

problem-size effect in this region (Pinheiro-Chagas et al. 2018)

as well as a preference for mathematical processing beyond the

involvement of numerals (Grotheer et al. 2018). This activity may

indicate a role beyond simple visual form recognition.

Both of the tasks used in the current study are active

tasks that require a button response with different fingers

for each numerosity, which cannot be isolated from neural

activity associated with processing numerical information

in the current study design. As such, this influences the

interpretation of all findings of the current study. Both decoding

and generalization results should be interpreted as involving

mechanisms beyond simply perception of number, but also

decisional processes related to identification and comparison.

In other words, evidence of shared neural resources for

numerosity-specific processing across formats or tasks should

be interpreted to include more active processing of those

numerosities than a delayed comparison task where neural

activation is being modeled during the perception of the first

number.

To explore whether button press or numerosity was driv-

ing classification accuracy, we analyzed activity in portions of

our experiment where button response and numerosity could

be dissociated. Results indicated that decoding accuracy rates

were driven by processing of numerical information and not

button-response selection (see Supplementary Tables S21 and

S22). However, button response does not capture all active com-

ponents of the tasks beyond the processing of number. For exam-

ple, it is conceivable that attentional mechanisms are engaged to

a different degree across numerical stimuli, varying collinearly

with numerical distance in the number comparison task. In

this case, showing that the distance effect drives our results

does not completely mitigate concerns that decoding is captur-

ing, for example, attentional mechanisms related to numerical

information.

Generalization

In the current study, the LDA classifier was able to train on Non-

symbolic numerosities and predict the numerosities of Symbolic

stimuli at above-chance accuracy rates, and vice versa, in the

bilateral parietal lobes. These findings are in agreement with

some previous studies that have found evidence for between-

format generalization (Eger et al. 2009; Damarla and Just 2013;

Teichmann et al. 2018; Bankson et al. 2019) but in disagreement

with others (Bulthé et al. 2014, 2015).

As mentioned, the current study most closely resembles Eger

et al. (2009) and Bulthé et al. (2014) based on both stimuli and

task design, which each come to different conclusions regard-

ing shared patterns of activation between formats. The current

study, Eger et al. (2009), and Bulthé et al. (2014), all use the

numbers 2, 4, 6, and 8 represented as dots and digits. However,

there are also several key differences. First, the current study

more than doubles the sample size of the other 2 studies (Bulthé
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et al. 2014 n=16; Eger et al. 2009 n=10; current study n=39).

Second, the current study used 7 T ultra-high field fMRI, which

increases the signal-to-noise ratio of the BOLD response (Yacoub

et al. 2001; van der Zwaag et al. 2009; De Martino et al. 2011,

2008). Third, Bulthé et al. included more trials (72–84 trials), but

their short-block fMRI design diverges significantly froma typical

event-related or block design in that many exemplars are spaced

only 800ms from other exemplars, possibly reducing separability

of the estimated BOLD response for each condition. We ran a

typical event-related design with an average ISI of 5.3 s. Eger

et al. included 32 trials per condition. In the current analysis,

collapsing across task (when decoding within format) or format

(when decoding within task), there were 40 trials per condition.

All of these differences led to increased power in the current

study to detect the presence of generalization, which may be

one reason that it differed with the results presented in Bulthé

et al. (2014). However, it should be noted that generalization

across formats was still observed when the tasks were analyzed

separately with fewer exemplars (20 per condition).

Another difference between the current study and most pre-

vious analyses is that we used an LDA classifier. Prior to running

analyses with numbers as conditions, we compared the SVM

and LDA classifiers implemented in the CoSMo MVPA toolbox

in the motor cortex with button responses as conditions of

interest as a data quality and data processing check (for detailed

comparisons, see Gokcen and Peng 2002; Mandelkow et al. 2016;

Misaki et al. 2010). The LDA classifier consistently outperformed

the SVM classifier, and so we decided to use the LDA classifier

for the main analysis. Both Eger et al. and Bulthé et al. use SVM

classifiers in their analysis, which could also lead to differences

in the findings.

A further contribution of the current study is that classifica-

tion generalized successfully across the Identify and Compare

tasks in bilateral parietal and IFG regions. This indicates that

number-specific activation patterns are shared in all 4 of these

regions across tasks. Simply identifying the numbers as a 2, 4, 6,

or 8 is enough to activate representations similar to those elicited

in a comparison task, and importantly, these data suggest the

representation of 2, or 4, or 6, or 8, is the same representation

whether you are processing the magnitude or simply identifying

it. The fact that the Identify and Compare tasks used different

button responses makes this finding unlikely to be driven by

motor or response selection demands and more likely to be

driven by semantic similarity.

Still, as with all fMRI, each functional voxel includes hun-

dreds of thousands of neurons. Therefore, it may be that the

functional resolution of MRI does not accurately capture inde-

pendent populations of neurons within a voxel that are each

dedicated only to a specific format. If these independent pop-

ulations existed for each format or task, and were close enough

to each other and laid out in the same numerosity-specific pat-

tern across the cortex, their independent BOLD response could

appear the same at the level of a functional MRI voxel. Fur-

ther fine-grained analysis at the level of neural circuits is likely

necessary to make conclusions directly related to actual neural

recycling (Dehaene and Cohen 2007).

Classification–Behavior Correlations

We also tested 3 correlations that used classification rates as

individual differences metrics to predict number comparison

performance and math achievement.

The first set of classification–behavior correlations centered

on the idea that decoding accuracy within a given format may

provide a metric of the acuity of numerical representation that

would correlate with behavioral performance in an out-of-

scanner number comparison task. If individuals with greater

numerical acuity have sharper tuning curves that are more

distinct, it could follow that discriminability in the context of

a multivoxel analysis would also be greater, and in turn, that

their behavioral performance should be better. This method has

been used successfully to relate behaviors of phoneme detection

discriminability to MVPA phoneme decoding (Raizada et al.

2010) and previously in relation to numerosity discrimination.

Although there are substantial methodological differences from

the current study, Lasne et al. (2018) reported that decoding

accuracy of numerosities in the right parietal lobe of a non-

symbolic number comparison task correlated with behavioral

Weber fractions in an independent number comparison task

with an effect size of r=−0.59. This correlation increased to

r=−0.74 when they isolated the effect to the homologue of the

right lateral intraparietal region of macaques compared with the

left and ventral parietal regions, which showed lower rates of

correlation.

In contrast, the current results showed no correlation

between decoding accuracy and behavioral performance across

any of the ROIs. We first used a performance score as planned,

which is a response time metric adjusted for accuracy, because

this metric is better suited to the high accuracy rates associated

with symbolic number comparison, which was also a planned

analysis. However, after finding no significant correlation, we

also computed Weber fractions to more closely match the

analysis of Lasne et al., which again provided no evidence for

a correlation in the right parietal ROI [r=0.093, BF01 =4.31]. In

fact, the Bayes factor indicated moderate support for the null.

Several differences exist between the 2 studies that may have led

to a difference in results. First, the behavioral and fMRI delayed

numerosity comparison tasks in the Lasne et al. study weremore

closely matched than in the current study, which could have led

to a higher correlation. For example, in the current study, the

numerosities were 2, 4, 6, and 8 in the scanner (compared to

a constant, i.e., 5) created based on the Dehaene method for

generating dot stimuli (Dehaene et al. 2005) but included a wider

range of numerosities in the behavioral comparison task (i.e.,

5–15 for nonsymbolic, 2–9 for symbolic) created using the Gebuis

method (Gebuis and Reynvoet 2011). Lasne et al. used the same

numerosities (8–34) both inside and outside of the scanner and

used the same stimuli generationmethod for each.Also, it should

also be noted the Lasne et al. numbers are all considered outside

of subitizing range, whereas the current study’s numerosities

spanned the subitizing range and beyond for the in-scanner task.

Secondly, Lasne et al.’s sample reported very high acuity with a

small range of ability [meanw=0.15; range=0.13–0.19] compared

to the current sample [mean w=0.23, range=0.09 to 0.34]. Task

variations may greatly influence estimations of Weber fractions,

but a massive online study of the Panamath task estimates a

mean w for a sample of young adult participants to be about

0.25 (Halberda et al. 2012), suggesting that our sample was about

average. In comparison, Lasne et al.’s sample had exceptional

acuity. Third, the method for calculating weber fractions differed

between the 2 studies. Different methods of calculating weber

fractions lead to different distributions, so the weber fractions

are not directly comparable. Fourth, the current study modeled

neural response to number in the context of 2 active tasks,

but Lasne et al. decoded numerosities during the perception

portions of the task,whichminimized other task-active cognitive

processes, such as response selection. Lastly, it should be noted

that the current sample is much larger at n=39 compared to
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Lasne et al.’s n=12. Brain–behavior correlations in small samples

may increase the chances for a false positive or overestimation of

the effect size (Cremers et al. 2017). Replication of both findings

with a larger sample size and broader range of abilities will be

necessary for resolution of this issue.

The second set of classification–behavior correlations tested

whether decoding performance correlated with math achieve-

ment rates in the current sample. Our results demonstrated that

decoding accuracy did not correlate with math achievement

in either format across any of the ROIs in the current study.

Given that our decoding accuracies did not correlate with an

independent metric of behavioral numerical acuity, these results

suggest either that MVPA decoding accuracy in the current study

context does not index the acuity of numerical representation

precision, or that such representational acuity is not what drives

the observed links between performance on out-of-scanner

number comparison tasks and math competence. To check

how our behavioral number comparison tasks related to math

achievement and its subtests, we also ran these correlations

(see Supplementary Table 23). Results showed only the symbolic

performance metric correlated with math fluency. So, the lack

of a correlation between decoding and math achievement

could be due to the fact that the current study’s indices of

numerical acuity as measured by symbolic and nonsymbolic

number comparison tasks are less correlated with mathematics

achievement in the current sample than other studies using

similar tasks.

The final set of classification–behavior correlations tested

if generalization between formats and tasks related to math

achievement. Based on the idea that representations of symbolic

and nonsymbolic number become increasingly specialized over

development, a divergence in neural patterns between symbolic

and nonsymbolic formats may relate to more developed numer-

ical abilities associated with math achievement. Bulthé et al.

(2018) reported evidence in favor of this hypothesis, showing a

negative correlation between generalization rate across numeri-

cal format in the bilateral parietal lobes and arithmetic skillswith

an effect size of Spearman rho =−0.23 (n=63). Based on this find-

ing,wewould expect, a priori, to see similar results in the parietal

lobes.However,we also expanded the search by including the IFG

and NFA and by splitting regions into left and right hemispheres.

Results convergedwith those of Bulthé et al.,whereby generaliza-

tion between numerical formats negatively correlates with math

achievement, most highly in the right parietal ROI [Spearman

rho=−0.319, one-tailed P=0.024, BF−0 =3.43]. The correlation is

slightly lower in the left parietal ROI but trending in the same

direction. Considering how closely the current results fit with

those of Bulthé et al., these results lend further support to the

idea that lower cross-format generalization rates are capturing

a divergence or “estrangement” (Lyons et al. 2012) in patterns of

neural activity between formats that is associated with greater

math skills. Results for the task generalization andmath achieve-

ment correlation indicated a similar negative correlation in the

left parietal ROI. On average, individuals with worse general-

ization of numerosity-specific activation patterns between the

Identify and Compare tasks had higher math scores (Spearman

rho=−0.375, one-tailed P=0.009, BF−0 =5.38). Or, in other words,

more task-specific numerosity representations were associated

with higher math scores. This could be an independent effect

from format generalization,whereby representational specificity

is indexed specific to the task. More proficient mathematical

thinkers could elicit more task-specific engagement in the con-

texts of identifying numbers as nominative objects versus com-

paring numbers in a computational context. However, taken

together with the format-generalization finding, these negative

correlations could indicate a broader trend than either the decou-

pling between formats or task-specific engagement hypotheses.

They could point towards a more general increase in special-

ization for cognitive processes related to numerical processing

associated with mathematical proficiency. Still, this novel find-

ing should be further replicated and investigated across multiple

age groups in order to understand how specializationmay unfold

over development.

Conclusion

The current study set out to address whether patterns of neural

activity associatedwith processing numerosities is shared across

formats and tasks, and further, if those patterns relate to indi-

vidual differences in number comparison behaviors and math

achievement.We successfully trained a classifier to discriminate

between numerosities represented as dots and generalize at

above-chance accuracy rates to the same numerosities repre-

sented as Arabic digits, and vice versa, in the bilateral parietal

lobe and to some extent, the left IFG. This indicates that at some

level, numerosity-specific neural resources are shared between

formats, and further, that both the left and right parietal lobes are

directly involved in the encoding of numerosity to the extent that

numerosity-specific decoding was successful within each hemi-

sphere independently. Generalization was also successful across

tasks where participants either identified numbers or compared

them, suggesting task-independent shared neural resources in

the bilateral parietal lobes and bilateral IFG. While a significant

amount of evidence points to the involvement of the dorsolat-

eral prefrontal cortex as being involved with number process-

ing (Sokolowski et al. 2016; Arsalidou et al. 2017; Zhang et al.

2018), the current results indicate that this processing is specific

to individual numbers in multiple formats and task contexts.

Lastly, in correlating our decoding and generalization metrics

with independent behavioral measures, we found that decod-

ing performance did not relate to number comparison perfor-

mance outside of the scanner or math ability, but generalization

between formats and between tasks in the parietal lobes did

negatively relate to math achievement. Together, these findings

suggest that individual differences in representational speci-

ficity within format and task contexts relates to mathematical

expertise.
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