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Abstract

Debate continues on whether encoding of symbolic number is grounded in nonsymbolic numerical magnitudes.
Nevertheless, fluency of perceiving both number formats, and translating between them, predicts math skills across the life
span. Therefore, this study asked if numbers share cortical activation patterns across formats and tasks, and whether neural
response to number predicts math-related behaviors. We analyzed patterns of neural activation using 7 Tesla functional
magnetic resonance imaging in a sample of 39 healthy adults. Discrimination was successful between numerosities 2, 4, 6,
and 8 dots and generalized to activation patterns of the same numerosities represented as Arabic digits in the bilateral
parietal lobes and left inferior frontal gyrus (IFG) (and vice versa). This indicates that numerosity-specific neural resources
are shared between formats. Generalization was also successful across tasks where participants either identified or
compared numerosities in bilateral parietal lobes and IFG. Individual differences in decoding did not relate to performance
on a number comparison task completed outside of the scanner, but generalization between formats and across tasks
negatively related to math achievement in the parietal lobes. Together, these findings suggest that individual differences in
representational specificity within format and task contexts relate to mathematical expertise.

Key words: math achievement, multivoxel pattern analysis, number representation, numerical cognition, ultra-high field
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Introduction nonsymbolic number is likely rooted in an innate, evolutionarily

Working with numbers in a variety of representational formats
is an important skill that children typically master early in
development, and one that serves as a precursor to mathematical
thinking (Dehaene 2011). Some representations of number are
nonsymbolic, such as items in a set or beeps in a sequence, and
are evident early in infancy (Izard et al. 2009). The perception of

ancient neural system that abstracts the property of numerical
magnitude (i.e., the number of items) from continuous percep-
tual properties (i.e., object contours, overall surface area, density,
etc.) (Feigenson et al. 2004; Dehaene 2011), though details of this
system remain controversial (Leibovich et al. 2016; Knops 2017;
Nunez 2017). Other representations of number are symbolic in
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nature, such as Arabic numerals or spoken words, and develop
alongside language skills (Wiese 2003; Ansari 2008). There is cur-
rently no consensus view on whether the encoding of symbolic
number is grounded in the nonsymbolic neural system (Piazza
2010), is developmentally independent, but may eventually be
integrated (Carey et al. 2017; Carey and Barner 2019), or is perhaps
linked at one point but then decoupled over developmental time
(Lyons et al. 2012). Further, it is well-documented that individ-
ual differences in the fluency of perceiving both formats, and
translating between them, is associated with superior mathe-
matical skills across the life span (luculano et al. 2008; Maz-
zocco et al. 2011; Fazio et al. 2014; Price et al. 2017; Price and
Wilkey 2017; Schneider et al. 2017; Wilkey et al. 2018), but what
drives this relation is not well understood (for a critical review,
see Wilkey and Ansari 2019).

Accordingly, several gaps in our current understanding of
what drives individual differences in numerical processing
remain. First, do symbolic and nonsymbolic representations
of number share cortical patterns of activation? Second, are
representations of number task-dependent? Third, do patterns
of neural response to number relate to numerical ability?

Shared Versus Independent Representation of Number
Across Formats

A recent meta-analysis indicates that processing of nonsymbolic
and symbolic number both activate bilateral regions of the pari-
etal lobe and right frontal lobe (Sokolowski et al. 2017). Given
the wide range of tasks, however, it is difficult to determine if
this shared activity is attributable specifically to the processing
of numerical magnitude, or other domain-general task-related
features such as attention or response selection.

To address this problem, some studies have used adaptation
paradigms that measure brain response during passive viewing
rather than active, response-based tasks. This research has led
to mixed evidence for either shared or distinct neural repre-
sentation between number formats (Shuman and Kanwisher
2004; Piazza et al. 2007; Roggeman et al. 2007; Kadosh et al.
2011; Sokolowski et al. 2019). These mixed findings may be due
to a reliance in this field on traditional univariate functional
magnetic resonance imaging (fMRI) analytic approaches that
require overlap of functional regions across participants in nor-
malized space to reveal shared neural mechanisms across a sam-
ple. While this approach has proved informative, and univariate
analyses conducted in subject-specific regions of interest (ROISs)
or native space are becoming more common, it may be that
the issue of shared versus distinct representations requires a
more fine-grained approach that takes into account individual
variability in cortical organization.

One alternative to the univariate group-averaging approach is
to analyze patterns of activity across multiple voxels within an
individual using multivariate pattern analysis (MVPA, Norman
et al. 2006). Studies that have employed various types of MVPA
analyses have provided conflicting evidence, with some showing
evidence of cross-format classification (Eger et al. 2009; Teich-
mann et al. 2018; Bankson et al. 2019), particularly with smaller
numbers (Damarla and Just 2013), while others suggest format-
dependent patterns of neural activity (Bulthé et al. 2014, 2015;
Lyons et al. 2015; Lyons and Beilock 2018; Sokolowski et al. 2019).

The reasons for the contradictory findings and the conse-
quent lack of consensus, however, remain unclear. It is possible
that relatively low sample sizes have increased variability in
findings, or that the signal-to-noise ratio afforded by 3 Tesla fMRI

is nonoptimal for detecting subtle spatial activation patterns.
The current study addresses these 2 issues by collecting fMRI
data at 7 Tesla (which increases the signal-to-noise ratio of the
BOLD response, Yacoub et al. 2001; van der Zwaag et al. 2009; De
Martino et al. 2011, 2008) with a larger sample size (n=39).

Shared Versus Independent Representation of Number
Across Tasks

Beyond the issue of shared representation across formats,
another outstanding and previously unexplored question is—are
neural representations of number task-dependent? Depending
on the scenario, numerical information may be acted upon in
very different ways (e.g., using nominal, ordinal, or cardinal
properties of number), and it remains unclear whether the
same neural representations of number are engaged across
differing task contexts. Some behavioral research suggests that
representations of number are task-dependent. For example,
the numerical distance effect (Moyer and Landauer 1967),
whereby numbers further apart in magnitude are more easily
compared than numbers that are closer together, is a common
property of comparing numbers. In one study comparing task-
dependent numerical properties, the distance effect was evident
in symbolic number comparison tasks, but not in a visual
numeral matching task (Goldfarb et al. 2011). Similarly, the
spatial-numerical associations of response codes (SNARC) effect
are task-dependent. In a study that manipulated verbal or
spatial working memory load during a parity judgment and
magnitude comparison task, the SNARC effect disappeared in
the parity judgment task under verbal load and disappeared in
the comparison task under spatial load (van Dijck et al. 2009).
Together, these results suggest that task context affects the way
in which we process numbers.

There is also a background of neurological case studies that
support task-dependent aspects of number processing. Study-
ing 2 individuals with pure alexia, Cohen and Dehaene (1995)
reported that number identification performance differed con-
siderably depending on task demands. Both patients could name
digits in the context of a simple naming task or when com-
paring numbers but frequently misidentified the same digits as
operands of addition problems. However, it is still unknown how
shared or distinct neural mechanisms that encode numerical
information relate to different task behaviors and to what extent
they are independent. To address this question, the current study
employs 2 tasks, a number identification task and a number com-
parison task to investigate whether number-specific patterns of
neural activation are generalizable across task contexts.

Representation of Number and Numerical Ability

A dominant theory in the field suggests that precision of numer-
ical magnitude representations is directly related to the devel-
opment of math skills (Butterworth 2005; Halberda et al. 2008a;
Dehaene 2011; Wilkey et al. 2017; Wilkey and Price 2018). While
a large body of behavioral research has investigated this link
between performance on basic number processing tasks, such
as the number comparison task, and individual differences in
math abilities, there is a high degree of inconsistency in results
across studies (for meta-analyses, see Chen and Li 2014; Fazio
et al. 2014; Schneider et al. 2017, 2018). This inconsistency may, in
part, be driven by variations in the myriad factors that influence
performance on any given cognitive task. Neuroimaging, and
in particular MVPA, offers the potential to investigate number-
specific representational precision more directly.
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To date, 2 fMRI studies have demonstrated a relation between
neural responses to numerical magnitudes and behavioral mea-
sures of nonsymbolic numerical processing acuity. In a sample of
3—4-year-old children, Kersey and Cantlon (2017) found that neu-
ral tuning curves in the right intraparietal sulcus (IPS) predicted
discrimination sensitivity in a nonsymbolic number comparison
task. In adults, Lasne et al. (2018) showed that MVPA decoding
performance classifying nonsymbolic numerosities correlated
with individual differences in behavioral measures of nonsym-
bolic numerical acuity. The extent to which these results hold
true for symbolic numbers, or to which behavioral performance
is related to cross-format generalization, is unknown. To address
this, the current study conducts a similar analysis as Lasne
et al. (n=12) with a larger sample (n=39) assessing the relation
between neural representations of nonsymbolic and symbolic
formats and behavioral number comparison performance. We
further explore whether decoding accuracy within each format
relates to math achievement. If representational acuity of num-
ber does underlie math skill development, we should expect
higher classification accuracy rates to correlate with higher math
ability.

In regard to format generalization and math ability, Bulthé
et al. (2018) reported that the degree of representational over-
lap, as indexed by MVPA generalization, between symbolic and
nonsymbolic number in the parietal lobe negatively correlated
with arithmetic ability. Such findings support the idea that with
increasing expertise in symbolic numerical abilities, such as
arithmetic, the neural systems used to represent symbolic num-
ber decouples from, or becomes “estranged” from, nonsymbolic
representation (Lyons et al. 2012). However, Bulthé et al. limited
their analysis to a combined left and right parietal ROI. Questions
remain, therefore, about whether this pattern holds true for left
and right parietal regions independently, and whether it can also
be observed in frontal and temporal regions associated with the
representation and processing of numerical information.

The Current Study

In summary, to address the 3 questions outlined above, we use 7
Tesla fMRI to assess (1) whether patterns of neural response to
specific numerical magnitudes in one format can generalize to
the other, (2) whether patterns of neural response can generalize
across tasks (i.e., number identification to number comparison),
and (3) whether precision of neural representation is related
to behavioral outcomes in basic number processing and math
performance.

Materials and Methods
Participants

Forty neurologically healthy, right-handed individuals (screened
via self-report) participated in the study for undergraduate
course credit. Of those recruited, one participant was excluded
from analyses due to poor data quality (see Data Quality
Assessment), resulting in final sample of 39 participants (Mean
age=19.8 years, Range =18.4-22.3, 20 females). All participants
had normal or corrected-to-normal vision. Informed consent
was obtained from each participant in accordance with the
Institutional Review Board policy. A portion of the neuroimaging
data (i.e., the Compare task) has been reported on previously with
a different analytic method and study goal (Conrad et al. 2020).

Procedure

The study consisted of 2 testing sessions, a behavioral session
conducted in a quiet room and an MRI session conducted at the
university’s imaging center. In the first session, participants com-
pleted a battery of academic, intelligence, and cognitive mea-
sures including a single-digit and double-digit symbolic number
comparison task (only the single-digit task was analyzed since it
was most comparable with the fMRI task), a nonsymbolic number
comparison task, 2 math subtests of the Woodcock Johnson-III,
a forward and backwards versions of the Corsi digit-span, and
the Kaufman Brief Intelligence Test (second Edition). fMRI was
acquired on the participants’ second session as soon as possible
thereafter (Mean time between sessions =7.9 days, Range = 1-28).
All computer-based tasks were presented using E-Prime 2.0 (Psy-
chology Software Tools). Preregistration of our analytic approach
is archived here: https://osf.io/9uz72.

Behavioral Assessment
Nonsymbolic Number Comparison

Participants were presented with 2 sets of dots simultaneously
and asked to indicate via button press which set was more
numerous (i.e., which set contained more dots). The set on the
left side of the screen contained yellow dots and the set on
the right side contained blue dots, which corresponded to color-
coded left and right buttons, on a gray background. Response side
was fully counterbalanced. Trials consisted of 1000 ms stimulus
presentation followed by 2000 ms of a fixation cross. Seven
ratios were presented, ranging from 0.33 (5 vs. 15) to 0.9 (9 vs.
10), for further details, see Supplementary Table S1. The number
of dots in each stimulus ranged from 5 to 15. Each ratio was
presented 10 times for a total of 70 trials. Ratios, stimulus pre-
sentation times, and order of presentation were modeled after
Odic et al. (2014). To control for the possibility that participants
might choose a strategy based on visual cues rather than number
of dots, the following visual properties of dot sets were varied
using a modified version of the MATLAB code recommended
by Gebuis and Reynvoet (2011) to generate stimuli: convex hull
(area extended by a stimulus), total surface area (aggregate value
of dot surfaces), average dot diameter, and density (convex hull
divided by total surface area). In approximately, one quarter of
the trials all 3 visual properties were congruent with greater
numerosity (i.e., the greater number of dots had a greater con-
vex hull, surface area, etc.). In another approximate quarter of
the trials, all 4 visual properties were incongruent with greater
numerosity. In the remaining trials, visual properties were mixed
congruent and incongruent. All stimuli were presented on a
21.5” monitor driven at a refresh rate of 60 Hz and resolution
of 1920 x 1080 pixels also using E-Prime 2.0. The 47.7 x 26.8 cm
screen subtended 44.7° x 26.0° at the viewing distance of about
58 cm. The arrays of dots centered at 12.6° left and right of the
center fixation point. Dot arrays were presented within square
506 x 506 pixel images (8.35° x 8.35°). The average dot diameter
was 36.3 pixels (0.62°), the minimum dot diameter was 22.5 pixels
(0.39°), and the maximum dot diameter was 56.8 pixels (0.97°).
Further details of the visual parameters of the dot set (i.e., area
subtended, surface area, diameter, and circumference of each dot
array) can be found on the project page on the Open Science
Framework: https://bit.ly/30A8Nj3.

To capture participants’ performance on the symbolic and
nonsymbolic number comparison tasks, we adopted Lyons et al.’s
(2014) performance metric P=RT(1 + 2ER), where RT is response
time in milliseconds and ER is error rate. This metric expresses
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response time adjusted for error rate, such that response time
is unchanged for students without errors, and response time is
doubled for students who perform at chance (i.e., 50% error rate).
Accordingly, a greater P score represents worse performance.
The performance metric affords one outcome that combines
response time and accuracy, and it adjusts for speed-accuracy
trade-offs. We calculated error rate using all trials; to calculate
mean response time we used correct trials, excluding outlier
trials that were +3 standard deviations from each student’s
average response time. We also computed a second metric
to index performance that is more closely related to previous
analyses of the nonsymbolic number comparison task, ‘weber
fraction’(w). w is derived from the Weber-Fechner law and is a
metric of the noise in an individual’s representation of numerical
magnitude. To compute our w scores, we used the method and
formula employed by Halberda et al. (2008a). The percentage
correct on the ANS task was modeled for each individual subject
as 1—error rate, where error rate is defined as: %erfc(#ﬁ),
where erfc(x) is the complementary error function related to the
integration of the normalized Gaussian distribution. The model
fits percentage correct as a function of the Gaussian approximate
number representations for the 2 sets displayed on a trial (n1 and
n2) with a single free parameter for w.

Symbolic Number Comparison

Participants were simultaneously presented with single-digit
Arabic numerals and asked to indicate via button press which
of the 2 was numerically larger (e.g., 7 is larger than 6). The
ratios presented, order of ratios, and stimuli durations were
identical to those in the nonsymbolic number comparison
task. Numerals ranged from 2 to 9. For further details, see
Supplementary Table S1. Arabic digits were presented in Courier
New font in light gray (i.e., “silver” in E-Prime) on a black
background. Like the nonsymbolic stimuli, digits were presented
at 12.6° left and right of center fixation, but were 72 x 132 pixels
(1.23° x 2.25°) in size, on average.

Mathematics Achievement

Mathematical competence was assessed using the math fluency
and calculation subtests of the Woodcock-Johnson III Tests of
Achievement (WCJ-III) (Woodcock et al. 2001). The Math Fluency
subtest requires participants to answer as many simple addition,
subtraction, and multiplication problems as possible within a
3-min period. The calculation subtest, on the other hand, is
untimed, and requires participants to complete as many calcu-
lation items as possible that increase in difficulty, ranging from
simple arithmetic to calculus. A weighted, composite calculation
skills cluster score comprising both subtests was computed for
each participant using the WCJ scoring software. Grade-normed
standard scores were used for all analyses. A Shapiro-Wilk test
of normality demonstrated that the math measure was not
normally distributed (P=0.016), with a negative skew of —0.855
(se=0.378). Therefore, in order to conduct correlational analyses
that assume a normal distribution of measures, we squared the
standard scores which resulted in a normally distributed sample
of abilities (Shapiro-Wilk P=0.159).

MRI Session
MRI Acquisition Parameters

Imaging was performed using a 7 Tesla (7 T) Philips Achieva
scanner with a 32-channel head coil. An MP2RAGE (Marques et al.

2010) image was acquired for anatomical reference, aligned to
the anterior/posterior commissures, with the following parame-
ters: TR=4.315 ms, TE=1.92 ms, flip angle =7, 240 coronal slices,
voxel size=1 mm?, imaging matrix =240 x 240 x 192, acquisition
time =1010 s. These images were corrected for B1-field inhomo-
geneities, as well as proton density and T2x effects according
to the procedure described by Marques et al. (2010). For the
event-related experiment, functional T2x-weighted images were
acquired over 2 runs of 243 volumes each, with the following
parameters: TR=2000 ms, TE=25 ms, flip angle=63, 46 axial
slices (with no interslice gap), voxel size=2.5 mm?3, imaging
matrix=96 x 96 x 46, acquisition time=>500 s per run (33:20 m
of functional data total).

fMRI Tasks

Participants completed in order: a scout scan, 2 runs of an event-
related number identification paradigm (Identify), an anatomical
scan, and then 2 consecutive runs of an event-related num-
ber comparison paradigm (Compare). Tasks were not counter-
balanced because we anticipated that completing the compar-
ison task first may induce a lasting cognitive effect to automat-
ically assess the quantity and compare it with the standard.
Accordingly, participants always completed the Identify task first.
Further, as our analysis plan involved individual differences,
varying the task order across participants may introduce irrel-
evant variance in our measures of interest.

Identify. For each trial, participants judged whether an Arabic
digit (“symbolic”) or dot array (“nonsymbolic”) could be identified
as 2, 4, 6, or 8 by pressing one of 4 buttons on their right hand
as quickly and accurately as possible, Fig. 1. A total of 160 trials
were presented, composed of 80 symbolic trials and 80 nonsym-
bolic trials (20 per number, per format) which were intermixed
and pseudorandomly ordered (i.e., no more than 3 consecutive
trials were of the same number and same format). Nonsymbolic
stimuli were created using the MATLAB package first described
by Piazza et al. (2004). Nonsymbolic stimuli were controlled for
total surface area across numerosities by reducing dot size with
increasing numerosity. Additionally, all stimuli were controlled
for total occupied area and luminance across formats (i.e., on
average, dots sets contained the same number of pixels as Arabic
digits) in an effort to control for non-numerical visual parameters
across trials. Dot sets and digits were presented in black [RGB: 0,
0, 0] on a gray background [RGB: 180, 180, 180] encircled by a black
border. Location within the gray circle varied across trials but was
balanced for quadrant between all conditions. Stimulus duration
was 500 ms and interstimulus intervals (ISI) ranged from 3300 to
7300 ms, in 1000 ms increments, with an average of 5300 ms. ISI
was counterbalanced across numerosities and conditions.

Compare. The same stimuli were used for the “compare”
condition, except in this task, participants were instructed to
indicate whether the number they saw was less than or more
than 5 by pressing a button with either their right index or right
middle finger, respectively.

MRI Data Processing
fMRI Preprocessing

FMRI data were preprocessed in AFNI using the afni_proc.py
program, including despiking, slice-time and motion correction,
coregistration, normalization to a MNI152 template, and scaling
(Cox 1996). No spatial smoothing was applied. Participant-level
activation analyses to estimate the effect of all trials versus
baseline were carried out using 3dREMLfit, which accounts
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Figure 1. FMRI task paradigms and stimulus examples for all 4 numerical magnitudes in both formats.

for time series autocorrelation. Baseline regressors included 6
motion parameters and their derivatives, and zeroth- to fourth-
order Legendre polynomials to model low-frequency drifts
(per run).

Machine Learning Methods

MVPA decoding and generalization pattern classification were
implemented in MATLAB (Mathworks, Natick, MA) using the
linear discriminant analysis (LDA) classifier in the CoSMo MVPA
toolbox (cosmomvpa.org, Oosterhof et al. 2016). Statistics were
conducted in R (R Core Team 2018) using the ggplot2 (Hadly
Wickham 2016), vioplot (Adler and Kelly 2018), and tidyverse
packages (Wickham 2017) for graphical display and data handling
as well as jamovi (2019, https://www.jamovi.org, version 0.9).

Preprocessing Betas for Classification

Per-trial beta maps (i.e., activation maps) were created using a
second, participant-level GLM and estimated with AFNI's 3dDe-
convolve function. Separate regressors were included for each
of the 320 trials, modeling trial-wise BOLD responses, as well
as all nuisance regressors described above (Rissman et al. 2004).
As a final step, to ensure that potential differences in activation
magnitude between tasks (i.e., identify vs. compare) did not
confound pattern classification across tasks (or within tasks,
across runs), we implemented a spatial normalization procedure
involving subtraction of the voxel-wise mean and division by
the voxel-wise standard deviation, across voxels within each
ROI (Misaki et al. 2010). In other words, we z-normalized each
set of voxel-wise betas at the trial level. The resulting series of
normalized beta vectors were sorted by condition and served
as inputs for subsequent MVPA’s. Each per-trial beta map is
considered a sample in the analysis.

Regions and Voxels of Interest

MVPA classification analysis was conducted in the 8 regions of
interest, 4 regions of interest per hemisphere. Inferior frontal
and parietal regions were chosen due to the convergence of

evidence across seminal works and meta-analyses that they are
involved in numerical magnitude representations (Arsalidou and
Taylor 2011; Arsalidou et al. 2017; Sokolowski et al. 2017). Recent
work, including meta-analyses has converged on the presence
of a “number form area” (NFA) located in the posterior (Yeo
et al. 2017), inferior temporal lobe that is integral for processing
Arabic numerals and may relate to individual differences in math
achievement (Pollack and Price 2019), so this region was also
selected. Lastly, based on evidence from electrocorticography
studies that show the coupling between parietal regions and
inferior temporal regions during number-related tasks (Daitch
et al. 2016; Baek et al. 2018), we hypothesized that the NFA and
parietal mechanisms may reveal patterns together that provide
more information than either region independently. To explore
neural patterns of number representation as the 2 ROIs func-
tion together, we created an ROI that was the combination of
our selected parietal region and the NFA region. If spatial pat-
terns of activation span the 2 regions in a way that provides
more number-specific decoding information, the “NFA + pari-
etal” region should have significantly higher classification accu-
racy rates than either region independently.

Regions were defined as follows: (1) the inferior frontal gyrus
(IFG) (left and right), (2) the parietal lobe (left and right), (3) the
NFA (left and right), and (4) the combination of the NFA and
the parietal lobe ROIs (left and right) (Fig. 2). Anatomical masks
for the IFG and the parietal region were derived from the WFU
PickAtlas (Maldjian et al. 2003, 2004). Parietal ROIs were formed
from combining the “superior parietal lobule” and “inferior pari-
etal lobule”, and “inferior frontal gyrus” was selected for the IFG,
split by hemisphere. The right NFA ROI was defined from the
Yeo et al. meta-analysis (2017) by creating a spherical ROI with a
10 mm radius centered at the peak coordinate of convergence in
the meta-analysis. The left NFA ROI was defined as the mirrored
homologue of the right NFA ROI. To reduce features, a contrast of
all stimuli versus implicit baseline was run and voxel-wise maps
of t-statistics for each participant were computed. Within each
ROI, we selected the 600 most significantly active voxels based
on the highest t-statistics from the all versus baseline contrast
as in Lasne et al. (2018). When the NFA and Parietal ROIs were
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combined, we selected 300 voxels with the highest t-statistics
in this contrast from each region (600 total). We should note
that because this contrast involves all conditions, no condition-
specific selection bias is involved in the selection of these voxels.
The feature-selection and classification analyses are sufficiently
independent, a fact that was supported by the random permuta-
tion testing we conducted.

Data Quality Assessment

To validate that the current data were of sufficient quality and
sensitivity to enable our MVPA classification analyses, we con-
ducted an analysis of button presses in a spherical ROI of 1200
voxels (2.5 mm?) in the M1 motor strip on the precentral gyrus,
corresponding to neurosynth.org’s peak t-statistic for the search
term “finger movement” (MNI coordinates: —36, —28, 52). Training
and testing conditions were separable button responses (sep-
arate fingers, all 4 fingers) with 20 trials per finger using a
leave-one-out cross-validation technique with data on the iden-
tify condition. Twenty trials represent the minimum number of
trials we expected to run our classifier on in the main anal-
ysis. If a participant did not have above-chance classification
according to separate finger movements in a cortical location
with a well-known spatial topography related to motor control,
then data were not expected to be valid for classification of
higher-level cognitive processes. According to this criterion, only
one participant did not demonstrate above-chance classifica-
tion in the motor regions. Upon inspection, this participant did
have a considerable amount of movement during data collection.
Therefore, the one participant for whom this was the case was
excluded from further analyses. To make sure more fine-grained
movements did not affect our analyses, we checked to see if
overall movement correlated with classification accuracy rates
by correlating movement with the classification accuracy rates
in the M1 ROIL. Movement was indexed by flagging volumes that
demonstrated between-volume movement of >0.3 mm Euclidian
norm distance or if >5% of voxels within a brain mask were deter-
mined to be outliers (signal > 5.5 median absolute deviations).
Results indicated no significant correlation between number of
flagged volumes and classification accuracy rate [r (37)=—0.089,
P =0.588].

Analyses
Decoding

Before asking if patterns of neural activity generalized across
formats or tasks, we needed to establish that the LDA classifier
implemented in the current study could accurately decode the
numerosity of a stimulus within the same format and within
the same task. Therefore, the first step was to decode the 4
numerosities (2, 4, 6, and 8) within each condition (format x task)
using trial-level beta maps (voxelwise maps per trial derived
from event-related design). This resulted in four, 4 x 4 decod-
ing/confusion matrices for each ROI. Higher decoding accuracies
indicate more discriminable patterns of activation. Decoding
accuracies were then averaged over numerosities to attain a
single classification accuracy pertaining to conditions of interest
(i.e., mean accuracy for symbolic, nonsymbolic, identify task, and
compare task).

For all classification in the current study, we followed the
same procedure. We followed a leave-three-out, cross-validation
procedure where the classifier was trained on all but 3 sets
of trial-level beta maps (set=one beta map per numerosity, or
“chunk” in CoSMo’s terminology) in order to keep the number of

training samples and test samples balanced. All possible combi-
nations of training samples for left-out sets were used. For exam-
ple, when decoding Symbolic number, where there were 40 trials
per number, 3 trials of each number were left out for training,
leaving 37 trials of each condition to train on, and 3 of each to
test on (i.e., leave-three-out). Classification results were tested
for significance (P <0.05) across participants with a 2-tailed t-
test, testing against the null of a chance-level classification (25%,
given the 4 numerosities). All reported decoding P-values result-
ing from the t-tests against chance are Bonferroni-corrected
by multiplying the uncorrected P-value by the number of ROIs
for that test (n=8). All classification results were examined for
bias by random permutation tests (1000 permutations) for each
analysis. In this process, the labels for training the LDA classifier
are scrambled at each iteration, and, if the algorithm is unbiased,
it should produce a normal distribution of classification accuracy
centered around chance (25%). For all of the classifications in the
current study, the mean of the deviation from 25% was negligible,
indicating no bias in our algorithm. The permutation testing is
reported with our data, but is not analyzed further.

In short, a result of numerosity decoding significantly above
25% averaged across numerosities and across individuals would
indicate that, on average, neural activity in the ROI contains infor-
mation related specifically to numerical magnitudes. Statistical
tests are reported as one-sample, 2-tailed t-tests where the null
being tested is a chance rate of decoding (25%).

Generalization

Our first 2 questions of interest, regarding shared neural repre-
sentation for number between (1) numerical format and (2) task
were addressed by testing whether classifiers can train on one
format or task and generalize to the other. If the classifier can
generalize number classification from one condition to the other,
and there is no other alternative explanation for shared neural
activity between numbers such as response selection or another
confound, then the 2 formats (or tasks) can be assumed to share
numerosity-specific patterns of neural activity. The same general
procedures were used to test generalization as were used for
decoding, except, rather than remove sample sets in an n-fold
fashion, the classifier was trained on all samples of one condition
and tested on all of the samples of the other. Therefore, rather
than average over the thousands of n-fold test combinations,
classifier performance within an individual is the mean num-
ber of correct predictions per condition. The same classifier,
statistical tests, and random permutation testing were used for
classification and generalization. All reported P-values for the t-
test against chance classification are Bonferroni-corrected.

Classification-Behavior Correlation Analyses

Our third question of interest was whether patterns of neural
response to number relate to (a) number comparison perfor-
mance, and (b) math achievement.

To examine if individual differences in numerosity decoding
predicted number comparison performance, a common measure
of numerical acuity, we ran bivariate correlations between each
participants’ mean within-format decoding classification accu-
racy rate (i.e., averaged across numerosities 2, 4, 6, and 8) and
the behavioral performance metric for each participants’ per-
formance in the number comparison task completed outside of
the scanner. Correlations were run within formats. For example,
decoding accuracy for nonsymbolic stimuli was correlated with
performance on the nonsymbolic number comparison task.

Next, we investigated if decoding accuracy rates correlated
with math achievement. Mean decoding classification accuracy
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rates for both nonsymbolic and symbolic stimuli were correlated
with grade-normed standard scores of math achievement that
had been squared to achieve a normal distribution.

Lastly, using bivariate correlations we tested whether par-
ticipant’s mean format generalization values (from symbolic
to nonsymbolic and vice-versa, averaged together) and mean
task generalization values (from Identify to Compare and vice-
versa, averaged together) correlated with math achievement,
again squared.

In order to more directly compare with significance level of
previous studies that ran similar correlations with various num-
bers of tests, none of the P-values for brain-behavior correlations
are corrected for multiple comparisons.

Results
Decoding
Within-Format Numerosity Classification

Classification accuracy rates for nonsymbolic numerosities were
above chance in 7 of the 8 ROIs (Bonferroni-adjusted p-value
reported) (see Fig. 2 for means): L parietal [t(38) =12.06, P < 0.001],
R parietal [t(38)=10.21, P < 0.001], L IFG [t(38)=6.77, P <0.001], R
IFG [t(38)=5.54, P <0.001], L NFA [t(38)=4.78, P <0.001], R NFA
[t(38)=2.23, P=0.056], L parietal and NFA [t(38)=7.13, P <0.001],
R NFA and parietal [t(38)=6.04, P <0.001]. Only decoding in the
right NFA failed to show above-chance classification accuracy.
This indicates that in 7 of 8 ROIs there were distinguishable
neural patterns for nonsymbolic stimuli of different magnitudes.
These data are in overall agreement with the decoding accuracies
obtained in previous research in the parietal lobe (Eger et al.
2009; Bulthé et al. 2015) and frontal regions (Bulthé et al. 2014).
Comparing classification rates in parietal ROIs versus parietal
+ NFA ROIs indicated that including the NFA with parietal data
had a significant negative impact on classification accuracy [left:
t(38)=5.50, P < 0.001, Cohen’s d =0.88; right: t(38)="5.50, P < 0.001,
Cohen’s d=0.88], indicating that parietal ROIs carried all of the
important information about numerosity-specific processing in
the combined ROI. Therefore, the combined parietal + NFA ROIs
are not analyzed further in the classification-behavior correla-
tions.

Decoding of symbolic numerosities followed the same pattern
of results as nonsymbolic stimuli. Classification accuracy rates
for symbolic numerosities were above chance in 7 of the 8 ROIs
(Bonferroni-adjusted p-value reported) (see Fig. 2 for means): L
parietal [t(38) =11.00, P <0.001], R parietal [t(38) =7.64, P < 0.001],
L IFG [t(38)=4.03, P=0.002], R IFG [t(38) =5.05, P <0.001], L NFA
[t(38)=4.32, P<0.001], R NFA [t(38)=2.41, P=0.167], L parietal
and NFA [t(38)=5.72, P <0.001], R NFA and parietal [t(38)=4.47,
P <0.001]. Only decoding in the right NFA failed to show above-
chance classification accuracy. Again, this indicates thatin 7 of 8
ROIs there were distinguishable neural patterns for symbolic
stimuli of different numerosities. Comparing classification
rates in parietal ROIs versus parietal + NFA ROIs indicated
that including the NFA with parietal data had a significant
negative impact on classification accuracy [left: t(38)=4.39,
P <0.001, Cohen’s d=0.70; right: t(38)=3.46, P=0.001, Cohen’s
d=0.55], indicating that parietal ROIs carried all of the important
information about task generalization. Therefore, the combined
parietal + NFA ROIs are not analyzed further in the classification-
behavior correlations.

For detailed plots of means and ranges of decoding perfor-
mance within conditions across numerosities, see Supplemen-
tary Figure S1.

Within-Task Numerosity Classification

Mean classification accuracy rates for numerosities in the
identify task collapsed across formats were above chance in 7 of
the 8 ROIs (Bonferroni-adjusted p-value reported) (see Fig. 2 for
means): L parietal [t(38)=13.03, P <0.001], R parietal [t(38) =9.06,
P<0.001], L IFG [t(38)=6.37, P<P<0.001], R IFG [t(38)=5.33,
P<0.001], L NFA [t(38)=3.95, P=0.003, R NFA [t(38)=1.70,
P=0.778], L parietal and NFA [t(38)=7.47, P <0.001], R NFA and
parietal [t(38)=5.40, P <0.001]. As above, only decoding in the
right NFA failed to show above-chance classification accuracy,
indicating that in 7 of 8 ROIs, there were distinguishable neural
patterns for stimuli of different numerosities within the identify
task across numerical formats.

Decoding of numerosities in the Compare task followed the
same pattern of results as in the Identify task, albeit with some-
what lower mean accuracy rates. Classification accuracy rates
for numerosities in the Compare task were above chance in 7 of
the 8 ROIs (Bonferroni-adjusted p-value reported) (see Fig. 2 for
means): L parietal [t(38)=9.04, P <0.001], R parietal [t(38)=6.18,
P <0.001], L IFG [t(38) =5.03, P < 0.001], R IFG [t(38) =3.93, P=0.003],
L NFA [t(38) = 3.84, P = 0.004], R NFA [t(38) = 1.71, P =0.762], L parietal
and NFA [t(38)=4.78, P <0.001], R NFA and parietal [t(38)=4.08,
P=0.002]. Only decoding in the right NFA failed to show above-
chance classification accuracy, indicating that in 7 of the 8 ROIs,
there were distinguishable neural patterns for stimuli of different
numerical magnitudes within the Compare task across numeri-
cal formats.

For detailed plots of means and ranges of decoding perfor-
mance within conditions across numerosities, see Supplemen-
tary Figure S2. For within-task, within-format classification accu-
racy rates, see Supplementary Tables S2-S5.

Generalization
Generalization Between Numerical Formats

To test for shared patterns of activation during Symbolic and
Nonsymbolic numerical stimuli, we tested if the classifier could
train in one format and predict patterns of activation in the
other. The following results collapse across tasks (i.e., assuming
that there is some shared number-specific pattern because both
tasks require common identification (visual and verbal encoding)
processes) and take the average of training/testing in both the
Nonsymbolic — Symbolic and Symbolic — Nonsymbolic direc-
tions. Mean classification accuracy rates were above chance in 4
of the 8 ROIs (Bonferroni-adjusted p-value reported) (see Fig. 3
for means and distributions): L parietal [t(38)=7.47, P <0.001],
R parietal [t(38)=4.46, P <0.001], L IFG [t(38)=3.34, P=0.015], R
IFG [t(38)=1.42, P=1.000], L NFA [t(38)=0.77, P=1.000], R NFA
[t(38)=—0.18, P=1.000], L parietal and NFA [t(38) =4.65, P < 0.001],
R NFA and parietal [t(38)=1.20, P=1.000]. Comparing classifica-
tion rates in parietal ROIs versus parietal + NFA ROIs indicated
that including the NFA with parietal data had a significant neg-
ative impact on classification accuracy [left: t(38)=3.21, P=0.003,
Cohen’s d=0.51; right: t(38) =3.41, P=0.002, Cohen’s d = 0.55], indi-
cating that parietal ROIs carried all of the important information
about task generalization. Therefore, the combined parietal +
NFA ROIs are not analyzed further for format generalization in
the classification-behavior correlations.

To ensure that above generalization results were not driven by
generalization from one format to another unidirectionally, we
also calculated generalization between numerical formats sep-
arated by direction (Nonsymbolic — Symbolic and Symbolic —
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Figure 2. Numerosity decoding within formats and tasks. Confusion matrices for MVPA classification in 8 regions of interest used for MVPA classification averaged
across participants. Mean = average classification across numerosities (diagonal squares); x-axis = predicted values; y-axis = target values; L = Left; R=Right; IFG = inferior
frontal gyrus; NFA =number form area. Color bar represents classification rate as a percentage.
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Figure 3. Generalization of activation patterns for numerosities between formats (top) and between tasks (bottom). Color of ROIs corresponds to brain map in Figure 2.
Classification accuracy rate = average classification across numerosities within ROI; L =left; R = right; IFG = inferior frontal gyrus; NFA = number form area. Box plot hinges
represent 25th and 75th percentile of distributions, whiskers extend from hinge to the largest value not beyond 1.5 times the interquartile range. All points plotted beyond
whiskers. Dotted horizontal line = classification accuracy rate at chance (25%).
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Nonsymbolic). Results are reported in Supplementary Tables S6
and S7. The pattern of above-chance generalizations across ROIs
is identical to the results averaged across directions with one
exception, Nonsymbolic numerosities did not generalize to Sym-
bolic numerosities in the left IFG (P=0.146). Although it is valid
to assume a shared number-specific pattern across tasks due
to a common identification process, there could be a greater
proportion of unshared than shared patterns as a function of
the task, so we also investigated how the classifier performed
generalizing between formats within each task to see if there
were task-level differences, albeit with lower power (20 training
trials per condition instead of 40). The primary difference of
note in this analysis was that across-format generalization of
numerosity-specific activation was limited to the L Parietal ROI
in the Compare task (for both Nonsymbolic — Symbolic and
Symbolic — Nonsymbolic), whereas generalization was above
chance in both the L and R Parietal ROI in the Identify task (L
parietal: Nonsymbolic — Symbolic and Symbolic — Nonsym-
bolic; R parietal: Symbolic — Nonsymbolic only). Taken together,
task-related differences seem to be limited to the R Parietal ROI.
Detailed results are reported in Supplementary Tables S8-S12.
However, it should be mentioned that the primary analyses and
supplementary analyses are not directly comparable due to (A)
a considerable difference in power, and (B) the fact that training
was collapsed across tasks in the primary analysis, which inher-
ently means that the LDA classifier was trained on a broader set
of cognitive factors.

Generalization Between Tasks

To test for shared patterns of activation for numerosities in
the context of both a comparison task and an identification
task, we tested if the classifier could train in one task and
predict patterns of activation in the other. The following
results collapse across numerical format (i.e., assuming that
there is some shared number-specific pattern because both
formats require common verbal-encoding processes) and take
the average of both the Identify — Compare and Compare
— Identify directions. Mean classification accuracy rates were
above chance in 5 of the 8 ROIs (all Bonferroni-adjusted P < 0.05)
(see Fig. 3 for means and distributions): L parietal [t(38)=6.48,
Bonferroni-adjusted P <0.001], R parietal [t(38)=5.87, P <0.001],
L IFG [t(38)=4.87, P <0.001], R IFG [t(38)=3.37, P=0.014], L NFA
[t(38)=1.74, P=0.715], R NFA [t(38)=1.06, P=1.000], L parietal
and NFA [t(38)=3.46, P=0.011], R NFA and parietal [t(38)=2.42,
P=0.162]. As above, comparing classification rates in parietal
ROIs versus Parietal + NFA ROIs indicated that including the
NFA with parietal data had a significant negative impact on
classification accuracy [left: t(38) =3.36, P=0.002, Cohen’s d =0.54;
right: (38)=2.78, P=0.008, Cohen’s d=0.45], indicating that
parietal ROIs carried all of the important information about task
generalization.

As in the cross-format generalization analysis, to ensure that
above generalization results were not driven by generalization
from one task to another unidirectionally, we also calculated gen-
eralization between numerical formats separated by direction
(Identify — Compare and Compare — Identify). Results are
reported in Supplementary Tables S13 and S14. Results are
similar, with no differences in parietal regions, but there
were lateralization differences in the IFG. Whereas patterns of
numerosity-related neural activity generalized from the Identify
task to the Compare task in the L IFG (but not R IFG), the reverse
was evident (Compare to Identify) in the R IFG (but not L IFG).
Again, as with cross-format generalization, we also investigated

how the classifier performed generalizing between tasks within
each format to see if there were format-level differences. The
primary difference of note in this analysis was that across-
task generalization of numerosity-specific activation in the L
and R IFG was limited to Nonsymbolic numerosities (L IFG:
both Identify — Compare and Compare — Identify; R IFG:
Compare — Identify only). Detailed results are reported in
Supplementary Tables S15-S19. Again, it should be mentioned
that the primary analyses and supplementary analyses are not
directly comparable due to differences (A) power and (B) the
fact that training was collapsed across formats in the primary
analysis, which means that the classifier was trained on a
broader set of cognitive factors that may be shared between
number formats.

Classification-Behavior Correlations

Decoding of Nonsymbolic Number and Nonsymbolic Number
Comparison

Across the 6 ROIs investigated, no region showed a correlation
between decoding accuracy of Nonsymbolic numerosities and
performance (P) on the behavioral nonsymbolic number com-
parison task (Table 1). We had preregistered running the cor-
relation with performance score in order to compare similar
metrics across task formats and avoid poor-fitting Weber mod-
els in the symbolic task, since symbolic number comparison
task accuracy rates typically suffer from ceiling effects. How-
ever, since previous studies have shown a significant correla-
tion between decoding and nonsymbolic number comparison
Weber fractions (Lasne et al. 2018), for the sake of comparison
across studies, we replicated our analysis using Weber fractions
and again found no significant correlations across any of the
selected ROIs. To provide measurable evidence in support of
both positive and null findings, we conducted complementary
Bayesian correlations in jamovi using the jsg—Bayesian Methods
package (version 0.9.2), and their default priors (stretched beta
prior width =1). We report the Bayes Factor (BFo;), which indicates
the likelihood that the evidence is in favor of the null hypoth-
esis relative to the alternative hypothesis. For instance, a BFy
of 3 suggests that the data were 3 times more likely to occur
under the null than the alternative hypothesis. BFs > 3, 10, 30,
and 100 are considered “moderate,” “strong,” “very strong,” and
“extreme” evidence in support of the null hypothesis (Wagen-
makers et al. 2018). Bayes factors (Table 1) suggested mostly mod-
erate support for the null hypothesis of no correlation between
either of the nonsymbolic performance metrics and decoding
accuracy of Nonsymbolic numerosities. The decision to include
Bayes factors was made after finding mostly null results, which
contrasted with previously published results using a smaller
sample size (Lasne et al. 2018). In order to more directly com-
pare to the significance level of previous studies that ran sim-
ilar correlations with various numbers of tests, none of the P-
values for brain-behavior correlations are corrected for multiple
comparisons.

» «

Decoding of Symbolic Number and Symbolic Number Comparison

Using the same analytic approach described above, we tested
for relations between neural decoding of Symbolic numbers
and performance on the out-of-scanner symbolic comparison
task. Similar to the Nonsymbolic analysis, none of the 6 ROIs
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Table 1. Correlations between decoding accuracy and performance on independent, same-format number comparison task (e.g., mean symbolic
decoding accuracy across numerosities ~ symbolic comparison P), n=39

Decoding accuracy rates

Task performance L Par R Par LIFG RIFG L NFA R NFA
Nonsymbolic comparison P Pearson r 0.073 0.093 —-0.013 —0.103 —0.04 0.053
P-value 0.657 0.575 0.936 0.533 0.809 0.750
BFp1 4.56 4.31 5.00 4.16 4.88 4.77
Nonsymbolic comparison w Pearson r 0.066 —0.054 0.101 0.083 —-0.014 —-0.124
P-value 0.688 0.745 0.541 0.617 0.93 0.453
BFpq 4.64 4.77 4.19 4.45 5.00 3.82
Symbolic comparison P Pearson r —0.185 —-0.156 -0.156 -0.217 —-0.018 0.018
P-value 0.259 0.344 0.344 0.184 0.912 0.912
BFp1 271 3.26 2.08 2.14 4.99 4.99

Notes: BF(yq = Bayes factor for Pearson’s r correlation indicating probability of support for the null hypothesis (less than 1 indicates support for alternative, greater than

1 support for the null).

showed a correlation between decoding accuracy and behav-
ioral performance. Bayes factors suggested mostly moderate sup-
port for the null of no correlation between symbolic compari-
son performance and Symbolic numerosity decoding accuracy,
although Bayes Factors <3 in parietal and IFG ROIs should be
interpreted as inconclusive evidence with the current sample
size (Table 1).

Decoding of Number and Mathematics Achievement

We tested for a relation between neural representation of
number and math achievement by correlating decoding accu-
racy rates for each ROI and number format with mathe-
matics achievement scores. Across the 6 ROIs investigated,
no region showed a correlation between decoding accu-
racy rates and math achievement scores for either format
(Table 2). This was true when considering math achievement
composite scores and when considering subtests individu-
ally (Supplementary Table S23). Again, due to a pattern of
mostly null results, we explored the evidence in favor of
the null by computing Bayes factors. Bayes factors sug-
gested mostly moderate support for the null hypothesis of
no correlation between math achievement and decoding
performance.

Cross-Format Generalization and Mathematics Achievement

Our next correlation between classification metrics and math-
ematics achievement scores closely mirrored the analysis of
Bulthé et al. (2018). Bulthé et al. conducted a one-tailed, spear-
man rho correlation and reported a significant negative corre-
lation between math achievement and cross-format generaliza-
tion accuracy (spearman rho=-0.23, P=0.036, n=63). In Table 3,
we report Pearson correlations, which are consistent with our
previous analyses (and Lasne et al.), and Spearman correlations,
which are consistent with the Bulthé et al. analysis and are less
susceptible to the influence of outliers. We also report 2-tailed
P-values and one-tailed P-values in order to compare directly to
our previous analyses and the Bulthé et al. analysis. Given Bulthé
et al’s findings, it would be acceptable to hypothesize a negative
correlation a priori and specify a one-tailed test, but the effect
size of the relation coupled with a Bayes factor is ultimately
more informative and thus all information is presented. The cur-
rent results indicate a small but consistent negative correlation
between generalization across number formats in the parietal
lobes and math achievement scores that are very similar to the
strength of Bulthé et al’s results. While Bulthé et al. combined
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Figure 4. Individual scores for generalization between formats plotted against
math achievement. Individual differences in generalization show a negative
trending relation to math achievement scores, with effect sizes in line with Bulthé
et al. (2018), in both the left parietal (teal) and the right parietal ROI (blue). Dots
represent individual classification scores averaged across numerosities.

the left and right parietal lobe ROIs, we split the ROIs into left and
right (Fig. 4). There was a slightly stronger correlation for the right
parietal region, where math achievement negatively correlated
with generalization accuracy rate [Spearman rho (37)=-0.319,
one-tailed P=0.024, Kendall’s tau Bayes factor_o=3.43, indicat-
ing moderate support for the negative correlation (3.43 times
more likely than the null)]. IFG correlations were not signifi-
cant and were not accompanied by conclusive evidence for or
against the null hypothesis from Bayes factors. Bayes factors for
the NFA correlation indicated moderate to strong support for
the null. Kendall’s tau Bayes factors were computed in lieu of
Spearman rho because a Bayesian version of the Spearman tests
does not exist in any known software package and Kendall’s
tau is an alternative nonparametric test that is robust to the
influence of outliers.
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Table 2. Correlations between decoding accuracy rates and measures of math achievement (e.g., mean symbolic decoding accuracy across

numerosities ~ math achievement), n=39

Nonsymbolic decoding accuracy Math achievement

Symbolic decoding accuracy Math achievement

L Parietal Pearson r -0.067
P-value 0.687
BFg; 464
R Parietal Pearson r 0.183
P-value 0.266
BFo; 2.76
LIFG Pearsonr —0.062
P-value 0.708
BFg; 4.69
RIFG Pearsonr —0.086
P-value 0.603
BFo; 4.40
L NFA Pearsonr 0.270
P-value 0.096
BFg, 1.32
R NFA Pearsonr —0.102
P-value 0.535
BFo; 417

L Parietal Pearson r -0.036
P-value 0.827
BFg; 4.90
R Parietal Pearson r —-0.060
P-value 0.717
BFo; 471
LIFG Pearsonr 0.173
P-value 0.293
BFg; 2.94
RIFG Pearsonr —0.067
P-value 0.684
BFo; 463
L NFA Pearsonr 0.179
P-value 0.276
BFg, 2.83
R NFA Pearsonr 0.127
P-value 0.440
BFo; 3.76

Notes: BFyq = Bayes factor for Pearson r correlation indicating probability of support for the null hypothesis (less than 1 indicates support for alternative, greater than
01 y g y 8r

1 support for the null).

Table 3. Correlations between nonsymbolic and symbolic generalization accuracy rates and measures of math achievement

Math achievement

Math achievement

L Parietal Pearson r -0.172
P-value 0.295/0.148
BF1o™"/BF _o™* 0.34/0.57

R Parietal Pearson r -0.228
P-value 0.163/0.082
BF1o™/BF_o™" 0.51/0.93

LIFG Pearsonr -0.164
P-value 0.318/0.159
BF1o™"/BF_o™* 0.32/0.54

RIFG Pearsonr -0.228
P-value 0.163/0.082
BF1o™/BF_o™* 0.51/0.93

L NFA Pearsonr 0.172
P-value 0.296/0.148
BF1o™"/BF_o™* 0.39/0.10

R NFA Pearsonr 0.008
P-value 0.959/0.480
BF1o™/BF o™ 0.20/0.19

Spearman rho —-0.2677
P-value 0.100/0.050
BF;KY/BF_oKt 0.94/1.81
Spearman rho -0.3192
P-value 0.048/0.024
BFoXt/BF _oKt 1.75/3.43
Spearman rho -0.182
P-value 0.269/0.135
BF;Kt/BF_oKt 0.41/0.71
Spearman rho —-0.190
P-value 0.248/0.124
BFoXt/BF_oXt 0.39/0.68
Spearman rho 0.111
P-value 0.502/0.251
BF;Kt/BF_oKt 0.24/0.14
Spearman rho 0.008
P-value 0.960/0.480
BFoXt/BF oKt 0.21/0.20

Notes: 2Significant correlation at P < 0.05. P-values are reported for both 2-tailed and one-tailed tests of correlation. BF( indicates probability of support for a correlation
in any direction (similar to 2-tailed test) and BF_(y indicates support for the proposed negative correlation (similar to a one-tailed test). PrBayes factor for Pearson r

correlation. XtBayes factor for Kendall’s tau correlation.

Cross-Task Generalization and Mathematics Achievement

Lastly, we investigated whether cross-task generalization
(defined as mean task generalization values from Identify
to Compare and vice-versa, averaged together) related to
mathematics achievement. Analyses and reporting of results
follow the same approach as format generalization (Table 4).
Results indicate negative correlation between generalization
across number formats in the L parietal lobes and math
achievement similar to that reported in the cross-format results
across both parietal lobes (Spearman rho (37) = —0.375, one-tailed
P=0.009, Kendall’s tau Bayes factor_o =5.38, indicating moderate

support for the negative correlation [5.38 times more likely than
null]) (Fig. 5).

Button Response Check

Both of our tasks require a button press and, as a result, have a
significant motor and planning component. In the Identify task,
each numerosity required an independent button response. In
the Compare task, 2 and 4 shared a button (numbers < 5) while 6
and 8 shared a button (numbers > 5). Motor planning, propriocep-
tive space, and response selection are known to involve parietal
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Table 4. Correlations between generalization accuracy rates between tasks and measures of math achievement

Math achievement

Math achievement

L Parietal Pearson r -0.2672
P-value 0.100/0.050
BF1o""/BF_o™* 0.73/1.39

R Parietal Pearsonr 0.099
P-value 0.548/0.726
BF4o""/BF_o™r 0.24/0.13

LIFG Pearsonr 0.053
P-value 0.750/0.625
BF1o""/BF_o™* 0.21/0.16

RIFG Pearsonr 0.063
P-value 0.741/0.649
BF4o™/BF_o™* 0.21/0.15

L NFA Pearsonr -0.230
P-value 0.159/0.080
BF1oF"/BF_o" 0.52/0.95

R NFA Pearsonr —0.042
P-value 0.798/0.399
BFo""/BF_o™* 0.21/0.25

Spearman rho -0.3752
P-value 0.019/0.009
BFoXt/BF_oKt 2.72/5.38
Spearman rho 0.082
P-value 0.622/0.689
BFoXY/BF_pkt 0.23/0.15
Spearman rho 0.056
P-value 0.736/0.632
BF;oXt/BF_oKt 0.21/0.17
Spearman rho 0.046
P-value 0.786/0.607
BFqKt/BF_gKt 0.22/0.17
Spearman rho -0.261
P-value 0.109/0.054
BFoXt/BF _oXt 0.70/1.31
Spearman rho 0.070
P-value 0.672/0.664
BF1XY/BF_oX* 0.21/0.18

Notes: 2Significant correlation at P < 0.05. P-values are reported for both 2-tailed and one-tailed tests of correlation. BF4( indicates probability of support for a correlation
in any direction (similar to 2-tailed test) and BF_ indicates support for the proposed negative correlation (similar to a one-tailed test). "Bayes factor for Pearson r

correlation. KtBayes factor for Kendall’s tau correlation.
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Figure 5. Individual scores for generalization between tasks plotted against math
achievement. Individual differences in generalization show a negative trending
relation to math achievement scores in the left parietal ROI (teal). Dots represent
individual classification scores averaged across numerosities.

cortex (Simon et al. 2002; G&bel et al. 2004; Grefkes and Fink
2005) and some of the variance in decoding is likely attributable
to motor activity. To ensure that numerosity decoding was not
simply due to non-numerical, motor, and motor-planning neural
activity in the most likely ROI to suffer this confound, we com-
pared confusion rates (i.e., prediction rates when the classifier is
incorrect) between numerosities that shared buttons, and those
that did not, to check for a bias according to button press in both

the left and right parietal ROIs in the Compare task collapsed
across formats. In these conditions we can compare variance
in models predicted by distance to variance predicted by button
response. Since numerosities 2 and 4 share a button, then a clas-
sifier capturing neural activity associated with button response
rather than number would confuse 2 and 4, but not 6 and 8. On
the other hand, numerosity encoding is also expected to follow
a confusion distribution based on the distance effect, where 4
is equally likely to be confused with 2 and 6 (distance=2), but
not with 8 (distance=4) (Bulthé et al. 2014; Bulthé et al. 2015).
It should be stated that these analyses were completed posthoc
and were not included as part of the original preregistration of
analyses.

In the left parietal ROI, when 4 was the presented numerosity,
on average, the classifier predicted numerosity 2 at a rate of
25.1% and 6 at a rate of 24.2%, which did not differ signifi-
cantly [t(38)=0.54, P=0.593] (Fig. 6, left). In the right parietal ROI,
when 4 was the presented numerosity, the classifier predicted
numerosity 2 at an accuracy rate of 26.5% and 6 at a rate of
23.5%, which did not differ significantly [t(38)=1.89, P=0.067]
(Fig. 6, right). When 6 was the numerosity seen by a participant,
in the left parietal ROI the classifier predicted numerosity 4 at
an accuracy rate of 23.3% and 8 at a rate of 25.5%, which did not
differ significantly [t(38) =—1.33, P=0.191].

To explore the linear effect of distance on accuracy rate,
prediction rate was run as a mixed model, one model for the
left parietal ROI and one for the right parietal ROI, predicting rate
of classifier prediction from the numerical distance from 4 and
6 (e.g., distance of 2 from 4 =2, distance of 4 from 4=0, distance
of 6 from 4=2, distance of 8 from 4=4), where the intercepts
and slopes of participants were allowed to vary randomly in
the model to account for the within-subject nature of the
data (for further model details, see Supplementary Tables S21
and S22). In the left parietal lobe, distance was significant
predictor of confusion rate [t(38)=-7.30, P <0.001], but button
response was not [t(38)=0.57, P=0.573]. In the right parietal
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Figure 6. Average classification predictions for target values 4 and 6 in left and
right parietal ROI during comparison task across participants. The comparison
task shares only some button response values but demonstrates a linear distance
effect, indicating that classification was likely capturing numerical information
in activation patterns. Confusion matrices are the same as those presented in
Figure 2 for the comparison task, but numerical values are detailed here for
variables that were of interest for the “button response check”. Boxes in bold
orange outline indicate target values that were included as variables in the tests
for alinear effect of distance on accuracy rate; see also Supplementary Tables S21
and S22. Color bar represents classification rate as a percentage.

lobe, again distance was a significant predictor of confusion rate
[t(38) = —4.64, P < 0.001], but button response was not [t(38) = 0.488,
P=0.628].

The pattern of results in both the t-tests above and mixed
linear models exploring the distance effect indicate that neu-
ral patterns of activation were successfully capturing informa-
tion about numerosity and were not significantly influenced by
button response.

Discussion

The current study addressed 3 questions. First, does number
representation share cortical patterns of activation across
formats (Nonsymbolic versus Symbolic)? To investigate, we
assessed whether multivariate patterns of neural response to
specific numerical magnitudes in one format can generalize to
the other using MVPA at 7 T fMRI. Second, are representations of
number task-dependent? Again, we assessed whether neural
activation patterns can generalize across the Compare and
Identify tasks. Third, do patterns of neural response to number
(i.e., decoding performance and generalization across formats
and tasks) correlate with behavioral metrics of numerical ability
measured by (a) out-of-scanner number comparison tasks and
(b) math achievement.

Decoding

We first established that decoding of numerosities within task
and within format was successful in 7 of the 8 ROIs, including
the bilateral parietal lobes, bilateral IFG, left NFA, and bilateral
parietal + NFA (a combination of both ROIs within-hemisphere),
excluding only the right NFA. Classification accuracy in both left
and right NFA regions was the lowest of all ROIs for all conditions.
Given the field’s newly emerging understanding of the role of
the NFA (Yeo et al. 2017), we tested the hypothesis that patterns
of activation in the parietal lobe combined with the NFA might
provide higher rates of discriminability than either region alone.
This hypothesis can be rejected. Though decoding in the parietal
+ NFA ROI was higher than the NFA region alone, it was not
higher than the parietal region alone, indicating that information

from the parietal lobe was driving decoding performance in the
parietal + NFA ROI. Lower decoding performance of the parietal
+ NFA ROI than the parietal ROI alone is likely due to the loss
of informative voxels from the parietal lobe when the 2 regions
were combined. In order to maintain ROIs of 600 voxels, the most
active 300 voxels from each ROI (based on the all conditions vs.
baseline contrast) were selected to ensure equal representation
across ROIs. Of note, however, is that we found evidence of
successful decoding within the left NFA even for Nonsymbolic
numerosities, indicating that the left NFA may have some role
beyond symbol recognition. Recent work has found evidence a
problem-size effect in this region (Pinheiro-Chagas et al. 2018)
as well as a preference for mathematical processing beyond the
involvement of numerals (Grotheer et al. 2018). This activity may
indicate a role beyond simple visual form recognition.

Both of the tasks used in the current study are active
tasks that require a button response with different fingers
for each numerosity, which cannot be isolated from neural
activity associated with processing numerical information
in the current study design. As such, this influences the
interpretation of all findings of the current study. Both decoding
and generalization results should be interpreted as involving
mechanisms beyond simply perception of number, but also
decisional processes related to identification and comparison.
In other words, evidence of shared neural resources for
numerosity-specific processing across formats or tasks should
be interpreted to include more active processing of those
numerosities than a delayed comparison task where neural
activation is being modeled during the perception of the first
number.

To explore whether button press or numerosity was driv-
ing classification accuracy, we analyzed activity in portions of
our experiment where button response and numerosity could
be dissociated. Results indicated that decoding accuracy rates
were driven by processing of numerical information and not
button-response selection (see Supplementary Tables S21 and
S22). However, button response does not capture all active com-
ponents of the tasks beyond the processing of number. For exam-
ple, itis conceivable that attentional mechanisms are engaged to
a different degree across numerical stimuli, varying collinearly
with numerical distance in the number comparison task. In
this case, showing that the distance effect drives our results
does not completely mitigate concerns that decoding is captur-
ing, for example, attentional mechanisms related to numerical
information.

Generalization

In the current study, the LDA classifier was able to train on Non-
symbolic numerosities and predict the numerosities of Symbolic
stimuli at above-chance accuracy rates, and vice versa, in the
bilateral parietal lobes. These findings are in agreement with
some previous studies that have found evidence for between-
format generalization (Eger et al. 2009; Damarla and Just 2013;
Teichmann et al. 2018; Bankson et al. 2019) but in disagreement
with others (Bulthé et al. 2014, 2015).

As mentioned, the current study most closely resembles Eger
et al. (2009) and Bulthé et al. (2014) based on both stimuli and
task design, which each come to different conclusions regard-
ing shared patterns of activation between formats. The current
study, Eger et al. (2009), and Bulthé et al. (2014), all use the
numbers 2, 4, 6, and 8 represented as dots and digits. However,
there are also several key differences. First, the current study
more than doubles the sample size of the other 2 studies (Bulthé
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et al. 2014 n=16; Eger et al. 2009 n=10; current study n=239).
Second, the current study used 7 T ultra-high field fMRI, which
increases the signal-to-noise ratio of the BOLD response (Yacoub
et al. 2001; van der Zwaag et al. 2009; De Martino et al. 2011,
2008). Third, Bulthé et al. included more trials (72-84 trials), but
their short-block fMRI design diverges significantly from a typical
event-related or block design in that many exemplars are spaced
only 800 ms from other exemplars, possibly reducing separability
of the estimated BOLD response for each condition. We ran a
typical event-related design with an average ISI of 5.3 s. Eger
et al. included 32 trials per condition. In the current analysis,
collapsing across task (when decoding within format) or format
(when decoding within task), there were 40 trials per condition.
All of these differences led to increased power in the current
study to detect the presence of generalization, which may be
one reason that it differed with the results presented in Bulthé
et al. (2014). However, it should be noted that generalization
across formats was still observed when the tasks were analyzed
separately with fewer exemplars (20 per condition).

Another difference between the current study and most pre-
vious analyses is that we used an LDA classifier. Prior to running
analyses with numbers as conditions, we compared the SVM
and LDA classifiers implemented in the CoSMo MVPA toolbox
in the motor cortex with button responses as conditions of
interest as a data quality and data processing check (for detailed
comparisons, see Gokcen and Peng 2002; Mandelkow et al. 2016;
Misaki et al. 2010). The LDA classifier consistently outperformed
the SVM classifier, and so we decided to use the LDA classifier
for the main analysis. Both Eger et al. and Bulthé et al. use SVM
classifiers in their analysis, which could also lead to differences
in the findings.

A further contribution of the current study is that classifica-
tion generalized successfully across the Identify and Compare
tasks in bilateral parietal and IFG regions. This indicates that
number-specific activation patterns are shared in all 4 of these
regions across tasks. Simply identifying the numbers as a 2, 4, 6,
or 8is enough to activate representations similar to those elicited
in a comparison task, and importantly, these data suggest the
representation of 2, or 4, or 6, or 8, is the same representation
whether you are processing the magnitude or simply identifying
it. The fact that the Identify and Compare tasks used different
button responses makes this finding unlikely to be driven by
motor or response selection demands and more likely to be
driven by semantic similarity.

Still, as with all fMRI, each functional voxel includes hun-
dreds of thousands of neurons. Therefore, it may be that the
functional resolution of MRI does not accurately capture inde-
pendent populations of neurons within a voxel that are each
dedicated only to a specific format. If these independent pop-
ulations existed for each format or task, and were close enough
to each other and laid out in the same numerosity-specific pat-
tern across the cortex, their independent BOLD response could
appear the same at the level of a functional MRI voxel. Fur-
ther fine-grained analysis at the level of neural circuits is likely
necessary to make conclusions directly related to actual neural
recycling (Dehaene and Cohen 2007).

Classification-Behavior Correlations

We also tested 3 correlations that used classification rates as
individual differences metrics to predict number comparison
performance and math achievement.

The first set of classification-behavior correlations centered
on the idea that decoding accuracy within a given format may

provide a metric of the acuity of numerical representation that
would correlate with behavioral performance in an out-of-
scanner number comparison task. If individuals with greater
numerical acuity have sharper tuning curves that are more
distinct, it could follow that discriminability in the context of
a multivoxel analysis would also be greater, and in turn, that
their behavioral performance should be better. This method has
been used successfully to relate behaviors of phoneme detection
discriminability to MVPA phoneme decoding (Raizada et al.
2010) and previously in relation to numerosity discrimination.
Although there are substantial methodological differences from
the current study, Lasne et al. (2018) reported that decoding
accuracy of numerosities in the right parietal lobe of a non-
symbolic number comparison task correlated with behavioral
Weber fractions in an independent number comparison task
with an effect size of r=-0.59. This correlation increased to
r=-0.74 when they isolated the effect to the homologue of the
right lateral intraparietal region of macaques compared with the
left and ventral parietal regions, which showed lower rates of
correlation.

In contrast, the current results showed no correlation
between decoding accuracy and behavioral performance across
any of the ROIs. We first used a performance score as planned,
which is a response time metric adjusted for accuracy, because
this metric is better suited to the high accuracy rates associated
with symbolic number comparison, which was also a planned
analysis. However, after finding no significant correlation, we
also computed Weber fractions to more closely match the
analysis of Lasne et al., which again provided no evidence for
a correlation in the right parietal ROI [r=0.093, BFy; =4.31]. In
fact, the Bayes factor indicated moderate support for the null.
Several differences exist between the 2 studies that may have led
to a difference in results. First, the behavioral and fMRI delayed
numerosity comparison tasks in the Lasne et al. study were more
closely matched than in the current study, which could have led
to a higher correlation. For example, in the current study, the
numerosities were 2, 4, 6, and 8 in the scanner (compared to
a constant, i.e., 5) created based on the Dehaene method for
generating dot stimuli (Dehaene et al. 2005) but included a wider
range of numerosities in the behavioral comparison task (i.e.,
5-15 for nonsymbolic, 2-9 for symbolic) created using the Gebuis
method (Gebuis and Reynvoet 2011). Lasne et al. used the same
numerosities (8-34) both inside and outside of the scanner and
used the same stimuli generation method for each. Also, it should
also be noted the Lasne et al. numbers are all considered outside
of subitizing range, whereas the current study’s numerosities
spanned the subitizing range and beyond for the in-scanner task.
Secondly, Lasne et al.’s sample reported very high acuity with a
small range of ability [mean w=0.15; range =0.13-0.19] compared
to the current sample [mean w=0.23, range=0.09 to 0.34]. Task
variations may greatly influence estimations of Weber fractions,
but a massive online study of the Panamath task estimates a
mean w for a sample of young adult participants to be about
0.25 (Halberda et al. 2012), suggesting that our sample was about
average. In comparison, Lasne et al’s sample had exceptional
acuity. Third, the method for calculating weber fractions differed
between the 2 studies. Different methods of calculating weber
fractions lead to different distributions, so the weber fractions
are not directly comparable. Fourth, the current study modeled
neural response to number in the context of 2 active tasks,
but Lasne et al. decoded numerosities during the perception
portions of the task, which minimized other task-active cognitive
processes, such as response selection. Lastly, it should be noted
that the current sample is much larger at n=39 compared to
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Lasne et al.’s n=12. Brain-behavior correlations in small samples
may increase the chances for a false positive or overestimation of
the effect size (Cremers et al. 2017). Replication of both findings
with a larger sample size and broader range of abilities will be
necessary for resolution of this issue.

The second set of classification-behavior correlations tested
whether decoding performance correlated with math achieve-
ment rates in the current sample. Our results demonstrated that
decoding accuracy did not correlate with math achievement
in either format across any of the ROIs in the current study.
Given that our decoding accuracies did not correlate with an
independent metric of behavioral numerical acuity, these results
suggest either that MVPA decoding accuracy in the current study
context does not index the acuity of numerical representation
precision, or that such representational acuity is not what drives
the observed links between performance on out-of-scanner
number comparison tasks and math competence. To check
how our behavioral number comparison tasks related to math
achievement and its subtests, we also ran these correlations
(see Supplementary Table 23). Results showed only the symbolic
performance metric correlated with math fluency. So, the lack
of a correlation between decoding and math achievement
could be due to the fact that the current study’s indices of
numerical acuity as measured by symbolic and nonsymbolic
number comparison tasks are less correlated with mathematics
achievement in the current sample than other studies using
similar tasks.

The final set of classification-behavior correlations tested
if generalization between formats and tasks related to math
achievement. Based on the idea that representations of symbolic
and nonsymbolic number become increasingly specialized over
development, a divergence in neural patterns between symbolic
and nonsymbolic formats may relate to more developed numer-
ical abilities associated with math achievement. Bulthé et al.
(2018) reported evidence in favor of this hypothesis, showing a
negative correlation between generalization rate across numeri-
cal formatin the bilateral parietal lobes and arithmetic skills with
an effect size of Spearman rho=—0.23 (n=63). Based on this find-
ing, we would expect, a priori, to see similar results in the parietal
lobes. However, we also expanded the search by including the IFG
and NFA and by splitting regions into left and right hemispheres.
Results converged with those of Bulthé et al., whereby generaliza-
tion between numerical formats negatively correlates with math
achievement, most highly in the right parietal ROI [Spearman
rho=—0.319, one-tailed P=0.024, BF_, =3.43]. The correlation is
slightly lower in the left parietal ROI but trending in the same
direction. Considering how closely the current results fit with
those of Bulthé et al., these results lend further support to the
idea that lower cross-format generalization rates are capturing
a divergence or “estrangement” (Lyons et al. 2012) in patterns of
neural activity between formats that is associated with greater
math skills. Results for the task generalization and math achieve-
ment correlation indicated a similar negative correlation in the
left parietal ROL On average, individuals with worse general-
ization of numerosity-specific activation patterns between the
Identify and Compare tasks had higher math scores (Spearman
rho=—0.375, one-tailed P=0.009, BF_, =5.38). Or, in other words,
more task-specific numerosity representations were associated
with higher math scores. This could be an independent effect
from format generalization, whereby representational specificity
is indexed specific to the task. More proficient mathematical
thinkers could elicit more task-specific engagement in the con-
texts of identifying numbers as nominative objects versus com-
paring numbers in a computational context. However, taken

together with the format-generalization finding, these negative
correlations could indicate a broader trend than either the decou-
pling between formats or task-specific engagement hypotheses.
They could point towards a more general increase in special-
ization for cognitive processes related to numerical processing
associated with mathematical proficiency. Still, this novel find-
ing should be further replicated and investigated across multiple
age groups in order to understand how specialization may unfold
over development.

Conclusion

The current study set out to address whether patterns of neural
activity associated with processing numerosities is shared across
formats and tasks, and further, if those patterns relate to indi-
vidual differences in number comparison behaviors and math
achievement. We successfully trained a classifier to discriminate
between numerosities represented as dots and generalize at
above-chance accuracy rates to the same numerosities repre-
sented as Arabic digits, and vice versa, in the bilateral parietal
lobe and to some extent, the left IFG. This indicates that at some
level, numerosity-specific neural resources are shared between
formats, and further, that both the left and right parietal lobes are
directly involved in the encoding of numerosity to the extent that
numerosity-specific decoding was successful within each hemi-
sphere independently. Generalization was also successful across
tasks where participants either identified numbers or compared
them, suggesting task-independent shared neural resources in
the bilateral parietal lobes and bilateral IFG. While a significant
amount of evidence points to the involvement of the dorsolat-
eral prefrontal cortex as being involved with number process-
ing (Sokolowski et al. 2016; Arsalidou et al. 2017; Zhang et al.
2018), the current results indicate that this processing is specific
to individual numbers in multiple formats and task contexts.
Lastly, in correlating our decoding and generalization metrics
with independent behavioral measures, we found that decod-
ing performance did not relate to number comparison perfor-
mance outside of the scanner or math ability, but generalization
between formats and between tasks in the parietal lobes did
negatively relate to math achievement. Together, these findings
suggest that individual differences in representational speci-
ficity within format and task contexts relates to mathematical
expertise.

Supplementary Material

Supplementary material can be found at Cerebral Cortex
Communications online.
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