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ABSTRACT: Herein we report the design of a bacteriochlorin-based nanoscale metal—organic framework, Zr-TBB, for highly
effective photodynamic therapy via both type I and type II mechanisms. The framework of Zr-TBB stabilizes 5,10,15,20-tetra(p-
benzoato)bacteriochlorin (TBB) ligands toward oxygen and light via geometrical constraint. Upon 740 nm light irradiation, Zr-TBB
efficiently generates various reactive oxygen species, including singlet oxygen, superoxide anion, hydrogen peroxide, and hydroxyl
radicals, to afford superb antitumor efficacy on mouse models of breast and colon cancers, with cure rates of 40% and 60%,
respectively.

hotodynamic therapy (PDT) is a minimally invasive and
effective local therapy for many cancers,' > but its clinical
utility is limited by side effects from photosensitivity caused by
residual photosensitizers (PSs) in normal tissues, shallow light
penetration depth in tumors, and low oxygen concentrations in
hypoxic tumors.”™® As highly reduced derivatives of porphyrins

on 4T1- and MC38-bearing mouse models of breast and colon

cancers to afford cure rates of 40% and 60%, respectively.

Scheme 1. Stabilization of Bacteriochlorin Ligands in Zr-
TBB for Type I and Type II PDT

and chlorins, bacteriochlorins possess several distinct features
to overcome the challenges faced by conventional PSs: (1)
weak absorption in the visible spectrum minimizes photo-
sensitivity from ambient light, (2) strong absorption in the
near-infrared region (700—850 nm) increases PDT efficacy, «
and (3) type I PDT tolerates hypoxia.”~'" Padeliporfin, a Pd-
coordinated bacteriochlorin, was approved in Europe for PDT
treatment of prostate cancer.'> However, bacteriochlorins are
unstable toward oxygen and light,"*~"" significantly reducing
their potency in PDT.'™"*

With tunable and porous structures,'”~** high PS loading,”’
and rigid structures,” nanoscale metal—organic frameworks
(nMOFs) have emerged as novel nanophotosensitizers for
PDT.”~*" By incorporating different PS ligands, nMOFs can
be fine-tuned to optimize PDT eflicacy. The rigid frameworks

740 nm

of nMOFs not only constrain the ligands from structural -
changes to reduce unimolecular photodecomposition but also
isolate the PSs from each other to prevent inter-PS self- Oy _Al
quenching. H;0, 0,
Herein we report the use of nMOFs to stabilize "OH
Type IPDT Type IIPDT

bacteriochlorins for effective PDT. Experimental and computa-
tional studies demonstrated the stabilization of 5,10,15,20-
tetra(p-benzoato)bacteriochlorin (TBB) ligands in the Zr-TBB
nMOF toward oxygen and light owing to geometrical
constraint by the framework. Zr-TBB mediated effective
PDT via both type I and type II mechanisms by generating
various reactive oxygen species (ROSs), including superoxide
anions (O,”), hydrogen peroxide (H,0,), hydroxyl radicals
(*OH), and singlet oxygen ('O,), upon irradiation at 740 nm
(Scheme 1). Zr-TBB showed superb in vivo antitumor efficacy
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The new bacteriochlorin H,TBB was synthesized via
solvent-free reduction of §,10,15,20-tetra(p-benzoato)-
porphyrin (H,TBP) with p-toluenesulfonyl hydrazide (Figure
S1).”” The UV—vis spectrum of H,TBB in N,N-dimethylfor-
mamide (DMF) exhibited four major peaks (Figure le)
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Figure 1. TEM image (a), HR-TEM image and FFT pattern (inset)
(b), PXRD pattern (c), X-ray crystal structure (d), UV—vis spectra in

DMF (e), and DLS number-averaged diameter in EtOH (f) of Zr-
TBB.

assignable to the transitions from two HOMOs (HOMO-1
and HOMO) to two LUMOs (LUMO and LUMO+1) based
on a four-orbital model.*® For H,TBB, the B, peak at A
361 i had a molar extinction coefficient (8) of 70.4 mM_
cm™!, whereas the B, peak at A, = 377 nm had an ¢ of 73.4
mM71~cm71. These € values are ~4 times lower than those of
Soret bands in H,TBP (g&,,, = 460 mM '-cm™') and
5,10, 15 20- tetra(p benzoato)chlorin (H,TBC, &4, = 381
mM ™ '-cm™), suggesting that H,TBB might alleviate photo-
sensitivity side effects from ambient llght 20 The and Q,
peaks of H,TBB had an &g, of 32.4 mM ':cm™ and an &, of
$8.4 mM™"-em™', respectively. The Q, peak of H,TBB at 742
nm is nearly ideal for tissue penetration, and H,TBB has ~12
and ~2 times hlgher € values than those of H,TBP and
H,TBC, respectively.”® H,TBB is thus a superior PS over
H,TBP and H4TBC with an optimal Q, wavelength and a
much higher &.’

Zr-TBB was synthesized via a solvothermal reaction of
ZrCl,, H,TBB, and 88% formic acid in DMF at 100 °C under
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anaerobic conditions. Single-crystal X-ray diffraction of Hif-
TBB revealed a PCN-224 structure in the Im3m space group
with Hfy(43-O),(st5-OH), secondary building units linked by
TBB ligands to afford a 3-D framework of she topology (Figure
1d and Figure $3).*> Powder X-ray diffraction pattern (PXRD)
studies indicated that Zr-TBB adopted the same structure as
Hf-TBB (Figure 1lc), with a formula of [Zrs(s5-O),(pts-
OH),(OH)¢(H,0)¢],(TBB);. Inductively coupled plasma
mass spectrometry (ICP-MS) and UV—vis spectra gave a Zr-
to-TBB ratio of 422, which is slightly lower than the
theoretical ratio of 4, likely due to minor decomposition of
TBB ligands during nMOF synthesis. Thermogravimetric
analysis showed a weight loss of 65.9% in the 25—600 °C
range, consistent with the expected value of 64.3% for the
conversion of Zr-TBB to ZrO, (Figure S6).

Dynamic light scattering (DLS) of Zr-TBB revealed a
number-averaged size of 117.9 & 1.4 nm, with a polydispersity
index of 0.09 (Figure 1f). Transmission electron microscopy
(TEM) imaging (Figures lab, S4, and S5) revealed spherical
to cubic morphology for Zr-TBB with a diameter of
approximately 100 nm. High-resolution TEM (HR-TEM)
imaging gave a lattice spacing of 1.7 nm (Figure 1b) for Zr-
TBB, while the fast Fourier transform (FFT) patterns (Figure
1b inset) revealed tetragonal symmetry, consistent with
projection down to the crystallographic axis (Figure 1d).
Additionally, the UV—vis spectrum of Zr-TBB showed the
same number of peaks as H,TBB, with the appearance of a
small TBC Soret peak at ~422 nm due to slight oxidation of
TBB (4%) during nMOF synthesis.

Photostability of H,TBB and Zr-TBB was tested in air-
saturated DMF at a S M TBB concentration at 740 nm (100
mW-cm™?). After irradiation for S min, the Q, peak absorbance
of H,TBB dropped to <4% of the original value, indicating its
severe photobleaching (Figure 2a). In contrast, Zr-TBB
retained 73% and 65% of the Q, peak absorbance after light
irradiation for 15 and 30 min, respectively, indicating its much
enhanced photostability over H,TBB. The photodecomposi-
tion quantum yield of Zr-TBB (®,4 = 8.14 X 107*) was 14
times lower than that of H,TBB (<I> 4= 115 X 1072 Table
S2). The improved TBB stability of Zr TBB can be attrlbuted
to the spatial constraint of the nMOF framework, which
prevents TBB from undergoing structural changes before
photooxidation can occur, and the site isolation effect of Zr-
TBB, which prevents TBB ligands from biomolecular
decomposition.”” We found the photostability of Zr-TBB
and H,TBB was much improved in oxygen-free conditions
(Figure S7).

We used high-resolution mass spectrometry (HR-MS) to
characterize the photobleaching products of Zr-TBB and
H,TBB after 740 nm irradiation (100 mW-cm™) in air-
saturated DMF for 4 h. Photoirradiated Zr-TBB was digested
with 10% H;PO, in DMSO before HR-MS analysis. For
H,TBB, the [H,TBB+H"] peak at m/z = 795.2 disappeared,
with the appearance of [M+H"] at m/z = 563.5 assignable to
(Z)-4-(2-((5-(4-carboxy-benzoyl)-1H-pyrrol-2-yl) (4-
carboxyphenyl)methylene)-3,4-dihydro-2H-pyrrole-S-
carbonyl)benzoic acid (III, Scheme 1), a known fragmentation
product from bacteriochlorin photobleaching.”* The fragmen-
tation of H,TBB during photooxidation was supported by the
UV—vis spectrum, which showed two new peaks at 327 and
406 nm for III and disappearance of all peaks corresponding to
H,TBB (Figure S7¢). In contrast, only H,TBC at m/z = 793.3
([M+H"]) was recovered from the digested photoirradiated
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Figure 2. (a) Time-dependent TBB UV—vis absorbance after light
irradiation in air-saturated DMF. (b) Time-dependent PXRD patterns
of Zr-TBB after light irradiation. Percentages of photoproducts (TBB,
TBC, fragments) of H,TBB (c) and Zr-TBB (d) throughout 30 min
of light irradiation. (e) Energy profiles of TBB photofragmentation in
H,TBB and Zr-TBB calculated by DFT.

Zr-TBB, with no evidence of known photofragments. TBC can
be generated by direct oxidation of the pyrroline ring of TBB
without significant structural changes on the bacteriochlorin.

UV—vis spectroscopy was used to quantify photobleaching
products of H,TBB (Figure 2c) and Zr-TBB (Figure 2d) after
light irradiation for 1—30 min (Figure S7a,b). H,TBB was
nearly completely photobleached (95%) within S min to
generate mostly fragmentation product III (95%) and a
negligible amount of H,TBC (<0.1%). In contrast, Zr-TBB
retained 84% TBB in S min with the formation of 4% TBC.
Only 12% of TBB decomposed into unknown photoproducts.
As TBC is also a good PS, TBB retained 80% and 74% PDT
efficacy after light irradiation for 15 and 30 min, respectively.
The photostability of Zr-TBB was supported by the
maintenance of crystallinity, as determined by PXRD (Figure
2b).

Photobleaching of bacteriochlorins typically starts with
[2+2] peroxidation reaction between C=C double bonds
and O, (Figure 2e).”® The peroxidized intermediate I breaks
the 7-conjugated bacteriochlorin ring and converts sp*-carbons
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into sp*-carbons, leading to significant distortion from the
planar structure of TBB. The peroxide bridge is cleaved into
two ketones in intermediate II via retro-[2+2] cyclization.
Successive peroxidation and retro-[2+2] cyclization form
fragmentation product III. However, the rigid framework of
Zr-TBB prohibits TBB ligands from undergoing large
structural changes, shutting down the light-mediated perox-
idation pathway. The pyrroline rings of the bacteriochlorin can
still be oxidized to form TBC ligands without disturbing 7-
conjugation.

Density functional theory (DFT) calculations were
performed to support the photostability difference of
bacteriochlorins in H,TBB and Zr-TBB (Figure 2e). The
crystal structure of Zr-TBB was used, and the structures of the
carboxylate groups were frozen during DFT optimization to
mimic spatial constraints in the nMOF. In the calculated
energy profiles, H,TBB displayed a AG¥ of 30.6 kcal/mol
(1.33 eV), while the constrained TBB in Zr-TBB exhibited a
much higher AG* of 39.2 kcal/mol (1.70 V). The 1.69 eV
energy in the 740 nm light source was thus sufficient to
overcome the AG¥ in H,TBB but insufficient to overcome the
AG¥ in Zr-TBB, which explains the resistance of Zr-TBB to
peroxidation and photofragmentation.

Bacteriochlorins can generate multiple ROSs via both type I
(0,7, H,0,, and *OH) and type II (*O,) mechanisms.*® The
generation of O,”, H,0,, *OH, and 'O, by H,TBB and Zr-
TBB was confirmed by electron paramagnetic resonance,
hydrogen peroxide detection kit, aminophenyl fluorescein
assay (APF), and singlet oxygen sensor green assay (SOSG),
respectively. Due to photobleaching, H,TBB showed much
weaker signals of type I ROSs than Zr-TBB (Figures S12—
S14). Similarly, 'O, generation of H,TBB reached a plateau
within 1 min of light irradiation, while Zr-TBB showed a linear
increase of 'O, signal throughout the 15 min experiment
(Figure S15).

We next examined cellular uptake, in vitro ROS generation,
and cytotoxicity of H,TBB and Zr-TBB on 4T1 murine breast
carcinoma cells. ICP-MS and UV—vis studies showed that 4T1
cells uptook significantly more Zr-TBB than H,TBB (Figure
S17). The in vitro generation of O,~, H,0,, *OH, and 'O, by
Zr-TBB plus light irradiation [denoted Zr-TBB(+)] was
detected under confocal laser scanning microscopy (CLSM)
with superoxide detection, intracellular hydrogen peroxide,
coumarin-3-carboxylic acid assay, and SOSG assay Kkits,
respectively (Figure 3a). The generation of 'O, and O, by
Zr-TBB(+) was confirmed by flow cytometric analyses.
H,TBB(+) generated much less ROSs than Zr-TBB(+), likely
due to low cellular uptake, oxidation, and photobleaching. Zr-
TBB(+) efficiently generated four different kinds of ROSs to
facilitate type I and type II PDT. The cytotoxicity of Zr-
TBB(+) was determined by MTS assay. Under normoxic
condition, Zr-TBB(+) exhibited an ICs, of 0.91 & 0.77 uM on
4T1 cells, while H,TBB(+) did not show any cytotoxicity at
<20 uM (Figure 3b). Under hypoxic condition, the ICg, values
of Zr-TBB(+) and H,TBB(+) on 4T1 cells were 2.94 + 0.76
and 19.50 + 0.82 uM, respectively (Figure 3c). The increased
cytotoxicity of H,TBB(+) under hypoxia likely resulted from
reduced photobleaching at low O, concentration. The
apoptosis of 4T1 cells after PDT treatments was evaluated
by flow cytometry with annexin-V and propidium iodide
staining. Zr-TBB(+)-treated cells gave significantly stronger
apoptosis signals than those treated with H,TBB(+) and
PBS(+) (Figure S19). Flow cytometry and CLSM imaging
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Figure 3. (a) CLSM images of various ROS species generated in 4T1
cells after light irradiation. Total ROS was detected by H,DCFDA
assay. Scale bar is 20 pm. (b, ¢) MTS assays of Zr-TBB(+) and
H,TBB(+) under normoxic (b) and hypoxic (c) conditions.

The in vivo antitumor efficacy was investigated on
subcutaneous 4T1-bearing BALB/c mice and murine colon
carcinoma MC38-bearing C57Bl/6 mice. Zr-TBB(+) exhibited
excellent therapeutic effects to afford 91% tumor growth
inhibition and a 40% cure rate on 4T1 model (Figure 4a) and
97% tumor growth inhibition and a 60% cure rate on MC38
model. H&E staining showed severe necrosis in Zr-TBB(+)-
treated 4T1 tumors. TUNEL (Figure 4c) and CRT expression
(Figure 4d) assays by CLSM showed strong apoptosis and
ICD induced by Zr-TBB(+) treatment. Finally, steady body
weight and minimal abnormalities of major organ sections
indicated that Zr-TBB had no systematic toxicity on BALB/c
and CS57Bl/6 mice.

In summary, we report the use of the framework of Zr-TBB
nMOF to stabilize bacteriochlorins toward oxygen and light
irradiation. Zr-TBB mediated effective PDT by generating O,~,
H,0,, *OH, and 'O, via both type I and type Il mechanisms.
Zr-TBB showed superb in vivo antitumor efficacy on mouse
tumor models of breast and colon cancers to afford cure rates
of 40% and 60%, respectively. nMOFs thus present a unique
platform to design novel nanophotosensitizers based on
bacteriochlorins and other unstable photosensitizing mole-
cules.
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