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Complex magnetic order in the decorated spin-chain system Rb2Mn3(MoO4)3(OH)2
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The macroscopic magnetic properties and microscopic magnetic structure of Rb2Mn3(MoO4)3(OH)2 (space
group Pnma) are investigated by magnetization, heat capacity, and single-crystal neutron diffraction measure-
ments. The compound’s crystal structure contains bond-alternating [Mn3O11]∞ chains along the b axis, formed
by isosceles triangles of Mn ions occupying two crystallographically nonequivalent sites (the Mn1 site on the
base and Mn2 site on the vertex). These chains are only weakly linked to each other by nonmagnetic oxyanions.
Both superconducting quantum interference device magnetometry and neutron diffraction experiments show two
successive magnetic transitions as a function of temperature. On cooling, it transitions from a paramagnetic
phase into an incommensurate phase below 4.5 K with a magnetic wave vector near k1 = (0, 0.46, 0).
An additional commensurate antiferromagnetically ordered component arises with k2 = (0, 0, 0), forming a
complex magnetic structure below 3.5 K with two different propagation vectors of different stars. On further
cooling, the incommensurate wave vector undergoes a lock-in transition below 2.3 K. The experimental results
suggest that the magnetic superspace group is Pnma.1′(0b0)s0ss for the single-k incommensurate phase and
is Pn′ma(0b0)00s for the two-k magnetic phase. We propose a simplified magnetic structure model taking
into account the major ordered contributions, where the commensurate k2 defines the ordering of the c-axis
component of the Mn1 magnetic moment, while the incommensurate k1 describes the ordering of the ab-plane
components of both Mn1 and Mn2 moments into elliptical cycloids.

DOI: 10.1103/PhysRevB.101.064423

I. INTRODUCTION

Geometrically frustrated magnetic systems host many in-
teresting electronic and magnetic phenomena and have at-
tracted enduring research efforts [1–3]. Certain oxyanion ma-
terials containing magnetic transition-metal oxide motifs that
are magnetically separated from each other by nonmagnetic
ligands, e.g., closed-shell ion clusters [AsO4]3−, [MoO4]2−,
and [VO4]3−, have become fertile ground to investigate emer-
gent quantum phenomena in low-dimensional frustrated mag-
netic systems [4–6]. Among these materials, delta spin chain
(also known as sawtooth chain) systems are of particular
interest because of geometrical frustrations [7–13]. For exam-
ple, recent studies on Rb2Fe2O(AsO4)2 have found complex
magnetic behaviors that originate from strongly frustrated
interactions within the sawtooth chains and relatively weak
coupling between them [9].

While Rb2Fe2O(AsO4)2 has sawteeth on opposite sides
of the spin chain, the newly discovered compound
Rb2Mn3(MoO4)3(OH)2 is a bond-alternating chain system
[14], where all the sawteeth of each spin chain are sitting on
the same side with no shared magnetic ions between adjacent
sawteeth. It looks like a spin chain (Mn1 sites) decorated
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with magnetic-ion pendants (Mn2 sites; see Fig. 1). Here
we report the magnetic properties and magnetic structure
of the latter compound, which contains three dissimilar ex-
change interactions between nearest neighbors inside each
individual spin delta chain. From magnetic susceptibility and
heat capacity measurements as well as neutron diffraction
experiments, we have found two successive magnetic tran-
sitions in Rb2Mn3(MoO4)3(OH)2 on cooling. It enters into
an incommensurate phase below 4.5 K with a magnetic wave
vector near k1 = (0, 0.46, 0). A second antiferromagnetic
component shows up with a commensurate wave vector k2 =
(0, 0, 0), which coexists with the incommensurate compo-
nent below 3.5 K, forming a complex magnetic structure
with two different propagation vectors of different stars. On
further cooling, the incommensurate wave vector undergoes
a lock-in transition below 2.3 K. Our experimental results
show that the magnetic superspace group is Pnma.1′(0b0)s0ss
[in standard setting, Pbnm1′(00g)s00s (62.1.9.4m442.2)] for
the single-k incommensurate phase and is further lowered
down to Pn′ma(0b0)00s [in standard setting, Pbn′m(00g)s00
(62.1.9.4m443.1)] for the two-k magnetic phase. For the
major ordered contributions, the commensurate k2 defines the
ordering of the c-axis component of the Mn1 magnetic mo-
ment, while the incommensurate k1 comes from ordering of
the ab-plane components of both the Mn1 and Mn2 moments
into elliptical cycloids. The experimental results will be a
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FIG. 1. (a) Typical Rb2Mn3(MoO4)3(OH)2 crystals used in this
study have a dark-green color and a prismatic shape with an approxi-
mate size of 0.5 × 1.0 × 2.5 mm3. (b) The extended crystal structure
shows the structural confinement of the Mn chains. (c) Mn1 forms
the chains, which are decorated with Mn2 pendants. Mn2O6 octa-
hedra share edges between two Mn1O6 octahedra to form isosceles
triangles. The quasi-one-dimensional spin chain looks like sawteeth
repeating along the b axis with alternating bond lengths.

benchmark for future theoretical investigations of the complex
magnetic properties of this decorated spin-chain system.

II. SAMPLES AND EXPERIMENTS

Rb2Mn3(MoO4)3(OH)2 single crystals were grown by the
high-temperature, high-pressure hydrothermal method [14].
Figure 1(a) shows the picture of a couple of single crystals,
which form prismatic dark-green crystals with typical sizes
of 0.5 × 1.0 × 2.5 mm3, with the long edge being closely
along the b axis. Table I shows the structural parameters
determined from single-crystal x-ray diffraction data collected
at room temperature, including the atomic coordinates and
the displacement parameters. Detailed descriptions of the
synthesis and the structure have been published [14]. There
are two crystallographically different Mn sites, Mn1 at an
8d position (0.551, 0.498, 0.317) and Mn2 at a 4c Wyck-
off position (0.397, 3/4, 0.254). Mn1 forms chains running
along the b axis, and MnO6 octahedra of Mn1 and Mn2 share
edges to form triangles. As illustrated in Fig. 1, these delta
chains bridge each other via MoO4 units along the a and
c axes to form a three-dimensional network structure. Due
to the nonmagnetic nature of the Mo6+ cation, the magnetic
interactions between adjacent [Mn3O11]∞ chains via the Mn-
O-Mo-O-Mn connection are expected to be much weaker than

TABLE I. Refined structural parameters of Rb2Mn3

(MoO4)3(OH)2 from room-temperature single-crystal x-ray data
[14]. The data were refined in the orthorhombic space group Pnma,
and the refined lattice parameters at 300 K are a = 18.3294(6) Å,
b = 6.2474(2) Å, and c = 12.4969(4) Å.

Atom x y z Ueq Wyckoff

Rb1 0.36007(5) −1/4 −0.04187(7) 0.0178(2) 4c
Rb2 0.25567(5) 3/4 0.65004(9) 0.0297(3) 4c
Mn1 0.55100(5) 0.4975(2) 0.31663(7) 0.0094(2) 8d
Mn2 0.39638(7) 3/4 0.2542(1) 0.0091(3) 4c
Mo1 0.44079(4) 1/4 0.11391(6) 0.0061(2) 4c
Mo2 0.60677(4) 3/4 0.56579(6) 0.0076(2) 4c
Mo3 0.19834(4) 3/4 0.31418(6) 0.0087(2) 4c
O1 0.5179(3) 1/4 0.1999(5) 0.008(1) 4c
O2 0.3884(2) 0.0199(7) 0.1393(3) 0.0117(10) 8d
O3 0.4712(3) 1/4 -0.0142(5) 0.019(2) 4c
O4 0.5785(4) 3/4 0.4305(5) 0.016(2) 4c
O5 0.5730(2) 0.9838(7) 0.6288(3) 0.016(1) 8d
O6 0.6984(4) 3/4 0.5731(7) 0.034(2) 4c
O7 0.1526(2) 0.5207(7) 0.2679(4) 0.015(1) 8d
O8 0.2872(3) 3/4 0.2652(6) 0.028(2) 4c
O9 0.1976(4) 3/4 0.4507(6) 0.030(2) 4c
O10 0.5078(3) 3/4 0.2307(5) 0.008(1) 4c
O11 0.5811(4) 1/4 0.4118(5) 0.017(2) 4c
H10 0.499(4) 0.84(1) 0.176(4) 0.05 (fixed) 8d

the intrachain interactions. The Mn-O bond lengths and Mn-
O-Mn bond angles are summarized in Table II. There are three
different nearest-neighbor superexchange interactions within
a spin chain, including Mn1-Mn1 pairs within a sawtooth
(Jbb1), Mn1-Mn1 pairs between adjacent sawteeth (Jbb2), and
Mn1-Mn2 pairs between the base vertex (Jbv) of a sawtooth.

Temperature-dependent magnetization measurements were
performed using a Quantum Design magnetic property mea-
surement system. A 5.3-mg single crystal was used for the
measurements. The single crystal was affixed to a quartz rod

TABLE II. Bond lengths and angles around Mn ions in
Rb2Mn3(MoO4)3(OH)2 [14].

Bond Lengths or Angles

MnO6 octahedra
Mn1-O1: 2.2315(5) Å Mn1-O4: 2.2203(5) Å
Mn1-O5: 2.408(4) Å Mn1-O5: 2.176(5) Å
Mn1-O10: 2.083(5) Å Mn1-O11: 2.044(5) Å
Mn2-O2: 2.238(5) Å Mn2-O5: 2.304(5) Å
Mn2-O8: 2.034(6) Å Mn2-O10: 2.092(6) Å

Jbb(1) via O4, O10
d(Mn1-Mn1) = 3.170(5) Å

Mn1-O4-Mn1 = 92.0(3)◦ Mn1-O10-Mn1 = 99.0(3)◦

Jbb(2) via O1, O11
d(Mn1-Mn1) = 3.106(5) Å

Mn1-O1-Mn1 = 88.2(3)◦ Mn1-O11-Mn1 = 99.2(3)◦

Jbv via O5, O10
d(Mn1-Mn2) = 3.376(4) Å

Mn1-O5-Mn2 = 91.5(2)◦ Mn1-O10-Mn2 = 107.9(3)◦
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using GE varnish, and the magnetic properties perpendicular
to the flat surface (the normal direction is along the c axis)
of the single crystal were measured by sandwiching the sin-
gle crystal between two quartz rods. Temperature-dependent
magnetic susceptibility was performed from 2 to 300 K in the
applied magnetic field of 10 kOe. Heat capacity measurements
were performed using a Quantum Design physical property
measurement system. Single-crystal neutron diffraction ex-
periments were carried out at the CORELLI spectrometer [15]
at the Spallation Neutron Source. CORELLI is a quasi-Laue
time-of-flight instrument with an incident neutron wavelength
band between 0.65 and 2.9 Å. It has a large two-dimensional
(2D) detector array, with a −20◦ to +150◦ in-plane coverage
and ±28◦ out-of-plane coverage. The sample was mounted
with the (0, k, l ) plane horizontal, and the vertical rotation
axis is along the a axis. Experiments were conducted by
rotating the sample for ∼120◦ with a 2◦ step at a base
temperature of 1.5 K. In total 515 Bragg peaks collected at
1.5 K were used for the refinement, including 331 main re-
flections and 184 satellites. The MANTID package was used for
data reduction, including Lorentz and spectrum corrections
[16]. The integrated Bragg intensities were obtained from
integration in the three-dimensional (3D) reciprocal space
and were corrected for background. Temperature dependence
studies were performed at a couple of selected sample rotation
angles optimized for measuring selected Bragg peaks between
1.50 and 5.50 K.

Possible magnetic structures were first investigated by the
representation analysis method using the SARAH program
[17]. This methodology was pioneered by Bertaut [18] and
Izyumov et al. [19], where the magnetic structure models
are generated by summing over independent basis modes
that transform according to active irreducible representations
(irreps) of the space group of the paramagnetic phase [20,21].
Chemical and magnetic structural refinements were then car-
ried out with the FULLPROF SUITE [22]. To solidify the refine-
ment results, the magnetic structures were further explored
with the magnetic space and superspace group (also known
as Shubnikov and Shubnikov superspace groups) approaches,
which give a phenomenological description of magnetic struc-
tures. Providing the magnetic moment of one magnetic atom,
the symmetry operations of the magnetic group will generate
magnetic moments of all other atoms in the same magnetic
orbit. At the same time, each spin component is subject to
site-symmetry constraints if the magnetic atom is not in a
general position. For the commensurate magnetic structure,
maximal magnetic space groups were found with the MAX-
MAGN program [23], and the generated magnetic structure
models were refined with the FULLPROF SUITE [22]. For the
incommensurate magnetic phase, the magnetic order breaks
the translation symmetry of the nuclear structure in the 3D
space. However, the modulated magnetic structure can be
mapped into an artificial space with a higher dimension
using the superspace approach [24–26], where the transla-
tional symmetry is recovered by introducing new variables,
i.e., the internal phase shifts that represent translations along
the additional superspace coordinate axes. Experimental data
were analyzed using the magnetic superspace group approach
implemented in the software JANA2006 [26,27] and ISODIS-
TROT [28]. The magnetic superspace group reported from

the JANA2006 refinement was updated to the standard setting
using the software FINDSSG [29,30].

III. MAGNETIC SUSCEPTIBILITY AND HEAT CAPACITY

Magnetization measurements were performed on single
crystals with the long edge aligned parallel to the applied
magnetic field. Figure 2(a) shows the temperature depen-
dence of the inverse magnetic susceptibility χ−1. There is
a weak anisotropy in the magnetic susceptibility between
the fields parallel and perpendicular to the long edge (data
not shown). The high-temperature portion of the inverse
susceptibility was fitted with the Curie-Weiss model, χ =
C/(T − �CW ), where �CW is the Weiss constant. From the
best fit, an effective moment of 5.9(1)μB per Mn ion and a
Weiss temperature of −105.9(4) K are determined. The effec-
tive moment is consistent with the expected spin-only value
of 5.91μB per Mn for high-spin d5 Mn2+ ions (S = 5/2).
The large and negative Weiss temperature indicates strong
antiferromagnetic interactions. There are clear anomalies at

FIG. 2. (a) Temperature dependence of magnetic inverse sus-
ceptibility data and the best fit to the Curie-Weiss model in the
high-temperature region. The best fit shows an effective moment
of 5.9(1)μB per Mn ion and a Weiss temperature of −105.9(4) K.
(b) Low-temperature portion of the magnetic susceptibilities. Two
obvious anomalies were observed near 4.7 and 3.2 K. Magnetic
susceptibility data were collected in an applied magnetic field of
10 kOe. (c) The temperature dependence of zero-field heat capacity
shows a λ-shaped anomaly at 3.2 K and a kink around 2.6 K.
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low temperatures. To better view these, Fig. 2(b) shows the
magnetic susceptibility of the low-temperature region, where
χ shows a downturn on cooling below 4.7 K, suggesting the
onset of a long-range antiferromagnetic magnetic order below
TN1 ≈ 4.7 K. An anomalous slope change also exists around
TN2 ≈ 3.2 K, suggesting a second magnetic phase transition.
These two anomalies can be easily seen in dχ/dT , where
dχ/dT changes sign and shows a peak at TN1 and TN2,
respectively. The 3.2 K anomaly is obvious from the heat
capacity measurement too, where it gives rise to a λ-shaped
peak, as shown in Fig. 2(c). The heat capacity shows an
additional kink at 2.6 K, which corresponds to a slope change
in dχ/dT and indicates some sudden changes in the magnetic
structure. Note that �CW is significantly higher than TN ’s,
suggesting strongly frustrated interactions with a frustration
parameter f = |�CW |/TN1 ≈ 24.

IV. MAGNETIC STRUCTURES FROM SINGLE-CRYSTAL
NEUTRON DIFFRACTION

A. Temperature dependence of magnetic wave vectors

To clarify the nature of the anomalies observed in the mag-
netic susceptibility and the heat capacity data, we performed
single-crystal neutron diffraction experiments between 1.5
and 5.5 K with a fine-temperature step size of 0.25–0.50 K.
Figure 3 shows the representative 2D slices in the (0, k, l)
plane at temperatures below TN2, between TN1 and TN2, and
above TN2. It is obvious that features inside the circles show
strong temperature dependence. Inside the small circles, the
commensurate Bragg peak is clearly visible at 1.50 K but
significantly dimmed at 3.75 and 5.50 K. Inside the big circles,
there are incommensurate Bragg peaks with a modulation
wave vector around (0, 0.46, 0) at 1.50 and 3.75 K, which
are absent at 5.5 K. The incommensurate Bragg peaks become
weaker at locations with both high K and high L indices,
suggesting their magnetic scattering origin. This is more
obvious in the mesh scan data set shown below in Fig. 6(a).

Figure 4 shows the temperature dependence of the in-
tegrated peak intensities and the peak profiles (inset) for
selected peaks. The integrated peak intensities were obtained
by peak profile fitting against the d-spacing value after con-
verting the data from the detector space to the d space. To min-
imize uncertainties, Lorentz and spectrum corrections were
not performed; therefore, the intensities from different peaks
are not directly comparable. The integer Bragg peak (0, 0, 6)
shows no obvious anomaly on cooling, suggesting no struc-
ture transformation occurring at low temperatures. The low-Q
Bragg peak (0, −1, −1) shows a large enhancement of inten-
sity below 3.50 K, indicating a magnetic scattering contribu-
tion associated with a commensurate wave vector (0, 0, 0).
The incommensurate Bragg peak near (2, −0.46, −1) shows
the onset of long-range magnetic order below 4.5 K. From the
inset of Fig. 4(c), a small but notable change in the d spacing
corresponds to the incommensurate peak. After transforming
the data into the reciprocal space (Fig. 5), it is clearly seen
that the incommensurate wave vector changes as a function of
temperature and undergoes a lock-in transition below 2.3 K.
Therefore, the anomalies observed in the heat capacity and
the magnetic susceptibility data discussed in Sec. III corre-

FIG. 3. Two-dimensional slices in the (0, k, l) plane of the
neutron diffraction data at selected temperatures: (a) 1.50, (b) 3.75,
and (c) 5.50 K. Inside the circles are selected features with strong
temperature dependence. Inside the big circles, there are additional
incommensurate peaks at 1.50 and 3.75 K, which are absent at
5.50 K. Inside the small circles, the commensurate Bragg peak
is clearly visible at 1.50 K but significantly dimmed at 3.75 and
5.50 K. Also visible are the powder rings from scattering the sample
environment and sample mount.

spond to various magnetic structure transitions found in the
neutron diffraction data. Overall, the sample experiences a
paramagnetism to incommensurate-antiferromagnetism phase
transition at 4.5 K on cooling and then forms a complex
magnetic structure with two wave vectors from different orbits
below 3.5 K. On further cooling, the incommensurate wave
vector undergoes a lock-in transition below 2.3 K.

B. Incommensurate magnetically ordered
component with k1 ≈ (0, 0.46, 0)

A mesh scan by rotating the sample through 120◦ was
conducted at a base temperature of 1.50 K to cover both
[0 0 L] and [0K 0] axes. Figure 6(a) shows the slice cut in the
(0, k, l) plane. Interestingly, the satellite peak intensity shows
a nonmonotonic dependence on L for small K’s. As shown by
the line cut in Fig. 6(b), the peak intensity increases first as L
increases before it eventually decreases. For an orthorhombic
lattice, such a dependence suggests that the relevant ordered
magnetic moment has a much larger component in the ab
plane than the component along the c axis, because of the
vectorial nature of the neutron-magnetic moment interaction
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FIG. 4. Temperature dependence of integrated peak intensities
and the peak profiles of selected Bragg peaks. (a) The integer Bragg
peak (0, 0, 6) shows no obvious anomaly. (b) The integer Bragg
peak (0,−1, −1) shows a large enhancement of intensity below
3.50 K, indicating a magnetic scattering contribution associated with
a commensurate magnetic wave vector (0, 0, 0). (c) The incom-
mensurate Bragg peak near (2, −0.46, −1) shows the onset of long-
range incommensurate magnetic order below 4.20 K. Insets show the
temperature dependence of the corresponding peak profiles.

[31]. There is also a selection-rule-like feature for the satellite
peaks along the [0,K, 0] direction. As shown by the line cut
[Fig. 6(c)], they are very pronounced for odd-integer K’s but
barely observable for even integer K’s. This feature has been
used to distinguish magnetic structure models that give rise to
comparable refinement results.

Incommensurate magnetic structure models were inves-
tigated using the representation analysis with the program
SARAH [17] to determine the symmetry-allowed magnetic
structures that can result from a second-order magnetic phase
transition given the crystal structure and the propagation vec-

FIG. 5. Temperature dependence of the incommensurate wave
vector k1 measured at the Bragg position (2, −k1b, −1).

tor. As mentioned above, there are two crystallographically
different Mn sites, Mn1 at an 8d Wyckoff position and Mn2 at
a 4c Wyckoff position. The little group Gk1 of the propagation
vector k1 = (0, 0.46, 0) contains only four out of the eight
symmetry operators of the space group G0. Under the little
group Gk1, Mn1 sites are separated into two orbits, i.e.,
Mn1a and Mn1b sites, alternately sitting on the spin chain,
as illustrated in Fig. 7(a) in purple and red, respectively. The
Mn1a and Mn1b Wyckoff orbits are connected by the space
inversion symmetry, and the splitting is because the symmetry
mode analysis adapted by the SARAH program does not take

FIG. 6. (a) The slice cut in the (0, k, l) plane of the neutron
diffraction data collected at 1.50 K. (b) A line cut along the L
direction, with a integration cross section of K = [0.4, 0.6] [as
shown by the dashed line in (a)] and H = [−0.05, 0.05]. (c) The
satellite peaks along the [0,K, 0] direction show a selection-rule-
like K dependence. The peaks associated with odd-integer K’s are
pronounced, and the peaks associated with even-integer K’s are
barely observable.
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FIG. 7. The simplified magnetic structure model describing the
major ordered components, where the incommensurate component
and commensurate component are mutually normal to each other.
The results are obtained from the irrep modes via FULLPROF. (a) The
incommensurate component consists of cycloidally ordered mag-
netic moments lying in the ab plane from both Mn1 and Mn2 sites.
(b) The commensurate component consists of collinear spins on Mn1
sites with antiferromagnetically coupled moments along the b axis
between adjacent Mn1 ions. Purple, red, and blue label the Mn1a,
Mn1b, and Mn2 sites, respectively. The moment sizes on Mn1 and
Mn2 sites are not drawn to scale for the purpose of clarity.

into account the space inversion symmetry operation that
transforms k into -k [26,32].

There are four one-dimensional irreps associated with the
little group Gk1. The decompositions of the magnetic rep-
resentation for the three Mn sites (Mn1a, Mn1b, and Mn2)
have the same form, �Mag = 3�1

1 + 3�1
2 + 3�1

3 + 3�1
4 . The

labeling of the irreducible representation (irreps) follows the
scheme used by Kovalev [33]. For all these irreps, there is
no restriction on the magnetic moment directions on any Mn
atoms. Simulated annealing was used to prescreen potential
models based on an individual single irrep. Both the spin
density wave (SDW) and the cycloid models based on �3 fit
the experimental data significantly better than other models.
Table III lists the basis vectors ψi associated with the irrep
�3 for the three Mn sites. Refinement shows that the cycloid
model is slightly better than the SDW model.

Figure 7(a) shows the incommensurate magnetic structure
generated from the best model. As mentioned above, the
operations that interchange k and −k were overlooked in our
representation analysis; therefore, they allow the independent
magnetization modulations for Mn1a and Mn1b sites, a pair
of atoms related by the space inversion operation [26,32].
During the refinement, the amplitudes of the Mn1a and
Mn1b sites were constrained to be equal since they are on
chemically equivalent sites, but there was no constraint on
their relative orientations. As mentioned above, the vectorial
magnetization distribution is expressed as a linear combi-
nation of the mutually orthogonal basis vectors. Therefore,
there are multiple combinations that can constrain the am-
plitudes of the Mn1a and Mn1b sites to be equal, such as
(1) mx

Mn1a = mx
Mn1b, m

y
Mn1a = my

Mn1b, and mz
Mn1a = mz

Mn1b, (2)
mx

Mn1a = mx
Mn1b, m

y
Mn1a = −my

Mn1b, and mz
Mn1a = mz

Mn1b, and
so on. They correspond to the different magnetic structures.

TABLE III. Basis vectors (BV) for the space group Pnma (No.
62) with k1 = (0, 0.46, 0) associated with the irrep �3 for Mn1a
(0.55, 0.49, 0.32), Mn1b (0.95, 0.51, 0.82), and Mn2 (0.40, 0.75,
0.25) sites. Note that Mn1a and Mn1b are connected to the space
group symmetry operation of {−1|0} × {m001| 1

2 0 1
2 }, i.e., (−x −

1
2 , −y, z − 1

2 ), with an additional translation t = (2, 1, 1). Alterna-
tively, they are connected by {2001| 1

2 0 1
2 }, i.e., (−x + 1

2 , −y, z + 1
2 ),

with an additional translation t = (1, 1, 0).

BV components
BV Atom m‖a m‖b m‖c im‖a im‖b im‖c

Mn1a ψ1 1 1 0 0 0 0 0
2 0.125 0 0 0.992 0 0
3 0.125 0 0 0.992 0 0
4 1 0 0 0 0 0

ψ2 1 0 1 0 0 0 0
2 0 −0.125 0 0 −0.992 0
3 0 −0.125 0 0 −0.992 0
4 0 1 0 0 0 0

ψ3 1 0 0 1 0 0 0
2 0 0 0.125 0 0 0.992
3 0 0 −0.125 0 0 −0.992
4 0 0 −1 0 0 0

Mn1b ψ1 1 1 0 0 0 0 0
2 −.368 0 0 −0.93 0 0
3 −.368 0 0 −0.93 0 0
4 1 0 0 0 0 0

ψ2 1 0 1 0 0 0 0
2 0 0.368 0 0 0.93 0
3 0 0.368 0 0 0.93 0
4 0 1 0 0 0 0

ψ3 1 0 0 1 0 0 0
2 0 0 −0.368 0 0 −0.93
3 0 0 0.368 0 0 0.93
4 0 0 −1 0 0 0

Mn2 ψ1 1 1 0 0 0 0 0
2 −0.368 0 0 −0.93 0 0
3 −0.368 0 0 −0.93 0 0
4 1 0 0 0 0 0

ψ2 1 0 1 0 0 0 0
2 0 0.368 0 0 0.93 0
3 0 0.368 0 0 0.93 0
4 0 1 0 0 0 0

ψ3 1 0 0 1 0 0 0
2 0 0 −0.368 0 0 −0.93
3 0 0 0.368 0 0 0.93
4 0 0 −1 0 0 0

Without considering the symmetry operation connecting these
two sites, we tested the possible combinations one by one
against the experimental data. The refinement shows essen-
tially no improvement by introducing a nonzero moment
along the c axis on any Mn sites. This agrees with the L
dependence of the incommensurate peak intensities discussed
above. Therefore, in the final model the magnetic moment
directions are constrained in the ab plane. The best model
shows that mx

Mn1a/m
x
Mn1b and my

Mn1a/m
y
Mn1b have opposite

signs. The cycloids described by both Mn moments have an
elliptical envelope, which implies that the moment amplitudes
are oscillating across the ab plane. By fixing the phase of
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FIG. 8. (a) The envelopes of ab-plane moment trajectories of the incommensurate component of Mn1 and Mn2 sites, as determined from
the best fit using the magnetic superspace approach via JANA2006, describe elliptical rotations. (b) The approximate incommensurately ordered
magnetic moments of the Mn1 (red and purple) and Mn2 (blue) sites within one spin chain. Within the experimental uncertainty, the largest
moments for both Mn1 and Mn2 sites are along the b axis.

the Mn1a atom at (0.55, 0.48, 0.32) to be �Mn1a = 0, the
optimized phase of the Mn1b atom at (0.45, 0.52, 0.82) is
�Mn1b = 0.243(8) × 2π , and the phase of the Mn2 atom at
(0.40, 0.75, 0.25) is �Mn2 = 0.46(2) × 2π . Note that neutron
diffraction data collected at 1.5 K suggest a slight shift of
the Mn1 positions with respect to the room temperature x-ray
diffraction result.

We have further used the magnetic superspace group ap-
proach to identify the potential models of the incommensurate
magnetic structure, using the software JANA2006 [26,27] and
ISODISTORT [28]. The recent development of the superspace
algorithm has shown that the superspace symmetry will gen-
erally introduce restrictions on the magnetic structures either
stricter than or equivalent to the representation method alone
[26]. In the superspace formalism [25], the modulated mag-
netic moment of an atom located at the position rν in the unit
cell of the basic structure can be expressed as a Fourier series:

�Mν (�k · �rν ) = �Mν0 +
∑

m

[ �Mν,mssin(2πm�k · �rν )

+ �Mν,mccos(2πm�k · �rν )], (1)

where �Mν0 is the absolute term and �Mν,ms and �Mν,mc are
the amplitudes of the sine and cosine terms, respectively.
The first term (m = 0) will contribute to scattering intensity
to main reflections and the harmonic terms (m = 1, 2, . . . )
will give rise to magnetic satellite peaks. We observed only
first-harmonics peaks for the single-k incommensurate phase;
therefore, it is sufficient to consider only m = 1 terms.
The Fourier components can be decomposed into three
components along the principal crystallographic directions,
and each spin component will be subjected to site-symmetry
constraints if the magnetic atom is not in a general position.
JANA2006 reports four primary superspace groups for the
extended little group Gk,−k [k = (0, 0.46, 0)], each of
which corresponds to a two-dimensional representation.
They are Pnma.1′(0b0)000s, Pnma.1′(0b0)s0ss,
Pnma.1′(0b0)s00s, and Pnma.1′(0b0)00ss. The superspace
groups Pnma.1′(0b0)s0ss and Pnma.1′(0b0)00ss give
significantly better refinement results than the other two.
Pnma.1′(0b0)s0ss gives the best refinement result and

reproduces the reflection condition for satellite peaks
along [0,K, 0], as observed experimentally [Fig. 6(c)].
The symmetry constraints of Pnma.1′(0b0)s0ss on the
spin components as well as the final refined results are
shown in VI.

The refinement shows that mcz and msz are vanishingly
small for both Mn sites, validating the simplified model
considering only ordered moments in the ab plane. From the
amplitudes of the sine and cosine components, it is easy to find
that the spin modulation along the a and b axes is out of phase
by ∼75◦ for Mn1 sites and 90◦ and Mn2 sites. This corre-
sponds to cycloid spin structures rather than SDW structures
for both sites, which strengthens the previous results based
on the irrep mode analysis. The magnetic moments of the
Mn1 and Mn2 sites are elliptically rotating in the ab plane,
as shown in Fig. 8. By ignoring the small order moment along
the c direction, the moment trajectories of Mn1 sites and M2
sites are approximately elliptical cycloids within the ab plane.
For Mn1 sites, the largest moment is 1.88(11)μB/Mn and is
tilted by an angle of 6.8(7.7)◦ away from the b axis; for Mn2
sites, the largest moment is 4.72(16)μB/Mn and is along the b
axis. These values agree with those from the simplified model
using the irrep modes within uncertainties. Figure 8(b) shows
that within each spin triangle, the moment directions of Mn1a
and Mn1b are parallel to each other in the ab plane (by the
symmetry constraint), and the moment of Mn2 is antiparallel
to those of Mn1 (by refinement).

In addition to the magnetic superspace group (or its equiv-
alent magnetic superspace group) listed by JANA2006, ISODIS-
TORT lists a second isotropy subgroup with a lower symmetry
for each of the four two-dimensional representations. The
space inversion symmetry operator is not included in these ad-
ditional superspace groups, which thus require two instances
of the irrep modes from the same irrep and allow more
complex magnetic structures. However, the higher-symmetry
Pnma.1′(0b0)s0ss superspace group is sufficient to describe
the experimental results, and further decreasing the symmetry
is not guaranteed. Using the online software FINDSSG [29,30],
Pnma.1′(0b0)s0ss was converted to the standard setting,
Pbnm.1′(00g)s00s (62.1.9.4.m442.2), which has a point group
symmetry of mmm1′.
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C. Commensurate magnetically ordered
component with k2 = (0, 0, 0)

By comparing the scattering patterns below and above
TN2, we have found that when K is an even integer, the
magnetic scattering contribution to the Bragg peaks is vanish-
ingly small, if present. Based on this observation, we can ex-
pect an antiferromagnetic magnetic structure associated with
k2 = (0, 0, 0), which agrees with the magnetic susceptibility
data.

From the representation analysis, there are eight one-
dimensional irreps associated with the Pnma space group
(No. 62) and the little group Gk2 of the propagation vector
k2 = (0, 0, 0). The decomposition of the magnetic repre-
sentation for the Mn1 site is �Mag = 3�1

1 + 3�1
2 + 3�1

3 +
3�1

4 + 3�1
5 + 3�1

6 + 3�1
7 + 3�1

8 . There is no restriction on the
magnetic moment direction for each possible irrep associated
with the Mn1 site. The decomposition of the magnetic rep-
resentation for the Mn2 site is �Mag = 1�1

1 + 2�1
2 + 2�1

3 +
1�1

4 + 1�1
5 + 2�1

6 + 2�1
7 + 1�1

8 . �2, �3, �6, and �7 allow
only a nonzero magnetic moment in the ac plane; �1, �4,
�5, and �8 allow only a nonzero magnetic moment along
the c axis. From the magnetic symmetry approach, there are
eight possible maximal magnetic space groups. There is a
one-to-one correspondence between the irrep and the maximal
magnetic space group for this case. From irreps �1 to �8,
the magnetic structure models correspond to magnetic space
groups Pnma (No. 62.441), Pn′m′a′ (No. 62.449), Pnm′a′
(No. 62.447), Pn′ma (No. 62.443), Pn′ma′ (No. 62.448),
Pnm′a (No. 62.444), Pn′m′a (No. 62.446), and Pnma′ (No.
62.445), respectively.

Various models based on each individual irrep were fit-
ted against the experimental data. We first refined both the
nuclear structure and the commensurately ordered magnetic
component simultaneously using the data collected at 1.5 K.
Note that the k = (0, 0, 0) magnetic order contributes to the
same peaks as the crystal structure. For the incommensurate
magnetic structure, the ordered magnetic moments mainly lie
in the ab plane with no abrupt change in the incommensurate
peak intensities near TN2. Therefore, it is reasonable to con-
sider that the commensurately ordered magnetic component
is aligned along the c axis. Refinement shows that only the
magnetic structure described by irrep �4 [magnetic space
group Pn′ma (No. 62.443)] agrees with the experimental data.
Table IV lists the basis vectors for irrep �4, and Fig. 7(b)
shows the refined magnetic structure model. We have further
relaxed the model to allow the magnetic moments along all
symmetry-allowed directions and used simulated annealing
to search for potential models. However, no significant im-
provement in fitting results has been found. To better separate
the nuclear and magnetic contributions to the Bragg peak
intensities, we also refined the nuclear and magnetic struc-
tures separately using two data sets. The nuclear model was
fitted against the data collected above TN2, and the magnetic
model was fitted against the difference between the data
collected below and the above TN2. The high-temperature and
low-temperature data sets were collected at 4.8 ± 0.6 and
1.8 ± 0.3 K, respectively. As expected, we obtained the same
magnetic structure as in the combined contribution refinement
but slightly reduced ordered moment. The refined ordered
moment values are listed in Table V.

TABLE IV. Basis vectors (BV) for the space group Pnma with
k2 = (0, 0, 0) associated with the irrep �4 for the Mn1 and Mn2
sites.

BV components

BV Atom m‖a m‖b m‖c im‖a im‖b im‖c

Mn1 ψ1 1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0
5 −1 0 0 0 0 0
6 −1 0 0 0 0 0
7 −1 0 0 0 0 0
8 −1 0 0 0 0 0

ψ2 1 0 1 0 0 0 0
2 0 −1 0 0 0 0
3 0 −1 0 0 0 0
4 0 1 0 0 0 0
5 0 −1 0 0 0 0
6 0 1 0 0 0 0
7 0 1 0 0 0 0
8 0 −1 0 0 0 0

ψ3 1 0 0 1 0 0 0
2 0 0 −1 0 0 0
3 0 0 1 0 0 0
4 0 0 −1 0 0 0
5 0 0 −1 0 0 0
6 0 0 1 0 0 0
7 0 0 −1 0 0 0
8 0 0 1 0 0 0

Mn2 ψ1 1 0 2 0 0 0 0
2 0 −2 0 0 0 0
3 0 −2 0 0 0 0
4 0 2 0 0 0 0

D. Two-k magnetic structure at low temperatures

In Sec. IV A, we showed that the magnetic structures
in Rb2Mn3(MoO4)3(OH)2 have both commensurate and
incommensurate components below 3.2 K, forming a complex
magnetic structure with two different propagation vectors
of different stars. In the language of the symmetry group,
the appearance of the second wave vector k2 = (0, 0, 0)
means that the symmetry of the magnetic superspace group
of Pbnm.1′(00g)s0ss needs to be further lowered to allow
the additional magnetic ordering. Effectively, the symmetry
operator {1′|000 1

2 } that is associated with the existence of

TABLE V. Summary of the ordered moment components (in
units of μB per ion) and phase (in units of 2π ) at 1.5 K from the
simplified model (the irrep mode approach) associated with k1 and
k2, respectively. m∗

c was obtained by fitting the difference data set
between 1.8 ± 0.3 and 4.8 ± 0.6 K.

k1 ≈ (0, 0.46, 0) k2 ≈ (0, 0, 0)

ma mb Phase mc m∗
c

Mn1a 0.99(9) 1.99(7) 0 3.10(16) 2.93(7)
Mn1b 0.99(9) −1.99(7) 0.243(8)
Mn2 2.55(8) 4.59(5) 0.46(2) 0 0
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TABLE VI. System constraints on the spin components and the refinement results (in units of μB per atom) from JANA2006 of the magnetic
Mn atoms from the Shubnikov superspace group Pn′ma(0b0)00s. The model was refined against the data set collected at 1.5 K, with 515
Bragg peaks, including 331 main reflections and 184 satellites. For the parent magnetic superspace group Pnma.1′(0b0)s0ss, �M0 (m = 0
components) for both sites is restricted to be zero, while the symmetry constraints on sine and cosine Fourier components are same as those of
Pn′ma(0b0)00s.

k2 = (0, 0, 0), m = 0 term

Mn1 atom Mn2 atom

x y z Length x y z Length

Constraints mx0 my0 mz0 mx0 my0 mz0

Value −0.49(11) 1.08(8) −3.53(9) 3.73(16) 0 −0.16(15) 0 0.16(15)

k1 = (0, 0.46, 0), m = 1, first harmonic term

Mn1 atom, cosine component Mn2 atom, cosine component

x y z Length x y z Length
Constraints mcx mcy mcz 0 mcy 0
Value −0.53(18) 1.02(12) 0.024(20) 1.15(29) 0 −4.72(16) 0 4.72(16)

k1 = (0, 0.46, 0), m = 1, first harmonic term
Mn1 atom, sine component Mn2 atom, sine component

x y z Length x y z Length
Constraints msx msy msz msx 0 msz

Value −0.57(21) −1.54(11) 0.04(23) 1.64(33) 2.81(17) 0 0.02(54) 2.81(56)

a single primary incommensurate wave vector needs to be
dropped. There are several maximal subgroups without this
operation. The one associated with Pn′ma (No. 62.443)
and Pnma.1′(0b0)s0ss is Pn′ma(0b0)00s with an origin
shift of (0, 0, 0, 1/4), which agrees with the experimental
data very well. It can be transformed into the standard
setting, Pbn′m(00g)s00 (62.1.9.4.m443.1), with a point group
symmetry mmm′. This new superspace group will allow a
nonzero m = 0 term in Eq. (1). The symmetry constraints on
the additionally ordered spin components and the refinement
results are shown in Table VI. This analysis confirms that the
additionally ordered moment is mostly from the c component
of the Mn1 magnetization, supporting the previous irrep mode
analysis.

As mentioned above, we have proposed a simplified mag-
netic structure model to describe the major components of
the ordered moment. In this model, the incommensurate
component and the commensurate component are mutually
normal to each other, as shown in Fig. 7. The commensurate
component consists of collinear spins on Mn1 sites with
antiferromagnetically coupled moments along c axis between
adjacent Mn1 ions. The incommensurate component consists
of cycloidally ordered magnetic moments lying in the ab plane
from both Mn1 and Mn2 sites. By comparing the refinements
from the irrep mode approach (using basis-vectors) and the
magnetic space and superspace approach, we note that they
have the same constraints and can give rise to the same results
for the commensurately ordered component. However, there
are some subtle differences for the incommensurately ordered
magnetic component. If we consider only the ordered moment
in the ab plane for the incommensurate component, the irrep
mode approach shows a slightly noncollinear spin structure
within each spin triangle; however, the superspace approach
shows a simpler structure where moments are essentially

linear within each spin triangle. In particular, the symmetry
operation of the superspace group requires that the ordered
moments in the ab plane for Mn1a and Mn1b sites are parallel
to each other inside each triangle, but the irrep mode ap-
proach does not have this constraint. The two incommensurate
components will be equivalent if in the irrep mode approach
there was a phase difference of 0.31 × 2π between the Mn1a
and Mn1b sites and a phase difference of 0.49 × 2π between
the Mn1a and Mn2 sites. The experimental value for the
Mn1a/Mn2 site [0.46(2) × 2π ] is close to this requirement.
However, the experimental value of the Mn1a/Mn1b sites
[0.243(8) × 2π ] is off without considering the symmetry
constraint. Such a discrepancy between these two approaches
has been seen in other systems too [20].

The previously reported Rb2Fe2O(AsO4)2 shows one
magnetic transition on cooling and has a commensurate
single-k magnetic structure at low temperature [9]. In
contrast, Rb2Mn3(MoO4)3(OH)2 shows two obvious
magnetic transitions on cooling and displays a complex two-k
magnetic structure below 3.5 K with both commensurate and
incommensurate components. This additional complexity
may be caused by the alternating bond lengths in
Rb2Mn3(MoO4)3(OH)2 along the spin chain. This hypothesis
requires further theoretical investigation, which is beyond the
scope of the current paper.

V. SUMMARY

Rb2Mn3(MoO4)3(OH)2 is a newly discovered bond-
alternating decorated spin-chain system. There are three dif-
ferent nearest-neighbor exchange interactions inside each in-
dividual chain. We have studied its magnetic properties and
magnetic structures and found two successive magnetic phase
transitions on cooling. It transitions from a paramagnetic

064423-9



YAOHUA LIU et al. PHYSICAL REVIEW B 101, 064423 (2020)

phase into an incommensurate phase below 4.5 K. An addi-
tional antiferromagnetically ordered component arises with
k2 = (0, 0, 0) below 3.5 K, forming a complex magnetic
structure with two different propagation vectors of different
stars. On further cooling, the incommensurate wave vector
undergoes a lock-in transition below 2.3 K. We have found
that the magnetic superspace group in the standard setting is
Pbnm1′(00g)s00s (62.1.9.4m442.2) for the single-k incom-
mensurate phase and is Pbn′m(00g)s00 (62.1.9.4m443.1) for
the two-k magnetic structure. The experimental results show
an exemplary case of complex magnetic structures that δ

chain systems can host and will be the touchstone for future
theoretical investigations on this intriguing bond-alternating
decorated spin-chain system.
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with the DOE Public Access Plan [34].
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