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Abstract— Correspondence identification is an essential prob-
lem for collaborative multi-robot perception, with the objective
of deciding the correspondence of objects that are observed in
the field of view of each robot. In this paper, we introduce
a novel maximin hypergraph matching approach that formu-
lates correspondence identification as a hypergraph matching
problem. The proposed approach incorporates both spatial
relationships and appearance features of objects to improve
representation capabilities. It also integrates the maximin the-
orem to optimize the worst-case scenario in order to address
distractions caused by non-covisible objects. In addition, we de-
sign an optimization algorithm to address the formulated non-
convex non-continuous optimization problem. We evaluate our
approach and compare it with seven previous techniques in two
application scenarios, including multi-robot coordination on
real robots and connected autonomous driving in simulations.
Experimental results have validated the effectiveness of our
approach in identifying object correspondence from partially
overlapped views in collaborative perception, and have shown
that the proposed maximin hypergraph matching approach
outperforms previous techniques and obtains state-of-the-art
performance.

I. INTRODUCTION

Multi-robot systems have been attracting an increasing
attention over the past years, because of their advantages of
parallelism, reliability, and flexibility to efficiently perform
collaborative tasks [1], [2], [3]. Collaborative perception is a
critical capability required by multi-robot systems to collab-
oratively understand the environment for shared situational
awareness and effective teamwork. Multi-robot collaborative
perception is widely applied to a range of real-world appli-
cations, including search and rescue [4], [5], [6], homeland
security [7], manufacture [8] and connected autonomous
driving [9], in which multiple robots collaboratively perceive
and operate together as a team [10], [11].

To enable collaborative perception, correspondence identi-
fication must be addressed, with the objective of determining
the correspondence between objects observed in the field of
view of each robot in a multi-robot system [12], [13], [14].
Here, we utilize the term objects to broadly refer to robots,
humans, and other entities of interest in the environment.
Figure 1 depicts a scenario of correspondence identification
in collaborative multi-robot perception: Before the ground
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Fig. 1: A motivating example of correspondence identifica-
tion in collaborative multi-robot perception. Before an aerial
vehicle and a ground robot collaboratively track an object,
the pair of robots must correctly refer to the same object in
their own fields of view.

robot and the aerial robot communicate with or manipulate
another object, each robot must identify the object within its
own field of view, so that the pair of robots correctly refer
to the same object.

Correspondence identification is difficult to solve in col-
laborative multi-robot perception due to several challenges.
First, objects in the field of view of one robot may not be
observed by other robots, because of the limited fields of
view of the robots and occlusion by other objects. Second,
the same object can look different when they are observed
from different viewpoints by a pair of robots. Illumination
angles and sensor noise may cause the same problem. Third,
object appearances may look similar and even identical, for
example, when robots with the same type are used in a team.
Although several approaches were previously implemented
in various applications, including re-identification for indi-
vidual object matching [15], keypoint-based or dense point
association [16], and graph or hypergraph-based matching
[17], they cannot well address the challenges of correspon-
dence identification from partially overlapped robot views.

In this paper, we propose a principled approach to address
object correspondence identification in multi-robot collabora-
tive perception. We first develop a hypergraph representation
that integrates appearance cues and spatial relationships of
observed objects to improve the expressiveness of the repre-
sentation. Then, we formulate correspondence identification
as a hypergraph matching problem. Inspired by the maximin
theorem, we introduce a novel maximin hypergraph matching
approach that optimizes the worst-case scenario to identify
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object correspondence from partially overlapped robot views.
We evaluate our approach in two representative application
scenarios, including multi-robot coordination and connected
autonomous driving. Experimental results have shown state-
of-the-art performance of our maximin hypergraph matching
approach to identify object correspondence for collaborative
perception.

The novelty of this paper is twofold. First, we formulate
correspondence identification as a novel maximin hypergraph
matching problem, which is able to integrate objects’ spatial
relationships and appearance cues to improve representation
expressiveness, and utilize the maximin theorem to optimize
the worst-case scenario to better identify the correspondence
given partially overlapped observations. Second, because the
optimization problem in our formulation is non-convex and
non-continuous, we implement a new algorithm to effectively
solve the formulated optimization problem.

II. RELATED WORK

A. Multi-Robot Collaborative Perception

Multi-robot collaborative perception has been widely stud-
ied. Views from multiple agents were merged using iterative
closest points (ICP) in connected driving applications [10].
Spatiotemporal perceptual data from multiple vehicles was
fused using the extended Kalman filter (EKF) to perceive
complex road surfaces [18]. Localization accuracy was im-
proved by factor graphs to fuse radar data from connected
vehicles [19]. Recently, collaborative perception to monitor
objects using a team of robots has attracted an increasing
attention. For example, multiple aerial robots were used to
collaboratively track people [20]; ground vehicles employed
collaborative perception to improve prediction of occluded
vehicles [11]; underwater robots collaboratively tracked a
target to perform underwater multi-robot convoying [21].

B. Correspondence Identification

To enable collaborative perception by multiple robots,
correspondence identification is a fundamental challenge.
Existing techniques for correspondence identification can be
generally categorized into three groups: point-based associa-
tion, re-identification, and graph/hypergraph-based matching.

Point-based association is widely used in reconstruction,
such as matching adjacent frames in simultaneous localiza-
tion and mapping (SLAM). Dense point association was
implemented to match between most of points in pair of
frames, e.g., based upon ICP [22] and random sample con-
sensus (RANSAC) [23]. Keypoint-based association extract
keypoints from frames and match associate these keypoints,
e.g., based on SIFT [24] or ORB [25] keypoints in SLAM.
Re-identification methods identify correspondence of indi-
vidual objects with changing appearance or viewing angles
[26]. Re-identification is often performed by matching visual
features [27], object attributes [28] or spatial layout [15]

Point-based association typically assumes that points sat-
isfy a transformation as a constraint, which cannot be applied

to identify correspondence of dynamic and independent ob-
jects. Point-based techniques also cannot incorporate region-
based appearance cues. Re-identification techniques focus on
identifying correspondence of an individual object, and are
unable to incorporate relationships of multiple objects for
matching.

C. Graph and Hypergraph Matching

Graph and hypergraph matching provides a promising
paradigm to match points and objects with unstructured
relationships. Pairwise graphs have segments as edges, and
hypergraphs use tuples (such as triangles) as edges [17].

For graph matching, [29] identified point correspondence
by exploring principal eigenvector of the affinity matrix. [30]
searched correspondence through factorizing a large affinity
matrix into smaller matrices that encode local relationships.
[31] addressed the non-convex point association problem
using a random walk algorithm. [32] developed a path
following method to solve the optimization. Compactness
prior was used to improve matching [33].

It is widely recognized that hypergraph matching is more
robust to geometric variations and noise by integrating high-
order relationships. [34] designed tensor-based high-order
constraints to encode the similarity of high-order hyperedges.
[17] designed a tensor-based reweighted random walk algo-
rithm with reweighting jumps. [35] formulated the problem
in a lower dimension by factorization. [36] proposed a tensor
block coordinate ascent algorithm as a solver for hypergraph
association. [37] optimized in the discrete domain by linear
assignment approximation.

Almost all existing graph and hypergraph matching meth-
ods focus on identifying correspondence of points and do not
consider appearances of objects. [38] fused relationships and
appearance cues in a linear combination to match body joints
of humans and humanoid robots. This approach assumes
that body joints follow fixed kinematic structures (i.e., body
skeleton) as prior knowledge and all joints can be well
observed. Because of object independency, robot autonomy,
and view occlusion in multi-robot collaborative perception,
existing graph and hypergraph matching methods are not
directly applicable.

III. THE PROPOSED APPROACH

A. Formulating Correspondence Identification as a Hyper-
graph Matching Problem

Given the observations obtained by a robot (e.g., from a
color-depth camera), the observed environment is represented
as a hypergraph G = (V, E), where V = {v1,v2, · · · ,vn}
with vi denoting the 3D position of the i-th object instance,
and n is the number of object instances observed in the
environment. We model the high-order spatial relationships
of the object instances in V using a set of hyperedges E =
{ei,j,k}, with each hyperedge ei,j,k = [θi, θj , θk], i, j, k =
1, 2, . . . , n, i 6= j 6= k defined to represent three angles of a
triangular relationship constructed by the i-th, j-th, and k-
th object instances in V . Third order spatial relationships are
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robust to scale change since angles of triangular relationships
are invariant to scale change.

In collaborative perception, we assume that a pair of robots
obtain partially overlapped observations of the same environ-
ment with covisible objects (i.e., instances observed by both
robots) and non-covisible objects (i.e., instances observed by
one robot only). We denote the observations obtained by the
pair of robots as hypergraphs G = (V, E) and G′ = (V ′, E ′),
respectively, which may include different numbers of objects
(i.e., n′ can be different from n). Then, we can compute the
affinity tensor T = {tii′,jj′,kk′} ∈ Rnn′×nn′×nn′

between
G and G′, with each tii′,jj′,kk′ computed from a pair of
hyperedges eijk ∈ E and e′i′j′k′ ∈ E ′. Due to third order
spatial relationsihps are robustness to scale variations, an
angular similarity function [38], [17] is adopted to compute
the similarity of hyperedges ei,j,k and e′i′,j′,k′ as:

tii′,jj′,kk′ = exp

− 1

σ

∑
p∈i,j,k;p′∈i′,j′,k′

|cos(θp)− cos(θp′)|

 (1)

where θp denotes the angle with vp as the vertex, and σ is
used to control the magnitude of input of exp function. We
set σ = 0.5 empirically.

Then, correspondence identification of objects observed by
two robots in collaborative perception can be formulated as a
hypergraph matching task by solving the following problem:

X∗ = argmax
X

nn′∑
ii′=1

nn′∑
jj′=1

nn′∑
kk′=1

tii′,jj′,kk′xii′xjj′xkk′

s.t. X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1 (2)

The objective function in Eq. (2) models the accumulative
similarity among all hyperedges in G and G′ (parameterized
by X). Eq. (2) aims to find the optimal X∗ that maximizes
the accumulative similarity. We can re-write Eq. (2) into a
matrix form as:

X∗ = argmax
X

T⊗1 x⊗2 x⊗3 x (3)

s.t. X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1

where x = {xii′} ∈ {0, 1}nn
′

is the vectorized form of
correspondence matrix X ∈ {0, 1}n×n′

with xii′ = 1
denoting the i-th node in V and the i′-th node in V ′ are
matched, 1 is an all-ones vector, ⊗ is a tensor product,
and ⊗j means multiplication between X and the mode-
j, j = 1, 2, 3, matricization of T [39].

B. Maximin Hypergraph Matching

We propose a novel maximin matching approach to in-
corporate both appearance cues of object instances and
their high-order spatial similarity in a principled maximin
optimization framework that optimizes the worst case.

1) Integrating Appearances in Hypergraph: Only consid-
ering hyperedge similarities for correspondence identification
(e.g., in Eq. (2)) often results in incorrect matches when a
pair of hypergraphs exhibit deformations caused by differ-
ences in viewing perspectives. Different from point-to-point

Maximum gain of worst caseCorrect match with distractions

Flip over 

Worst case

Low gain

Flip over 

Weaken 
distractions

Incorrect match due to maximum gain

Fig. 2: Illustration of the maximin matching. Green/red lines
denote correct/incorrect matches and blue hyperedges denote
the distraction introduced by non-covisible objects. The top-
left figure shows the correct match between two hypergraphs
with distractions. The bottom-left figure illustrates that max-
imizing the average gain can lead to an incorrect match. The
right figure shows our proposed maximin approach is robust
to distraction and obtain the correct match by optimizing the
worst-case scenario.

matching, objects themselves can provide informative cues
that can be used for correspondence identification in our
case. Thus, to increase the expressiveness of our hypergraph-
based representation, we integrate appearance cues of the
objects into the hypergraph matching approach that takes
into account of similarities of both hyperedges and the node
appearances associated with these hyperedges.

Formally, for each node v, a feature vector c ∈ Rd is com-
puted from the object associated with v, where d denotes the
dimensionality of the feature vector. The feature vector c can
include color, shape, and texture features, or a concatenation
of them. Given G = (V, E), the feature set extracted from
all objects is denoted as C = {c1, c2, · · · , cn}. Then, given
a pair of hypergraphs G = (V, E) and G′ = (V ′, E ′), and the
respective feature sets C and C′, we compute the appearance
similarity vector b = {bii′} ∈ Rnn′

, where each element
bii′ represents the similarity between the i-th object encoded
by vi ∈ V and the i′-th object encoded by v′i ∈ V ′. The
similarity bii′ can be computed by a distance function over
the objects’ feature vectors, for example, based on the cosine
distance between ci and c′i′ such as bii′ =

ci·c′
i

‖ci‖‖c′
i‖

.
2) Maximin Optimization for Hypergraph Matching: The

existence of non-covisible objects introduces distractions (the
spatial relationships constructed with non-covisible objects
distract the correct match of co-visible objects) into hyper-
graph matching and significantly increases the possibility
of incorrect correspondences, as depicted in Figure 2. In
addition, before object correspondences are identified, it is
impractical to identify non-covisible objects individually, due
to object dynamics and similar appearance (as shown in
Figure 1).

To address the challenge of non-covisible objects, we
introduce the principled maximin hypergraph matching ap-
proach to integrate spatial hyperedge similarities and node
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appearance similarities in a unified optimization framework.
Our method is inspired by the maximin theorem1 that max-
imizes the possible gain for the worst-case (i.e., minimum
gain) scenario. Without optimizing the overall gain of all
possible cases, the maximin value is the highest gain that
an approach can be sure to get. In Figure 2, the worst case
is when the similarity of object appearances is the smallest
and traditional methods which generally maximize the spatial
and appearance similarity to find the matches [38]. However,
due to the distractions introduced by non-covisible objects,
maximum similarity often leads to incorrect matches (see
the Bottomleft Figure in Figure 2). Our proposed maximin
approach to optimize the worst case, which can address
distractions caused by non-covisible objects and improve the
robustness against matching with non-covisible objects (An
illustrative example is provided in Figure 2).

Formally, we formulate correspondence identification with
non-covisible objects as the novel maximin optimization
problem, which maximizes the similarity under the worst
case to decide correspondences:

X∗ = argmax
X

nn′∑
ii′=1

nn′∑
jj′=1

nn′∑
kk′=1

tii′,jj′,kk′xii′xjj′xkk′ min{bii′ , bjj′ , bkk′}
s.t. X1n′×1 ≤ 1n×1,X

>1n×1 ≤ 1n′×1 (4)

After solving the optimization problem in Eq. (4) based on
Algorithm 1, we obtain an optimal solution X∗ that includes
the correspondence of V and V ′ (i.e., object correspondence).
Our maximin hypergraph matching approach has several
advantages.

By integrating hyperedge and node similarities, our ap-
proach improves the expressiveness of representation and
matching performance. By formulating hypergraph matching
under the maximin optimization theorem, our approach is
robust to scenarios with non-covisible objects.

C. Optimization Algorithm

Since our proposed hypergraph matching formulation is
a non-convex non-continuous optimization problem with a
non-smooth minimize operator, we design a new heuristic
optimization algorithm based on random walk with the
reweighted jump technique [17] for the proposed optimiza-
tion problem in in Eq. (4). Our optimization algorithm is
presented in Algorithm 1.

In Step 2, we calculate the spatial similarity under the
worst case T′ = {t′ii′,jj′,kk′} ∈ Rnn′×nn′×nn′

as follows,

t′ii′,jj′,kk′ = tii′,jj′,kk′ min{bii′ , bjj′ , bkk′} (5)

and we convert the tensor T′ to a stochastic form P =
{pii′,jj′,kk′} ∈ Rnn′×nn′×nn′

as follows:

P = T′/max
i

∑
j,k

T′i,j,k (6)

1When dealing with losses, the maxmin theorem [40] is also referred to
as “minimax” that minimizes the maximum loss for a worst-case scenario.

Algorithm 1: The proposed algorithm to solve the
formulated non-convex optimization problem in Eq.
(4).

Input : T ∈ Rnn′×nn′×nn′
and b ∈ Rnn′

Output: X =∈ {0, 1}n×n′

1: Initialize the correspondence matrix X
2: Compute P according to Eq. (5) and Eq. (6)
3: while not converge do
4: Compute the jump vector z by Eq. (7)
5: Normalize z using the bistochastic normalization
6: Update X with reweighted jump by Eq. (8)
7: end
8: Discretize X using the Hungarian algorithm
9: return X

Eq.(6) aims to normalize the original tensor without losing
relative affinity by dividing the maximum through mode-1
matricization. Since T is supersymmetric, the matricization
of T in different modes are equivalent. Then in Step 4, in
order to jump out local optima, inspired by the PageRank
algorithm [41], [17], we design a reweighting jump vector
z ∈ Rn×n′

as:

zr = exp(xr ◦ b/max(xr ◦ b)) (7)

where ◦ denotes the entrywise product and x ∈ Rnn′
is the

vectorized form of the input matrix X ∈ Rn×n′
. The node

appearance similarity b is used to guide the jump toward a
direction that can better match similar objects. r denotes the
r−th iteration.

Step 5 employs a bistochastic normalization to normalize
each row and column in z, thus enforcing the one-to-one
correspondence. Then, in Step 6, to facilitate X to jump out
of local optima, X is updated by:

xr+1 = αP⊗2 x
r ⊗3 x

r + (1− α)zr (8)

where α is a hyper-parameter that controls the update rate,
and α = 0.3 in the following experiments.

In Step 8, after algorithm convergence, we discretize X to
obtain a binary matrix X ∈ {0, 1}n×n′

using the Hungarian
algorithm.

Complexity. The space complexity of our maximin for-
mulation in Eq. (4) is O(n6), dominated by the size of T.
When nearest neighborhoods are applied to compute matches
locally [36], the space complexity becomes O(n2k), where
k is the number of nearest neighborhoods. In this work,
we set k = n2, resulting in the complexity O(n4). The
time complexity of each iteration in Algorithm 1 is O(n4),
dominated by Eq. (8) to access P that is computed from T
with O(n4) elements.

IV. EXPERIMENT

Extensive experiments are conducted to evaluate our max-
imin hypergraph matching method for object correspondence
identification in two scenarios: multi-robot coordination

3491

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on February 25,2021 at 02:10:15 UTC from IEEE Xplore.  Restrictions apply. 



(a) RRWHM (b) MOS (c) Our Approach

(d) RRWHM (e) MOS (f) Our Approach

Fig. 3: Qualitative experimental results over the MRC (first row) and CAD (second row) datasets and comparisons with
the RRWHM and MOS approaches. Green/red solid lines denote correct/incorrect correspondence; and yellow dashed lines
denote missing correspondence (i.e., false negatives).

(MRC) and connected autonomous driving (CAD) as shown
in Figure 3. In MRC, a team of robots is observed with
partially overlapped views using a pair of 3D structured-
light cameras from the side view by a mobile robot and
an overhead view by an aerial robot. In CAD, a connected
autonomous driving simulator is used to simulate collab-
orative perception behaviors when two connected vehicles
observe the same intersection with partially overlapped views
from different perspectives. A dataset is collected from each
of two scenarios, which contains 50 pairs of color-depth
images from two robots with different perspective of robots
and object configurations in the environments. Each data
instance includes covisible and non-covisible objects (caused
by occlusion and robot’s limited field of view), and includes
objects with similar or identical appearances. Both datasets
include 3D object position, 2D bounding boxes, object ap-
pearance features (including visual features including HOG,
color histograms [42] and attribute feature [43]) and object
correspondence ground truth. For example, QR code labels
are used in MRC to obtain the correspondence ground truth,
and the CAD simulator directly provides the ground truth.

We utilize accuracy, precision and recall as the standard
metrics for performance evaluation, following [38], [44].
Accuracy is defined as the number of correct matches over
the total number of co-visible objects. From the perspective
of object retrieval, precision is defined as the fraction of co-
visible objects over all retrieved objects, and recall is defined
as the ratio of retrieved co-visible objects over all of the co-
visible objects.

Furthermore, we compare the proposed approach with
seven previous correspondence identification methods. They
are two pairwise graph matching techniques, including (SM
[29] and RRWM [31]) which use 2D affinity matrix to en-
code similarities of pairwise edges, four hypergraph match-
ing methods, including (TM [34], HGM [35], BCAGM [36],
and RRWHM [17]) which use affinity tensor to represent
third order spatial similarities encoded by hyperedges, and
one approach based upon Multi-Order Similarities (MOS)
[38] which is based on RRWHM but considered multi-

order similarity to match. All these methods are based on
maximum gains without considering the worst case.

A. Results on the MRC Dataset
We perform experiments on MRC to evaluate our approach

in a multi-robot coordination scenario. Most object instances
in MRC are robots belonging to the same category with
similar appearance. The overhead view can well observe the
objects, but the side view contains strong occlusions.

The quantitative correspondence identification results ob-
tained by our maximin hypergraph matching method are
presented in Table I, along with comparisons with seven pop-
ular graph/hypergraph-based correspondence identification
techniques. It is observed that graph matching methods (SM
and RRWM) perform badly, due to different perspectives that
dramatically change the spatial distance between objects in
the image space. The hypergraph matching methods (HGM,
TM, BCAGM, and RRWHM) obtain improved performance
when they use high-order spatial relationships of the ob-
jects. When linearly combining multi-order similarities (e.g.,
spatial relationship and appearance), MOS further improves
correspondence results. Our maximin approach obtains the
best performance on MRC, and outperforms MOS, due to our
approach’s capability of dealing with non-covisible objects
based on the maximin theorem.

To visualize object correspondence, the qualitative exper-
imental results of correspondence identification on a repre-
sentative data instance in MRC are presented in Figure 3.
Results obtained by the other two best performing methods
(MOS and RRWHM) are also compared in the figure. It is
observed that RRWHM cannot well identify correspondence
of the objects causing a large number of false negatives in
this data instance. MOS obtains improved performance with
no incorrect correspondence and only one missed match. For
this data instance, our maximin approach obtains the best
results on object correspondence identification.

B. Results on the CAD Dataset
We also perform experiments using the dataset collected

from autonomous driving simulations. The environment in-
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TABLE I: Quantitative experimental results on the MRC and CAD datasets. The results are presented as mean±covariance
(%), which are computed by executing these methods four times over the datasets using different initializations.

Method Results on the MRC dataset Results on the CAD dataset
Accuracy Precision Recall Accuracy Precision Recall

SM [29] 16.35± 0 16.67 ± 0 7.14 ± 0 3.93 ± 0 0 ± 0 0 ± 0
RRWM [31] 13.49 ± 0 8.33 ± 0 4.76 ± 0 3.19 ± 0 0 ± 0 0 ± 0
HGM [35] 39.01 ± 3.79 25.00 ± 6.70 19.05 ± 3.46 18.73 ± 6.12 10.67 ± 9.61 8.00 ± 6.02
TM [34] 44.56 ± 9.89 50.83 ± 11.67 35.87 ± 10.71 18.49 ± 2.41 6.67 ± 2.44 7.00 ± 2.30
BCAGM [36] 54.44 ± 2.60 52.78 ± 4.55 49.01 ± 2.10 25.63 ± 4.80 17.22 ± 3.69 14.22 ± 5.37
RRWHM [17] 58.77 ± 7.40 63.89 ± 6.97 53.61 ± 6.65 18.15 ± 9.98 7.78 ± 11.49 7.56 ± 12.05
MOS [38] 88.73 ±2.81 89.29 ± 2.81 79.84 ± 3.46 57.63 ± 0 50.93 ± 0 52.56 ± 0
Our Approach 94.17 ± 4.73 91.67 ± 5.09 82.90 ± 4.55 71.13 ± 6.89 48.53 ± 3.87 68.72 ±6.89

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−2

0

0.2

0.4

0.6

0.8

1

Noise Rate

A
cc
u
ra
cy

SM
RRWM
HGM
TM
BCAGM
RRWHM
MOS
Ours

(a) Accuracy

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−2

0

0.2

0.4

0.6

0.8

1

Noise Rate

P
re
ci
si
on

SM
RRWM
HGM
TM
BCAGM
RRWHM
MOS
Ours

(b) Precision

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−2

0

0.2

0.4

0.6

0.8

1

Noise Rate

R
ec
al
l

SM
RRWM
HGM
TM
BCAGM
RRWHM
MOS
Ours

(c) Recall
Fig. 4: Performance analysis of the previous and our methods with respect to spatial sensing noises in the CAD scenarios.
The noise model noise = depth2 · noise rate is added to depth sensors installed on simulated vehicles in the simulation.

cludes a variety of object categories, such as pedestrians,
traffic lights, road signs, and various vehicles. Both vehicles’
view contains strong occlusions.

The quantitative experimental results obtained from our
approach over the CAD dataset are shown in Table I,
which also includes comparisons with previous methods. It
is observed that our maximin approach obtains significant
improvements (i.e., more than 13%) on accuracy and recall,
while obtaining slightly worse precision than MOS. Our
approach and MOS still obtain superior performance over
other techniques due to the integration of spatial relationships
and appearance cues. The qualitative results of object corre-
spondence in a representative situation are demonstrated in
Figure 3, including visual comparisons of our approach with
RRWHM and MOS. It is observed that RRWHM correctly
matches two pairs of objects but fails to identify correspon-
dence of the other objects in this situation. MOS is able to
identify correspondence of all objects, but several matches
are not correct. Our maximin hypergraph matching approach
identifies the correspondence correctly in this situation.

In the experiment, we analyze the robustness of cor-
respondence identification methods to sensing noise. We
add a noise generation model to the depth sensor installed
on the simulated vehicles. The model creates noise =
depth2 × noise rate at a given depth, which is similar to
the errors obtained from stereo vision [45] and monocular
depth estimation [46]. For example, the added noise is 1
meter at the depth of 10 meters when noise rate = 0.1. In
Figure 4, we show performance variations of correspondence

identification methods with respect to different noise-rate
values. It is observed that, with the increase of the noise rate,
the performance of all the hypergraph matching approaches
gradually decreases with small fluctuations. The accuracy
and recall curves of hypergraph matching methods show
similar trends and values, since they are strongly dependent
on true positives (i.e., correct matches) when the number
of true negatives and false positives is small. Moreover, it
is observed that our approach and MOS greatly outperform
other methods under noise, and our approach obtains the best
performance in most cases.

V. CONCLUSION

We propose a novel maximin hypergraph matching ap-
proach that formulates object correspondence identification
as a hypergraph matching problem. The proposed approach
integrates both spatial object relationships and appearance
cues to improve representation expressiveness, and adopts
the maximin theorem to optimize worst-case scenarios in
order to address distractions caused by non-covisible objects.
A new optimization algorithm is designed to solve the
formulated non-convex maximin optimization problem. We
evaluate our method in two application scenarios, including
multi-robot perception of physical robots and connected au-
tonomous driving in simulations. Experimental results have
shown that our approach well identifies object correspon-
dence from partially overlapped perspectives in collabora-
tive perception, and obtains state-of-the-art performance of
correspondence identification.
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[24] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: large-scale direct
monocular SLAM,” in European Conference on Computer Vision,
2014.

[25] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[26] R. Zhao, W. Oyang, and X. Wang, “Person re-identification by
saliency learning,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 2, pp. 356–370, 2016.

[27] M. Cristani and V. Murino, “Person re-identification,” in Academic
Press Library in Signal Processing, 2018, vol. 62, pp. 365–394.

[28] R. Zhao, W. Oyang, and X. Wang, “Person re-identification by
saliency learning,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 2, pp. 356–370, 2017.

[29] M. Leordeanu and M. Hebert, “A spectral technique for correspon-
dence problems using pairwise constraints,” in IEEE International
Conference on Computer Vision, 2005.

[30] F. Zhou and F. De la Torre, “Factorized graph matching,” IEEE
transactions on pattern analysis and machine intelligence, vol. 38,
no. 9, pp. 1774–1789, 2016.

[31] M. Cho, J. Lee, and K. M. Lee, “Reweighted random walks for graph
matching,” in European conference on Computer vision, 2010.

[32] Z.-Y. Liu and H. Qiao, “GNCCP graduated non convexity and con-
cavity procedure,” IEEE transactions on pattern analysis and machine
intelligence, vol. 36, no. 6, pp. 1258–1267, 2014.

[33] Y. Suh, K. Adamczewski, and K. Mu Lee, “Subgraph matching
using compactness prior for robust feature correspondence,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[34] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce, “A tensor-based
algorithm for high-order graph matching,” IEEE transactions on
pattern analysis and machine intelligence, vol. 33, no. 12, pp. 2383–
2395, 2011.

[35] R. Zass and A. Shashua, “Probabilistic graph and hypergraph match-
ing,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2008.

[36] Q. Nguyen, A. Gautier, and M. Hein, “A flexible tensor block coor-
dinate ascent scheme for hypergraph matching,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

[37] J. Yan, C. Li, Y. Li, and G. Cao, “Adaptive discrete hypergraph
matching,” IEEE transactions on cybernetics, vol. 48, no. 2, pp. 765–
779, 2018.

[38] H. J. Chang, T. Fischer, M. Petit, M. Zambelli, and Y. Demiris,
“Learning kinematic structure correspondences using multi-order sim-
ilarities,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, no. 1, pp. 1–1, 2017.

[39] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor
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