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Abstract

Batteryless energy-harvesting devices eliminate the need in
batteries for deployed sensor systems, enabling longer life-
time and easier maintenance. However, such devices cannot
support an event-driven execution model (e.g., periodic or
reactive execution), restricting the use cases and hampering
real-world deployment. Without knowing exactly howmuch
energy can be harvested in the future, robustly scheduling
periodic and reactive workloads is challenging.

We introduce CatNap, an event-driven energy-harvesting
system with a new programming model that asks the pro-
grammer to express a subset of the code that is time-critical.
CatNap isolates and reserves energy for the time-critical
code, reliably executing it on schedule while deferring ex-
ecution of the rest of the code. CatNap degrades execution
quality when a decrease in the incoming power renders it
impossible to maintain its schedule.
Our evaluation on a real energy-harvesting setup shows

that CatNap works well with end-to-end, real-world deploy-
ment settings. CatNap reliably runs periodic events when
a prior system misses the deadline by 7.3× and supports
reactive applications with a 100% success rate when a prior
work shows less than a 2% success rate.
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1 Introduction

Ultra-low-power processors and energy harvesters enable
batteryless devices that operate using energy collected
from their environment. These devices harvest, e.g., radio
waves [17, 57] or solar energy [17, 25], avoiding costs as-
sociated with batteries, such as thermal limits, short life-
times, and replacement costs. Batteryless devices are appeal-
ing for applications such as long-term environmental and
infrastructure monitoring, sensing in adversarial environ-
ments, and chip-scale satellites [17, 25, 40, 57]. Harvestable
power sources are weak and unreliable, causing an energy-
harvesting device to operate intermittently when energy is
available. A device charges an energy buffer (capacitor) while
inactive. After accumulating sufficient energy, the device per-
forms a burst of computation, depleting the accumulated en-
ergy [17, 24, 25, 57]. Time spent charging is typically longer
than time spent computing and varies with the environment.
Prior work enables safe, efficient software on batteryless

devices [6, 8, 10, 15, 34, 45, 46, 51, 64] by saving state across
failures. However, these systems lack support for timed
events and interrupts, failing to realize event-driven execu-
tion as in continuously-powered systems [18, 19, 37, 38].
Importance of an event-driven execution. Many modern
embedded systems are event-driven, responding to events,
such as timer interrupts. Event-driven systems exist to sup-
port periodic and reactive execution [18, 19, 37, 38]. Periodic
execution allows running a workload with a particular fre-
quency (e.g., sampling temperature at 1 Hz). Reactive execu-
tion allows a timely response to a signal of interest (e.g., on
a smoke detector interrupt). Periodic and reactive execution
are widespread and important embedded operating modes.
Periodic and reactive execution on an energy-harvesting

device is a challenge. Periodic execution is challenging be-
cause the time to harvest sufficient energy for a workload
depends on incoming power. If recharge time exceeds the
event’s period, periodic execution is not viable. Figure 1 (top)
shows a failure to run periodically. Reactive execution is
challenging because the device may be powered-off or have
insufficient energy for an asynchronous event [9, 55, 65].
Figure 2 (top) shows a failure to run reactively.
Shortcomings of prior approaches. Prior approaches [12,
13, 22, 39, 48] schedule tasks and recharges like a real-time
operating system (RTOS) on an energy-harvesting device.
These schedulers fail in real-world scenarios where incoming
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To program in InK or LSA, it is natural to make the two
workloads into two RTOS tasks1. We assumed each RTOS
task was properly sized so as not to experience any deadline
violations unless there are power fluctuations.

Figure 3a shows that prior systems miss deadlines when
the incoming power fluctuates, even when provisioned with
oracular data. LSA started to miss 10% of the deadlines when
1% standard deviation was introduced; it missed up to 50%
of the deadlines when the standard deviation of the input
power was 3.6%ś10%. InK missed 35%ś50% of its deadline as
soon as any fluctuation was introduced.
LSA and InK assume by design that an expected amount

of energy will always be harvested. If the harvested energy
is less than what was expected, they end up draining the
energy buffer more than planned, leaving insufficient energy
for subsequent tasks. The draining of energy can harm other
tasks because the energy use of tasks is not isolated from each
other; if the lowest-priority task consumes excessive energy,

the entire system shuts down.
CatNap divides the program into time-critical events and

time-insensitive tasks. From our simulation, CatNap never
violated the event deadline. Figure 3b further illustrates why
CatNap meets the deadline while others do not. The figure
plots the observed frequency of code execution (RTOS tasks
for LSA and InK, events and tasks for CatNap) on different
power fluctuations. We only show the subset of the data
points for clarity. LSA and InK have an average period that
meets the deadline (indicated by the horizontal line); how-
ever, they incur high variance in RTOS tasks’ execution time.
CatNap also has a high variance on code execution time,
but crucially, the variance only affects time-insensitive tasks,
not time-critical events. CatNap isolates event energy from
task energy and prioritizes event execution and the corre-
sponding recharges over tasks (as Section 3 explains in detail).
CatNap’s events always meet the deadline even with a very
high standard deviation of incoming power, e.g., up to 100%
variation. Unless the mean of the incoming power changes,
CatNap accumulates enough energy to run events within
their periods, even if power variation is high. CatNap does
not run a task until it reserves enough energy for events,
ensuring events always run reliably at an occasional cost in
the variation of task execution time.
As Figure 3b shows, the downside of CatNap is the risk

of unpredictable execution time for time-insensitive tasks,
which is the price paid for reliable event-driven execution.
Despite the unpredictable task execution time, CatNap
practically has higher performance than prior work [65]
(Section 7), thanks to several favorable design choices
discussed in Section 5.

To summarize, all prior work either does not support
intermittent event-driven execution directly (R1ś3) or

1In RTOS, “tasksž are code regions with a deadline

was able to partially support it only when the incoming
energy does not fluctuate (C1ś3). CatNap is the first
energy-harvesting system that can robustly support
event-driven execution even with short- and long-term
energy fluctuations.

3 The Recharge Scheduler

CatNap’s scheduler (1) isolates the energy for time-critical
events from time-insensitive tasks, (2) schedules events and
the necessary recharges, (3) runs tasks with the remaining
energy, and (4) estimates the feasibility of events online.

3.1 Events and Tasks

CatNap’s design stems from the observation that (1) sched-
uling all the workloads perfectly is in general impossible
with non-ideal incoming power, and (2) many parts of an
application do not have a strict scheduling requirement. Con-
sider an application that samples audio and computes its fast
Fourier transform (FFT). Audio samples must be collected
at a precise frequency, while the FFT computation can be
delayed. From this observation, CatNap requires the pro-
grammer to separate the time-critical code (i.e., events) from
the time-insensitive code (i.e., tasks) explicitly. The two can
communicate data or trigger each other. CatNap schedules
events and the necessary recharges using a provably-correct
policy similar to that of an RTOS. CatNap runs tasks using
the remaining energy. CatNap’s programming model is simi-
lar to TinyOS [37], which uses a two-level priority of events
and tasks for reducing overheads.

An event is a short code region that must execute respon-
sively, at a specified time. CatNap executes events atomically,
without interruption by a recharge or a power failure. Events
are a good fit for I/O and peripheral manipulations because
they are responsive and atomic. An event may be periodic or
posted by an interrupt handler, another event, or a task. As
in TinyOS [37], events do not preempt each other and must
be short to avoid impeding responsiveness.
A task is a long-running computation that need not be

responsive, is preemptable, and can run intermittently. Cat-
Nap disallows the programmer from specifying any tim-
ing requirements (e.g., deadline) for tasks. CatNap exploits
the interruptability of tasks, deferring them when events or
recharges must run. Tasks run with spare time and energy.
A task can be posted by an event or another task. Tasks do
not preempt each other. Like TinyOS [37], CatNap does not
specify the execution order or a deadline of posted tasks; a
posted task finishes eventually.

CatNap also schedules recharges, inactive periods used to
collect energy. A recharge’s priority is higher than tasks and
lower than events. CatNap schedules recharges to ensure
events are timely and avoid power failures.
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3.2 Operation of the Scheduler

CatNap adopts an RTOS-style scheduling policy for execut-
ing events. We first explain how CatNap schedules events.
Then, we explain how tasks run without interfering with
the events. Finally, we explain how CatNap estimates the
feasibility of the event schedule.
Scheduler Overview To enable periodic and reactive execu-
tion, the system must always have enough energy to execute
an event immediately as it arrives. CatNap logically (but
not physically) divides its energy buffer into an event bucket

and a task bucket, which stores the energy to be used by the
events and tasks, respectively. The event bucket is sized to be
bigger than the sum of the worst-case energy consumption
of all events.
CatNap tries to always keep the event bucket full to pro-

cess events even if they arrive all at once. When the event
bucket is not full, CatNap refills it by scheduling recharges
and (logically) transferring energy from the task bucket.
When an event arrives, CatNap runs the event using the

energy in the event bucket. When the event bucket is full
and there is no event to run, CatNap runs a task with the
excess energy; however, CatNap never allows tasks to use
energy from the event bucket. When there are no tasks to
execute, CatNap fills up the task bucket for future task execu-
tions. Task execution can always be preempted by an event
execution or a recharge to fill the event bucket.
CatNap physically uses a single energy buffer, logically

partitioned for events and tasks. CatNap monitors the energy
in its energy buffer (ec ) and compares it with eevent , the size
of the event bucket. If ec ≤ eevent , the energy is in the event
bucket. If ec > eevent , the event bucket is full and the task
bucket holds ec −eevent energy. Using a single buffer has sev-
eral advantages over physically-separate buffers: changing
either bucket size is simple (e.g., via a programmable com-
parator IC) and energy transfer between buckets is trivial.
Algorithm 1 summarizes the scheduler’s operation. Cat-

Nap’s scheduler can be in one of three states: running events,
running tasks, or recharging. CatNap defaults to recharging
when an event or task finishes (Line 1-2). CatNap never in-
terrupts an event execution until it finishes (Line 3). CatNap
always runs events with the highest priority (Line 4) and
only runs tasks when the event bucket is full (Line 6, 8).

Algorithm 1 CatNap charge scheduler.

1: if state ∈ Events ∪Tasks then
2: if F inished then state ← Recharдe

3: if state < Events then
4: if ReadyEvents , ∅ then state ← ϵ ∈ ReadyEvents
5: else
6: if ec ≤ eevent then state ← Recharдe
7: else
8: if ReadyTasks , ∅ then state ← τ ∈ ReadyTasks
9: else state ← Recharдe

Energy IsolationCatNap isolates energy in the event bucket
from tasks, allowing reactive event execution despite power

fluctuations. Short-term fluctuations affect only tasks be-
cause events can rely on the energy reserved in the event
bucket. When an input power varies over a longer period,
CatNap’s feasibility test and degradation generate a degraded
set of events that runs even with the lower input power.
Feasibility Test and Degradation When the incoming
power decreases, CatNap might not be able to keep the event
bucket full. We say a set of events is infeasible and CatNap de-
grades the quality of the events to use less energy. To degrade,
CatNap increases the events’ period or runs a programmer-
provided approximate version of the code. Degrading events
yields an alternative, feasible set of events.
CatNap uses a feasibility test to check the feasibility of

events at a given input power, similarly to how an RTOS
would check the schedulability of RTOS tasks. The feasibility
test assumes that an event execution time itself is negligi-
bly short compared to charge time, which is true in most
energy-harvesting scenarios [17]. Assume an event ϵi has
a period ti and a worst-case energy consumption ei . With
an incoming power P , the time to charge up ei is ci =

ei
P
.

CatNap’s feasibility test states that:

Theorem 1. Events {ϵ0, ..., ϵn} are feasible if
∑n

i=0
ci
ti
≤ 1.

We briefly sketch an informal proof and provide a formal
proof as an Appendix (Section ??). If the energy used by any
event is replenished before the next instance of the same
event, the system is feasible. In other words, if we define di
as the deadline to recharge after the event ϵi , never violating
a deadline of di = ti guarantees feasibility. This deadline
formulation allows casting our feasibility test as a typical
RTOS task (code regions with a deadline) schedulability test.
Prior RTOS literature proved an RTOS task i with an inter-
arrival period tRTOS,i , worst-case execution time cRTOS,i

and deadline dRTOS,i = tRTOS,i is schedulable if and only
if
∑n

i=0
cRTOS,i

tRTOS,i
≤ 1 [67].

∑n
i=0

cRTOS,i

tRTOS,i
defines utilization and

represents the fraction of time spent running RTOS tasks [67].
The schedulability result implies that recharges in our system
are schedulable without violating their deadlines (i.e., the
system is feasible) if and only if

∑n
i=0

ci
ti
≤ 1. Following the

RTOS’s convention, we refer to
∑n

i=0
ci
ti
as utilization orU . An

aperiodic event can be treated as periodic, using its minimum
expected arrival interval as its period ti , which is a technique
widely accepted in prior work [67]. Section 4.3 describes
aperiodic events in detail. When CatNap’s feasibility test
fails, CatNap invokes its degradation logic (Section 4.5).

4 The CatNap System

CatNap consists of a programming model with events and
tasks, a charge scheduler, a compiler, and a runtime system.
CatNap’s runtime system includes the facility for evaluating
feasibility online based onmeasurements. CatNap’s program-
ming model allows the programmer to define how to degrade
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Figure 4. Overview of CatNap.

quality to use less energy. CatNap preserves memory state
if power fails. Figure 4 summarizes CatNap.

4.1 The Assumptions of CatNap

CatNap assumes a single user running a single application
with possibly multiple concurrent computations. CatNap
assumes a simple, single-core microprocessor with a byte-
addressable non-volatile memory and a capability to monitor
the buffered energy. The assumptions of CatNap align with
most of the prior work [8, 11, 17, 24, 25, 34, 47, 57].

4.2 The CatNap Programming Model and Compiler

CatNap asks the programmer to express a program using
events and tasks and express guidelines regarding degra-
dation. Figure 5 shows a simplified example of a CatNap
program. The programmer defines events and tasks (Line
3-5), the period and the parameter (optional) of events (Line
1-2), and the code for tasks and events (Lines 7-17). The pro-
grammer can optionally express how to degrade quality e.g.,
by increasing the period (Line 1) or the parameter (Line 2).
The programmer can also guide the system to use alternative
code on degradation by providing more than one function
inside the func={} argument (not shown). Tasks and events
have a structured mechanism for communication, called a
channel (Line 6). CatNap’s compiler generates an executable
instrumented to run tasks and events based on their speci-
fications. Within events or tasks, CatNap can use common
C constructs without restrictions, including dynamic mem-
ory allocation, recursive calls, and arbitrary pointers, unlike
prior work restricting the use of such capabilities [41, 45, 46].

In many cases, programming in CatNap has a reasonable
overhead. Dividing events and tasks is mostly straightfor-
ward: periodic and reactive I/O operations are good candi-
dates to be an event and compute-intensive code becomes
tasks. Many I/O operations have configurable parameters,
e.g., resolution of a camera or a transmission power of a
radio, that can be directly used for degradation. A CatNap
programmer can also leverage approximate computing [3ś
5, 30, 36, 56, 59, 61] technologies for code degradation. Al-
though CatNap gives programmers the freedom to guide the
degradation in a fine-grained manner, programmers can rely
on the default parameters unless necessary. In our evalua-
tions, we only specified the core requirements of the appli-
cations (in Section 6) and left everything else at its default.

1.PERIOD(name=”T”,min=1,max=10);
2.PARAM(name=”P”,min=10,max=100);
3.EVENT(name=”capture”,period=”T”
        type=”periodic”, 
        func={f_capture});
4.TASK(name=”compute”,
       func={f_compute});
5.EVENT(name=”tx”,period=”T”,
        type=”aperiodic”, 
        param=”P”,func={f_tx});
6.CHANNEL(name=”chan”, 
 src=”capture”, 
          dst=”compute”,
          struct=img_t);

11.void f_compute() {
12. img_t img
      =chan.pop();
13. if (is_dog(img))
14.  POST(tx);}

7.void f_capture() {
8. img_t img=getImg();
9. chan.push(img);
10.POST(compute);}

15.void f_tx() {
16. setTxPower(param);
17. send(”Dog!”);}

Period, event, task, channel declaration Event, task definition

Figure 5. Example CatNap code. The code for an application
that captures an image periodically (event capture), predicts
a presence of a dog (task compute), and sends an alarm (event
tx). Event period is between 1 second to 10 seconds (period
T) and the system controls the transmission power between
10 to 100 (param P, which f_tx is accessing via the keyword
param). A channel holding an image data is defined between
capture and compute (channel chan).

4.3 The Scheduler

CatNap’s scheduler is the core of the runtime system.
The scheduler runs a loop dispatching events, tasks, and
recharges, as well as handling aperiodic events (i.e., inter-
rupts). CatNap periodically estimates feasibility by comput-
ing utilization. If utilization is over a threshold, CatNap
deems the events infeasible and invokes degradation logic.

4.4 Tasks, Events, and Channels

Events and tasks contain application code. They can ex-
change values using a First-In-First-Out (FIFO) channel.
Tasks A task is a potentially long-running region of code
without a deadline that can be posted to the scheduler to
execute. A task does not run immediately after being posted.
Instead, CatNap has a FIFO task queue and runs one at a time.
The task queue has a fixed size and an overflow loses posted
tasks in extreme cases. The POST function returns an error
code when a task is dropped. While the responsibility to
handle dropped tasks can be left to the programmer, CatNap
implements a backpressure mechanism to minimize such
overflows (Section 4.5.2) to reduce programmer effort.
A task can be interrupted any time by an event or a

recharge. When interrupted, execution pauses and resumes
later from the point where it was interrupted. Similarly, if
power fails during a task, the system reboots to the point
where power failed, relying on an existing technique called
just-in-time (JIT) checkpointing [8, 34, 47] (Section 4.6).
Events Events are units of computation that must run at
a specific time, e.g., periodically or when an interrupt oc-
curs. Events can be periodic or aperiodic, can be statically or
dynamically scheduled, and cannot be interrupted by other
events, tasks, or recharges. If power fails during an event, the
system re-runs the interrupted event from its start on reboot
for atomic execution. To rollback any partial results, CatNap
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logs every access to the event’s channel. Other event-local
memory accesses need not be logged.

The scheduler tracks time and dispatches periodic events
at their user-defined frequency. Aperiodic events can be
posted by an interrupt handler, by another event, or by a task.
The scheduler handles aperiodic events similarly to periodic
ones by associating each aperiodic event with a minimum
inter-arrival period. The programmer specifies this minimum
interval based on domain knowledge. During scheduling,
CatNap accounts for an aperiodic event as though it were
periodicwith its period equal to theminimum interval, which
is the worst-case provisioning. To avoid over-consuming
energy, the scheduler prohibits an aperiodic event being
posted at a frequency higher than the frequency defined by
the minimum interval.
Channels The programmer can define a FIFO channel that
allows a task or event to exchange values with another task
or event. A channel allows directional data exchange: the
source puts data into the channel and the destination removes
data from the channel. Exchanging data between tasks or
events outside of a channel is not allowed. The data structure
of a channel element is arbitrary and programmer-defined.
Each channel element stores a logical time value indicat-

ing when the element was inserted. The logical time is a
counter that increments on each power failure. An event
or a task reading an element from a channel can compare
the current logical time and the time value of the channel
element to determine whether the element was produced
after the most recent power failure. The logical time helps to
handle data with a “timelinessž requirement [26], i.e., data
that become stale and unusable if a certain amount of time
passes. If power fails after data are collected and before they
are used in a computation, an arbitrary amount of time could
pass between data collection and use. The destination of the
channel can discard the data in such cases to ensure time-
liness, similar to prior work [26]. Channel makes CatNap
free from data-races between tasks and events because chan-
nel operations execute atomically and other shared memory
accesses are forbidden.

4.5 Degradation Logic

CatNap allows the programmer to specify rules bywhich task
and event execution can gracefully degrade to decrease their
energy use. There are several ways to specify degradation.
Period degradation decreases event frequency. Parameter
degradation exposes a parameter that, when varied, scales
the amount of energy required by a task or event. Code
degradation allows the programmer to specify multiple ver-
sions of task or event code that consume different amounts
of energy. With degradations specified, CatNap gracefully
degrades when events are infeasible. CatNap also degrades
tasks when the task queue overflows.

4.5.1 Graceful Degradation to Avoid Infeasibility.

Utilization varies depending on incoming power. A previ-
ously feasible set of events can become infeasible if the in-
coming power decreases. The scheduler invokes degradation
when its estimate of utilization indicates infeasibility.

By default, the system is deemed infeasible if the utiliza-
tion goes over 1. CatNap optionally allows the programmer
to specify a threshold utilizationUthres below 1, so that the
system is considered infeasible if

∑n
i=0

ci
ti
> Uthres . The com-

puted utilization can be imprecise because it is based on
measurements of limited precision; setting a conservative
Uthres adds a guard band to avoid scheduling insufficient
recharges due to imprecise utilization estimates. Specifying
Uthres is an optional feature which is usually not necessary
because CatNap’s measurements have low error (Section 7.4).
Period degradation increases the period of an event, run-

ning less frequently and requiring commensurately less fre-
quent recharges. The programmer can specify an event’s
minimum and maximum period and the scheduler tries to
run the event at the highest possible frequency. The pro-
grammer can also define a degradation function specifying
how to increase the period allowing, e.g., linear or exponen-
tial variation. CatNap allows correlating different events’
periods so that they vary together (e.g., periods of a sens-
ing event and a corresponding radio transmission should be
degraded together). By default, CatNap doubles an event’s
period to degrade. When degrading, CatNap calculates the
utilization’s gradient with respect to each event’s period
and increases the period that will result in the maximum
utilization decrease.
Parameter degradation decreases a parameter used by an

event computation that determines the energy cost in an
application-specific way. The programmer can define for
each event one parameter variable. As with period degrada-
tion, the programmer can specify minimum and maximum
tolerable values, a degradation function, and the relationship
between different events’ parameters. The meaning of the
parameter is up to the programmer. It can be a configuration
parameter of an I/O device (e.g., the transmission power of a
radio) or a knob for an approximate algorithm such as loop
perforation [59]. CatNap degrades the parameter associated
with the event contributing the most to utilization with the
degradation function. Parameter degradation also applies to
tasks (Section 4.5.2).

Code degradation runs an alternative version of an event’s
code that uses less energy. The programmer can provide
multiple different implementations of the event that provide
interchangeable functionality and use the same channel inter-
face. The programmer specifies the expected relative energy
consumption of the events and CatNap degrades from one
event variant to another by selecting the next highest energy
variant. CatNap applies code degradation to the event con-
tributing the most to utilization. Prior work [36, 61] studied
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similar algorithmic relaxations for energy efficiency. Code
degradation also applies to tasks (Section 4.5.2).

Degradation memoization stores the working degradation
setting associated with the incoming power level. When
the incoming power changes, CatNap reloads the memoized
settings associated with the new incoming power if one
exists, avoiding the need to search for a feasible setting. If
a memoized setting is insufficient, CatNap searches for a
new degradation setting, replacing the memoized ones. To
avoid high memoization overhead, CatNap quantizes the
incoming power into four bins and memoizes for each bin.
Our prototype degrades different settings in a fixed order
starting with periods, then parameters, then code (the order
is not fundamental). Memoization can eliminate unnecessary
searches for the degradation parameters, which can have
high runtime overhead.

4.5.2 Handling Task Queue Overflow. CatNap uses
degradation to mitigate task queue overflow as well. When
the task queue is full, it applies backpressure to the scheduler
which applies parameter and code degradation to tasks. After
degrading a task, CatNap lets execution progress for a fixed
interval and checks whether the overflow resolved. If not,
CatNap degrades the task again. When the task queue over-
flow resolves, CatNap memoizes the task degradation con-
figuration. With no task to degrade, CatNap reducesUthres ,
which has the effect of increasing the time and energy avail-
able for tasks to clear the overflowed queue.

4.6 Handling Power Failure

CatNap may still suffer a power failure if incoming power
is very low; a solar-powered device cannot run in the dark.
CatNap tolerates power failures using JIT checkpoints, a
well-studied solution for handling intermittent power fail-
ures [7, 8, 34, 47, 53]. JIT checkpointing monitors a device’s
remaining energy, saves state when a power failure is immi-
nent, and stops executing until more energy accumulates.

As in prior work [34, 47], CatNap uses a fully non-volatile
main memory which is commercially available [17, 57, 63]
and only saves the register files on a checkpoint. If power
fails in the scheduler or a task, CatNap restarts from where
it left off. If power fails in an event, CatNap rolls back the
event’s channel and restarts the event.

5 Implementation

We implemented CatNap using a combination of commodity
off-the-shelf hardware, some simple custom power system
circuits, and its full software stack, including the program-
ming model, compiler, and runtime system.
Overview We implemented CatNap in C on a TI MSP430FR-
5994 [63] microprocessor, harvesting RF energy into a 1mF
capacitor with a dipole antenna and a P2110-EVB har-
vester [50]. To monitor stored energy and compare it with
eevent , we used the MCU’s built-in configurable comparator.

Utilization Measurement Implementing charge schedul-
ing requires tracking the utilization by measuring the in-
coming power and the worst-case energy consumption of
each event. CatNap uses the MCU’s analog-to-digital con-
verter (ADC) to measure the voltage drop on the energy
buffer across an event’s execution, approximating the event’s
worst-case energy consumption by selecting the maximum
value ever measured. An alternative design could profile
worst-case energy statically (e.g., [16]).

CatNap estimates incoming power by measuring how
much energy was accumulated during recharge, again using
the ADC to measure the energy buffer voltage before and
after a recharge. CatNap measures time spent charging us-
ing the MCU’s scheduling timer, which is already running
continuously to support periodic event scheduling.
CatNap must occasionally re-estimate P , the incoming

power, because harvestable power may change over time.
The frequency with which CatNap re-estimates P determines
the rate of long-term power fluctuation to which CatNap
adapts. Instead of re-estimating P at a fixed interval, CatNap
does so on a transition from charging to an event or task
execution. This design more frequently re-estimates P when
events are frequent or recharging is fast, avoiding unneces-
sarily frequent state changes while events are infrequent or
charging is slow.

By measuring incoming power and the worst-case energy
consumption of events dynamically, CatNap adapts to long-
term incoming power fluctuations (e.g., less sunlight on a
cloudy day) and variation in system power consumption (e.g.,
component degradation, temperature changes). As a result,
CatNap’s measurement-based utilization estimate closely
matches real utilization (Section 7.4).

6 Benchmarks and Methodology

6.1 Evaluation Setup

We conducted end-to-end evaluations on a real energy-
harvest-ing setup with a full prototype of CatNap, comparing
with InK [65]. We could not compare against the original
implementation of LSA [48] on real hardware because the
implementation was not available and its multi-level priority
scheme makes context switching expensive and challeng-
ing to implement efficiently for the platform we target. A
simulated comparison with LSA was presented in Figure 3.
For the evaluations, we ran CatNap and InK harvesting

915MHz radio waves generated by a ThingMagic Astra-EX
RFID reader.We used InK as publishedwithminor changes to
support time-keeping. Rather than using a custom persistent
clock [65], we emulated a persistent clock with an MCU
clock powered by a dedicated energy buffer.

6.2 Event-Driven Benchmarks

We ran mixtures of event-driven benchmarks with each de-
signed to have distinct, representative characteristics.
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Audio Sampling 0 (AUD0) represents a class of time-

critical, energy-hungry, low frequency, degradable, and pe-

riodic workloads. AUD0 samples audio at 12kHz using a
SPU0414HR5H MEMS microphone. The program has a strict
timing requirement to collect a block of audio samples every
2.3 seconds. Each block ideally consists of at most 500 sam-
ples, while the number can be degraded to accommodate the
deadline of 2.3 seconds. Other energy-hungry, time-critical
workloads that are degradable, e.g., cameras with adjustable
resolution or long-range (LoRa) radios with adjustable trans-
mission power [31] also fall into this category. Requirement:

(1) sample a block every 2.3 seconds, (2) collect as many samples

as possible, up to 500.

Audio Sampling 1 (AUD1) represents a class of time-

critical, energy-hungry, low frequency, non-degradable, and

periodic workloads. AUD1 is similar to AUD0 except it is not
degradable, i.e., it has to always sample exactly 300 audio
data points every 5.7 seconds. AUD1 represents the events
without a degradable knob. Requirement: (1) sample a block

every 5.7 seconds, (2) collect exactly 300 samples per block.

Audio Sampling 2 (AUD2) represents a class of time-

critical, less energy-hungry, high frequency, non-degradable,

and periodic workloads. AUD2 continuously collects audio
data every 0.1 second. AUD2 is different from AUD0 or
AUD1; instead of collecting a burst of high frequency signals,
it continuously monitors a low frequency signal. Require-
ment: (1) sample an audio signal every 0.1 second.

Temperature Monitoring (TEMP) represents time-critical,

less energy-hungry, middle frequency, non-degradable, and

periodic workloads. TEMP measures temperature using an
on-chip sensor [63] every 0.57 seconds and cannot be de-
graded. Unlike AUD0 and AUD1, AUD2 and TEMP consumes
less energy per execution but is more frequently executed.
Typical sensor readings usually fall into this category. Re-
quirement: sense every 0.57 second.

Button Press Detection (BTN) represents time-critical, less

energy-hungry, middle frequency, non-degradable, and reac-

tive workloads. BTN detects a button presses at most every
0.57 seconds and cannot be degraded. We emulate button
presses from a second MSP430FR5994 MCU’s GPIO. BTN
represents a reactive workload whose arrival time cannot
be precisely estimated. Peripherals that generates a hard-
ware interrupt usually fall into this category. Requirement:

detect the randomly occurring GPIO signal that can occur as

frequently as every 0.57 second.

Downsampling (DSP) represents time-insensitive and

degradable workloads. DSP performs downsampling over
300 data points with a square filter, downsampling at a 20:1
ratio. The quality of the filter can vary, using a convolution
approximation from ParaProx [56]. Many signal processing
workloads with a well-studied approximation can fall into
this category. Requirement: (1) downsample 300 samples with

20:1 ratio, (2) use the highest filter quality possible.

Fast-Fourier Transform (FFT) represents time-insensitive

and non-degradable workload. FFT takes 16 data points as
an input to compute an FFT. Although a degradable FFT
algorithm might exist, we did not adopt such degradation to
represent a set of time-insensitive workloads that cannot be
degraded. Requirement: (1) Compute FFT over 16 samples.

The benchmarks and their characteristics are summarized
in Table 2. Since DSP and FFT are time-insensitive, they are
tasks in CatNap, while others more as an event. Because
CatNap does not consider the energy use of a task, we do
not characterize or vary the energy use of DSP and FFT
(marked as -). Tasks also do not have an inherent frequency
or periodicity constraints. We ran all the benchmarks with
the device placed 65cm away from for the RF supply.

Table 2. Summary of benchmarks. DSP and FFT are tasks,
whose energy use is not an important concern and do not
have an inherent frequency or periodicity (marked as -).

name
time-

critical?
energy-
hungry?

frequency? degradable? category

AUD0 O O low O periodic
AUD1 O O low X periodic
AUD2 O O high X periodic
TEMP O X med X periodic
BTN O X med X reactive
DSP X - - O -
FFT X - - X -

6.3 Performance Benchmarks

We also ran intermittent performance benchmarks used in
prior work [15, 41, 45, 64] to evaluate the overhead of Cat-
Nap. A subset of the benchmarks was also used in InK’s eval-
uation [65], allowing direct comparison. The benchmarks
consist of six compute-intensive IoT programs. CEM LZW-
compresses data.CF stores and searches numbers in a cuckoo
filter. RSA encrypts a string using a 64-bit key. AR classifies
accelerometer data with a nearest-neighbor classifier. BF
encrypts a string using Blowfish encryption. BC counts the
number of 1s in a bitstream.
We use four applications (CEM, CF, AR, BC) written for

InK by its authors and ported ones that were omitted from
InK’s evaluation [65]. For CatNap, we ran plain C versions
of the benchmarks from prior work [45], running code in a
task. We again ran all tests 65cm away from the RF supply.

7 Evaluation

Our evaluation uses the benchmarks from Section 6 to an-
swer the following four questions:
• Does CatNap support periodic and reactive events?
• What are CatNap’s main overheads?
• Does CatNap precisely estimate utilization?
• Is CatNap practically applicable?
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