Trrack: A Library for Provenance-Tracking in Web-Based Visualizations

Zach Cutler*
University of Utah

? .o« B8 L%
J g g 844
SUCATION COUNC| gl iy
Original Mode| -
||
|
||
| |
||
| |
||
|
|
m ul

Kiran Gadhave®
University of Utah

Alexander Lex*
University of Utah

Load Iris Dataset

Add plot: petal_length ..

P.Brush: 16

Insight: Cluster

P.Brush: 8

Brush size: 20

P.Brush: 9

Cluster = Selection

Insight: Cluster
Cluster of high density..

& PBrush:9

Example Applications

Trrack Provenance Visualization

Figure 1: Four example applications using Trrack, our provenance-tracking library and TrrackVis, the associated provenance
visualization library for different purposes, ranging from action recovery to logging for user studies. TrrackVis, shown on the right,

utilizes custom icons, annotations, and grouping of nodes.
ABSTRACT

Provenance-tracking is widely acknowledged as an important feature
of visualization systems. By tracking provenance data, visualization
designers can provide a wide variety of functionality, ranging from
action recovery (undo/redo), reproducibility, collaboration and shar-
ing, to logging in support of quantitative and longitudinal evaluation.
However, no widely used library that can provide that functionality
is current available. As a consequence, visualization designers either
develop ad hoc solutions that are rarely comprehensive, or do not
track provenance at all. In this paper, we introduce a web-based
software library — Trrack — that is designed for easy integration
in existing or future visualization systems. Trrack supports a wide
range of use cases, from simple action recovery, to capturing intent
and reasoning, and can be used to share states with collaborators and
store provenance on a server. Trrack also includes an optional prove-
nance visualization component that supports annotation of states and
aggregation of events.

Index Terms: Human-centered computing— Visualization—
Visualization systems and tools

1 INTRODUCTION

At least since Shneiderman argued that we cannot expect users to
get it right immediately, and visualization systems need the ability
to correct a sequence of actions and replay it, the value of undo/redo
and replay [15] (or action recovery) has been undisputed. Even
though professional desktop applications commonly support action

*e-mail: zcutler@sci.utah.edu
fe-mail: kiran@sci.utah.edu
*e-mail: alex@sci.utah.edu

recovery, many web-applications, and especially academic visualiza-
tion prototypes, do not. For example, the authors of both Lyra [14]
and Data Illustrator [9], two popular web-based data visualization
authoring tools, mentioned the lack of undo in their original designs
as a cause for concern for users, which resulted in less exploration.
Yet, action recovery is only one of the purposes of collecting prove-
nance data. Provenance data has many other uses, ranging from
recalling an analysis process, to reproducing it, to collaborating, and
to logging for evaluation or meta-analysis [13].

Designers and developers of web-based visualization tools and
prototypes frequently develop custom software to capture, store, and
utilize provenance information. Doing so, however, can be tedious
and is often not in immediate service of the goals of a visualization
prototype. Home-grown solutions are also unlikely to leverage the
full potential of provenance, such as history visualization, or easy
state sharing among remote collaborators.

To remedy this problem, we developed the Trrack library (the
name derives from reproducible tracking), our primary contribu-
tion, which provides provenance-tracking for the purpose of action
recovery, reproducibility, collaboration, and logging. Trrack can
widely benefit existing and future systems, and support data collec-
tion in quantitative and longitudinal evaluations. Trrack is designed
to support a wide variety of types of provenance, including prove-
nance of interactions, insights, and rational. Trrack is accompanied
by TrrackVis, which provides optional provenance Ul elements,
such as simple undo/redo buttons, or a sophisticated provenance
visualization that can be customized and supports annotation and
aggregation of states. Finally, Trrack enables sharing states through
a URL, as well as provenance data management on a server. Trrack
comes with well-documented examples and uses tests to ensure code
quality. Trrack is available under a permissive open-source license
at https://github.com/visdesignlab/trrack. To show the
utility of Trrack, we have integrated it into four visualization tools:
a technique developed in support of a research paper [4], a visualiza-
tion system for blood product management, a visualization system

https://github.com/visdesignlab/trrack

for modeling workforce needs in the medical sector, and two network
visualization tools used in a large study [10].

Our contribution is in the spirit of an applications note — a
short paper with the goal of informing the visualization research
community of a robust, well-tested, and easy-to-integrate technology
of broad interest. We believe this applications note is consistent with
the renewed calls for applications and systems-oriented research
that is necessary to tackle the increasing complexity of datasets and
analysis challenges.

2 DESIGN GOALS

We designed the library based on our experience with developing a
provenance graph for a storytelling application [5]. The overarching
design goals are (a) versatility of use — the library should support
all different purposes of provenance-tracking, and (b) ease of use
— developers should be able to track and visualize provenance with
minimal effort. Here we list our specific design goals.

Allow Developer Agency. Application developers should have
the flexibility to decide which actions to track. For example, what
is sensible to track might be vastly different between a production
visual analytics system and a prototype used in a user-study.

Support Action Recovery. Undo/redo are important in all
user interfaces, so that mistakes can be quickly recovered from. In
addition to undo/redo, we want to make it possible to quickly browse
to any prior state, so analysts might be willing to investigate paths
they otherwise would not have if they can easily recover.

Support Reproducibility. Reproducibility of analysis processes
is critical in data analysis. However, unlike analysis done in com-
putational notebooks, interactive visualizations are difficult to make
reproducible. We strive to capture not only interactions, but also
annotations so that user intent and reasoning can be captured as well.

Support Collaboration. Analysts rarely work in a vacuum:
they need to either share and communicate their results or collaborate
with other analysts on the same project. A provenance-tracking
library needs to support both. To give developers flexibility, we
envision two ways of collaborating: a light-weight approach of
sharing the state of an application by copying the browser URL, and
a more sophisticated approach to share the full analysis provenance.

Support Meta-Analysis. We want to design our library to also
support collecting information about usage, either for analysis of
long-term use in the field, or for controlled studies. The requirements
for action-recovery/reproducibility are different from those for meta-
analysis; usually the latter requires more fine-grained logs, which
can be a hindrance for the former. Our goal is to design our system
such that both can be supported simultaneously. Meta-analysis also
requires that the provenance data be exported in a format that is
amenable to further processing. Finally, unlike traditional logging,
we want to be able to jump into any recorded session, so that the
context of, e.g., a performance problem, can be investigated.

Support Annotation, Highlighting, Bookmarking. As already
alluded to when discussing reproducibility, users need to be able to
bookmark states, so that they can be quickly found and retrieved, and
annotate states, so that users or systems can provide context, includ-
ing insights or the rationale for a specific action. More generally, a
developer might want to store a variety of meta-information with in-
dividual states, which should be supported by a provenance-tracking
library.

Provide Ul Elements and Provenance Visualization. In
addition to provenance-tracking, we also intend to provide user
interface elements that can be used to navigate provenance data, if
desired by the developer. A provenance visualization should be able
to manage the whole feature set of the library, including branching
states, annotations, and bookmarks. Also, as provenance data can
quickly grow, it needs to be able to manage large interaction graphs.

Technical Goals A long visual analysis session can lead to a
very large provenance graph if every interaction is tracked or the
tracking continues for long periods of time. A library, therefore,
needs to be designed with efficient storage in mind. A provenance
library also should support the quick recovery of a particular state.

3 RELATED WORK

Research on provenance capture and visualization has a long history.
Here we present only a small subset of related papers that are partic-
ularly relevant to our work. We refer to Xu et al.’s recent survey [20]
and Ragan et al.’s analysis for a more complete picture [13].

Provenance can be captured either through explicit workflow
modeling systems [2], or by capturing the analysis process in an
interactive system [11]. We are interested in the latter approach,
since it can be easily integrated in arbitrary systems. This tracking-
based approach requires a system to stores each state, a sequence
of actions, or a combination thereof [6], with various implications
for the abilities of such systems. Examples include the graphical
histories by Heer et al. [6] and CzSaw [7]. Multiple systems present
provenance data as node-link diagrams [8, 16,19], including some of
our own work [5,18]. Like Trrack, SIMProv [3] captures provenance
for web-based visualizations. In contrast to Trrack, SIMProv is less
modular and uses a hybrid model that primarily stores actions, which
can make switching between states slower. We discuss these and
other differences in Section 8.

As far as logging for evaluation is concerned, tools such as Eval-
Bench [1] or GraphUnit [12] are examples of frameworks that pro-
vide logging capability, but neither captures a complete provenance
graph that can then be re-played.

Even though undo/redo is not widely used in web applications,
some systems and nonacademic software libraries provide related
functionality. Many document editors, such as the Google suite
of productivity tools, have some version of undo/redo. How these
tools, however, are implementing action recovery is unclear, and
most are likely not using publicly available libraries to do so. A
few front-end libraries offer basic undo/redo capabilities. Redux
(https://redux. js.org/) is a popular library used with React
that allows users to store past and future states for undo/redo. NgRx
(https://ngrx.io/) is a similar library for use with Angular.
These libraries allow for basic undo/redo but not for complete action
recovery for every previous state. Branching off from the original
path will result in future states being permanently lost, and most im-
plementations will limit how many previous states get stored. None
of these libraries visualize provenance.

4 TRRACK DESIGN

Here we describe the design decisions that went into the development
of the Trrack library, as motivated by our design goals. We also
provide a brief architectural overview and describe how Trrack
interacts with a visualization application (see Figure 2).

Trrack uses a provenance graph approach where each recorded
action results in a new node in the graph. Nodes can be attached at
any point in the graph, following the branching model of provenance.
To utilize Trrack, developers must define a state that fully describes
their application. Developers may then add observer functions to
individual keys in the state. These observers will be triggered if
that particular part of the state changes, either by the addition of a
new state or by changing the current node in Trrack, e.g., through
undo. We recommend updating only the front-end application within
these observers. The only other interaction that developers must
implement is to create and apply an action when a user interacts with
the visualization (see Figure 2). This action is what will then create a
new node with a modified state in the graph. We provide a repository
with examples of different complexity to illustrate this approach at
https://github.com/visdesignlab/trrack-examples.

https://redux.js.org/
https://ngrx.io/
https://github.com/visdesignlab/trrack-examples

User

Load page with
URL state
parameter

Application l l l

Forward URL
parameter to
Trrack

Trrack l l

Create a new Change which
node node is current

!

Update URL
parameter and
call observers

Interaction with
Trrack (e.g. undo)

Interaction with
Visualization

Update
visualization

Create and apply || Call undo, redo,
an action go to node, etc

Figure 2: The relationships among the user of a visualization applica-
tion, the application itself, and the Trrack library for storing provenance.

Trrack Architecture The common storage types for action re-
covery systems are state-based and action-based [6]. State-based
systems store the user-defined state of the application at every node,
allowing for instant jumps to any node in the history. The downside
of this approach is inefficient use of memory or disk space. Action-
based systems store the action required to get from one node to the
next, which can lead to slow performance when jumping between
states since actions must be applied sequentially to maintain proper
recovery. The advantage of this approach is that it minimizes the
storage/memory overhead. Heer et al. [6] also discuss hybrid ap-
proaches, where action-based systems periodically store a state to
increase performance when loading a previous state.

In Trrack, we use a different approach: differential states. To
ensure quick loading of arbitrary nodes of the provenance graph, we
store states, and require developers to define a state to be used in
Trrack. However, to address the size problems common with such an
approach, we do not store the state at every node. Instead, we store
a difference between the current node’s state and the last node that
stored the entire state. We track how many keys in a state object have
changed, and if a heuristic threshold is surpassed, we store a full
state. This approach ensures that the stored differences do not grow
larger than the original state and minimizes the size of differences of
ensuing nodes. Developers may also specify that a particular action
should always store the entire state, if desired. This mechanism is
completely abstracted from developers using the library. A developer
only has to request a particular state, e.g., through the undo function,
to receive a corresponding state, as illustrated in Figure 2. In addition
to the state information, we also store meta-information about the
actions, which is useful for visualization and to maintain a user’s
mental map.

Ease of Integration Trrack is a JavaScript/TypeScript library
developed with the goal of making the integration of the library
as seamless as possible. There are two ways to use Trrack: it can
take over the state management in the application, which is most
useful when designing a new web-based visualization. Alternatively,
Trrack can interact with any existing state management solution to
track changes to state without affecting the UI. Trrack is designed
to be framework agnostic. It can work with vanilla JavaScript, UI
frameworks such as React, and state management libraries such as
Redux.

Sharing State The ability to share the state of an application is
not commonly provided by visualization applications. Trrack allows
for easy sharing by sending the current URL to a collaborator. The
current state of an application is encoded and added to the URL as
an URL parameter. Whenever the state of an application changes,
the URL is updated. When a page with a matching URL parameter

is loaded, the Trrack library parses it and returns the desired state to
the application.

Persistence By default, the provenance graph maintained by
Trrack is stored only in memory. To ensure reproducibility and
also collaboration beyond just sharing states, we need to make the
provenance graph persistent. Trrack has functionality for exporting
provenance graphs, so that they can be managed the way a devel-
oper desires. We also provide a default implementation based on
Google Firebase. Users can connect a Firebase database to Trrack
during setup, and have every node in the graph stored in Firebase
automatically every time a change is made.

Reproducibility and Capturing Intent An important aspect of
reproducibility is understanding the reasoning behind steps taken by
the user. For this purpose, each node in the provenance graph stores
multiple types of metadata. Every node has an annotation property
and a “type”, a user-defined string meant to identify the purpose of
the state change at that node. Additionally, a generic object may be
defined by the developer and stored with the node. This metadata
can be used to capture and later interpret actions taken at each node,
which can range from simple bookmarks, to written annotations, to
complex cases involving algorithmically predicted intents [4].

Logging for User Studies Due to Trrack’s ability to reproduce
entire sessions and store generic metadata, we believe it is especially
useful for user studies. Typically, analysis of individual actions
in a user study would require manual annotation of every user, a
time intensive process. By storing labels, event types, time stamps,
and generic metadata on every action, most meta-analyses of a
study using Trrack can be captured automatically. This functionality
can save time, reduce human error, and allow for more diverse
analysis. Additionally, our differential states architecture allows
for convenient analysis of stored graphs, since all of the relevant
information is contained in the provenance data, independent of the
tracked application. Trrack provides dedicated export functionality
tailored to the needs of post hoc data analysis. Specifically, it can
export details about each action that are not stored directly on the
graph and not required for action recovery. Finally, Trrack makes
it straightforward to jump into a specific analysis session of a user,
allowing analysts to understand their context. [Here] is an example
of a link to a specific state for one of our application examples.

Logging vs. Action Recovery Some actions developers want
to track (e.g., for the purpose of logging) may be too frequent or
inconsequential to include in the undo/redo chain. A hover action
that highlights an item when the mouse rests on it is an example
of this. Users would not expect to undo/redo a hover, but when
analyzing logs, seeing when hover was used can be important. For
these cases, Trrack allows developers to label actions as ephemeral.
By default, the undo/redo functions in the library will skip over
ephemeral nodes, and ephemeral nodes are also treated specially in
the provenance visualization.

5 TRRACKVIS

TrrackVis is a separate library complementing Trrack to visualize
the provenance graph, as shown in Figure 2. The purpose of this
library is to allow for easy navigation in the provenance graph,
and to provide a way to create and view annotations and metadata.
The graph is shown as a node link tree. Clicking on any node
will change the application’s state to the one associated with that
node. TrrackVis is designed to be highly customizable, allowing the
user to choose to integrate features, such as tooltips or annotations.
Custom icons can be added to nodes to match user-defined event
types. To address the scalability of the visualization, consecutive
nodes can be defined as a group, which can collapse the constituting
elements. For example, groups can be used to identify specific
sections of the analysis process as related and organize them as such
for additional annotation. The “Insight” nodes in Figure 1 contain

http://3.136.64.162:5000/index.html#/?paperFigure=paper-teaser

nested actions that are associated with a particular insight captured
in this application. By default, we also use groups to collapse nodes
that are labeled as ephemeral.

6 IMPLEMENTATION, TESTING, AND DOCUMENTATION

We developed Trrack over the course of 18 months, constantly re-
fining and adapting the library to a variety of changing needs. The
library has roots in an integrated application we designed for visual
storytelling [5], and in a prototype library based on the concepts
from that paper [17].

To encourage adoption of the library, we created a series of basic
examples that demonstrate the core features of the library. The
repository contains additional documentation and other examples.
Trrack also includes a comprehensive suite of unit tests to ensure
previous versions of the library do not break with future additions.

7 USAGE EXAMPLES

We have used the Trrack library in multiple projects, spanning pro-
totypes developed for a technical visualization paper, applications
used by medical professionals, and user studies. Figure 1 shows
some of the examples. Here we provide details on two of them.

We used Trrack to capture data on participants in a crowd-sourced
study [10] for evaluating multivariate network visualization tech-
niques. The study used two levels of provenance, a study-level
provenance to track the progression of the study and a task-level
provenance to track the interactions in a particular task. A com-
bination of these two provenance graphs allowed us to collect
data about interaction patterns in both conditions while partici-
pants completed the tasks. To explore the logged data, we devel-
oped a custom visualization, which also allowed us to jump into
individual analysis sessions. The study stimulus is available at
https://vdl.sci.utah.edu/mvnv-study/.

We also leveraged Trrack in our prototype system designed
for predicting analysis intents when brushing in scatterplots [4]
to capture user interactions such as selections, brushes, and
adding/removing plots. The system uses this provenance trail to
calculate a set of predictions for possible intents (clusters, outliers,
etc.) and ranks them. We used Trrack’s ability to store metadata for
capturing these predictions along with relevant action nodes. Users
can select one of the predictions to mark it as their intent, and provide
annotations, both of which are then also stored in the provenance
graph. Additionally, we captured data when we ran a crowd-sourced
evaluation of this project with Trrack. The evaluation involved 128
participants and used the Firebase integration. The screenshot for Tr-
rackVis shown in Figure 1 is taken from this project. A demo is avail-
able at http://vdl.sci.utah.edu/predicting-intent/.

8 DISCUSSION AND LIMITATIONS

The library most related to Track is SIMProv [3]; we discuss the
main differences next, followed by a brief discussion of limitations.

Performance: Compared to SIMProv, Trrack’s differential states
storage model provides benefits over SIMProv’s hybrid model. An
action-based model can be slow when jumping between nodes that
are far from each other, and due to the use of differential states, the
storage requirements of Trrack are mitigated.

Easy-to-Use Exports: For user studies and log-file analysis, be-
ing able to easily analyze exported provenance data is critical. Be-
cause SIMProv uses an action-based model, the exported data refers
to context-specific information, such as function names, which does
not exist in the export. This context-specificity makes it difficult
to analyze the data outside the original application. In contrast,
Trrack’s exported data is not application specific and is human read-
able. Every node has a state that can be used for analysis without
knowing anything about the architecture of the application.

Ease of Integration: Trrack abstracts away as much of the stor-
age model as possible. Developers simply register observer events

on each property of the state. These observers then handle forward
and backward navigation. In contrast, to ensure efficient navigation,
SIMProv requires users to define checkpoint rules, forward changes,
inverse changes, state changes, and inverse state changes, thereby
increasing the complexity of the application.

Data Provenance: Although Trrack is well suited to track inter-
action data, it is not designed to store the provenance of datasets.
For example, interactively running a normalizing procedure would
create a new dataset. This dataset could either be stored directly, as
an attribute of a node, or written to a separate file, and that file could
be referenced as the output. Both solutions have disadvantages: the
former mixes actions and data and creates a large provenance graph;
the latter makes the association between data and an application
state brittle. We plan on investigating the integration between data
and action provenance in the future.

URL-based sharing: Sharing state through URLs may become
a problem if the state is large and hence exceeds URL size limits.
However, we have successfully tested this approach with over 150
keys describing a state. We believe most applications will be able
to store a state much smaller than this, as long as data is stored
separately.

9 FUTURE WORK

In the future, we plan to strengthen the collaborative aspects of our
method. We currently enable asynchronous collaboration, but we do
not track contributions by separate users. We also would like to allow
synchronous collaboration, so multiple users may view and interact
with the same visualization session, similar to the functionality
available in Google Docs. As an immediate next step, we want
to add story-editing and story-viewing capabilities to our library,
similar to the approach demonstrated by Gratzl et al. [5].

With our hybrid strategy for storing states and diffs, the primary
question to answer is how frequently states should be stored. We
hope to do more investigation into ideal times to store states. We
also hope to add functionality that optimizes the size of the graph
when it is being exported by iterating over the graph and re-storing
nodes as appropriate.

10 CONCLUSION

In this paper we introduced Trrack, a library to track provenance
in web-based visualizations. Our goal is to provide an option to
easily track provenance in existing or future visualization systems.
The companion library TrrackVis allows for visualization of and
interaction with the provenance graph. Tracking provenance with
Trrack allows action recovery, collaboration, reproducibility, annota-
tion of analysis steps, and post hoc meta analysis of the interaction
sequences; and provides persistent storage with Firebase, or other
custom storage solutions.

Trrack and TrrackVis are open source and published in the npm
registry. We provide extensive usage examples and documentation
and hope that our library will contribute to increased provenance-
tracking in more visualization tools. Also, although Trrack was
designed primarily with visualization tools in mind, it can also be
used used with general purpose web applications.

ACKNOWLEDGMENTS

We want to thank Sai Varun Addanki for help with the implementa-
tion, as well as Samuel Gratzl, Marc Streit, Nils Gehlenborg, and
Holger Stitz for making the precursor library available. We also
want to thank past and present members of the VDL team who inte-
grated the library in projects and provided valuable feedback. We
gratefully acknowledge funding by the National Science Foundation
(IIS 1751238).

https://vdl.sci.utah.edu/mvnv-study/
http://vdl.sci.utah.edu/predicting-intent/

REFERENCES

[1]

[2]

[3]

[4]

[5

=

[6

=

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

W. Aigner, S. Hoffmann, and A. Rind. EvalBench: A Software Library
for Visualization Evaluation. Computer Graphics Forum, 32(3ptl):41-
50, 2013. doi: 10.1111/cgf. 12091

L. Bavoil, S. P. Callahan, C. Scheidegger, H. T. Vo, P. Crossno, C. T.
Silva, and J. Freire. VisTrails: Enabling Interactive Multiple-View
Visualizations. In Proceedings of the IEEE Conference on Visualization
(VIS °05), pp. 135-142, 2005. doi: 10.1109/VISUAL.2005.1532788
A. Camisetty, C. Chandurkar, M. Sun, and D. Koop. Enhancing Web-
based Analytics Applications through Provenance. IEEE Transactions
on Visualization and Computer Graphics, 25(1):131-141, 2019. doi:
10.1109/TVCG.2018.2865039

K. Gadhave, J. Gortler, O. Deussen, M. Meyer, J. Phillips, and A. Lex.
Capturing user intent when brushing in scatterplots. Preprint, 2020.
doi: 10.31219/0sf.io/mq2rk

S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit. From
Visual Exploration to Storytelling and Back Again. Computer Graphics
Forum, 35(3):491-500, 2016. doi: 10.1111/cgf.12925

J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical Histories
for Visualization: Supporting Analysis, Communication, and Evalu-
ation. /EEE Transactions on Visualization and Computer Graphics
(InfoVis °08), 14(6):1189-1196, 2008. doi: 10.1109/TVCG.2008.137
N. Kadivar, V. Chen, D. Dunsmuir, E. Lee, C. Qian, J. Dill, C. Shaw,
and R. Woodbury. Capturing and supporting the analysis process. In
2009 IEEE Symposium on Visual Analytics Science and Technology,
pp. 131-138, Oct. 2009. doi: 10.1109/VAST.2009.5333020

M. Kreuseler, T. Nocke, and H. Schumann. A History Mechanism
for Visual Data Mining. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis "04), pp. 49-56, 2004. doi: 10.1109/
INFVIS.2004.2

Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting Vector Design
Tools with Lazy Data Binding for Expressive Visualization Authoring.
In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI 18, pp. 1-13, Apr. 2018. doi: 10.1145/
3173574.3173697

C. Nobre, D. Wootton, L. Harrison, and A. Lex. Evaluating Multivari-
ate Network Visualization Techniques Using a Validated Design and
Crowdsourcing Approach. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, CHI °20, pp. 1-12, Apr.
2020. doi: 10.1145/3313831.3376381

C. North, R. Chang, A. Endert, W. Dou, R. May, B. Pike, and G. Fink.
Analytic Provenance: Process+Interaction+Insight. In CHI 11 Ex-
tended Abstracts on Human Factors in Computing Systems, CHI EA
’11, pp. 33-36, 2011. doi: 10.1145/1979742.1979570

M. Okoe and R. Jianu. GraphUnit: Evaluating Interactive Graph Visual-
izations Using Crowdsourcing. Computer Graphics Forum, 34(3):451-
460, 2015. doi: 10.1111/cgt. 12657

E. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing Provenance
in Visualization and Data Analysis: An Organizational Framework of
Provenance Types and Purposes. /IEEE Transactions on Visualization
and Computer Graphics (VAST ’15), 22(1):31-40, 2016. doi: 10.1109/
TVCG.2015.2467551

A. Satyanarayan and J. Heer. Lyra: An Interactive Visualization Design
Environment. Computer Graphics Forum, 33(3):351-360, 2014. doi:
10.1111/cgf. 12391

B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations. In Proceedings of the IEEE Symposium
on Visual Languages (VL ’96), pp. 336-343, 1996. doi: 10.1109/VL.
1996.545307

Y. B. Shrinivasan and J. J. van Wijk. Supporting the analytical reason-
ing process in information visualization. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, pp.
1237-1246, 2008. doi: 10.1145/1357054.1357247

H. Stitz, T. Klaver, S. Verhoeven, M. van Meersbergen, P. Pawar,
and M. Streit. Provenance core. A javascript library to create and
manipulate a provenance graph, 2019.

M. Streit, H.-J. Schulz, A. Lex, D. Schmalstieg, and H. Schumann.
Model-Driven Design for the Visual Analysis of Heterogeneous

[19]

[20]

Data. IEEE Transactions on Visualization and Computer Graphics,
18(6):998-1010, 2012. doi: 10.1109/TVCG.2011.108

S. van den Elzen and J. J. van Wijk. Small Multiples, Large Singles:
A New Approach for Visual Data Exploration. Computer Graphics
Forum (EuroVis ’13), 32(3pt2):191-200, 2013. doi: 10.1111/cgf.12106
K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang, and J. Wen-
skovitch. Survey on the Analysis of User Interactions and Visualization
Provenance. Computer Graphics Forum, 2020. doi: 10.1111/cgf.14035

https://doi.org/10.1111/cgf.12091
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.1109/TVCG.2018.2865039
https://doi.org/10.31219/osf.io/mq2rk
https://doi.org/10.31219/osf.io/mq2rk
https://doi.org/10.31219/osf.io/mq2rk
https://doi.org/10.31219/osf.io/mq2rk
https://doi.org/10.31219/osf.io/mq2rk
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/VAST.2009.5333020
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1109/INFVIS.2004.2
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1109/TVCG.2011.108
https://doi.org/10.1109/TVCG.2011.108
https://doi.org/10.1109/TVCG.2011.108
https://doi.org/10.1109/TVCG.2011.108
https://doi.org/10.1109/TVCG.2011.108
https://doi.org/10.1109/TVCG.2011.108
https://doi.org/10.1109/TVCG.2011.108
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035

	Introduction
	Design Goals
	Related Work
	Trrack Design
	TrrackVis
	Implementation, Testing, and Documentation
	Usage Examples
	Discussion and Limitations
	Future Work
	Conclusion

