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Abstract Multi-state model (MSM) is a useful tool to analyze longitudinal data for modeling disease progression 
at multiple time points. While the regularization approaches to variable selection have been widely used, extending 
them to MSM remains largely unexplored. In this paper, we have developed the L1-regularized multi-state model 
(L1MSTATE) framework that enables parameter estimation and variable selection simultaneously. The 
regularized optimization problem was solved by deriving a one-step coordinate descent algorithm with great 
computational efficiency. The L1MSTATE approach was evaluated using extensive simulation studies, and it 
showed that L1MSTATE outperformed existing regularized multi-state models in terms of the accurate 
identification of risk factors. It also outperformed the un-regularized multi-state models (MSTATE) in terms of 
identifying the important risk factors in situations with small sample sizes. The power of L1MSTATE in predicting 
the transition probabilities comparing with MSTATE was demonstrated using the Europe Blood and Marrow 
Transplantation (EBMT) dataset. The L1MSTATE was implemented in the open-access R package ‘L1mstate’. 
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1 Introduction 
Multi-state model (MSM) has been one of effective methods for disease modeling, and it has been applied to 
studying liver cancer [27], breast  cancer [36][15][10], abdominal aortic aneurysms [24], heart transplantation 
[40][30], HIV infection and AIDS [31][19], Alzheimer disease [11], diabetic complication [33][5], cervical cancer 
[29], and liver cirrhosis [7], just to name a few. It can model patient's disease development trajectory across a 
series of transitions between various stages or states, under influence of some risk factors. First, it allows 
researchers to make an assessment about how the risk factors exert different effects on different stages of the 
process and how the risk factors influence on different transitions of the process. Second, it enables researchers to 
obtain more accurate predictions of transition probabilities. 

In this paper, we adopted the MSM framework by specifying the transition-specific hazard models. Our 
main objective is to identify the risk factors associated with the transition hazard rates of disease progression. 
Although non-parametric transition hazard models do not impose any constraint and may be more flexible, it is 
used more often to estimate the cumulative transition hazard rates than the transition hazard rates [1]. Semi-
parametric transition hazard models that do not require to specify the transition-specific baseline hazard 
functions are more suitable for our purpose. Specifically, the Cox’s proportional hazards model was used for the 
transition-specific hazard rates to incorporate risk factors into multi-state models. The multi-state model 
parameters were estimated by maximizing the likelihood function that was formulated using the counting process 
[6]. The transition-specific baseline hazards were assumed to be the same for all individuals but vary over time, 
allowing us to construct the partial likelihood function that reduces computation burden but still makes good 
estimations of parameters [25]. Regarding the censored data, we focused on two types of censoring data: right-
censored and left-truncation data. 

Currently, the multistate models lack an efficient and practical variable selection method to identify the 
risk factors associated with the transition hazard rates. Let us consider a MSM with the number of the risk factors 
is P and the number of transitions between the stages is Q. Then, there are 2P Q possible models to consider 
if using stepwise forward selection [33] method. Hence, such kinds of variable selection methods are suitable 
when the number of risk factors and the number of transitions is relatively small. However, in modern 
applications, both P and Q increase dramatically with our increasing data collection capacity. They result in 
complicated optimization problems which are challenging to compute, and they can lead unstable estimates of 
parameters. In addition, in many studies, especially in medical research, there is a limited number of observations 
given the number of parameters in complex multi-state models. In this paper, the regularization approaches have 
been used to address these challenges. Intuitively, these approaches incorporate the prior knowledge about sparse 
structures of multi-state models using the sparse-inducing penalties, which results in better parameter estimations 
and allows variable selection simultaneously. 

Even though the regularization methods are increasingly popular in statistics and machine learning very 
little has extended to MSMs. The current literature on this subject shows there are two works that have been 
published in this direction. The first one by Huang et al. 2018 [23] presented a regularized continuous-time 
Markov model with the elastic net penalty. The transition hazard rates were specified as constant over time. In 
addition, their method relied on a method developed by [26]: it estimated the transition rates from the transition 
probabilities of the discrete-time Markov chain embedded in the Markov process (embedded Markov chain). It 
does not derive the transition rates from event (state) counts and transitions since the transition times are not 
observed. In other words, it does not follow the counting process perspective. Therefore, their work is different 
from ours in scope and methodology. 

The second one from Reulen et al. 2016 [38] did variable selection by imposing the fused-lasso penalties 
including L1-penalties of transition-specific risk factor coefficients and their differences between transitions. In 
this paper, we propose the L1-penalties of transition-specific risk factor coefficients that are similar to the fused-
lasso approach in [38], in which cross-transition effects are explicitly modeled by introducing the fused penalties. 
The difference of our implementation from [38] is, instead of adopting the penalized iteratively re-weighted 
least squares (PIRLS) algorithm presented in Oelker et al. 2017 [35] for model inference, we have derived a 
cyclical one-step coordinate descent algorithm to solve the optimization problem with exact L1-penalties. In 
addition to potential problems of not having exact zero model coefficients due to the approximation of L1-
penalties, PIRLS is a second-order optimization algorithm that has high computation cost and potential 
convergence problems [35]. Our optimization algorithm in this paper solves for exactly L1-penalties resulting in 
fewer nonzero coefficients for variable selection, with high efficiency in computation and significant reduction in 
memory usage. 

Another common problem in many studies is that multi-state models include some rare transitions that 
have relatively small number of observations. In such cases, the traditional (un-regularized) multi-state model 
approach tends to produce the inaccurate predictions of the probabilities of rare transitions. In this paper, we 
demonstrated that the L1-regularized multi-state models can be used to alleviate this problem, and thus produce 
better predictions of the transition probabilities. 

The rest of the article is organized as follows. In Section 2, we reviewed critical details of the multi-
state models, including its formulation and the partial likelihood function of the multi-state models. In Section 
3, we introduced our formulation of the L1-regularized partial likelihood function of the multi-state models and 
the algorithms to solve the corresponding optimization problems. We presented the main formulae to predict the 
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transition probabilities. In Section 4, we compared the performance of our method via simulation studies. We 
demonstrated the prediction power of our method using a real data. Discussion was presented in Section 6. 
Lastly, we ended with conclusions and future works in Section 7. 
 

2 Review of Multi-state Models (MSMs) 
2.1 Formulation of the multi-state models 

Multi-state models compose of multiple states and transitions between the states under influence of risk factors. 
Figure 1 depicts some examples of the multi-state models in characterizing a variety of situations with different 
number of states and transition structures between the states. For example, in Figure 1.c, there are three states. The 
arrows illustrate the clinically eligible transitions between the states. The state to which the individual is going to 
move, and the time of this change, is impacted by the transition intensities (so-called hazard rates) that represent the 
instantaneous risk of moving from one state to another. These hazard rates may also depend on individual-specific 
risk factors. In our paper, we assume that the risk factors are constant over time. The states and structure of the 
transitions are usually pre-defined based on domain knowledge of the disease. The main statistical task is to estimate 
the transition intensities between states and their relationships with the risk factors.  
 

                                                   
       (a) Two-state model                                   (b) Three-state model 

 

                                          
                      (c) Three-state model                              (d) Four-state model 
 
Fig. 1: Some multi-state models. Note: Arrows show the clinically eligible transitions for each multi-state 
model. 
We specify the transition-specific hazard rates 𝛼ℎ𝑗 (𝑡) using Cox proportional hazards model [12] with the 
transition-specific baseline hazard rates 𝛼ℎ𝑗

(0)(𝑡) and time-fixed risk factors X: 

. (1) 
where 𝑿 =  (𝑥1, 𝑥2,· · · , 𝑥𝑃 )

𝑇   is an P −dimensional vector of time-fixed risk factors; 𝛽ℎ𝑗
𝑇  is a P −dimensional vector 

of time-fixed coefficients.   
 

2.2 Likelihood function of the multi-state models 
Then, we can derive the likelihood formulation of the multi-state model. Consider M individuals, 𝑆𝑖(𝑡) is the observed 
multi-state model for the 𝑖th individual over interval [0, 𝜏𝑖], where 𝜏𝑖  is a fixed time of termination of observation for 
individual 𝑖. Denote 𝑁ℎ𝑗

𝑖 (𝑡) be the number of allowed transitions h → j of the 𝑖𝑡ℎ  individual during [0, t], and 𝛼ℎ𝑗
𝑖 (𝑡) be 

transition intensities or transition-specific hazard rates of the 𝑖th individual. The transition times 𝑇ℎ𝑗
𝑖𝑘  can be described as 

0 < 𝑇ℎ𝑗
𝑖1(𝑡) < ⋯ < 𝑇

ℎ𝑗

𝑖𝑁ℎ𝑗
𝑖 (𝜏𝑖 )

(𝑡) ≤ 𝜏𝑖, where 𝑘 ∈  {1, . . . , 𝑁ℎ𝑗
𝑖 (𝜏𝑖)}. The full likelihood function could be derived as 

 

Assume that individual-specific risk factors are constant over time, the transition-specific hazard rate  𝛼ℎ𝑗
𝑖 (𝑡) each 

individual 𝑖 can be written as Eq. (1). The full likelihood function becomes   

 (2) 

where 𝑋𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑃
𝑖  )

𝑇
is 𝑃 − dimensional vector of time-constant risk factors for the 𝑖𝑡ℎ individual. 

 
2.3 Partial likelihood function for multi-state model 
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Instead of using the above full likelihood function, we used the partial likelihood function. More details can be found in 
Andersen et al. 1993 [6]. It only keeps the terms that contain all the information about 𝛽 and gets rid of the terms that 
contain the information about the baseline hazard. This achieves computational efficiency and still makes good inference 
for 𝛽. 

Let 𝑌ℎ𝑗
𝑖𝑘(𝑡) = 1

{𝑡≤𝑇ℎ𝑗
𝑖𝑘}

, i.e., in this definition 𝑌ℎ𝑗
𝑖𝑘(𝑇ℎ𝑗

𝑖𝑘) indicates that the 𝑖𝑡ℎ individual at risk in transition from 

state h to state j at time 𝑇ℎ𝑗
𝑖𝑘. Assume that the transition-specific baseline hazards are the same for all individuals but can 

vary freely with time, i.e., 𝛼ℎ𝑗
𝑖(0)(𝑡) = 𝛼ℎ𝑗

(0). The partial likelihood function of the multi-state model that will be used in 
our paper 

, 
Its negative log-partial likelihood function is derived as 

  (3) 
 

2.4 Data structure for parameter estimation by partial likelihood maximization 
We follow the data structure described in Putter et al. 2007 [37]. One example as shown in Table 1 was collected 
in deWreede et al. 2010 [14]. In this format, each individual has many rows as the number of transitions for which 
she/he is at risk. Particularly, in Table 1, each row shows one transition of each individual that is composed by 
statefrom and stateto. The corresponding times for statefrom and stateto are timestart and timestop. The difference between 
timestart and timestop measures the transition times that represent the duration for which individual is at risk. 
The censoring information is captured by a transition-specific censoring indicator δstatus. For example, patient 1 
contributes two lines of data for the period: start at 𝑡 = 0 and stop at 𝑡 = 151. She/he started at state 2 and was at 
risk to transfer to state 1 and state 3. The recorded δstatus of transition 2−> 1 was 0, which indicates that the event 
(transition) time was censored, while the recorded δstatus of transition 2−> 3 was 1, which indicates that the event 
time was observed. 

Table 1: Example of long-format data 

 
Following this data structure, suppose that there are in total Q observable transition types. Assume that the 
dataset has N rows, and denote Nq be the number of rows for transition q, it is easy to see that 𝑁 = ∑

 
𝑁𝑞𝑞  

. With a slight abuse of notation, Xq is the Nq × P risk factors matrix corresponding to q−transition; 𝑋𝑞
𝑖  is the P 

−dimensional column-vector where 𝑞 =  1, 2, . . . , 𝑄 and 𝑖 =  1,2, . . . , 𝑁𝑞 . The formulation of the negative log-partial 
likelihood function in Eq. (3) could be rewritten as 

𝑙(𝛽) = ∑ 𝑙𝑞 (𝛽𝑞 )𝑞  (4)  
where 

 (5) 
where 𝐷𝑞  is the set of indices of the exact transition times for the transition type 𝑞, 𝑌𝑞

𝑛(𝑡) = 1{𝑡𝑞
𝑛≥𝑡𝑖} indicates whether  

the nth individual is at risk to transition 𝑞 just before time 𝑡i, and 𝑅𝑞
𝑖 = ∑ 𝑌𝑞

𝑛(𝑡𝑖)𝑛 = ∑ 1{𝑡𝑞
𝑛≥𝑡𝑖}𝑛  is a set of indices r 

that comprised of all individuals observed to be at risk to transition 𝑞 with times ≥ 𝑡𝑖. 
Remark: As shown in above, we use only information about the observed states at a set of times when we 

assume that the distribution of transition times provides no information about the distribution of censorship times and 
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1 

q

q 

vice versa. It is so-called the independent censoring [6]. We also assume that the observation time is the exact transition 
time and there are no transitions between the observation times for each individual. With the formulation of the 
negative log-partial-likelihood function in Eq. (4), two kinds of incomplete observations are particularly tractable [8]: 
right-censoring and left-truncation. Note that if the individual is observed from the beginning (i.e., the first state, such 
as healthy) to the end (i.e., the final state, such as death), then the whole trajectory of the process has been observed 
and it is called complete observation. Otherwise, right-censoring means that the individual is observed from the 
beginning to a certain time that has not reached the final state. Left-truncation means that the process has not been 
observed from the beginning, rather, the observation happens in the middle of the trajectory of the transitions. 

 
3 L1-Regularized multi-state model (L1MSTATE) 

3.1 Partial likelihood formulation for L1MSTATE 
By minimizing the negative log-partial likelihood formulated in Eq. (4), we can estimate the parameters of a 
multi-state model, i.e., the coefficients β. As existing methods could not scale up to high-dimensional applications 
when there are a large number of risk factors and a large number of transitions, in this paper, we propose a 
L1-regularized partial likelihood formulation for MSM following the framework as the least absolute shrinkage 
and selection operator (LASSO) [43]. This leads to the following formulation: 

 
where 𝑞 =  1, 2, . . . , 𝑄; 𝑝 =  1, 2, . . . , 𝑃 ; C > 0. Recall that, Q is the number of observable transitions, and P is 
the number of risk factors. This minimization problem is equivalent to minimizing the problem given by the Lagrangian 

formulation: 

 
with respect to β. Different weights are assigned to transitions using factors 𝑁𝑞  

 

where 𝑞 =  1, 2, . . . , 𝑄. It is similar to 
assign different shrinkage parameters per transition. Intuitively, the rare transitions are shrunk more than for common 
transitions. Our formulation in Eq. (6) could be reformulated as 

 
 

3.2 Computational algorithm for solving Eq. (7) 
The transition-specific negative log-partial-likelihood function lq (βq) is smooth with respect to βq so that its first 
two partial derivatives are continuous. Thus, lq(βq) can be locally approximated by 

 
 where 

 
The transition-specific linear predictor, 𝜂𝑞 =  𝑋𝑞  𝛽𝑞 , includes 𝐷𝑞  elements 𝜂𝑞

𝑖 = 𝛽𝑞
𝑇𝑋𝑞

𝑖 , where 𝑖 =  1, . . . , 𝐷𝑞 . 
Plugging them in Eq. (5) and Eq. (8), we have the transition-specific negative log-partial likelihood function 

 
Its approximated form is 

               
with 
 

 
Hastie and Tibshirani (1990, Chapter 8) [21] suggested to replace 𝑙𝑞

′′(𝜂̃𝑞) by a diagonal matrix D with the diagonal 
elements of 𝑙𝑞

′′(𝜂̃𝑞), because the optimal βq will not change when the off-diagonal elements of 𝑙𝑞
′′(𝜂̃𝑞) are smaller 

than the diagonal elements. This will greatly alleviate our analytic efforts since we only need to compute the first 
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order derivative 𝑙𝑞

′ (𝜂̃𝑞) and the diagonal entry of the second order derivative 𝑙𝑞
′′(𝜂̃𝑞); 𝑙𝑞

′ (𝜂̃𝑞) is a vector with 
elements (𝑙𝑞

′ (𝜂̃𝑞))
𝑑

that could be derived as 

  (9) 
where 𝑑 =  1, 2, . . . , 𝑁𝑞 , and 𝐶𝑞

𝑑  is the 𝑞 −transition set of 𝑖 with 𝑡𝑑  ≥  𝑡𝑖. The diagonal entry of  𝑙𝑞
′′(𝜂̃𝑞)  could be 

derived as 

  (10) 
Let  

 
The training algorithm for L1MSTATE is shown in the pseudo code in Algorithm 1. The remaining task is to solve 
the optimization problem in Eq. (11): 

 
Let 𝑤𝑞 be the 𝑁𝑞 −dimensional vector of diagonal entries of matrix D. We rewrite 𝑀(𝛽𝑞) as 

 
Hence, Eq. (11) becomes 

 (12) 
The coordinate descent algorithm is used to solve Eq. (12). In particular, we derive the one-step coordinate descent 
algorithm that updates one element at each iteration with all the other elements fixed to the latest value. 

 

Algorithm 1: Pseudocode for L1-penalized multi-state model (L1MSTATE) 
 

 

 
 

 

Specifically, for instance, while the current step focuses on 𝛽𝑞
𝑝 with given estimates for 𝛽𝑞

𝑝  for all 𝑝 ≠ 𝑔, we compute the 
first order derivative of M(βq) as follows 

   (13) 
where with 𝑔 =  1,2, . . . , 𝑃 

 
Solving Eq. (13) yields the soft-thresholding rule that is 
 

 (14) 
 

where 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 
 

 
Note that the first term in the numerator can be derived by using Equations. (9) and (10):    

 
So, we have a simple form of estimated coefficient as follows 

                           . (15) 
It is worthy of mentioning that the solution for LASSO depends on the scales of risk factors [22]. A frequently used 
method to solve this problem is to standardize the risk factors first. The estimated coefficients of the risk factors can 
always be transformed back to the original scales for the sake of interpretation. The one-step coordinate descent is 
summarized in Algorithm 2. 
 

 

 

Algorithm 2:  One step coordinate descent algorithm for L1-penalized multi-state model (L1MSTATE). 
 

 

 
 

 

 

 

 

 

3.3 Active set updates 
To improve the computational speed of the ‘L1mstate’ package, we have constructed an active set that takes advantage 
of the sparsity of 𝛽. As shown in the Algorithm 2, we only need to update the non-zero coefficients 𝛽̂𝑞

𝑔 in 𝑨 after a 

complete cycle has run through all the risk factors, i.e., when 𝛽  =  0, 𝛽̂𝑞
𝑔 will stay zero if |− 1

𝑁𝑞
𝑙𝑞

′ (0)𝑋𝑞,𝑔| < 𝜆; otherwise, 

𝛽̂𝑞
𝑔

 will be updated and stored in the active set if |−
1

𝑁𝑞
𝑙𝑞

′ (0)𝑋𝑞,𝑔| ≥ 𝜆. Therefore, the number of updates is reduced 

significantly and the convergence of the algorithm is increased. The algorithm will stop if another complete cycle does 
not change this set. Note that the active set A can only become larger after each update, so the algorithm will always stop 
after a finite number of updates (See Meier et al. 2007 [34] for more details of the convergence property.) 
 

3.4 Pathwise solution 
The above procedure is just for one fixed value of λ. However, in general, it is of interest to be able to compute 
the optimal solution for a range of values of λ. Thus, we aim to compute the regularization path (denoted as 𝛽̂(𝜆)) 
where λ ∈ [0, ∞]. It can be shown that 𝛽̂(𝜆) turns out to be a piecewise linear, continuous function of λ [32]. In 
other words, we only need to compute the solutions on the change points in this path, denoted λmax ≥ λ1 ≥ · · · ≥ 
λmin ≥ 0. We can start with λmax that is any value sufficiently large for which the entire coefficients 𝛽  

=  0. 

From Eq. (15), notice that when 𝛽  
=  0, 𝛽𝑔  will stay zero if |− 1

𝑁𝑞
𝑙𝑞

′ (0)𝑋𝑞,𝑔| < 𝜆. Hence, we can set 

 
Following the suggestions made in Simon et al. 2011 [41], we can ignore solutions for that are close to 0 and set 

𝜆𝑚𝑖𝑛 =  𝜖𝜆𝑚𝑎𝑥 , then, compute the solutions over 𝑚 +  1 values defined as 𝜆𝑖 = 𝜆𝑚𝑎𝑥 (
𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥
)

𝑖

𝑚, for 𝑖 =  0,1, . . . , 𝑚 

and {
0.01 if 𝑁 < 𝑃

0.0001 if 𝑁 ≥ 𝑃
. In doing this, the algorithm usually converges well because we could use the preceding 

solution (i.e., for 𝜆𝑖) as the initial values to obtain the solution for 𝜆𝑖−1. 
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3.5 Selection of the tuning parameters 
With a path of solutions, we need to select an optimal one. The natural choice is cross-validation. However, the 
partial likelihood of multi-state model is not as well defined as the Gaussian log likelihood on the left-out sample 
using the traditional cross-validation, which leads to poor results. To tackle it, we used the cross-validation 
method as described in Verweij et al. 1993 [44], proposed for Cox regression model, in which data are split into 
k parts, use (k − 1) parts to train the model, and then, validate the learned model on the whole data. The cross-
validated log-partial likelihood for a given part 𝑖 and λ is 

, 

which can be used as the goodness-of-fit estimate of the solution. Here, β̂ and l−i are the optimal coefficients and its 
corresponding log-partial likelihood for data excluding part 𝑖. The total goodness-of-fit, 𝐶𝑉̂(𝜆) is the sum of 
all 𝐶𝑉̂𝑖(𝜆). We find the optimal λ 

 

However, this method alone sometimes produces high true positive rates (TPR) and high false positive 
rates (FPR). One example of this high positive rates is overfitting. To reduce FPR without large reduction of 
TPR, we use the penalized method proposed in Ternes et al. 2016 [42]. Let pλ be the number of non-zero 
coefficients in the model for a given λ, we can find the optimal λ that maximizes 

 
Intuitively, it reduces the sparsity of the model pλ without decreasing much the goodness-of-fit of the model 
𝐶𝑉̂(𝜆). 
 

3.6 Estimation of the cumulative hazard rates and the transition probabilities 
In the previous section, we have modeled and estimated the effects of the risk factors upon the transition 
intensities. To further assess the effects of the risk factors on disease progression; in particular, the effects of the 
risk factors on the cumulative hazard rates and the transition probabilities, we will present how to estimate the 
transition-specific hazard rates and the transition probabilities in the following. 

Given the estimated regression coefficients, the baseline hazards of transition q, denoted by 𝛼𝑞0(𝑡, 𝛽𝑞), 
can be obtained as the Breslow estimators [9] 

 
where 𝑑𝑁𝑞(𝑡) is the number of events of transition q up to and including time t and 

 , 
Recall that, 𝑌𝑞

𝑛(𝑡) indicates that the nth individual at risk in transition q at time t. Let the risk score for each subject of 
transition 𝑞 be 𝑟̂𝑞

𝑛 = exp(𝛽̂𝑞
𝑇𝑋𝑞

𝑛), then 

, 

The corresponding estimators of the cumulative baseline hazard 𝛬̂𝑞0(𝑡, 𝛽̂𝑞)  = ∫ 𝛼̂𝑞0(𝑢, 𝛽̂𝑞)𝑑𝑢
𝑡

0
, is computed as 

, 
The cumulative hazard rates of transition q, denoted by 𝛬̂𝑞(𝑡, 𝛽̂) which is also known as the Nelson-Aalen estimators, is 

, 
Given the cumulative transition hazards, using the basic tool − a product integral allows us to estimate the transition 
probability matrix 𝑃(𝑠, 𝑡)  = Pℎ𝑗 (s, t) as 

 
where ∏ .𝑢∈(𝑠,𝑡]  is a product-integral and (s, t] denotes the time interval. It is the Aalen-Johansen estimator 
[2]. 
 

3.7 Computational complexity analysis 
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We now discuss the complexity of the algorithms when using different frameworks (L1MSTATE, L1Cox, L1-
StratifiedCox) for variable selection. They all solve the optimization problems by the coordinate descent algorithms 
to optimize the objective function with respect to one variable at a time while all the others are fixed. In other words, 
they process the same procedure: precompute the first-order derivatives and the diagonal entries of the second-order 
derivatives of a design matrix; at each iteration update 𝑃𝑎 − the number of nonzero elements in the active set. The 
computational complexity depends on the number of subjects 𝑁, the number of risk factors 𝑃 and the number of 
transitions 𝑄. More specifically, consider L1MSTATE and L1Cox, for each transition, they need 𝑂(𝑁𝑞

2) operations 
to compute the derivatives where Nq is the number of subjects for transition q (recall that 𝑁 = ∑ 𝑁𝑞

𝑄
𝑞=1 )  and each 

update needs 𝑂(𝑃) operations. Therefore, their complexity is 𝑂(∑ (𝑁𝑞
2 + 𝑃𝑞

𝑎𝑃)𝑄
𝑞=1 ) where 𝑃𝑞

𝑎  denotes the number of 
nonzero elements of transition q. For L1-StratifiedCox, it needs to create transition-specific risk factors from the baseline 
risk factors as described in [13]: each risk factor 𝑋 is split into as many risk factors 𝑋𝑞 as there are transitions in the model, 
for transition 𝑞, 𝑋𝑞 = 𝑋; while for all other transitions 𝑋𝑞 = 0. It means that the number of risk factors now is 𝑃𝑄. In 
addition, it needs 𝑂(𝑁2) operations to compute the derivatives. Therefore, its complexity is 𝑂(𝑁2 + 𝑃𝑄 ∑ 𝑃𝑞

𝑎𝑄
𝑞=1 ). Of 

course, the required runtime for the entire solution path also depends on the number of iterations, which in turn depends 
on the data and λ values. In general, the dominant factor influencing the number of iterations is the number of nonzero 
elements at the specific λ value since the nonactive elements that remain fixed at zero need no iteration.  In the next section, 
we compare their computational complexity empirically in Table 9 with the runtime of three L1-regularized models using 
the same maximum number of iterations 105 for all models. 
 
4 Simulation Studies 

In this section, we will numerically compare the performance of the L1-regularized multi-state model (L1MSTATE) 
with existing regularized multi-state models including the L1-regularized cause-specific Cox proportional 
hazards model (L1Cox) that is commonly used in survival analysis without multistate structure knowledge, and the 
L1-regularized stratified Cox proportional hazards model (L1-StratifiedCox) in term of variable selection using 
simulated data. The L1-regularized estimation of the fused-lasso multi-state model approach [38] was not 
included in our comparison due to very huge computation cost (see Discussion section for more details.)  

To compare the performance of the four models in terms of identification of the significant risk factors, 
we calculated three performance metrics, including the true positive rate (TPR), false positive rate (FPR), and 
area under the ROC curve (AUC). 

 
4.1 Setup 

Following the data structure outlined in Section 2.4, we generate trajectories of N individuals that include 
their transitions among states, the times of the transitions, and the values of risk factors. First, the values 
of the risk factors of each individual are generated by randomly sampling from a P-dimensional multivariate 
normal distribution with mean vector as zero and the correlation matrix C as an autoregressive matrix where 
C𝑖𝑗 = ρ|i−j| and 0 ≤ ρ ≤ 1. The reason to use an autoregressive correlation matrix is that we could flexibly tune 
the correlations of the variables by setting the value of ρ, i.e., ρ = 0 means no correlation among the variables, 
while ρ = 1 means that the risk factors are perfectly correlated as duplicates of each other. Second, the 
transitions among states and their timing are generated as follows. Recall that we have assumed that the transition 
intensities between two states follow the proportional hazards Cox model Eq. (1). By setting up values for β we 
can obtain the transition intensity distribution from Eq. (1) to randomly sample the transition intensity values. 
After that, the observed times of the transition events between two states are generated using the exponential 
distribution with its rate parameter set to be the transition intensity between these two states. In here, we 
consider the illness-death model that includes three states: healthy, illness, and death. Its transition structure is 
depicted in Figure 2.  

 
Fig. 2: The illness-death model. 

Assume that all individuals start at the healthy state in the beginning of the observation period. The 
censoring status values are generated as follows. Since the observation time is the exact transition time, there is 
no illness censoring time or the censoring indicator of transition to illness state is 1 for all N individuals. 
The death censoring times are generated from the exponential distribution, the censoring indicator of 
transitions to death state is 0 if the death time is larger than the death censoring time, and 1 otherwise. The 
strength of effect of risk factor is based on the real absolute value of its corresponding coefficient. Next, we 
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first consider the small datasets in which the number of subjects and the number of risk factors are relatively 
small. We further test different methods on the datasets with a large number of subjects and risk factors.  

 
4.2 Small datasets 
4.2.1 Settings 

In these setting, we include the un-regularized multi-state model (MSTATE) to investigate the pros and cons of the 
un-regularized methods comparing with the regularized methods.  

Set the number of risk factors P = 9 and different values of sample size, i.e., N ∈ {100, 250, 450}. We 
consider four scenarios: the first three scenarios include the effects of risk factors belong the same type (large, 
medium, or small), and the last scenario includes all three types of the effects of risk factors. 

 First scenario: small effects 

 
 Second scenario: medium effects 

 
 Third scenario: large effects 

 
 Fourth scenario: mixed effects 

 
We evaluate different levels of correlation between the risk factors by setting ρ = 0,0.2,0.5. The censoring percentage is 
30%. 

 
4.2.2. Results 

To compute TPRs and FPRs for the disease progression from the healthy state to the death state for our 
L1MSTATE, we created a path of 100 values of λ, applied 10-fold for two different cross-validation methods 
described above in Section 3.5 to select the optimal λ for variable selection. We can view the estimated 
coefficients from our L1MSTATE model fit, and the cross-validation log-partial likelihood against the log of λ 
values, and also how to use two different cross-validation methods to select λ. Figure 3 shows the results of 
the large effects setting in which N = 250, and ρ = 0.5. For L1Cox and L1-StratifiedCox, we used ‘glmnet’ 
package [41] with its default setting to fit Cox proportional hazards models: 100 values of λ and 10-fold cross-
validation, which is the same as the first cross-validation method used in our model, to select the optimal 
solution. More specifically, for L1Cox, we applied for each transition using transition-specific datasets, then 
used the results of three transitions to compute the TPRs and FPRs; for L1-StratifiedCox, we applied directly 
to the long-format data. For MSTATE, we used R package ‘mstate’ [13] to fit model and the statistical hypothesis 
test (p-value) with the 0.05 significance level to evaluate the significance of candidate risk factors based on Wald 
tests on each variable for variable selection instead of using some methods such as backward or forward selection.  
The results across 100 replications for these models in different scenarios are summarized in Tables 2, 3, 4, and 
5. 

The results from Tables 2, 3, 4, and 5 show that TPR and FPR values of pL1MSTATE are always lower 
than L1MSTATE. It means that the penalized cross-validation method is more conservative than the first 
cross-validation method. On the one hand, comparing L1MSTATE and MSTATE results, MSTATE always 
gives lower TPRs and FPRs than L1MSTATE. In other words, applying the statistical hypothesis test with the 
0.05 significance level to MSTATE produces more sparse models than applying the first cross-validation method 
to L1MSTATE. On the other hand, comparing pL1MSTATE and MSTATE results shows that when N = 100 
pL1MSTATE often gives lower both TPRs and FPRs than MSTATE; when N = 250 and N = 450 in small setting, 
pL1MSTATE gives better results than MSTATE; in other settings, pL1MSTATE starts giving lower both TPRs and FPRs 
than MSTATE, and MSTATE gives better results in large effects setting. Note that when ρ increases - risk factors become 
highly correlated, MSTATE results become worse while L1MSTATE and pL1MSTATE results often become better. 
Consider three regularized models L1MSTATE, L1Cox, and L1-StratifiedCox using the same cross-validation method, 
from Tables 2, 3, 4 and 5, it can be seen that L1MSTATE is always better than L1-StraitifiedCox. Compare L1MSTATE 
and L1Cox: when 𝑁 =  100, L1MSTATE is more conservative than L1Cox since it gives both the smaller TPRs and 
FPRs; when N increases, L1MSTATE gives the better results with the higher TPRs and the lower FPRs; when 𝑁 =  450  
in the large effects case, three regularized models perform the same.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

 

 

                                 (a) Transition 1 → 2                                                    (b) Transition 1 → 3 

 
                                                               (c) Transition 2 → 3                                                  (d) The cross-validation curve (red dotted line),   

and its standard deviation 
Fig. 3: Plots of the coefficient paths for three transitions of our L1MSTATE model fit and the cross-validation 
log-partial likelihood against the log of λ values along our path. In the first three plots, each curve corresponds 
to a risk factor and is annotated by index of this risk factor. In the final plot, each dot represents the log of λ 
values along the path, and error bars give a confidence interval for the cross-validation log-partial likelihood. The 
left vertical bar indicates the maximum cross-validation partial-log-likelihood while the right one shows the 
penalized cross-validation log-partial likelihood. 

 
Table 2: Model selection results of Example I for the small effects scenario. 

 
pL1MSTATE, L1-regularized multi-state model using the penalized cross validation method; L1MSTATE, L1-
regularized multi-state model using the first cross-validation method; MSTATE, multi-state model; L1Cox, L1regularized 
cause-specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model 
using the first cross-validation method; TPR, true positive rate; FPR, false positive rate.  

 
The TPRs and FPRs shown in these above tables depend on the selected methods including the cross-

validation methods, and the significance level of p−value. We want to evaluate further the variable selection 
performance of these models using the area under a curve (AUC) values that are also variable selection 
metrics and do not depend on the selected methods. We use the same settings as above with different values 
of sample size, i.e., N ∈ {50, 75, . . . , 500}. We first calculate the TPRs and FPRs, then compute the AUC 
values by using the method described in Fawcett et al. 2006 [16]. Intuitively, the TPR and FPR pairs were 
calculated to construct ROC curves, then the area under a ROC curve (AUC) was computed. More specifically,  
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Table 3: Model selection results of Example I for the medium effects scenario. 

 
 

Table 4: Model selection results of Example I for the large effects scenario. 

 
 

Table 5: Model selection results of Example I for the mixed effects scenario. 

 
pL1MSTATE, L1-regularized multi-state model using the penalized cross validation method; L1MSTATE, L1-
regularized multi-state model using the first cross-validation method; MSTATE, multi-state model; L1Cox, L1regularized 
cause-specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model 
using the first cross-validation method; TPR, true positive rate; FPR, false positive rate. 
 
in three regularized models L1MSTATE, L1Cox, and L1-StratifiedCox, it is straightforward to calculate 100 
pairs of TPRs and FPRs corresponding to 100 λ values along the path. In MSTATE, the threshold path was 
constructed, and it included only the corresponding p−values of estimated coefficients. Then, for each threshold, 
the risk factors that have smaller p−values than the threshold were selected, and the corresponding TPR and FPR 
pairs were computed. The results of AUC values of these models in twelve settings for different datasets over 
100 replications are shown in Figure 4. 
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First, we compare the performances of L1MSTATE and MSTATE. From Figure 4, in small effects 
setting, L1MSTATE gives comparable performance with MSTATE when there is no correlation among risk 
factors (ρ = 0), and better performance than MSTATE when the correlation ρ becomes higher. Other settings 
show the same pattern: when sample size is small, MSTATE performs worse than L1MSTATE; when sample 
size increases, MSTATE’s performance gradually catches up, and even becomes better than L1MSTATE’s 
performance. Notice that when the correlation among risk factors ρ increases, MSTATE needs more samples to 
be able to catch up L1MSTATE’s performance, and when the effects become stronger, MSTATE needs less 
samples to perform comparably with L1MSTATE. 

Second, we compare the performance of three regularized models L1MSTATE, L1Cox, and L1-
StratifiedCox. In the first three settings L1MSTATE always gives the best performance. In the last setting 
L1MSTATE gives slightly worse performance than L1Cox when 𝜌 = 0, and comparable when ρ increases; 
L1MSTATE also gives better performance than L1-StratifiedCox. Two models L1Cox and L1-StratifiedCox 
perform differently: they perform comparably in small effects setting; L1-StratifiedCox performs better L1Cox 
in medium and large effects settings; L1Cox performs better L1-StratifiedCox in mixed effects setting. 
L1MSTATE performs better than L1Cox can most likely be explained by the benefit of incorporating the prior 
knowledge about the disease progression model: in L1MSTATE, we incorporated information about multi-state 
model of disease progression into data process when converting the original data to long-format data; L1Cox, 
by contrast, applied L1-regularized Cox proportional hazards model for each transition-specific dataset separately.   

 
 

Fig. 4: AUC values of Example I for different sample sizes in different settings over 100 replications. 
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Table 6: Model selection results of large-scale datasets for the small effects scenario. 

 
 

Table 7: Model selection results of large-scale datasets for the medium effects scenario. 

 
 

Table 8: Model selection results of large-scale datasets for the large effects scenario. 

 
L1MSTATE, L1-regularized multi-state model using the first cross-validation method; L1Cox, L1regularized cause-
specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model using 
the first cross-validation method; TPR, true positive rate; FPR, false positive rate; AUC, area under a curve. 
 
L1MSTATE performs better than L1-StratifiedCox even though both L1MSTATE and L1-StratifiedCox models 
use long-format data. The reason is that L1MSTATE assigned different weights to each transition while L1-
StratifiedCox did not. Intuitively, L1MSTATE put higher penalties on rare transitions than common transitions. 

In summary, the L1-regularized multi-state model (L1MSTATE) is the best one among the regularized 
models in terms of variable selection. L1MSTATE performs better at variable selection than the un-regularized 
multi-state model (MSTATE) when sample sizes are small or the effects are small, and MSTATE performs better 
than L1MSTATE when sample sizes are large or the effects are strong. 

 
4.3 Large-scale datasets 
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In this setting, we only compare the performances of three L1-regularized models without including the un-regularized multi-
state model (MSTATE). We set the number of risk factors P = 300 and the number of nonzero ones to be 100 per 
each transition. Different sample sizes, i.e., N ∈ {3000, 6000, 9000}, are simulated. The results of three L1-
regularized models are shown in Tables 6, 7 and 8. They are consistent with the results of small datasets, which 
suggests that L1MSTATE is better than L1Cox and L1-StratifiedCox in terms of accurate variable selection. 

  
4.4 Empirical runtime comparison 

We further compare the runtime of three L1-regularized multi-state models on all the simulated datasets. As shown in 
Table 9, our L1MSTATE is the most computational efficient as we expected based on our previous computational 
complexity analysis. 

 
Table 9: Running time of three L1-regularized models. The mean time over different datasets (100 for small datasets 
and 10 for big datasets) required to fit the entire solution path over a grid of 100 𝜆 values is reported in seconds. 

   
L1MSTATE, L1-regularized multi-state model using the first cross-validation method; L1Cox, L1regularized cause-
specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model using 
the first cross-validation method 
 

5 Europe Blood and Marrow Transplantation (EBMT) data 
In this section, we will compare the performance of L1-regularized multi-state model (L1MSTATE) with un-
regularized multi-state model (MSTATE) in terms of the predictions of the transition probabilities, and 
demonstrate how to use our ’L1mstate’ package to further assess the effects of risk factors upon the disease 
progression using the Europe Blood and Marrow Transplantation (EBMT) dataset that has been described and 
analyzed in deWreede et al. 2011 [13]. 

The model for the leukemia patients after bone marrow transplantation (so-called EBMT model) is 
shown in Figure 5. The EBMT model includes six states and twelve possible transitions. These states are 
transplant (Tx) state, recovery (Rec) state, adverse event (AE) state, combination of adverse event and recovery 
state (Rec+AE), relapse (Rel) state, and death, respectively. The numeric coding 1, 2, . . . , 12 represent twelve 
possible transitions. This dataset includes 2279 patients and the observed transitions are summarized in Table 
10. 
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Fig. 5: The EBMT model. 

 
Table 10: The frequencies and proportions of the number of observed transitions of study population. The numbers 
in parentheses are proportions. 

 
The six risk factors are donor-recipient match, prophylaxis, year of transplant, and age of transplant in 

years. All of them are categorical risk factors. As in this paper we focus on numeric risk factors, we convert them 
to numeric by using dummy coding as follow 
x1: donor-recipient match (1 refers to yes and 0 refers to no) 
x2: prophylaxis (1 refers to yes and 0 refers to no) 
x3: year of transplant (1 refers to 1990-1994 and 0 refers to 1985-1989 or 1995-1998) 
x4: year of transplant (1 refers to 1995-1998 and 0 refers to 1985-1989 or 1990-1994) 
x5: age of transplant (1 refers to 20-40 and 0 refers to < 20 or > 40) 
x6: age of transplant (1 refers to > 40 and 0 refers to < 20 or 20-40) 

There are 12 allowable transitions in the model and six time-fixed risk factors for all transitions, resulting 
in the total number of coefficients as large as 72. For L1MSTATE, we used the regularization path of 100 
values of λ, and applied 10-fold for both the first cross-validation method and the penalized cross-validation 
method to tune the penalty parameter λ. For MSTATE model, we used p-values to select the significant risk 
factors (highlighted as bold in Table 11). The results from two models in Table 11 are consistent with the 
results in simulation studies: the penalized cross-validation method is more conservative than the first cross-
validation method since it chooses more sparse multi-state models. 
 

5.1 Comparison of the models 
We compared the performance of L1MSTATE and MSTATE in terms of the predictions of the transition 
probabilities. As discussed in the introduction, our aim is to study how L1MSTATE and MSTATE predict the 
rare transitions that have relatively small number of observations and the common transitions that have relatively 
large number of observations.  To do it, the transitions from the transplant state were considered, and three 
example patients A, B, and C (see Table 12) were chosen. The observed transitions from the transplant state of three 
patients are summarized in Table 13. The summary shows that the transitions from the transplant state to the 
recovery state and adverse event state have relatively large number of observations while the transition from 
the transplant state to the relapse state and the death state have relatively small number of observations. In 
other words, the transitions from the transplant state to the recovery state and adverse event state are the common 
transitions and the transition from the transplant state to the relapse state and the death state are rare transitions. 
In addition, patient A has the largest number of observations (287) that represents the large sample size case    
and patient C has the smallest number of observations (50) that represents the small sample size case. The 
same Aalen-Johansen method to predict the transition probabilities were used in both L1MSTATE and MSTATE. 
The results are shown in Figures 6: the probabilities of transitions from the transplant state at the starting 
computation times 0 to the ending computation times are estimated and stacked together where the distance 
between two adjacent curves shows the probability of the state whose name is labeled. 
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Table 11: Regression coefficients of two models for EBMT dataset. 

 
pL1MSTATE, L1-regularized multi-state model using the penalized cross-validation method; L1MSTATE, L1-
regularized multistate model using the first cross-validation method; MSTATE, multi-state model. For MSM 
method, the significance of risk factors that are at 0.05 levels are shown in bold. 
 

Table 12: Risk factors information of patient A, B, C and D. 

 
Table 13: The frequencies and proportions of the number of observed transitions from the transplant state of 
three patients. The numbers in parentheses are proportions. 

 
From Figure 6, it can be seen that the predicted probabilities from the transplant state at the starting 

time 0 of patient A using MSTATE, pL1MSTATE and L1MSTATE are almost similar but MSTATE and 
L1MSTATE slightly underestimates the probability of the relapse (Rel) state, and pL1MSTATE slightly 
underestimates the probability of the adverse event (AE) state comparing with the observed probability. In 
other words, pL1MSTATE slightly underestimates the probability of the common event while MSTATE and L1MSTATE 
slightly underestimates the probability of the rare event. The results of patient B clearly shows that MSTATE 
overestimates the probability of the common event - the recovery (Rec) state, and underestimates the probability of the 
rare event - the relapse (Rel) state. L1MSTATE also overestimates the probability of the recovery (Rec) state. 
pL1MSTATE gives the best overall performance. The results of patient C show the same pattern: MSTATE 
underestimates the probability of the rare event - the death state, and inaccurate prediction of the probability of the relapse 
state. By contrast, pL1MSTATE and L1MSTATE produces better predictions of these two rare events. The figure also 
indicates that MSTATE, pL1MSTATE and L1MSTATE overestimate the probability of the common event - the adverse 
event (AE) state. 

In short, the un-regularized multi-state model (MSTATE) tends to underestimate the probabilities of the rare 
transitions, and overestimate the probabilities of the common transitions. Its performance becomes worse when the sample 
size decreases. In these cases, our L1-regularized multi-state models produce better predictions. 
 

5.2 Further assessment of the effects of risk factors upon the disease progression 
We illustrate how to use the functions of our ‘L1mstate’ package to estimate the cumulative hazard rates and 
the transition probabilities. For illustrative purposes, we continued using patient A example, and chose another 
patient D (in Table 12) that differs from patient A only in terms of year of transplant since our aim is to assess 
the effect of year of transplant. The penalized cross-validation method was implemented to select the optimal 
tuning parameters. 
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Fig. 6: Estimates of stacked prediction transition probabilities from t = 0 for patients A, B, and C using two models. L1MSTATE, L1 regularized multi-state model 
using the first cross-validation method; pL1MSTATE, L1-regularized multi-state model using the penalized cross-validation method; MSTATE, multi-state model.
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Figure 7 shows the results of the Nelson-Aalen estimates of the four transitions starting from the transplant 
state for two patients A and D. There is a significant difference of the cumulative hazard rates of the first 
transition (from transplant state to recovery state) between the two patients. In other words, the year of 
transplant has significant effect upon the cumulative hazard function of the first transition: if patient did the 
transplant in 1995-1998, their cumulative hazard rate to recovery state is higher if they did in 1990-1994. The 
results of the predicted transition probabilities starting from the transplant state at starting computation time 
0 of two patients in Figure 8 also show the strong effects of the year of transplant on the first transition 
probability. Note that it also shows the ability of risk factors (year of transplant) in discriminating patients who 
will have higher transferring risk (higher cumulative hazard and transition probability) by certain time (starting 
study time) from certain state (transplant). 

 
Fig. 7: Estimated cumulative hazard rates for patient A and patient D. 

 

 
 

Fig. 8: Estimates of stacked prediction transition probabilities from t = 0 for patients A and D. 
 

Table 14: The frequencies and proportions of the number of observed transitions from the transplant state of 
patient D after 0 and 100 days. The numbers in parentheses are proportions. 

 
 

Although all the transition probabilities presented above are predicted at starting times 0, our ‘L1mstate’ 
package also allows to compute the predicted transition probabilities at different starting computation times. For 
example, we can choose the starting computation times are 100 days since transplant to compute the predicted 
transition probabilities of patient D.  
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Fig. 9: Estimates of stacked prediction transition probabilities of patient D from t = 0 and t = 100 days since 
transplant. 

Results in Figure 9 show the considerable changes of the distributions of the state probabilities: the 
probability of the transplant state increases substantially, and the probabilities of the relapse and death states 
also increase. In other words, if patient D can survive through the transplant state during the first 100 days, 
the chance that they may stay at the current state increases. Since the risk factors are assumed time-constant, 
this phenomenon may imply the effects of the risk factors upon the transition probabilities change over time 
or the sojourn time that patient D spent in the transplant state also affects upon the predicted transition 
probabilities. 
 

6 Discussion 
It is worthy of mentioning that we tried to apply the fused-lasso multi-state models method [38] using their R 
package ‘penMSM’, but we could not obtain results due to the huge computation cost. For example, on the one 
hand, running one case (medium effects setting, ρ = 0, sample size of 350, and 20 λ values) with 20 replications 
took 24 hours to get the AUC values. It was run on a Dell Inspiron 15 computer (Intel Core i5-5200U 2.2GHz, 
8GB RAM). On the other hand, our simulation studies included in total 228 cases with 100 replications for 
each case to get the final AUC values. Hence, the required computation time is way too much. However, we 
managed to obtain the results of TPRs, FPRs and AUC values without replication. We implemented the 
‘penMSM’ package by setting λ2 = 0, and using 20 values of λ1. To compute the TPR and FPR values, we used 
the Akaike Information Criterion (AIC) to select the optimal penalty parameters. To compute the AUC 
values, we calculated 20 pairs of TPRs and FPRs to construct ROC curve, then compute area under a ROC 
curve. The method was not able to perform automated variable selection since the results did not include 
zeros, so we rounded up the results to the 2nd digit.  

The results in Table 15 show that when N = 250 and N = 450, the fused-lasso multi-state model produces 
worse results with lower TPRs and higher FPRs comparing with L1MSTATE model and in many cases, its 
FPRs are higher than TPRs.  

 
Table 15: Model selection results of Example I using the fused-lasso multi-state model approach. 
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Fig. 10: AUC values of Example I for different sample sizes in different settings: 100 replications for each of first 
four models, no replication for the fused-lasso multi-state model (penMSM). 

 
Figure 10 shows that the fused-lasso multi-state model produces the worst performance in term of the 

AUC values. In other words, the fused-lasso multi-state model method does not do variable selection while our 
L1MSTATE method is developed for this purpose. Our simulation studies showed that using the penalized 
cross-validation method to select the optimal tuning parameter produced more sparse models than using the 
first cross-validation method in our L1-regularized multi-state models. In some cases, however, it tends to 
suppress too much. For example, in EBMT study, the results from Table 11 show that using the penalized 
cross-validation method suppresses almost all of the risk factors in some rare transitions such as transitions 3, 4 
and 9. Hence, the penalized cross-validation method should be used with caution in real world applications. 
 

7 Conclusions and future works 
We propose the L1-regularized multi-state model framework for simultaneous parameter estimation and 
variable selection using the L1-regularized partial likelihood approach. We devise the one-step coordinate 
descent algorithm and use a local quadratic approximation of the log-partial likelihood to solve the 
corresponding optimization problem, which can offer significant improvement on the computational efficiency. 
Our proposed method demonstrates the state-of-the-art performance in terms of identifying the significant risk 
factors comparing with the existing regularized multi-state models in simulation studies. It also performs better 
at doing variable selection and predicting the transition probabilities in cases with small sample sizes 
comparing with the un-regularized approach in simulation and real-world cases. 
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Here we focus on specifying a Cox model for each transition, but our approach can be easily extended 
to other types of models for each transition. Our L1-regularized multi-state models can be applied to competing 
risks data in the cause-specific hazards models setting. If other models such as the subdistribution hazard model 
or competing risks quantile regression model are used to analyze competing risks data, the literature on 
variable selection using regularized approaches can be found in several papers [20], [4], [18], [39], [3], [28], [17]. 

In this paper, we also assumed that the coefficients are constant over time, but it is common in 
longitudinal studies to collect information of the same risk factors at follow-up visits. Therefore, it may be 
beneficial to utilize the time-dependent risk factors. One approach is to use piecewise constant coefficients that 
allows time-varying risk factors, but it may require totally different techniques for model inference. Furthermore, 
its model may be complicated and hard to interpret. Another approach is to use joint models of time-to-event 
and longitudinal data which will be future research topics. 

In applying our L1-regularized multi-state models to EBMT dataset, we used dummy variables for two 
categorical risk factors with three levels, but our current approach cannot guarantee these dummy variables 
enter or leave the model together. A more appropriate way to handle categorical risk factors is through group 
lasso penalty [45]. In addition, the analyses of the risk factor effects upon the cumulative hazard functions and 
the transition probabilities suggest two extensions should be considered: one is about the time-dependent effects 
of risk factors in multi-state models and the other is the semi-Markov multi-state models. These would be 
our future directions to extend our method. 
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