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Abstract Multi-state model (MSM) is a useful tool to analyze longitudinal data for modeling disease progression
at multiple time points. While the regularization approaches to variable selection have been widely used, extending
them to MSM remains largely unexplored. In this paper, we have developed the L1-regularized multi-state model
(LIMSTATE) framework that enables parameter estimation and variable selection simultaneously. The
regularized optimization problem was solved by deriving a one-step coordinate descent algorithm with great
computational efficiency. The LIMSTATE approach was evaluated using extensive simulation studies, and it
showed that LIMSTATE outperformed existing regularized multi-state models in terms of the accurate
identification of risk factors. It also outperformed the un-regularized multi-state models (MSTATE) in terms of
identifying the important risk factors in situations with small sample sizes. The power of LIMSTATE in predicting
the transition probabilities comparing with MSTATE was demonstrated using the Europe Blood and Marrow
Transplantation (EBMT) dataset. The LIMSTATE was implemented in the open-access R package ‘L1lmstate’.
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1 Introduction

Multi-state model (MSM) has been one of effective methods for disease modeling, and it has been applied to
studying liver cancer [27], breast cancer [36][15][10], abdominal aortic aneurysms [24], heart transplantation
[40][30], HIV infection and AIDS [31][19], Alzheimer disease [11], diabetic complication [33][5], cervical cancer
[29], and liver cirrhosis [7], just to name a few. It can model patient's disease development trajectory across a
series of transitions between various stages or states, under influence of some risk factors. First, it allows
researchers to make an assessment about how the risk factors exert different effects on different stages of the
process and how the risk factors influence on different transitions of the process. Second, it enables researchers to
obtain more accurate predictions of transition probabilities.

In this paper, we adopted the MSM framework by specifying the transition-specific hazard models. Our
main objective is to identify the risk factors associated with the transition hazard rates of disease progression.
Although non-parametric transition hazard models do not impose any constraint and may be more flexible, it is
used more often to estimate the cumulative transition hazard rates than the transition hazard rates [1]. Semi-
parametric transition hazard models that do not require to specify the transition-specific baseline hazard
functions are more suitable for our purpose. Specifically, the Cox’s proportional hazards model was used for the
transition-specific hazard rates to incorporate risk factors into multi-state models. The multi-state model
parameters were estimated by maximizing the likelihood function that was formulated using the counting process
[6]. The transition-specific baseline hazards were assumed to be the same for all individuals but vary over time,
allowing us to construct the partial likelihood function that reduces computation burden but still makes good
estimations of parameters [25]. Regarding the censored data, we focused on two types of censoring data: right-
censored and left-truncation data.

Currently, the multistate models lack an efficient and practical variable selection method to identify the
risk factors associated with the transition hazard rates. Let us consider a MSM with the number of the risk factors
is P and the number of transitions between the stages is Q. Then, there are 279 possible models to consider
if using stepwise forward selection [33] method. Hence, such kinds of variable selection methods are suitable
when the number of risk factors and the number of transitions is relatively small. However, in modern
applications, both P and Q increase dramatically with our increasing data collection capacity. They result in
complicated optimization problems which are challenging to compute, and they can lead unstable estimates of
parameters. In addition, in many studies, especially in medical research, there is a limited number of observations
given the number of parameters in complex multi-state models. In this paper, the regularization approaches have
been used to address these challenges. Intuitively, these approaches incorporate the prior knowledge about sparse
structures of multi-state models using the sparse-inducing penalties, which results in better parameter estimations
and allows variable selection simultaneously.

Even though the regularization methods are increasingly popular in statistics and machine learning very
little has extended to MSMs. The current literature on this subject shows there are two works that have been
published in this direction. The first one by Huang er al. 2018 [23] presented a regularized continuous-time
Markov model with the elastic net penalty. The transition hazard rates were specified as constant over time. In
addition, their method relied on a method developed by [26]: it estimated the transition rates from the transition
probabilities of the discrete-time Markov chain embedded in the Markov process (embedded Markov chain). It
does not derive the transition rates from event (state) counts and transitions since the transition times are not
observed. In other words, it does not follow the counting process perspective. Therefore, their work is different
from ours in scope and methodology.

The second one from Reulen ef al. 2016 [38] did variable selection by imposing the fused-lasso penalties
including L1-penalties of transition-specific risk factor coefficients and their differences between transitions. In
this paper, we propose the L1-penalties of transition-specific risk factor coefficients that are similar to the fused-
lasso approach in [38], in which cross-transition effects are explicitly modeled by introducing the fused penalties.
The difference of our implementation from [38] is, instead of adopting the penalized iteratively re-weighted
least squares (PIRLS) algorithm presented in Oelker er al. 2017 [35] for model inference, we have derived a
cyclical one-step coordinate descent algorithm to solve the optimization problem with exact L1-penalties. In
addition to potential problems of not having exact zero model coefficients due to the approximation of L1-
penalties, PIRLS is a second-order optimization algorithm that has high computation cost and potential
convergence problems [35]. Our optimization algorithm in this paper solves for exactly L1-penalties resulting in
fewer nonzero coefficients for variable selection, with high efficiency in computation and significant reduction in
memory usage.

Another common problem in many studies is that multi-state models include some rare transitions that
have relatively small number of observations. In such cases, the traditional (un-regularized) multi-state model
approach tends to produce the inaccurate predictions of the probabilities of rare transitions. In this paper, we
demonstrated that the L1-regularized multi-state models can be used to alleviate this problem, and thus produce
better predictions of the transition probabilities.

The rest of the article is organized as follows. In Section 2, we reviewed critical details of the multi-
state models, including its formulation and the partial likelihood function of the multi-state models. In Section
3, we introduced our formulation of the L1-regularized partial likelihood function of the multi-state models and
the algorithms to solve the corresponding optimization problems. We presented the main formulae to predict the
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transition probabilities. In Section 4, we compared the performance of our method via simulation studies. We
demonstrated the prediction power of our method using a real data. Discussion was presented in Section 6.
Lastly, we ended with conclusions and future works in Section 7.

1
2
3 2 Review of Multi-state Models (MSMs)
4 2.1 Formulation of the multi-state models
> Multi-state models compose of multiple states and transitions between the states under influence of risk factors.
6 Figure 1 depicts some examples of the multi-state models in characterizing a variety of situations with different
; number of states and transition structures between the states. For example, in Figure 1.c, there are three states. The
9 arrows illustrate the clinically eligible transitions between the states. The state to which the individual is going to
move, and the time of this change, is impacted by the transition intensities (so-called hazard rates) that represent the
10 . . . . .
11 instantaneous risk of moving from one state to another. These hazard rates may also depend on individual-specific
12 risk factors. In our paper, we assume that the risk factors are constant over time. The states and structure of the
13 transitions are usually pre-defined based on domain knowledge of the disease. The main statistical task is to estimate
12 the transition intensities between states and their relationships with the risk factors.
15
16 —_—>
17 State1 =) State?2 State1 = State 2 State 3
18 -
19 (a) Two-state model (b) Three-state model
20
21
22 State 2 State 2
o2 /' /v \
24
25 State 1 State 1 State 4
26
o /’
28 State 3 State 3
29
30 (¢) Three-state model (d) Four-state model
31
32 Fig. 1: Some multi-state models. Nofe: Arrows show the clinically eligible transitions for each multi-state
;Z model.
35 We specify the transition-specific hazard rates agj (t) using Cox proportional hazards model [12] with the
36 transition-specific baseline hazard rates a,, J)(t) and time-fixed risk factors X:
37 (0)
38 api(t) = ay, (t Jexp(By,; X ) )
39 where X = (x1,x2, - ',xp)T is an P—dimensional vector of time-fixed risk factors; ﬁ;; i is a P—dimensional vector
jg of time-fixed coefficients.
42
43 2.2 Likelihood function of the multi-state models
44 Then, we can derive the likelihood formulation of the multi-state model. Consider M individuals, S;(t) is the observed
45 multi-state model for the i individual over interval [0, T;], where T; is a fixed time of termination of observation for
46 individual i. Denote Ny;(t) be the number of allowed transitions /# — j of the i*" individual during [0, #], and a}, ;i(t) be
j; transition intensities or transition-speciﬁc hazard rates of the i” individual. The transition times T,ﬁ’]‘ can be described as
; @) : . , .
49 0<Th(t) <--< T Vi () < 1;, where k € {1,...,N;;(t)}. The full likelihood function could be derived as
50 ik
51 Nji (r2) T
52 L_HH H a,,j ,,, oxp( fa-},_ﬂ(.)di)]
53 i=1j#h k=1 0
gé Assume that individual-specific risk factors are constant over time, the transition-specific hazard rate a}, ;(t) each
56 individual i can be written as Eq. (1). The full likelihood function becomes
57 M Nj (i) s
58 H H H {ah e\p(ﬁ;u )exp( — / a;ﬁ)(t)exp(,@{j)(z)dt)]
59 i=1j#h k=1 5 )
60 . . . . \T
61 where X' = (x{, X5, e, Xp ) is P — dimensional vector of time-constant risk factors for the i*"* individual.
62
63 P, . .
64 2.3 Partial likelihood function for multi-state model

65
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Instead of using the above full likelihood function, we used the partial likelihood function. More details can be found in
Andersen et al. 1993 [6]. It only keeps the terms that contain all the information about  and gets rid of the terms that
contain the information about the baseline hazard. This achieves computational efficiency and still makes good inference
for .

Let Yik(t) = 1 (esrit)e i.e., in this definition Y;{¥(T¥) indicates that the i*" individual at risk in transition from
state / to state j at time T,Z‘ Assume that the transition-specific baseline hazards are the same for all individuals but can

vary freely with time, i.e., a,il(o) ) =a, ]) The partial likelihood function of the multi-state model that will be used in
our paper

M Ni(ri) ;
I 01 ) —
f\f ;,, T!)

i#hi=1 k=1 Yoy > exp(B,X )Y;,'f.‘()

Its negative log-partial likelihood function is derived as

M Npi(7i) M Npj(ri)
18) - @) - 53 3 [a,,__,- loo(z YIRS RY ;:m)]
= = 3

i#hi=1 k=1

2.4 Data structure for parameter estimation by partial likelihood maximization

We follow the data structure described in Putter et al. 2007 [37]. One example as shown in Table 1 was collected
in deWreede ef al. 2010 [14]. In this format, each individual has many rows as the number of transitions for which
she/he is at risk. Particularly, in Table 1, each row shows one transition of each individual that is composed by
statesom and states. The corresponding times for statesom and state, are times,+ and timeyp. The difference between
timegqrs and timeg,, measures the transition times that represent the duration for which individual is at risk.
The censoring information is captured by a transition-specific censoring indicator Jdswms. For example, patient 1
contributes two lines of data for the period: start at t = 0 and stop at t = 151. She/he started at state 2 and was at
risk to transfer to state 1 and state 3. The recorded Js/s of transition 2—> 1 was 0, which indicates that the event
(transition) time was censored, while the recorded s of transition 2—> 3 was 1, which indicates that the event
time was observed.

Table 1: Example of long-format data

Patientid state,,,, state, transition  fimeg,, time,,, Oguus  treatment
1 1 2 1 3 0 151 0 Placebo
2 1 2 3 4 0 151 1 Placebo
3 2 2 1 3 0 251 1 Placebo
4 2 2 3 4 0 251 0 Placebo
5 2 1 2 1 251 434 1 Placebo
6 2 1 3 2 251 434 0 Placebo
7 2 2 1 3 434 729 1 Placebo
8 2 2 3 4 434 729 0 Placebo
9 2 1 2 1 729 1735 1 Placebo
10 2 1 3 2 729 1735 0 Placebo
11 2 2 1 3 1735 2088 1 Placebo
12 2 2 3 4 1735 2088 0 Placebo
13 2 1 2 1 2088 2467 0 Placebo
14 2 1 3 2 2088 2467 1 Placebo

Following this data structure, suppose that there are in total Q observable transition types. Assume that the
dataset has N rows, and denote N, be the number of rows for transition g, it is easy to see that N =}, Ng

. With a slight abuse of notation, X} is the N, <P risk factors matrix corresponding to g—transition; X, ciz is the P
—dimensional column-vector where ¢ = 1,2,...,Q and i = 1,2,..., N;. The formulation of the negative log-partial
likelihood function in Eq. (3) could be rewritten as
L(B) =Xqla(Bq) (4)
where
Dq

N, Dy
L) ==Y {(ﬂf )~ log( Y exp(8] X;)Y;(n))} --y [(ﬂ? ;) ~log( 3 exp(a] X;))]
i=1 n=1 i=1 reR?
" (%)
where D, is the set of indices of the exact transition times for the transition type q, Y7'(t) = 1 (tP2t;) indicates whether
. q =t
the nth individual is at risk to transition q just before time ti, and R, = X, Y7'(¢t;) = X, 1 {thst)) is a set of indices r
that comprised of all individuals observed to be at risk to transition g with times > t;.

Remark: As shown in above, we use only information about the observed states at a set of times when we
assume that the distribution of transition times provides no information about the distribution of censorship times and
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vice versa. It is so-called the independent censoring [6]. We also assume that the observation time is the exact transition
time and there are no transitions between the observation times for each individual. With the formulation of the
negative log-partial-likelihood function in Eq. (4), two kinds of incomplete observations are particularly tractable [8]:
right-censoring and left-truncation. Note that if the individual is observed from the beginning (i.e., the first state, such
as healthy) to the end (i.e., the final state, such as death), then the whole trajectory of the process has been observed
and it is called complete observation. Otherwise, right-censoring means that the individual is observed from the
beginning to a certain time that has not reached the final state. Left-truncation means that the process has not been
observed from the beginning, rather, the observation happens in the middle of the trajectory of the transitions.

3 L1-Regularized multi-state model (LIMSTATE)
3.1 Partial likelihood formulation for LIMSTATE

By minimizing the negative log-partial likelihood formulated in Eq. (4), we can estimate the parameters of a
multi-state model, i.e., the coefficients #. As existing methods could not scale up to high-dimensional applications
when there are a large number of risk factors and a large number of transitions, in this paper, we propose a
L1-regularized partial likelihood formulation for MSM following the framework as the least absolute shrinkage
and selection operator (LASSO) [43]. This leads to the following formulation:

min I(3)
? [
subject to ZZ 'ﬁg < (), (6)
q p

whereq = 1,2,...,Q;p = 1,2,...,P; C > 0. Recall that, O is the number of observable transitions, and P is
the number of risk factors. This minimization problem is equivalent to minimizing the problem given by the Lagrangian
formulation:

1
P ANCARRYD D BICIE
q q P

with respect to f. Different weights are assigned to transitions using factors N, where ¢ = 1,2,..., Q. It is similar to
assign different shrinkage parameters per transition. Intuitively, the rare transitions are shrunk more than for common
transitions. Our formulation in Eq. (6) could be reformulated as

3 = m‘gjénin Z %Iq (Bq) + )\(Z Z By ) . (7)
o q p

q

3.2 Computational algorithm for solving Eq. (7)

The transition-specific negative log-partial-likelihood function /,(5,) is smooth with respect to S, so that its first
two partial derivatives are continuous. Thus, /,(f,) can be locally approximated by

- o - - * = ]- - A "3 - o
1a(Bq) = 14(Bq) + (Bg — Bq) 1(Bq) + 5(Ba — Bq V', (B)(Bq — Bg),  (8)

where

P al, | = "o a4l -

1,(8y) = 22 (8,) and I, (3,) = =—=—=1=(3,),

q q} C‘)jq( q q( q} ajqajg‘( q}
The transition-specific linear predictor, n, = X, B,. includes D, elements n} = BIX., where i = 1,...,D,.
Plugging them in Eq. (5) and Eq. (8), we have the transition-specific negative log-partial likelihood function

D,
lo(ng) == [n; — log‘( > exp(n,’,'))]

i=1 reR;

Its approximated form is

1 _NT -
la(ng) = 5 (nq - Z(nq)) Ly (7q) (nq - Z(nq))f
with
- - D e A . Alg . o, 9?1 .
z(ng) =1ng — (Iq (7}qj) La(ng); lg(mq) = ﬁ(‘nq); ly(1q) = &%—aj}(ﬂq).
q

Hastie and Tibshirani (1990, Chapter 8) [21] suggested to replace Iy (f]q) by a diagonal matrix D with the diagonal
elements of [ (ﬁq), because the optimal Bq will not change when the off-diagonal elements of I (ﬁq) are smaller
than the diagonal elements. This will greatly alleviate our analytic efforts since we only need to compute the first
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order derivative [ (nq) and the diagonal entry of the second order derivative [; (nq) I (r]q) is a vector with
elements (l,’l (nq))dthat could be derived as

i D (o D d d
.o alg(n,) ) % 2 aers exp(1g) . : exp(n9) . exp(ns)
L(Ng)a=——7 = =4+ ——2——— = —d;+ o) = —da+ =
q\Mg dr;g Z ZrER’ P\p(]] ;déi ZreRi 9\1)(1; ) zezci ZrERl 9\p(.‘r]q) ©
where d = 1,2,...,N,, and Cq is the ¢ —transition set of i with t; > t;. The diagonal entry of [ (ﬁq) could be
derived as
s = i(azq(ng)) B explig)  (exp(ng))?
q\ie ond* ond Pt Zrequ exp(ny) ( Y oren exp(-:]g)) ?
a a (10)
Let

M(By) = ! (Th (ﬁr)))?“"; (1q) (Th - z(ﬁf})) + )\( Z WE )

The training algorithm for LIMSTATE is shown in the pseudo code in Algorithm 1. The remaining task is to solve
the optimization problem in Eq. (11):
ﬁq = argmin M (3,), (11)

q

Let w, be the N; —dimensional vector of diagonal entries of matrix D. We rewrite M () as

M(Bq) = 21\ Z [ ‘1( 2 () ZX,‘., pBy = X;-g-gg)g] + /\(Z 1621)
p# P

Hence, Eq. (11) becomes

N,
Bq = argmin Qi Z { (z(nq ZXQ pBg = Xgg! 33) ] (Z |'3§|)
req 9 =1 P#g p (12)

The coordinate descent algorithm is used to solve Eq. (12). In particular, we derive the one-step coordinate descent
algorithm that updates one element at each iteration with all the other elements fixed to the latest value.

Algorithm 1: Pseudocode for L1-penalized multi-state model (LIMSTATE)

Result: 3
Input: Long-format data described in Section 2.4;
while (g > 0 and ¢ < Q) do
. - = . "o - - oo =1 _
C-ompllte 1y = XgBg: Ly(ng); 1 (”e]i z(nqh) =1, —1l;(ny) 1(1,)
Find 3; = argmin M(3,); Update 3, = 3,
q
end

Specifically, for instance, while the current step focuses on ,85 with given estimates for ,85 for all p # g, we compute the
first order derivative of M(f,) as follows

('\“
aM(3,) 1 — ; -
qu =¥ Z [w; (z(nq) Xqﬁq)( . ,I)] + Asgn(39)
Haq q im1 (13)
where withg = 1,2,...,P
1, if B9 > 0
sgn(ﬁg] ={ —1, if B <0
[—1,1]. otherwise.
Solving Eq. (13) yields the soft-thresholding rule that is
1 Ny g = i 3
) f (N_q Zi:l [quq,_q (z(nq)i - Zp?":g Xq ph q)} A)
g _
= N, . i
\L’q =1 “’T‘I(T]d)é(Xq,g)2 (14)

where
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z—A, ifz>0and |z] > A
flz. A) =sgn(z)(|z| —A)=qz+ A Hfxr<0and |z = A
0, if |z < A

Note that the first term in the numerator can be derived by using Equations. (9) and (10):
wi X g (2 — 3 Xi 88 ) = Biwg(X.0)® = Uy(i1g) X,

pFg
So, we have a simple form of estimated coefficient as follows

(15)

It is worthy of mentioning that the solution for LASSO depends on the scales of risk factors [22]. A frequently used
method to solve this problem is to standardize the risk factors first. The estimated coefficients of the risk factors can
always be transformed back to the original scales for the sake of interpretation. The one-step coordinate descent is
summarized in Algorithm 2.

Algorithm 2: One step coordinate descent algorithm for L1-penalized multi-state model (LIMSTATE).

Result: 3
Input: Long-format data described in Section 2.4;

while (g > 0 and ¢ < @) do
- = P o - - oo -1 _
Compute 1, = Xg84; 1;(775); 15 (179); 2(119) = 174 — g (ng)  15(774)

q
repeat
| For g =1,2,..., P: Update ,.-§g = 33 using (15)
until: Convergence of 3y
Update 3, = 3,
end
Update 3 = ;3

3.3 Active set updates

To improve the computational speed of the ‘L1mstate’ package, we have constructed an active set that takes advantage
of the sparsity of 5. As shown in the Algorithm 2, we only need to update the non-zero coefficients BC‘? in A after a

complete cycle has run through all the risk factors, i.e., when § = 0, B;;] will stay zero if | — Niq 15(0)Xq 4| < 4; otherwise,

,[?g? will be updated and stored in the active set if —Nil& (0)X44| = A. Therefore, the number of updates is reduced
a

significantly and the convergence of the algorithm is increased. The algorithm will stop if another complete cycle does
not change this set. Note that the active set A can only become larger after each update, so the algorithm will always stop
after a finite number of updates (See Meier et al. 2007 [34] for more details of the convergence property.)

3.4 Pathwise solution

The above procedure is just for one fixed value of 1. However, in general, it is of interest to be able to compute
the optimal solution for a range of values of 1. Thus, we aim to compute the regularization path (denoted as $ (1))
where 4 € [0, o]. It can be shown that E(A) turns out to be a piecewise linear, continuous function of A [32]. In
other words, we only need to compute the solutions on the change points in this path, denoted Anax > 41> -+ >
Jmin> 0. We can start with Ane that is any value sufficiently large for which the entire coefficients B = 0.

From Eq. (15), notice that when B = 0, B9 will stay zero if

ALTI;(O}X(I_HLfUr ¢g=1,2...,Q; g=1,2,....P.
q

Following the suggestions made in Simon et al. 2011 [41], we can ignore solutions for that are close to 0 and set

Amin = €Amax, then, compute the solutions over m + 1 values defined as A; = A4 (;Z;’;)H, fori = 0,1,...,m
d { 0.01if N <P

0.0001if N = P’
solution (i.e., for A;) as the initial values to obtain the solution for A;_;.

— Niq lg (O)Xq_g| < A. Hence, we can set

/\rrm:r. = max | -

In doing this, the algorithm usually converges well because we could use the preceding
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3.5 Selection of the tuning parameters

With a path of solutions, we need to select an optimal one. The natural choice is cross-validation. However, the
partial likelihood of multi-state model is not as well defined as the Gaussian log likelihood on the left-out sample
using the traditional cross-validation, which leads to poor results. To tackle it, we used the cross-validation
method as described in Verweij et al. 1993 [44], proposed for Cox regression model, in which data are split into
k parts, use (k—1) parts to train the model, and then, validate the learned model on the whole data. The cross-
validated log-partial likelihood for a given part i and 4 is

CVi(N) = 1(B-) —1ia (B),

which can be used as the goodness-of-fit estimate of the solution. Here, /2 and /; are the optimal coefficients and its
corresponding log-partial likelihood for data excluding part i. The total goodness-of-fit, CV (1) is the sum of
all CV;(A). We find the optimal 4

5\&.3 = argmax Cﬁ()\)
A

However, this method alone sometimes produces high true positive rates (TPR) and high false positive
rates (FPR). One example of this high positive rates is overfitting. To reduce FPR without large reduction of
TPR, we use the penalized method proposed in Ternes et al. 2016 [42]. Let p; be the number of non-zero
coefficients in the model for a given 4, we can find the optimal A that maximizes

ﬁ;(:\cvij - ﬁ;(/\mar)
pli cul

V() — «pa, forall \ € [Ag)\n}

Intuitively, it reduces the sparsity of the model p; without decreasing much the goodness-of-fit of the model
CV ().

3.6 Estimation of the cumulative hazard rates and the transition probabilities

In the previous section, we have modeled and estimated the effects of the risk factors upon the transition
intensities. To further assess the effects of the risk factors on disease progression; in particular, the effects of the
risk factors on the cumulative hazard rates and the transition probabilities, we will present how to estimate the
transition-specific hazard rates and the transition probabilities in the following.

Given the estimated regression coefficients, the baseline hazards of transition g, denoted by a40(t, B4),
can be obtained as the Breslow estimators [9]

. N (UV( t
go(t, By) = _IN,()

S’ (t.B,)

where d N, (t) is the number of events of transition g up to and including time ¢ and

S{ED)(t ﬁq Z EXp ﬁTX n Yn( )
n=1 ,
Recall that, Y;'(t) indicates that the n” individual at risk in transition g at time 7. Let the risk score for each subject of
transition g be 7 = exp(f] X7'), then
dN,(t)
Sy Y (e),

The corresponding estimators of the cumulative baseline hazard Ag(t, 8;) = fot Aqo(u, I5 q)du, is computed as

- - dNgy(u)
Aqo(t, By —_—
U( ’6 ) ; Zn 1 I“”Y”( ),

The cumulative hazard rates of transition q, denoted by A q(6 ) which is also known as the Nelson-Aalen estimators, is
q(t ﬁ) q()(f ﬁq)exp(ﬁq Xq)

Given the cumulative transition hazards, using the basic tool — a product integral allows us to estimate the transition
probability matrix P(s,t) = Py;(s,?) as

(A}‘q(l (f- Bq) -

P(s,t)= ] (1+Ad@)

ue(s,t]

where [],e(s,¢- is @ product-integral and (s, #] denotes the time interval. It is the Aalen-Johansen estimator

[2].

3.7 Computational complexity analysis
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We now discuss the complexity of the algorithms when using different frameworks (LIMSTATE, L1Cox, L1-
StratifiedCox) for variable selection. They all solve the optimization problems by the coordinate descent algorithms
to optimize the objective function with respect to one variable at a time while all the others are fixed. In other words,
they process the same procedure: precompute the first-order derivatives and the diagonal entries of the second-order
derivatives of a design matrix; at each iteration update P, — the number of nonzero elements in the active set. The
computational complexity depends on the number of subjects N, the number of risk factors P and the number of
transitions Q. More specifically, consider LIMSTATE and L1Cox, for each transition, they need O(qu) operations

to compute the derivatives where N, is the number of subjects for transition g (recall that N = Zgzl N,) and each

update needs O (P) operations. Therefore, their complexity is O(ZqQ=l(qu + anP)) where P;* denotes the number of
nonzero elements of transition ¢g. For L1-StratifiedCox, it needs to create transition-specific risk factors from the baseline
risk factors as described in [13]: each risk factor X is split into as many risk factors X, as there are transitions in the model,
for transition q, X, = X; while for all other transitions X; = 0. It means that the number of risk factors now is PQ. In
addition, it needs O(N?) operations to compute the derivatives. Therefore, its complexity is O(N 2+ PQ ZqQ=1 Pq“). of
course, the required runtime for the entire solution path also depends on the number of iterations, which in turn depends
on the data and A values. In general, the dominant factor influencing the number of iterations is the number of nonzero
elements at the specific A value since the nonactive elements that remain fixed at zero need no iteration. In the next section,
we compare their computational complexity empirically in Table 9 with the runtime of three L1-regularized models using
the same maximum number of iterations 10° for all models.

4 Simulation Studies

In this section, we will numerically compare the performance of the L1-regularized multi-state model (LIMSTATE)
with existing regularized multi-state models including the LI1-regularized cause-specific Cox proportional
hazards model (L1Cox) that is commonly used in survival analysis without multistate structure knowledge, and the
L1-regularized stratified Cox proportional hazards model (L1-StratifiedCox) in term of variable selection using
simulated data. The Ll-regularized estimation of the fused-lasso multi-state model approach [38] was not
included in our comparison due to very huge computation cost (see Discussion section for more details.)

To compare the performance of the four models in terms of identification of the significant risk factors,

we calculated three performance metrics, including the true positive rate (TPR), false positive rate (FPR), and
area under the ROC curve (AUC).

4.1 Setup

Following the data structure outlined in Section 2.4, we generate trajectories of N individuals that include
their transitions among states, the times of the transitions, and the values of risk factors. First, the values
of the risk factors of each individual are generated by randomly sampling from a P-dimensional multivariate
normal distribution with mean vector as zero and the correlation matrix C as an autoregressive matrix where
C; = p7land 0 <p < 1. The reason to use an autoregressive correlation matrix is that we could flexibly tune
the correlations of the variables by setting the value of p, i.e., p = 0 means no correlation among the variables,
while p = 1 means that the risk factors are perfectly correlated as duplicates of each other. Second, the
transitions among states and their timing are generated as follows. Recall that we have assumed that the transition
intensities between two states follow the proportional hazards Cox model Eq. (1). By setting up values for f we
can obtain the transition intensity distribution from Eq. (1) to randomly sample the transition intensity values.
After that, the observed times of the transition events between two states are generated using the exponential
distribution with its rate parameter set to be the transition intensity between these two states. In here, we
consider the illness-death model that includes three states: healthy, illness, and death. Its transition structure is
depicted in Figure 2.

Trans =3 2_|liness

\ /

&
&

3

-~

2,

%, K
\ 3. Death /

Fig. 2: The illness-death model.

Assume that all individuals start at the healthy state in the beginning of the observation period. The
censoring status values are generated as follows. Since the observation time is the exact transition time, there is
no illness censoring time or the censoring indicator of transition to illness state is 1 for all N individuals.
The death censoring times are generated from the exponential distribution, the censoring indicator of
transitions to death state is O if the death time is larger than the death censoring time, and 1 otherwise. The
strength of effect of risk factor is based on the real absolute value of its corresponding coefficient. Next, we

1. Healthy
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first consider the small datasets in which the number of subjects and the number of risk factors are relatively
small. We further test different methods on the datasets with a large number of subjects and risk factors.

4.2 Small datasets
4.2.1 Settings

In these setting, we include the un-regularized multi-state model (MSTATE) to investigate the pros and cons of the
un-regularized methods comparing with the regularized methods.

Set the number of risk factors P =9 and different values of sample size, i.e., N € {100,250,450}. We
consider four scenarios: the first three scenarios include the effects of risk factors belong the same type (large,
medium, or small), and the last scenario includes all three types of the effects of risk factors.

e  First scenario: small effects

0.150.150.15000.150.150 0
Bg=1015015 0 00 0 0150 0
0 0150.15000.150.1500.15

e Second scenario: medium effects
—0.35-0.35 -0.3500 —0.35 —=0.350 0
B=|-03-035 0 00 0 -0350 0
0 —0.35-0.3500-0.35 -0.35 0 —0.35
e  Third scenario: large effects
—0.65 —0.65 —0.65 0 0 —0.65 —0.650 0
B=|-065-065 0 00 0 -0650 0
0 —0.65-0.6500—0.65 -0.650 —0.65
e  Fourth scenario: mixed effects
0.15 —0.35 —0.35 0 0 —0.35 —0.350 0
g=1| 0 015 -06500 0 —0.650 0
0 —0.65 —0.65 00 —0.35 —0.65 0 0.15
We evaluate different levels of correlation between the risk factors by setting p = 0,0.2,0.5. The censoring percentage is
30%.

4.2.2. Results

To compute TPRs and FPRs for the disease progression from the healthy state to the death state for our
LIMSTATE, we created a path of 100 values of A, applied 10-fold for two different cross-validation methods
described above in Section 3.5 to select the optimal A for variable selection. We can view the estimated
coefficients from our LIMSTATE model fit, and the cross-validation log-partial likelihood against the log of A
values, and also how to use two different cross-validation methods to select 4. Figure 3 shows the results of
the large effects setting in which N = 250, and p = 0.5. For L1Cox and L1-StratifiedCox, we used ‘glmnet’
package [41] with its default setting to fit Cox proportional hazards models: 100 values of A and 10-fold cross-
validation, which is the same as the first cross-validation method used in our model, to select the optimal
solution. More specifically, for L1Cox, we applied for each transition using transition-specific datasets, then
used the results of three transitions to compute the TPRs and FPRs; for L1-StratifiedCox, we applied directly
to the long-format data. For MSTATE, we used R package ‘mstate’ [13] to fit model and the statistical hypothesis
test (p-value) with the 0.05 significance level to evaluate the significance of candidate risk factors based on Wald
tests on each variable for variable selection instead of using some methods such as backward or forward selection.
The results across 100 replications for these models in different scenarios are summarized in Tables 2, 3, 4, and
5.

The results from Tables 2, 3, 4, and 5 show that TPR and FPR values of pLIMSTATE are always lower
than LIMSTATE. It means that the penalized cross-validation method is more conservative than the first
cross-validation method. On the one hand, comparing LIMSTATE and MSTATE results, MSTATE always
gives lower TPRs and FPRs than LIMSTATE. In other words, applying the statistical hypothesis test with the
0.05 significancelevel to MSTATE produces more sparse models than applying the first cross-validation method
to LIMSTATE. On the other hand, comparing pLIMSTATE and MSTATE results shows that when N = 100
pLIMSTATE often gives lower both TPRs and FPRs than MSTATE; when N = 250 and N = 450 in small setting,
pLIMSTATE gives better results than MSTATE; in other settings, pLIMSTATE starts giving lower both TPRs and FPRs
than MSTATE, and MSTATE gives better results in large effects setting. Note that when p increases - risk factors become
highly correlated, MSTATE results become worse while LIMSTATE and pLIMSTATE results often become better.
Consider three regularized models LIMSTATE, L1Cox, and L1-StratifiedCox using the same cross-validation method,
from Tables 2, 3, 4 and 5, it can be seen that LIMSTATE is always better than L1-StraitifiedCox. Compare LIMSTATE
and L1Cox: when N = 100, LIMSTATE is more conservative than L1Cox since it gives both the smaller TPRs and
FPRs; when N increases, LIMSTATE gives the better results with the higher TPRs and the lower FPRs; when N = 450

in the large effects case, three regularized models perform the same.
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(¢) Transition 2 — 3 (d) The cross-validation curve (red dotted line),

and its standard deviation

Fig. 3: Plots of the coefficient paths for three transitions of our LIMSTATE model fit and the cross-validation
log-partial likelihood against the log of A values along our path. In the first three plots, each curve corresponds
to a risk factor and is annotated by index of this risk factor. In the final plot, each dot represents the log of 4
values along the path, and error bars give a confidence interval for the cross-validation log-partial likelihood. The
left vertical bar indicates the maximum cross-validation partial-log-likelihood while the right one shows the
penalized cross-validation log-partial likelihood.

Table 2: Model selection results of Example I for the small effects scenario.

MSTATE pLIMSTATE LIMSTATE LICox L1-StratificdCox

N P  TPR FPR TPR FPR TPR FPR TPR FPR  TPR FPR

0 017 008 014 005 020 009 031 020 020 0.12

00 92 o018 008 020 007 026 01l 039 025 026 0.14
05 014 008 025 010 036 018 045 030 039 0.22

0 032 007 030 008 051 027 061 038 054 0.30

DO o2 028 006 042 012 062 030 067 044 062 0.33
05 022 006 045 013 070 033 073 045 070 0.39

0 047 008 052 011 084 045 083 056 083 0.49

B0 o2 047 008 056 010 085 042 085 053 086 0.47
05 037 006 059 013 08 043 087 050 083 0.44

pLIMSTATE, Ll-regularized multi-state model using the penalized cross validation method; LIMSTATE, L1-
regularized multi-state model using the first cross-validation method; MSTATE, multi-state model; L1Cox, L1regularized
cause-specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model
using the first cross-validation method; TPR, true positive rate; FPR, false positive rate.

The TPRs and FPRs shown in these above tables depend on the selected methods including the cross-
validation methods, and the significance level of p—value. We want to evaluate further the variable selection
performance of these models using the area under a curve (AUC) values that are also variable selection
metrics and do not depend on the selected methods. We use the same settings as above with different values
of sample size, i.e., N € {50,75,...,500}. We first calculate the TPRs and FPRs, then compute the AUC
values by using the method described in Fawcett et al. 2006 [16]. Intuitively, the TPR and FPR pairs were
calculated to construct ROC curves, then the area under a ROC curve (AUC) was computed. More specifically,
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Table 3: Model selection results of Example I for the medium effects scenario.

MSTATE PLIMSTATE LIMSTATE L1Cox L1-StratificdCox
N ? TR FPR TPR FPR TPR FPR TPR FPR  TPR FPR
0 050 008 050 013 070 030 078 050 070 0.38
100 92 043 007 050 012 076 033 080 046 076 0.40
05 032 008 056 014 080 038 08 050 080 0.43
0 084 010 081 0I5 098 060 098 065 098 0.64
B0 92 083 008 082 013 098 058 099 063 098 0.59
05 070 007 077 013 097 05 097 060 097 0.53
0 096 014 088 013 100 069 100 070 100 0.69
B0 o2 097 012 091 013 100 065 100 068 100 0.66
05 088 010 08 014 100 05 100 062 099 0.61
Table 4: Model selection results of Example I for the large effects scenario.
MSTATE pLIMSTATE LIMSTATE L1Cox L1-StatifiedCox
N p TPR FPR TPR FPR TPR FPR TPR FPR  TPR FPR
0 084 012 080 017 097 053 097 062 007 0.60
00 92 081 o012 078 013 097 050 098 059 097 0.57
05 067 010 08 020 097 050 098 058 096 0.54
0 099 016 092 014 100 070 100 070 100 0.70
230 02 098 013 094 015 100 066 100 0.68 1.00 0.66
05 09 011 093 018 100 059 100 06l 1.00 0.62
0 00 019 097 015 100 073 100 073 100 0.73
B0 o2 100 019 097 012 100 070 100 070 1.00 0.70
05 09 015 09 018 100 065 100 065 100 0.66
Table 5: Model selection results of Example I for the mixed effects scenario.
MSTATE pLIMSTATE LIMSTATE L1Cox LI-StratificdCox
N , TPR FPR TPR FPR TPR FPR  TPR  FPR  TPR FPR
0 047 008 040 007 067 029 070 037 067 036
100 92 047 006 040 006 071 034 074 037 071 0.39
05 036 007 045 011 071 034 075 042 070 0.40
0 068 008 056 006 08 051 090 055 088 0.56
B0 92 067 009 053 005 08 050 088 058 086 0.51
05 059 007 056 011 08 049 08 053 084 0.51
0 077 010 0.6 004 095 06l 097 064 095 0.63
0 92 075 010 060 004 096 06l 096 066 095 0.63
05 071 008 058 007 092 056 091 058 089 0.56

pLIMSTATE, Ll-regularized multi-state model using the penalized cross validation method; LIMSTATE, L1-
regularized multi-state model using the first cross-validation method; MSTATE, multi-state model; L1Cox, L1regularized
cause-specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model
using the first cross-validation method; TPR, true positive rate; FPR, false positive rate.

in three regularized models LIMSTATE, L1Cox, and L1-StratifiedCox, it is straightforward to calculate 100
pairs of TPRs and FPRs corresponding to 100 A values along the path. In MSTATE, the threshold path was
constructed, and itincluded only the corresponding p—values of estimated coefficients. Then, for each threshold,
the risk factors that have smaller p—values than the threshold were selected, and the corresponding TPR and FPR
pairs were computed. The results of AUC values of these models in twelve settings for different datasets over

100 replications are shown in Figure 4.
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First, we compare the performances of LIMSTATE and MSTATE. From Figure 4, in small effects
setting, LIMSTATE gives comparable performance with MSTATE when there is no correlation among risk
factors (p = 0), and better performance than MSTATE when the correlation p becomes higher. Other settings
show the same pattern: when sample size is small, MSTATE performs worse than LIMSTATE; when sample
size increases, MSTATE’s performance gradually catches up, and even becomes better than LIMSTATE’s
performance. Notice that when the correlation among risk factors p increases, MSTATE needs more samples to
be able to catch up LIMSTATE’s performance, and when the effects become stronger, MSTATE needs less
samples to perform comparably with LIMSTATE.

Second, we compare the performance of three regularized models LIMSTATE, L1Cox, and LI-
StratifiedCox. In the first three settings LIMSTATE always gives the best performance. In the last setting
LIMSTATE gives slightly worse performance than L1Cox when p = 0, and comparable when p increases;
LIMSTATE also gives better performance than L1-StratifiedCox. Two models L1Cox and L1-StratifiedCox
perform differently: they perform comparably in small effects setting; L1-StratifiedCox performs better L1Cox
in medium and large effects settings; L1Cox performs better L1-StratifiedCox in mixed effects setting.
LIMSTATE performs better than L1Cox can most likely be explained by the benefit of incorporating the prior
knowledge about the disease progression model: in LIMSTATE, we incorporated information about multi-state
model of disease progression into data process when converting the original data to long-format data; L1Cox,
by contrast, applied L1-regularized Cox proportional hazards model for each transition-specific dataset separately.

Small effects, rho =0 Small effects, rho = 0.2 Small effects, rho =0.5
09- 09 09-

=
-
=
=

AUC values
R
U\
\\
W
i
\'.\I \
IIF IF
Rid
x

AUC values
=
-~

AUC values
=
-~

=
-
=
-

-
-
\

0.8 08 0.8

SREIFIRNRREASETEEE3 SR EIFIENRRENEETFEES SREEFIENRRIAIESSEE3

Samphe sizes Samphe sizes Sample sizes

Medium effects, rho =0 Medium effects, rhe = 0.2 Medium effects, rho = 0.5

= T
e gt ey

- e o
S e e

i

| / =

=
-

AUC values
-
-
AUC values
-
-
AUC values
2
F

2
=
2
=

nE- (L
FREESCENASEHTEEEEER RE BRI RNANENEEETEEE FrBEE NI REHEEEEEER
Sample sizes Sample sizes Sample sizes
Large effects, rho =0 Large effects, rho=0.2 Large effects, rho = 0.5
1.09- g - 109 — 10-
T —— e
--:'--._.-"F - _--__. /':‘- T - — 4 . e -1
g e 09-
w ¢ w w
E w4 Soss- 8 s
g I | H
g Soes gos
< < =
080
0¥
nrE- 0rE
SREEBERAREREHEREIERE ReEEBERAERESEREIIRE S EERRCRHAREAEEESEEE
Sample sizes Sample sizes Samphe sizes
Mixed effects, rho =0 Mixed effects, rho = 0.2 Mixed effects, rho = 0.5
0.9
P
03 e Lt
e —
Por” ety
A 0a-
] R y w . S
Enn Enn E
(=) (=) =
> - >
[5] [5] o
2 3 Fur- Models
L L = Li-StratifiedCox
= Li1Caox
= LIMSTATE
as- MESTATE
0. (L
SREEELENALAARETILEE SEEE S ER IS EE R EEET SsESEIEEEIEEEZIYEES
Sample sizes Sample sizes Sample sizes

Fig. 4: AUC values of Example I for different sample sizes in different settings over 100 replications.
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Table 6: Model selection results of large-scale datasets for the small effects scenario.
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LIMSTATE L1Cox L 1-StratifiedCox
N P TPR FPR AUC TPR PR AUC TPR FPR AUC
03 0.75 038 076 078 043 074 073 039 072
3000 0.2 0.76 0.42 075 0.73 0.51 0.74 0.78 0.45 0.72
0 0.74 0.43 073 0.72 0.52 0.73 0.78 048 071
05 0.87 051 081 0.88 055 0.79 086 0.30 077
6000 02 0.94 0.64 081 0.96 0.68 0.80 0.9 0.63 0.80
0 0.95 0.69 0.80 0.96 0.73 0.78 0.95 0.69 0.79
05 0.02 057 0.83 0.92 0.62 081 0.02 032 0.80
000, 0.8 0.72 0.84 0.98 0.74 0.82 0.98 0.67 0.83
0 0.99 0.76 0.82 0.99 0.78 0.81 0.99 0.73 0.82

Table 7: Model selection results of large-scale datasets for the medium effects scenario.

LIMSTATE L1Cox L. 1-StratifiedCox
N p TPR FPR AUC TPR PR AUC TPR  FPR  AUC
05 0.8 0.60 078 081 051 077 0.77 039 073
30000 g, 0.01 0.64 0.79 0.49 0.60 0.78 0.88 0.53 0.77
0 0.88 0.58 0.78 091 0.64 0.78 0.92 0.60 0.76
05 0.95 0.77 0.82 0.89 0.66 0.81 0.90 030 078
6000 0.2 0.98 0.67 0.84 0.97 0.77 0.83 0.98 0.67 0.82
0 0.99 0.74 0.83 0.99 0.81 0.82 0.99 0.73 0.82
0.5 0.96 0.60 0.86 0.96 072 0.8 0.96 0.55 0.82
9000 0.2 0.99 0.72 0.86 0.99 0.82 0.85 0.99 0.70 0.84
0 l 0.75 0.85 I 0.85 0.84 I 0.76 0.84

Table 8: Model selection results of large-scale datasets for the large effects scenario.

LIMSTATE LI1Cox L 1-StratifiedCox

N p TPR FPR AUC TPR PR AUC TPR  FPR  AUC
05 0.83 047 077 0.82 057 0.77 0.78 041 073

3000 0.2 0.96 0.77 0.80 0.89 0.66 0.79 0.90 0.54 0.78
0 0.99 0.86 0.80 0.93 071 0.79 0.94 0.62 077

03 0.04 0.54 0.84 0.00 072 081 0.90 0,50 0.80

6000 0.2 0.98 0.66 0.84 0.97 0.82 0.83 0.98 0.66 0.82
0 l 0.76 0.85 1 0.86 0.84 I 0.73 0.83

03 0.96 043 0.83 0.96 0.79 0.84 0.95 0,55 0.82

9000 02 0.99 0.67 0.87 0.99 0.87 0.85 0.99 0.69 0.84
0 l 0.74 0.87 1 0.90 0.85 I 075 0.84

LIMSTATE, Ll-regularized multi-state model using the first cross-validation method; L1Cox, L1regularized cause-
specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model using

the first cross-validation method; TPR, true positive rate; FPR, false positive rate; AUC, area under a curve.

LIMSTATE performs better than L1-StratifiedCox even though both LIMSTATE and L1-StratifiedCox models
use long-format data. The reason is that LIMSTATE assigned different weights to each transition while L1-
StratifiedCox did not. Intuitively, LIMSTATE put higher penalties on rare transitions than common transitions.

In summary, the L1-regularized multi-state model (LIMSTATE) is the best one among the regularized
models in terms of variable selection. LIMSTATE performs better at variable selection than the un-regularized
multi-state model (MSTATE) when sample sizes are small or the effects are small, and MSTATE performs better

than LIMSTATE when sample sizes are large or the effects are strong.

4.3 Large-scale datasets
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In this setting, we only compare the performances of three L1-regularized models without including the un-regularized multi-
state model (MSTATE). We set the number of risk factors P =300 and the number of nonzero ones to be 100 per
each transition. Different sample sizes, i.e., N € {3000, 6000, 9000}, are simulated. The results of three L1-
regularized models are shown in Tables 6, 7 and 8. They are consistent with the results of small datasets, which
suggests that LIMSTATE is better than L1Cox and L1-StratifiedCox in terms of accurate variable selection.

4.4 Empirical runtime comparison

We further compare the runtime of three L1-regularized multi-state models on all the simulated datasets. As shown in
Table 9, our LIMSTATE is the most computational efficient as we expected based on our previous computational
complexity analysis.

Table 9: Running time of three L1-regularized models. The mean time over different datasets (100 for small datasets
and 10 for big datasets) required to fit the entire solution path over a grid of 100 A values is reported in seconds.

LIMSTATE L1Cox L1-StratifiedCox
N Small Medium Large Small Medium Large Small Medium Large
0 00l 0.01 00l 002 0.02 002 003 0.03 0.03
100 02 001 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04
0.5 001 0.01 002 002 0.02 0.02 003 0.04 0.04
0 00 0.02 002 003 0.03 003 004 0.05 0.05
B0 02 00 0.02 002 003 0.03 0.04 004 0.05 0.05
05 00 0.02 002 003 0.03 0.04 005 0.05 0.06
0 003 0.03 003 004 0.05 005 007 0.07 0.08
B0 02 003 0.03 003 004 0.05 006 007 0.07 0.08
05 003 0.03 004 005 0.05 007 007 0.09 0.10
0 247 3.29 512 393 a7 649 1143 11.79 1251
3000 0o 253 420 427 394 5.14 643 1134 11.92 1153
0.5 296 442 330 446 5.97 806  12.13 12.49 12.65
0 478 7.93 671 724 9.15 1027 2107 2507 2118
6000 o 622 7.97 556 7.90 9.57 1056 24.87 24.71 20.64
05 528 9.95 532 819 1131 1358 2293 2684 2292
0 848 12.34 1271 1091 13.15 1700 3316 3765 3877
W00 0 828 11.48 1082 1113 13.97 1723 33.63 3386 3737
0.5 906 9.10 939 1215 1564 2001 3572 3583  37.62

LIMSTATE, L1-regularized multi-state model using the first cross-validation method; L1Cox, L1regularized cause-
specific Cox model using the first cross validation method; L1-StratifiedCox, L1-regularized stratified Cox model using
the first cross-validation method

5 Europe Blood and Marrow Transplantation (EBMT) data

In this section, we will compare the performance of LI-regularized multi-state model (LIMSTATE) with un-
regularized multi-state model (MSTATE) in terms of the predictions of the transition probabilities, and
demonstrate how to use our ’L1mstate’ package to further assess the effects of risk factors upon the disease
progression using the Europe Blood and Marrow Transplantation (EBMT) dataset that has been described and
analyzed in deWreede etal. 2011 [13].

The model for the leukemia patients after bone marrow transplantation (so-called EBMT model) is
shown in Figure 5. The EBMT model includes six states and twelve possible transitions. These states are
transplant (Tx) state, recovery (Rec) state, adverse event (AE) state, combination of adverse event and recovery
state (Rect+AE), relapse (Rel) state, and death, respectively. The numeric coding 1, 2, ..., 12 represent twelve
possible transitions. This dataset includes 2279 patients and the observed transitions are summarized in Table
10.
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Fig. 5: The EBMT model.

Table 10: The frequencies and proportions of the number of observed transitions of study population. The numbers
in parentheses are proportions.

Tx Rec AE Rec+AE Rel Death No event  Total

Tx  0(0) 785 (0.34) 007(040)  0(0)  95(0.04) 160 (0.07) 332 [0.15) 2270
Rec  0(0) (0) 0(0)  227(0.20) 112(0.14) 30 (0.05) 407 (0.52) 785
AE 0(0)  0(0) 0(0) 433 (048) 56 (0.06) 197 (0.22) 221 (0.24) 907
Rec+AE 0 (0) ( 0 (0) 0(0)  107(0.16) 137 (0.21) 416 (0.63) 660

The six risk factors are donor-recipient match, prophylaxis, year of transplant, and age of transplant in
years. All of them are categorical risk factors. As in this paper we focus on numeric risk factors, we convert them
to numeric by using dummy coding as follow

x1: donor-recipient match (1 refers to yes and O refers to no)

x2: prophylaxis (1 refers to yes and O refers to no)

x3: year of transplant (1 refers to 1990-1994 and 0 refers to 1985-1989 or 1995-1998)
x4: year of transplant (1 refers to 1995-1998 and 0 refers to 1985-1989 or 1990-1994)
xs: age of transplant (1 refers to 20-40 and O refers to < 20 or > 40)

xe6: age of transplant (1 refers to > 40 and O refers to < 20 or 20-40)

There are 12 allowable transitions in the model and six time-fixed risk factors for all transitions, resulting
in the total number of coefficients as large as 72. For LIMSTATE, we used the regularization path of 100
values of 4, and applied 10-fold for both the first cross-validation method and the penalized cross-validation
method to tune the penalty parameter A. For MSTATE model, we used p-values to select the significant risk
factors (highlighted as bold in Table 11). The results from two models in Table 11 are consistent with the
results in simulation studies: the penalized cross-validation method is more conservative than the first cross-
validation method since it chooses more sparse multi-state models.

Comparison of the models

We compared the performance of LIMSTATE and MSTATE in terms of the predictions of the transition
probabilities. As discussed in the introduction, our aim is to study how LIMSTATE and MSTATE predict the
rare transitions that have relatively small number of observations and the common transitions that have relatively
large number of observations. To do it, the transitions from the transplant state were considered, and three
example patients A, B, and C (see Table 12) were chosen. The observed transitions from the transplant state of three
patients are summarized in Table 13. The summary shows that the transitions from the transplant state to the
recovery state and adverse event state have relatively large number of observations while the transition from
the transplant state to the relapse state and the death state have relatively small number of observations. In
other words, the transitions from the transplant state to the recovery state and adverse event state are the common
transitions and the transition from the transplant state to the relapse state and the death state are rare transitions.
In addition, patient A has the largest number of observations (287) that represents the large sample size case
and patient C has the smallest number of observations (50) that represents the small sample size case. The
same Aalen-Johansen method to predict the transition probabilities were used in both LIMSTATE and MSTATE.
The results are shown in Figures 6: the probabilities of transitions from the transplant state at the starting
computation times 0 to the ending computation times are estimated and stacked together where the distance
between two adjacent curves shows the probability of the state whose name is labeled.
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Table 11: Regression coefficients of two models for EBMT dataset.

Methods Risk factors Transitions

1 2 3 4 ] 6 7 8 9 10 11 12
X -0.167 -0.111 0.196 -0.003 0.190 0.426 0.244 0.126 -0.414 0.008 -0.301 0.572
X5 -0.366 -0.278 0.385 -0.056 -0.282 0.268 -0.008 0.125 0.159 0.324 0.012 -0.112
MSTATE X3 0.401 0.023 0.442 -0.359 -0.095 -0.210 -0.836 0.528 -0.311 -0.644 -0.024 -0.362
x4 0.521 -0.114 0.221 -0.476 -0.151 0.055 -0.980 0.930 -0.580 -0.213 -0.390 -0.352
x5 0.049 0.123 -0.094 0.766 0.292 -0.255 0.150 -0.393 0.172 0.238 0.414 0.760
X5 0.199 0.067 -0.232 0.934 0.470 -0.101 1.465 -0.328 0.423 0.495 0.256 1.337
x, -0.040 0 0 0 0 0.100 0 0 0 0 0 0.374

Xy -0.291 -0.137 0 0 -0.256 0 0 0 0 0.241 0 0

Xq 0.117 0 0 0 0 0 0 0.231 0 -0.378 0 0

PLIMSTATE x4 0.250 -0.002 0 0 0 0 0 0.604 0 0 -0.080 0
Xs 0 0 0 0 0.080 0 0 -0.193 0 0 0.035 0.106
X 0.082 0 0 0 0.178 0 0.460 -0.056 0 0.085 0 0.627
X -0.147 -0.093 0.053 0 0.146 0.385 0 0.068 -0.269 0 -0.262 0.521
X5 -0.352 -0.253 0.183 0 -0.464 0.199 0 0.071 0.161 0.315 0 -0.062
LIMSTATE X3 0.353 0.022 0.183 -0.154 -0.068 -0.207 -0.501 0.458 -0.110 -0.602 0 -0.27
Xy 0476 -0.091 0 -0.230 -0.050 0.022 -0.593 0.850 -0.267 -0.153 -0.304 -0.241
X5 0.007 0.082 0 0.486 0.414 -0.165 0 -0.370 0 0.155 0.305 0.615
Xg 0.158 0.018 0 0.568 0.557 0 1.154 -0.288 0.147 0.398 0.137 1.196

pLIMSTATE, L1-regularized multi-state model using the penalized cross-validation method; LIMSTATE, L1-
regularized multistate model using the first cross-validation method; MSTATE, multi-state model. For MSM
method, the significance of risk factors that are at 0.05 levels are shown in bold.

Table 12: Risk factors information of patient A, B, C and D.

Risk factors Patient A  Patient B Patient C  Patient D

o1 0 0 1 0
o 0 0 0 0
3 1 0 1 0
T4 0 1 0 1
5 1 0 0 1
z6 0 1 0 0

Table 13: The frequencies and proportions of the number of observed transitions from the transplant state of
three patients. The numbers in parentheses are proportions.

Tx Rec AE Rec+AE  Rel Death No event  Total
Patient A Tx 0(0) 99(0.34) 133 (0.46) 0 (0) 0(0.03) 13(0.05) 33(011) 287
Patient B Tx 0(0) 56(0.38) 60 (0.41) 0 (0) 5(0.03) 9(0.06) 17(0.12) 147
Patient C  Tx 0(0) 22(0.44) 16(032) 0(0) 3(0.06) 4(0.08) 5(0.10) 50

From Figure 6, it can be seen that the predicted probabilities from the transplant state at the starting
time O of patient A using MSTATE, pLIMSTATE and LIMSTATE are almost similar but MSTATE and
LIMSTATE slightly underestimates the probability of the relapse (Rel) state, and pLIMSTATE slightly
underestimates the probability of the adverse event (AE) state comparing with the observed probability. In
other words, pLIMSTATE slightly underestimates the probability of the common event while MSTATE and LIMSTATE
slightly underestimates the probability of the rare event. The results of patient B clearly shows that MSTATE
overestimates the probability of the common event - the recovery (Rec) state, and underestimates the probability of the
rare event - the relapse (Rel) state. LIMSTATE also overestimates the probability of the recovery (Rec) state.
pLIMSTATE gives the best overall performance. The results of patient C show the same pattern: MSTATE
underestimates the probability of the rare event - the death state, and inaccurate prediction of the probability of the relapse
state. By contrast, pPLIMSTATE and LIMSTATE produces better predictions of these two rare events. The figure also
indicates that MSTATE, pLIMSTATE and LIMSTATE overestimate the probability of the common event - the adverse
event (AE) state.

In short, the un-regularized multi-state model (MSTATE) tends to underestimate the probabilities of the rare
transitions, and overestimate the probabilities of the common transitions. Its performance becomes worse when the sample
size decreases. In these cases, our L1-regularized multi-state models produce better predictions.

5.2 Further assessment of the effects of risk factors upon the disease progression

We illustrate how to use the functions of our ‘L1mstate’ package to estimate the cumulative hazard rates and
the transition probabilities. For illustrative purposes, we continued using patient A example, and chose another
patient D (in Table 12) that differs from patient A only in terms of year of transplant since our aim is to assess
the effect of year of transplant. The penalized cross-validation method was implemented to select the optimal
tuning parameters.
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Figure 7 shows the results of the Nelson-Aalen estimates of the four transitions starting from the transplant
state for two patients A and D. There is a significant difference of the cumulative hazard rates of the first
transition (from transplant state to recovery state) between the two patients. In other words, the year of
transplant has significant effect upon the cumulative hazard function of the first transition: if patient did the
transplant in 1995-1998, their cumulative hazard rate to recovery state is higher if they did in 1990-1994. The
results of the predicted transition probabilities starting from the transplant state at starting computation time
0 of two patients in Figure 8 also show the strong effects of the year of transplant on the first transition
probability. Note that it also shows the ability of risk factors (year of transplant) in discriminating patients who
will have higher transferring risk (higher cumulative hazard and transition probability) by certain time (starting
study time) from certain state (transplant).

Patient A Patient D
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Fig. 7: Estimated cumulative hazard rates for patient A and patient D.
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Fig. 8: Estimates of stacked prediction transition probabilities from 7= 0 for patients A and D.

Table 14: The frequencies and proportions of the number of observed transitions from the transplant state of
patient D after 0 and 100 days. The numbers in parentheses are proportions.

Days since transplant Tx  Rec AE Rec+AE  Rel Death No event  Total

t=0 Tx 0(0) 94(040) 85(036) 0(0)  4(002) 15(006) 5(015) 233
t=100 Tx 0(0) 2(004) 0(0)  0(0)  3(007) 5(011) 3B(OTS) 45

Although all the transition probabilities presented above are predicted at startingtimes 0, our ‘L1mstate’
package also allows to compute the predicted transition probabilities at different starting computation times. For
example, we can choose the starting computation times are 100 days since transplant to compute the predicted
transition probabilities of patient D.
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Fig. 9: Estimates of stacked prediction transition probabilities of patient D from #= 0 and #= 100 days since
transplant.

Results in Figure 9 show the considerable changes of the distributions of the state probabilities: the
probability of the transplant state increases substantially, and the probabilities of the relapse and death states
also increase. In other words, if patient D can survive through the transplant state during the first 100 days,
the chance that they may stay at the current state increases. Since the risk factors are assumed time-constant,
this phenomenon may imply the effects of the risk factors upon the transition probabilities change over time
or the sojourn time that patient D spent in the transplant state also affects upon the predicted transition
probabilities.

6 Discussion

It is worthy of mentioning that we tried to apply the fused-lasso multi-state models method [38] using their R
package ‘penMSM’, but we could not obtain results due to the huge computation cost. For example, on the one
hand, running one case (medium effects setting, p = 0, sample size of 350, and 20 4 values) with 20 replications
took 24 hours to get the AUC values. It was run on a Dell Inspiron 15 computer (Intel Core 15-5200U 2.2GHz,
8GB RAM). On the other hand, our simulation studies included in total 228 cases with 100 replications for
each case to get the final AUC values. Hence, the required computation time is way too much. However, we
managed to obtain the results of TPRs, FPRs and AUC values without replication. We implemented the
‘penMSM’ package by setting 41> =0, and using 20 values of A1. To compute the TPR and FPR values, we used
the Akaike Information Criterion (AIC) to select the optimal penalty parameters. To compute the AUC
values, we calculated 20 pairs of TPRs and FPRs to construct ROC curve, then compute area under a ROC
curve. The method was not able to perform automated variable selection since the results did not include
zeros, so we rounded up the results to the 2”7 digit.

The results in Table 15 show that when N =250 and N =450, the fused-lasso multi-state model produces
worse results with lower TPRs and higher FPRs comparing with LIMSTATE model and in many cases, its
FPRs are higher than TPRs.

Table 15: Model selection results of Example I using the fused-lasso multi-state model approach.

] Small effects Medium effects Large effects Mixed effects

N TPR FPR TPR FPR TPR FPR TPR FPR
0.38 0.29 0.77 0.43 0.69 0.71 0.54 0.57

20 0.2 0.69 0.5 0.69 0.64 0.69 0.79 0.54 0.64
0.5 0.46 0.50 0.69 0.50 0.85 0.57 0.46 0.64

0 0.69 0.71 0.77 0.64 0.85 0.71 0.69 0.57

250 0.2 0.62 0.71 0.62 0.79 0.92 0.64 0.62 0.64
0.5 0.62 0.71 0.92 0.86 0.92 0.64 0.85 0.64

0 0.92 0.50 0.92 0.93 0.85 0.79 0.85 0.64

150 0.2 0.77 0.86 1.00 0.93 0.85 0.86 0.62 0.79
0.5 0.62 0.42 0.77 0.86 1.00 0.86 0.92 0.86

TPR: true positive rate; FPR: false positive rate.
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Fig. 10: AUC values of Example I for different sample sizes in different settings: 100 replications for each of first
four models, no replication for the fused-lasso multi-state model (penMSM).

Figure 10 shows that the fused-lasso multi-state model produces the worst performance in term of the
AUC values. In other words, the fused-lasso multi-state model method does not do variable selection while our
LIMSTATE method is developed for this purpose. Our simulation studies showed that using the penalized
cross-validation method to select the optimal tuning parameter produced more sparse models than using the
first cross-validation method in our Ll-regularized multi-state models. In some cases, however, it tends to
suppress too much. For example, in EBMT study, the results from Table 11 show that using the penalized
cross-validation method suppresses almost all of the risk factors in some rare transitions such as transitions 3, 4
and 9. Hence, the penalized cross-validation method should be used with caution in real world applications.

=7 Conclusions and future works

We propose the L1-regularized multi-state model framework for simultaneous parameter estimation and
variable selection using the L1-regularized partial likelihood approach. We devise the one-step coordinate
descent algorithm and use a local quadratic approximation of the log-partial likelihood to solve the
corresponding optimization problem, which can offer significant improvement on the computational efficiency.
Our proposed method demonstrates the state-of-the-art performance in terms of identifying the significant risk
factors comparing with the existing regularized multi-state models in simulation studies. It also performs better
at doing variable selection and predicting the transition probabilities in cases with small sample sizes
comparing with the un-regularized approach in simulation and real-world cases.
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Here we focus on specifying a Cox model for each transition, but our approach can be easily extended
to other types of models for each transition. Our L1-regularized multi-state models can be applied to competing
risks data in the cause-specific hazards models setting. If other models such as the subdistribution hazard model
or competing risks quantile regression model are used to analyze competing risks data, the literature on
variable selection using regularized approaches can be found in several papers [20], [4], [18], [39], [3],[28],[17].

In this paper, we also assumed that the coefficients are constant over time, but it is common in
longitudinal studies to collect information of the same risk factors at follow-up visits. Therefore, it may be
beneficial to utilize the time-dependent risk factors. One approach is to use piecewise constant coefficients that
allows time-varying risk factors, but it may require totally different techniques for model inference. Furthermore,
its model may be complicated and hard to interpret. Another approach is to use joint models of time-to-event
and longitudinal data which will be future research topics.

In applying our L1-regularized multi-state models to EBMT dataset, we used dummy variables for two
categorical risk factors with three levels, but our current approach cannot guarantee these dummy variables
enter or leave the model together. A more appropriate way to handle categorical risk factors is through group
lasso penalty [45]. In addition, the analyses of the risk factor effects upon the cumulative hazard functions and
the transition probabilities suggest two extensions should be considered: one is about the time-dependent effects
of risk factors in multi-state models and the other is the semi-Markov multi-state models. These would be
our future directions to extend our method.
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