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Survival data analysis has been leveraged in medical research to study disease morbidity and mortality, and

to discover significant bio-markers affecting them. A crucial objective in studying high dimensional medical

data is the development of inherently interpretable models that can efficiently capture sparse underlying

signals while retaining a high predictive accuracy. Recently developed rule ensemble models have been

shown to effectively accomplish this objective; however, they are computationally expensive when applied to

survival data and do not account for sparsity in the number of variables included in the generated rules. To

address these gaps, we present SURVFIT, a “doubly sparse” rule extraction formulation for survival data.

This doubly sparse method can induce sparsity both in the number of rules and in the number of variables

involved in the rules. Our method has the computational efficiency needed to realistically solve the problem

of rule-extraction from survival data if we consider both rule sparsity and variable sparsity, by adopting

a quadratic loss function with an overlapping group regularization. Further, a systematic rule evaluation

framework that includes statistical testing, decomposition analysis and sensitivity analysis is provided. We

demonstrate the utility of SURVFIT via experiments carried out on a synthetic dataset and a sepsis survival

dataset from MIMIC-III.
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1. Introduction

When analyzing biological and medical datasets, an often encountered scenario is the need

to simultaneously analyze multiple variables and understand their impact on a certain

disease or biological condition. In this endeavor, regression methods have been a typical

approach. These methods help us understand the relative importance of variables primarily

in terms of their average effects on the outcome rather than their synergistic interactions.

Though adding interaction terms to the regression model can certainly enable their applica-

tion in evaluating the significance of these interaction terms, regression models themselves
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are not adequate for discovering such interactions due to both computational and statisti-

cal challenges, i.e., the number of potential interactions grows at a super-exponential rate

regarding the number of variables. The rule learning approach is a natural way to address

these challenges. An old song since its inception in the early 70s and 80s as a typical

approach of Artificial Intelligence, it now finds its new tune in the 21st century as a result

of considerable developments in the fields of machine learning and optimization such as

random forests (Breiman 2001) and sparse regularization models such as LASSO (Tibshi-

rani 1996). Rulefit (Friedman and Popescu 2008) is a good example of a model that cleverly

combines these methods by first generating a huge list of rules from a tree ensemble, and

then applying LASSO to select a minimum set of rules that can predict the outcome with

a good accuracy. Compared to rule learning methods developed before Rulefit that mostly

used heuristic algorithms (Cendrowska 1987, Cohen 1995) or logic deduction approaches

(Michalski 1980, Quinlan 1990) to derive rules, Rulefit is both computationally efficient,

inherited from random forest and LASSO, and statistically well justified, as random forest

uses bootstrap aggregation to generate an ensemble of tree models and has the ability to

cover a wider range of the rule space, therefore being less susceptible to being stuck in

local optima. An additional advantage of applying rule based models to biomedicine is

that they can be easily communicated to, and evaluated by medical professionals. Several

recent works have successfully applied rule based models to diverse biomedical datasets to

understand risk-predictive profile patterns and build predictive models for diseases, includ-

ing Type 1 diabetes (Lin et al. 2014), Type 2 diabetes (Patil et al. 2010), depression (Lin

et al. 2018), classification of cancer gene expression data (Glaab et al. 2012) etc. However,

these works were not focused on survival data. Survival rule models proposed in literature

(Fokkema 2017, Wróbel et al. 2017) lack the methodology to impose sparsity on the vari-

ables that constitute the rules. Sparsity in variables has been proven to be a main concern

in a wide range of applications. Surprisingly, sparsity of variables involved in the rules has

not yet been addressed in rule learning literature. Therefore, our research seeks to address

these gaps and focuses on a rule learning approach that can efficiently learn a “doubly

sparse” set of rules and analyze their properties for survival analysis, a field with critical

applications in biomedicine.
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1.1. Background

Survival analysis is a classical field of statistical learning that has been widely used to

study how statistical factors influence morbidity and mortality for different diseases, e.g.

congestive heart failure (Paulon et al. 2020), gene selection and screening for lymphoma

(Pang et al. 2012) and pediatric trauma (Mittal et al. 2014), to name a few. Challenges

in survival analysis applied to medical data stem from complexity of underlying processes,

high dimensionality of datasets, and the incompleteness of time to event data.

1.1.1. Survival Analysis. Survival data is indexed by the sequence (ti, δi,xi) for i ∈
{1, . . . ,N} where N is the total number of observations and ti is the observation time,

i.e., ti = min (Ti,Ci), where Ti is the time-to-event occurrence (event time) and Ci is the

time of last observation (censoring time). The binary variable δi represents the status of

the i-th observation at the observation time, i.e., δi takes value 1 if the event has occurred

at ti, otherwise it takes value 0. Since event times are only available for a small subset of

the total observations, the study of survival data is a challenging task. Survival analysis

methods are used to model the survival function, S(t;x) denoting the probability that the

event has not yet occurred at time t for an observation with variables x. Assuming that

the time-to-event, T , is a continuous random variable with a probability density function

f(t;x), we can define the survival function, S(t;x), as

S(t;x) = Pr{T ≥ t}=
∫ ∞

t

f(s;x)ds. (1)

The hazard function, h(t;x) is the instantaneous rate of occurrence of the event at time t

that is then defined as

h(t;x) = lim
dt→0

Pr{t≤ T < t+ dt | T ≥ t}
dt

= lim
dt→0

Pr{t≤ T < t+ dt,T ≥ t}
Pr{T ≥ t}dt =

f(t;x)

S(t;x)
. (2)

Survival analysis is a mature field which includes several standard parametric, semi-

parametric, and non-parametric methods as well as modern machine learning models. In

the popular Cox regression model (Cox 1972), a proportional hazards assumption that

the effects of the predictor variables upon survival are constant over time is made. Cox

regression, like other parametric generalized linear models, assumes a specific linear link

between the predictor variables and the hazard function such that the ratio of hazards

between two observations remains constant over time. Interactions between variables may
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be incorporated in this model, but they need to be done explicitly. Thus, machine learn-

ing models such as survival trees (LeBlanc and Crowley 1992) and tree ensembles, such

as random survival forests (Ishwaran et al. 2008), have been developed to mitigate the

limitations of parametric models. Survival trees are a flexible approach to deal with these

challenges as they make no assumptions on the response function and can detect interac-

tions automatically.

1.1.2. Survival Trees. Parametric (and semi-parametric) regression models impose a

specific link function on the response and face challenges in incorporating interactions

between variables. Trees provide a flexible approach that can detect interactions in variables

without explicitly specifying them beforehand. They also do not assume a specific link

function and are widely used as they are easy to interpret and understand for medical

professionals. Trees naturally group together observations with similar outcomes which

leads them to be highly interpretable. The main difference between classical decision trees

and survival trees is in the splitting criteria used to partition the data - survival trees

use criteria that make each child node to be most similar in terms of their survival or

hazard functions. Several splitting criteria have been developed for survival trees, e.g.,

the maximum log-rank statistic (Segal 1988, LeBlanc and Crowley 1992) and the log-rank

score (Hothorn and Lausen 2003).

1.1.3. Random Survival Forests. Random forests are an ensemble model generated

by combining many decision or survival trees where each tree is built on a randomly

bootstrapped sample of data and a randomly selected subset of variables. The average

outcome of all of these binary trees is the output of the random forest. Random forests

were initially developed for regression and classification problems (Breiman 2001) and later

extended to apply to survival data, (Ishwaran et al. 2008, Wright and Ziegler 2017) where

an ensemble of survival trees is used to build a forest. For a given input, an average of the

cumulative hazard prediction of all the survival trees in the ensemble is the output of the

random survival forest.

1.1.4. Sparse Regularization. Modern medical datasets are high dimensional, which

leads to challenges associated with the curse of dimensionality, particularly in datasets

with many correlated variables. This makes it critical to build models that are sparse with

respect to the number of variables, and to identify the most significant variables affecting
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the underlying process. Development of sparse regularization methods for survival anal-

ysis is a line of efforts seeking to deal with the challenges of high dimensional data in

both regression-based and tree-based methodologies. Given a data matrix X ∈R
n×m of n

observations and m variables where m is large, our goal in variable selection is to choose

a number of variables k(�m) that are the most significant predictors of the output. Con-

sider a model parametrized by the coefficients corresponding to the variables, β and a

loss function L(β;X) that is to be minimized to obtain model coefficient estimates. Sparse

regularization works by regularizing the loss function with sparsity inducing norms such

as the �1 norm, ‖β‖1 =
∑n

i=1 |βi| that was first proposed as the LASSO model (Tibshirani

1996) for linear regression. The �1 norm has the property of shrinking the coefficients closer

to zero which enables variable selection by eliminating those variables whose coefficients

are nearly zero. An important direction in sparse regularization is structured sparsity reg-

ularization to obtain desired model characteristics such as selection of groups of variables,

i.e., selecting all variables in a predefined group of variables or none at all. The Group

LASSO (Yuan and Lin 2006) solves the group selection problem by using an �2,1 norm reg-

ularization,
∑|G|

g=1 ‖βg‖2, where βg are coefficients in group g, belonging to a set of groups

G and the �2 norm is given by ‖βg‖2 =
√∑

i∈g β
2
i . The Sparse Group LASSO (Simon et al.

2013a) generalizes the Group LASSO to also induce within group sparsity in the solution

by using a regularization that is the sum of �2,1 and �1 norm, i.e.,
∑|G|

g=1 ‖βg‖2+‖β‖1. As the
complexity of the sparsity-inducing norms increases, their adoption to survival regression

models such as the Cox regression (Cox 1972) still poses significant algorithmic challenges

despite the computational advantages of these methods in the typical regression setting.

While most of these efforts mainly focus on variable selection when the link function of the

model is linear, the advances in sparse regularization approaches also positively impacted

the work on tree-based methods in regression and classification like Rulefit (Friedman

and Popescu 2008) as well as in survival analysis, such as the method developed in pre

(Fokkema 2017), where a sparse set of survival rules are generated by constructing an �1-

regularized Cox regression model over an exhaustive set of rules extracted from the data

through bootstrapped survival trees. However, the Cox partial likelihood function used in

pre has difficulty in scaling to high dimensional data. Although the regularized Cox model

can handle relatively high dimensions, the optimization algorithms that are built on the

Cox partial likelihood function scale poorly when regularized with structured norms such

as Group LASSO and Sparse Group LASSO (Simon et al. 2013b).
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1.2. Our Contributions

We propose a new rule learning method, SURVFIT, with three main contributions. First,

we aim to fill in a gap that concerns rule learning with variable sparsity, i.e., “double

sparsity” for survival data analysis. To achieve this, we propose a formulation that adopts

a quadratic loss function and an overlapping group regularization term. The quadratic loss

function allows us to bypass the partial log-likelihood loss function of the Cox models that

has caused considerable computational difficulty for high-dimensional applications, and

the proposed regularization enables us to not just select the most important rules but also

induce sparsity of variables involved in the selected rules. This “double sparsity”, in both

rules and variables, has so far not been addressed in the literature of rule learning. Second,

we propose and compare different optimization strategies for solving our optimization

problem and discuss their advantages and trade-offs. Third, we provide a systematic rule

evaluation framework for evaluating and examining the statistical significance of the rules

extracted via SURVFIT. The framework includes statistical testing of rules’ ability to

discriminate between low risk and high risk observations, decomposition analysis, and

sensitivity analysis of the cutoff values. An overall presentation of this framework is shown

in Fig. 1. The rest of this paper is organized as follows: Section 2 will introduce the

details of SURVFIT, derive the optimization strategy and algorithms, and Section 3 will

describe the rule analysis framework. In Section 4, we will present both simulation studies

to examine sparsity properties of our method, and a comprehensive data analysis of a

medical dataset using SURVFIT. Section 6 will summarize our contributions and conclude

this paper. Note that, in this paper, we use lower- or upper-case letters, e.g., x or X,

to represent scalars, bold-face lower-case letters, e.g., x, to represent vectors, bold-face

upper-case letters, e.g., X, to represent matrices, and upper-case italic letters, e.g., X, to

represent random variables.

2. Methodology

Rule learning is a challenging problem mainly due to the combinatorial nature of rules,

i.e., a rule is expressed as the product of a few indicator functions I(·) on propositions of

values taken by variables in an observation x,

rk(x) =

|x|∏
p=1

I(xp ∈ spk). (3)
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Time

Figure 1 A schematic outline of the SURVFIT algorithm

For continuous variables, spk is a contiguous interval while for categorical variables, it is an

explicitly specified set. A rule either gives 0 or 1 as its outcome for an input observation.

If its outcome is 1, it means all the conditions on its constituent variables are satisfied,

i.e., {xp ∈ spk}|x|1 . We say that rule r is endorsed by observation x if r(x) = 1. Through this

combinatorial nature, rules provide an effective semantics to capture interactions among

variables, not only in the qualitative sense, i.e., which variables interact with which, but

also in the quantitative sense, i.e., the cutoff values used in the conditions of the rules. It is

also due to this combinatorial nature that rules are information-rich, but computationally

and statistically challenging to detect from data. Recent breakthroughs in rule learning

benefit from an insight that a decision tree can be readily decomposed into a set of rules

as shown in Fig. 2. Tree ensemble models such as random forests can therefore be used to
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generate a huge set of rules. Then, formulations could be developed to filter this set and

select a sparse set of the most representative and informative rules. Rule learning methods

such as Rulefit (Friedman and Popescu 2008) and pre (Fokkema 2017) follow this line.

However, these methods do not consider the sparsity in the variables that are involved

in the extracted rules. Sparsity of variables have proven to be a critical trait of machine

learning models that can achieve robust prediction performance and interpretability in

practice. An immediate example that will be shown in the medical application in this

paper is that variables collected in healthcare applications are usually highly correlated,

and thus it is important to be able to generate rules that involve only a sparse selection

of significant variables. For example, two variables may show up in different rules, though

only one variable is truly significant, and the other is redundant.

0

1 2

6543

I (X1 <= c1)

I (X6 <= c3)

I (X1 > c1)

I (X6 > c3)

EXTRACTED RULES

3

I (X2 {a,b,c})I (X2 {a,b,c})
5

4

NODE

6

X1 <= c1  & X2   {a,b,c}

X1 > c1  & X6 <= c3

X1 <= c1  & X2   {a,b,c}

X1 > c1  & X6 > c3

Figure 2 An example decision tree and corresponding rules extracted from terminal nodes

2.1. Rule generation

In order to generate an abundant set of rules that will be pruned by our learning formu-

lation, we use the following algorithm to build the random survival forests.

1. Draw a given number of bootstrap samples from the original data.

2. Grow a survival tree for each bootstrapped sample as follows:

(a) Use one of the splitting criteria discussed in 1.1.2 to recursively build a tree using

a randomly selected subset of variables for each split.

(b) Grow the tree until no new child nodes can be formed because of the stopping

condition that each node must contain a minimum number of unique events.

3. Aggregate all the survival trees to obtain an ensemble.

4. Extract rules of the desired length and complexity from the tree ensemble to generate

a large rule list.
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2.2. The loss function

This initial set of rules is denoted as {rk(x)}K1 , where K is the total number of rules. We

then develop a learning formulation to guide the selection of the final rules, which should be

a minimum number of rules (i.e., the number should be much smaller than K) that could

achieve optimal prediction on the time-to-event outcome of survival data. It is tempting

to use the existing Cox proportional hazards regression model and take the K rules as K

input variables, then conduct sparse learning on this Cox model-based formulation. This

is a reasonable approach, but the partial likelihood function used in the Cox regression

model has been found to scale poorly in high-dimensional applications, particularly with

complex group norms (Simon et al. 2013b), including the recently developed pre (Fokkema

2017), a rule learning method for survival analysis, that is also built on the negative partial

log-likelihood loss in the Cox proportional hazards model. Thus, we resort to another loss

function. In this paper, we concern the linear model, but our method could be extended

to nonlinear models as well. The prediction by the linear model is,

t(xi) =β0 +
K∑
k=1

βkrk(xi). (4)

We adopt the robust loss function developed in Ke et al. (2017),

min
β

l(β,X) :=
∑

{i|δi=1}

1

2

(
t(xi)− ti

)2
+

∑
{i|δi=0}

γ

2

(
min(0, t(xi)− ti)

)2
. (5)

The first term in (5) is the least-squared loss that penalizes the difference between the

predicted outcome t(xi) and the real outcome ti for each complete observation xi. The

second term is a squared hinge loss which penalizes the predictions for censored data only

when the predicted event time t(xj) of censored observation xj is smaller than the censor

time tj. The penalty is zero when t(xj) is greater than tj. The hyperparameter γ controls

the influence of censored data in parameter estimation and is selected via cross-validation.

2.3. Doubly Sparse Rule Extraction

Consider the regression optimization problem (5) applied to rules, i.e, let β be the coef-

ficients of the complete set of rules, and X the rule data matrix. Each column in X is a

binary variable denoting whether or not the observations endorse a rule. To achieve spar-

sity in both rules and variables, we integrate two regularization terms simultaneously. On

one hand, to enforce sparsity on the rules, we adopt the �1 norm that was used in the least
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absolute shrinkage and selection operator (LASSO) regularization for regression proposed

by Tibshirani (1996), i.e., it regularizes the loss function with �1 norm penalty on the coef-

ficients corresponding to rules (‖β‖1 =
∑n

i=1 |βi|) to push some coefficients to 0. In the rule

learning literature for regression, Rulefit (Friedman and Popescu 2008) and pre (Fokkema

2017) utilise LASSO to extract a sparse rule list from a rule ensemble. Following this line,

we propose the following formulation to enforce sparsity in the cardinality of rules

β̂= argmin
β

l(β,X)+λ · ‖β‖1, (6)

where l(β,X) is the squared error loss for regression. As we have mentioned, this formu-

lation does not enforce sparsity among the variables involved in the extracted rules. As

one of the main contributions of this work, that is to enforce a “doubly sparse” set of

rules, our idea is inspired from the work on sparsity-inducing norms for structured variable

selection (Jenatton et al. 2011). A particularly useful concept is the Overlapping Group

LASSO regularization. Here, as Fig. 3 shows, the rules form a group structure due to their

overlapping use of the variables. To exploit this structural property in order to enforce

sparsity on the variables, the regularization term we propose to use is therefore,

Ω(β) =
∑
G∈G

‖wG ◦β‖2, (7)

where G is a set of overlapping groups of coefficients; wG
G∈G are |β|-dimensional vectors

such that wG
j > 0 if j ∈G and wG

j = 0 otherwise; x ◦y denotes element-wise multiplication

of two vectors, x and y. This regularization term Ω(β), despite its difference from the �1

norm from the surface, is like an �1 norm at the group level to promote group sparsity. A

few different group structures that may be used to obtain specific sparsity patterns were

explored by Jenatton et al. (2011), though the challenge of group construction was not

discussed since it requires prior information about the problem under consideration and the

required sparsity patterns. Since our work has a well-defined goal, i.e., the variable sparsity

in a rule ensemble, we can develop a natural way to construct the groups. To do this, we

first choose our set of groups G = {G1, . . .GP} such that each group Gp, corresponding

to the variable xp, contains the indices of the rules which involve the variable xp. That

is, if there are np number of rules containing variable xp, then Gp = {p1, . . . pnp}, where
{p1, . . . pnp} ⊆ {1, . . .K} and all rules rpj (1≤ j ≤ np) contains the variable xp in at least
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one of its combinatorial statements. Next, for each group G in G, we define βG, a vector

in R
|G|, that consists of the elements of β belonging to G. Now, the formulation (6) could

be further developed as

β̂= arg min
β

l(β,x)+λ1 · ‖β‖1 +λ2 ·
P∑

p=1

qp‖βGp‖2. (8)

Note that here qp is an optional weight for each group. In our case, qp =
√

1/|Gp| to

normalize the penalty term for groups of varying sizes. The hyperparameters λ1 and λ2

can be determined by cross-validation. The obtained solution is such that the potential

nonzero patterns in the model are a complement of an intersection of a subset of groups.

Fig 3 provides a representation of the sparsity structure that this regularization will induce.

For example, if the group 4 is left out of the model, then all the coefficients belonging to

this group will be zero. Since group 4 corresponds to the fourth variable (x4), and contains

coefficients of all rules containing x4, all such rules are left out of the model. Thus, we

are left with a complement of the intersection of the groups with group 4, and obtain a

subset of rules that does not contain variable 4. The �1 regularization term here produces

general within-group sparsity among all rules to select the most significant rules. Therefore
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Figure 3 Example of variable-sparse structure induced by overlapping group lasso regularization in SURVFIT.

When the group corresponding to variable 4 (red) is left out, it zeroes out all the the coefficients of

all rules containing variable 4 (crossed out).

a larger value of λ2 will induce greater group level sparsity in the resulting coefficients, β̂,

which, for the selection of groups G proposed by us will mean greater degree of variable

sparsity in the extracted rule set.
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2.4. Optimization Strategy

The challenge to solve the formulation (8) is that the overlapping group structure intro-

duces interdependency among the decision variables of the optimization problem. For

non-overlapping groups (Yuan and Lin 2006), efficient algorithms that depend on seper-

ability of variables, such as block coordinate descent can be applied (Simon et al. 2013b).

To overcome this challenge, we reformulate this problem as a second-order cone program

(SOCP) in Section 2.4.1, and use the interior point method to solve it optimally. How-

ever, this strategy will increase the problem size and therefore the computational cost.

Alternative methods that may be more efficient include proximal methods, where a key

challenge is to develop efficient solutions of the proximal operator. For instance, Chen

et al. (2012) proposed a smoothing proximal gradient method where a smooth approxi-

mation of the overlapping group lasso norm (7) and the gradient of this approximation

are derived. This smoothing strategy enables a fast iterative shrinkage-thresholding algo-

rithm (FISTA) (Beck and Teboulle 2009) to solve the problem. Lei Yuan et al. (2013)

proposed the FOGLASSO algorithm using an approximate dual of the proximal operator

of the overlapping group lasso norm and its solution. We discuss their algorithm briefly

in the following section. Chen et al. (2012) showed that the objective function of their

semi-smooth approximation converges to the optimal solution, and Lei Yuan et al. (2013)

observed that though FOGLASSO lacks a convergence guarantee, their algorithm almost

always converges to the optimal solution in practice. However, neither study the sparsity

structure of the solution they obtained in comparison to the sparsity structure of a solu-

tion which does not employ approximations. An understanding of the solution structure

obtained is critical in high dimensional problems with multiple optimal solutions where

the goal is not just to obtain a solution with an optimal value but also to minimize the

number of nonzero coefficients in the solution.

2.4.1. SOCP optimization. In what follows, we cast the formulation (8) as a second-

order cone program (SOCP). First, we introduce a variable, zi = min(0, t(xi) − ti),∀i ∈
{i | δi = 0}. Then, we linearize the first regularization term in (8) by introducing two new

variables, β+,β− such that β = β+ − β−, |β|= β+ + β−, and β+,β− ≥ 0. Third, to deal

with the �2 overlapping group norm, we introduce new variables y ∈R
P such that

yp ≥ ‖βGp‖2 ∀p∈ {1, . . . P}. (9)
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The reformulated problem can be written as

min
β+,β−,z,y

‖A(β+ −β−)− t‖22 + γ‖z‖22 +λ1 · (β+ +β−)+λ2

P∑
p=1

qpyp, (10)

with the constraints,

β+,β− ≥ 0, (11)

z≤ 0, (12)

z≤B(β+ −β−)− c, (13)

yi ≥ ‖(β+
Gi

−β−
Gi
)‖2 ∀i∈ {1, . . . P}. (14)

Here A is the rule data matrix corresponding to event observations, B is the rule data

matrix corresponding to censored observations and, t and c are the event times and censor

times respectively, and (14) is a second-order cone constraint. This problem can now be

solved by standard SOCP solvers. We use CPLEX in our experiments.

2.4.2. FOGLASSO. Another algorithm that can solve the formulation approximately

is the FOGLASSO algorithm (Lei Yuan et al. 2013) implemented in the SLEP (Liu et al.

2009)MATLAB package. Here we briefly introduce some details of the FOGLASS algorithm

for the sake of completeness. FOGLASSO uses an accelerated proximal gradient method

where the coefficient estimates at each iteration are, βi+1 = π
λ1/L
λ2/L

(si − 1
L
l
′
(si)), where si is

the affine combination of the current and previous estimates βi and βi−1 as used in FISTA

(Beck and Teboulle 2009), Li is an appropriate constant determined via backtracking line

search by the Armijo-Goldstein condition (Armijo 1966), and π(·) is the proximal operator

of the non-smooth regularization term, φλ2
λ1
(β) = λ1 · ‖β‖1 + λ2 ·

∑P
p=1 qp‖βGp‖2. Then, the

main optimization problem of the proximal operator is derived to be

πλ2
λ1
(v) = arg min

β∈RP

{
gλ2
λ1
(β) =

1

2
‖β− v‖2 +φλ2

λ1
(β)

}
. (15)

FOGLASSO uses an efficient computational algorithm to solve this proximal operator by

reformulating it as a smooth and convex dual problem. A pre-processing step is developed

to identify many zero groups, which reduces the complexity of the optimization problem.

However, a trade off is that their proximal operator solution is inexact, and it is stated

that the optimal convergence rate is not guaranteed, though the algorithm works well in

practice.
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2.4.3. Scalability and Computational Analysis Here we provide an in-depth analysis

of the computational complexity of SURVFIT as well as the existing baseline methods in

the literature.

The package pre uses the Cox-lasso formulation to extract rules. The time complexity

for Cox-regression is O(NK2) while that of the Cox-lasso is O(NK) (Wang et al. 2019).

However, there are significant computational challenges to optimizing the Cox partial like-

lihood loss function. The partial likelihood does not naturally decouple over individuals

or subsets of individuals, therefore when regularized with a non-smooth term such as the

overlapping group lasso, first order proximal gradient descent methods like FOGLASSO,

prox-Grad and alternating direction method of multipliers (Boyd et al. 2004) cannot be

used. This also means that the stochastic gradient-based optimization methods are not

suitable for the task (Tarkhan and Simon 2020). We have not come across any works that

have addressed these computational challenges in our review. One approach could be to

use the standard Newton-Ralphson second order scheme (Boyd et al. 2004), however this

is not practical for even medium-sized problems because it involves inverting large matrices

at each iteration, which itself has complexity O(K3), infeasible to solve our problem of rule

selection since we start with a large number of rules. Our approach of using a quadratic

loss function instead of Cox-partial log likelihood loss skirts this issue, allowing us to use

efficient first order and second order optimization schemes (8).

In this paper, we have discussed two different optimization schemes, SOCP and

FOGLASSO to solve Problem (8). Using the quadratic loss function instead of the Cox

partial likelihood loss allows us to formulate the problem as a second order cone program

and solve it using CPLEX solver. The solver uses the barrier interior point method (IPM),

a second order method known to converge in O(log(1
ε
)) iterations, where ε is the accuracy

at convergence. The per-iteration time complexity of IPM (Boyd et al. 2004) in our case

is O(
K2(N +

∑
p∈1···P |Gp|)

)
. First order proximal gradient methods such as FOGLASSO

(Liu et al. 2009) and Prox-Grad (Chen et al. 2012) have been proposed to efficiently solve

the problem of convex loss functions regularized with an overlapping group lasso loss.

The algorithms take more iterations to converge than the second-order IPM algorithm,

i.e O(1
ε
) iterations. However, the per iteration complexity is lower by orders of magni-

tude thereby reaching convergence faster. For Prox-Grad, the per-iteration complexity is

O(NK +
∑

p∈1···P |Gp|) (Chen et al. 2012). In practice IPM is found to be more accurate
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than proximal methods though proximal methods are more efficient and scalable for large-

scale problems. Thereby, we see that applying an overlapping group regularization term

to induce variable sparsity for the standard Cox partial likelihood loss has a time com-

plexity of atleast O(NK3) while our formulation can be solved by first order methods

in O(NK +
∑

p∈1···P |Gp|) and second order methods in O(
K2(N +

∑
p∈1···P |Gp|)

)
. This

is much more efficient in high-dimensional problems such as rule extraction where often

K >>N , i.e., the number of rules is much greater than the number of observations.

3. Interpretability of the Rules

Most rule learning methods in the literature of machine learning only concern rule discov-

ery, namely the identification of important rules from data such as Rulefit (Friedman and

Popescu 2008) and pre (Fokkema 2017). For instance, a rule suggests an interaction among

a set of variables, and the essence of an interaction is that the variables give a greater effect

when combined than taken individually. A rule learning algorithm may generate a set of

rules, but it cannot prove that the interactions are genuine. Here, we further develop a

rule analysis framework that employs a combination of statistical methods such as survival

data analysis, hypothesis testing, and regression analysis to evaluate the significance and

to better understand the implications of the discovered rules in various contexts.

3.1. Statistical Testing.

We use statistical testing to evaluate whether the extracted rules are significantly associated

with the outcome. Specifically, we analyze whether the subjects endorsing each rule have

a significantly higher or lower risk of onset of the event as compared to subjects not

endorsing the rule. For this goal, the Kaplan-Meier curve is used to study the separation of

the survival functions of the groups of observations defined by each rule. We also employ

the log-rank test (Mantel 1966), which is a hypothesis testing method used to examine

differences in risk of event occurrence between the two groups.

3.2. Decomposition Analysis.

Decomposition analysis is used to examine the rules to see if the interactions among the

variables are genuine. Basically, we decompose the rule by removing one variable at a time

and evaluating the impact of this removal, i.e., by statistically evaluating the difference

using the Kaplan-Meier curve and log-rank tests. If the removal of a variable is found

to have little impact on the overall significance of the rule, which is possible since the
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rule learning algorithm uses a greedy predictive metric to guide the rule selection process,

then we should trim the rule by removing this variable. On the other hand, the variable

which has the greatest impact on the significance of the rule is said to be the dominant

or critical variable of that rule. And if the combination of two or more variables has a

much higher association with the risk than either of the variables taken individually, then

the interaction of those two variables is highly significant in predicting the risk. Those

are possible scenarios the decomposition analysis could shed light on and reveal more

understanding of the rules and their constituent variables.

3.3. Sensitivity Analysis.

Besides the combinatorial characteristic of the rules, cutoff values of the constituent vari-

ables are also essential information in defining the interactions among the variables. Sen-

sitivity analysis is conducted to evaluate how sensitively the statistical significance of the

rule depends on the cutoff values of the variables used in the rule. We study the change in

the odds ratio of the two groups defined by the rule as the cutoff value of a variable in a

rule changes. The odds ratio (OR) (Bland and Altman 2000) is the ratio of the probability

of event occurring in the subgroup endorsing the rule to the ratio of the event occurring

in the other subgroup. This sensitivity analysis would reveal different scenarios for the

cutoff values as well, e.g., there is sometimes indeed a best cutoff value for a factor, with

a cutoff value that maximizes the statistical significance of the rule, and around the best

value there is a either a sharp or smooth descending slope. For some other variables, there

seems to be a range of cutoff values that are equally good. Thus, sensitivity analysis could

reveal unique insights regarding the variables and the rules that engage them.

4. Numerical Experiments

In this section we conduct numerical experiments to evaluate the proposed SURVFIT

method, compare the solutions produced by the two optimization strategies described in

Section 2.4, and compare SURVFIT with the baseline approach that uses a regularized

cox regression model and survival random forest. One of our goals is to demonstrate the

variable sparsity property of SURVFIT. Therefore, the rules extracted with (8) and without

(6) doubly sparse regularization, and their decomposition, and sensitivity analysis, are

also presented. Predictive and variable selection performance for each of the models are

evaluated over 100 repetitions of the same experimental setup, with 80/20 partitions of

the data for training/testing.
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4.1. Evaluation Criteria

The following measures are used to rank, and evaluate the significance of the rules extracted

by SURVFIT.

1. Importance. We rank the rules obtained by our model by the importance measure,

I(r) which is defined as

I(r) = β̂r

√
s(r)(1− s(r), (16)

where s(r) is the support and β̂r is the coefficient estimate of rule r.

2. Support. The support of a rule, s(r) is defined as the fraction of total observations

that endorse the rule,

s(r) =

∑N
i=1 r(xi)

N
. (17)

3. Odds Ratio. The odds ratio is the ratio of the odds of event occurence in the data

endorsing the rule to the odds of event occurence in data not endorsing the rule.

Furthermore, the following measures are used to evaluate and compare the performance

of our method with baseline models.

1. Concordance index (C-Index): Harell’s concordance index (Harrell et al. 1982) is

used to estimate and compare the predictive performance of survival models. The c-index

estimates the probability that in randomly selected pair of test subjects, the subject with

the earlier event occurence has an earlier model prediction of event time. Therefore a

completely random prediction will achieve a c-index of 0.5.

2. False positive rate (FPR): The FPR is a measure of the models capability to select a

sparse set of significant variables. It is defined as the ratio of the number of incorrect (or

noisy) variables selected by the model to the total number of variables.

4.2. Synthetic Data

We simulate a dataset consisting of N = 2000 observations with P = 60 variables using an

approach similar to the one adopted in Friedman and Popescu (2008). The event times

(18) are simulated such that only 7 variables (x1−x7) affect the target, another 7 variables

(x18 − x14) are correlated in varying degrees to the first 7 variables, and the remaining 46

variables are purely noise. The response variable ti for each input xi is taken to be

ti = F (xi)+ εi, (18)



18

where the function F (x) is defined as

F (x) = 4

3∏
j=1

(−(1−xj)
2)− 0.55 ∗ exp{−2(x4 −x5)}+1.75 ∗ sin(x6 −x7) (19)

and ε ∼ N(0, σ2), where σ2 is chosen to keep a signal to noise ratio of 3. The response

t is then scaled to make sure it is positive. The parameters of this function are chosen

in a way to obtain approximately equal representation of each predictive variable in the

exhaustive rule list. We assume that 35% of the simulated data is censored. To account for

this, the event times of a random subset consisting of 35% of the data are multiplied with a

uniform random variable to simulate the censored times. The remaining 65% of the data is

assumed to be complete. To simulate each of the correlated variables in {x8 . . . x14}, we first
sample a correlation ρ∈ (0,1) from a uniform distribution by which it is correlated to the

corresponding original variable in {x1 . . . x7}, then we choose x= ρ ·σx∗x+
√

1− ρ2 ·σxx
∗,

where x is the correlated variable in {x8 . . . x14} and x∗ is the residual of a least-squared

regression between x and its corresponding original variable in {x1 . . . x7}. The response

simulation model (19) involves explicit interactions between (x1, x2, x3) in the first term,

(x4, x5) in the second term, and between (x6, x7) in the third term.

4.3. Synthetic Data Results
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Figure 4 Number of variables included in the top rules extracted at various values of λ2 for the SOCP (left) and

FOGLASSO (right) optimization methods.
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4.3.1. Comparison of the SOCP algorithm with FOGLASSO. Fig. 4 compares the

number of variables included in the top ranked rules extracted at various values of λ2 for

the SOCP and FOGLASSO methods. Firstly, both algorithms show the effectiveness of the

SURVFIT formulation to produce a doubly-sparse set of rules which are also sparse in the

number of variables involved in the rules, i.e., it is observed that the extracted rules contain

fewer variables when λ2 is increased. Secondly, we observe that comparing with our SOCP

algorithm, FOGLASSO leads to rules with more variables. It is worth mentioning that

in our experiments, solving the problem using proximal smoothing algorithm introduced

by Chen et al. (2012) leads to a selection of rules which had even more variables than

FOGLASSO. This difference in the structure of the solutions under these algorithms may be

attributed to the approximate nature of the algorithm used to solve the proximal operator

in FOGLASSO, and the smoothing approximation of the overlapping group norm (7) used

by Chen et al. (2012) which lead to a less sparse solution in terms of groups i.e variable

selection, a trade off for their computational advantage.

4.3.2. Quality and efficiency of rule extraction. The hyperparameters, λ1 = 5 and

λ2 = 20 are chosen after cross validation for the following analysis. The SURVFIT algorithm

then extracts the highly predictive rules which are also sparse in the number of variables

among them. SURVFIT, like other rule models based on sparse regularization, produces a

rank for each rule. One way to compare different methods is to see the quality of highly

ranked rules, i.e if noisy or low quality rules have high rank, the algorithm is less useful.

The rules are ranked based on the importance measure introduced in Section 4.1. In our

experiment, we compare the top 8 rules which are extracted by SURVFIT (in Table 2)

and the rules extracted by �1 penalized optimization without the variable sparsity penalty

(in Table 1). One main interest of this numerical study is to see if SURVFIT could detect

significant rules without falsely introducing noisy variables. Table 2 presents the top 8

rules extracted via SURVFIT which involve 7 variables, x1, x2, x4 − x7 and a singular

false positive, x11. (The significant variable x3 is not picked in the top 8 rules though

it does show up in the total list of significant rules with non-zero coefficients). This is

consistent with the ground truth that has been used in the synthetic data generation

as shown in (18). A remarkable observation is that SURVFIT is resilient to the noise

in the data which was designed for variables x8 − x14 to be statistically correlated with

x1−x7. To further demonstrate this point, Table 1 lists the top 8 rules extracted without
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doubly-sparse regularization, i.e., only employing �1 norm penalty to obtain sparsity in

the cardinality of rules. In contrast to SURVFIT we can observe that the rules in Table

1 contain a total of 15 variables, of which many are false positives. Thus, doubly-sparse

regularization used in SURVFIT is effective to recover the true variables and genuine

interactions in the data generating process. Fig. 4 shows the number of variables involved

in the top rules returned by SURVFIT for different values of λ2. Increasing the value of

the variable-sparsity parameter, λ2 leads to rules which are more sparse in the number of

variables. For instance, at λ2 = 0, the top 10 rules involve 16 variables, while for λ2 = 80,

the top 10 rules involve only 7 variables. The difference is even more stark when comparing

the top 100 rules: there are close to 50 variables at λ2 = 0, while at λ2 = 80, the top 100

rules only contain 16 variables. We conclude that our proposed SURVFIT approach is able

to extract a doubly-sparse set of rules involving only the most significant variables in the

data.

4.3.3. Rule analysis. Table 2 not only presents the top 8 rules extracted via SURVFIT,

but also their decompositions, p values of the log-rank test, and support (4.1) of each of

these rules. Also, Fig. 5 shows the Kaplan-Meier survival curves for these rules. We observe

from the Kaplan-Meier curves that, endorsement of rules 1-6 and rule 8 is associated with

higher survival rates, while endorsement of rule 7 is associated with lower survival rate. As

we show in the following discussion, these rules recover the variable effects and interactions

on mortality encoded in the data generation process. The decomposition analysis (besides

the p-values shown in Table 1, the decomposition curves for the rules are also plotted in

Fig. 6) also reveals interesting insights into the data. For instance, on rule 2 we can see

that there is a real interaction between x4 and x5, as removal of either hugely impacts the

significance of the rule. This is consistent with the ground truth model as the way the two

variables are incorporated into the data-generating mechanism is through the functional

exp{−2(x4−x5)}. A similar observation holds true for rule 3 and its decomposition analysis

reveals the interaction between x6 and x7. The decomposition analysis on rule 4 is also

insightful, as it actually shows that with x5 alone the significance of the rule is stronger,

indicating that there is no synergistic interaction between x1 and x5 so there is no need

to keep variable x1 in the rule. This shows that rule 4 contains noise resulting from the

greedy nature of the tree-growing algorithm used. While the double-sparsity enforced by

SURVFIT aims to reduce this noise, we also need decomposition analysis to further filter
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out any residual noise. Similar conclusion holds true for the decomposition analysis on rule

5, rule 6, and rule 7. We could still keep some significant, but not explicitly interacting

variables in the rules, e.g., x2 in rule 5 and x1 in rule 6, since it is hard to call these two

rules interrupted by noise, given that x2 and x1 contribute to the overall significance of the

rules though their contributions are quite marginal. Here there is no obvious contradiction

with the ground truth model since all the variables are truly involved in the ground truth,

although not in explicit interaction terms, an implicit interaction exists.
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Figure 5 Kaplan–Meier survival curves with 95% confidence intervals for each rule in Table 2

Next we analyze the sensitivity of the cutoff values of the variables. Fig. 7 shows how

the overall significance of the rules, as measured by the odds ratio and its 95% confidence

interval changes with change in the cutoff value of the variables in the rules. For instance,

in the sensitivity analysis of Rule 1, we see that increasing the cutoff value of x5 reduces

the odds ratio, meaning that at higher values of x5 the probability of event occurence falls

off. This is consistent with both the Kaplan Meier curve associated with rule 1 as well as

the data-generating mechanism. The sensitivity analysis of rule 2 shows how the odds ratio

would change with change in cutoff of each of x4 and x5, while keeping the other cutoff

constant. At smaller cutoff values of x4, the odds ratio is greater than 1 signifying higher



22

Table 1 Top 8 Rules Identified without double sparsity penalty (6) and Corresponding Log-Rank p-Values

Rule ID Rule p Value Support (%)

1 x4 > 0.532 AND x49 > 0.033 8e− 13 37.05

1a x4 > 0.532 4e− 15 38.3

1b x49 > 0.033 0.01 96.6

2 x5 > 0.47 AND x10 <= 0.705 3e− 19 42.25

2a x5 > 0.47 3e− 16 46

2b x10 <= 0.705 3e− 04 92

3 x2 <= 0.309 AND x5 > 0.5 AND x11 <= 0.289 6e− 12 6.40

3a x5 > 0.5 AND x11 <= 0.289 2e− 14 18.40

3b x2 <= 0.309 AND x11 <= 0.289 2e− 12 15.90

3c x2 <= 0.309 AND x5 > 0.5 1e− 13 14.90

4 x2 <= 0.45 AND x6 > 0.486 AND x57 <= 0.892 3.5e− 18 23.25

4a x6 > 0.486 AND x57 <= 0.892 2.5e− 17 44.05

4b x2 <= 0.45 AND x57 <= 0.892 5e− 12 50.60

4c x2 <= 0.45 AND x6 > 0.486 2e− 18 23.55

5 x1 <= 0.25 AND x6 > 0.442 AND x11 <= 0.346 6e− 13 6.90

5a x6 > 0.442 AND x11 <= 0.346 6e− 16 25.80

5b x1 <= 0.25 AND x11 <= 0.346 1e− 09 15.25

5c x1 <= 0.25 AND x6 > 0.442 1e− 13 13.45

6 x6 > 0.48 AND x7 > 0.48 AND x30 <= 0.893 2e− 22 20.85

6a x7 > 0.48 AND x30 <= 0.893 3e− 10 46.20

6b x6 > 0.48 AND x30 <= 0.893 2e− 17 44.90

6c x6 > 0.48 AND x7 > 0.48 3e− 22 21.00

7 x4 <= 0.494 AND x9 <= 0.553 AND x13 > 0.549 3e− 12 10.35

7a x9 <= 0.553 AND x13 > 0.549 2e− 11 18.60

7b x4 <= 0.494 AND x13 > 0.549 9e− 09 12.60

7c x4 <= 0.494 AND x9 <= 0.553 4e− 15 44.30

8 x4 <= 0.323 AND x24 > 0.886 AND x28 > 0.0043 3e− 10 61.45

8a x24 > 0.886 AND x28 > 0.0043 0.2 98.00

8b x4 <= 0.323 AND x28 > 0.0043 2e− 11 62.65

8c x4 <= 0.323 AND x24 > 0.886 4e− 15 61.60
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Table 2 Top 8 Rules Identified with double sparsity penalty (8) and Corresponding Log-Rank p-Values. The

final rules selected after decomposition analysis are highlighted in gray.

Rule ID Rule p Value Support (%)

1 x5 > 0.687 7.5e− 15 21.5

2 x4 <= 0.52 AND x5 > 0.395 7e− 25 32.80

2a x4 <= 0.52 8e− 15 60.20

2b x5 > 0.395 3e− 14 54.40

3 x6 > 0.479 AND x7 > 0.48 3e− 23 21.0

3a x6 > 0.479 2e− 17 45.25

3b x7 > 0.48 3e− 10 46.55

4 x1 < 0.4 AND x5 > 0.71 2e− 9 8.05

4a x1 < 0.4 2e− 6 44.80

4b x5 > 0.71 1e− 10 18.25

5 x2 <= 0.45 AND x6 > 0.485 6e− 18 23.55

5a x2 <= 0.45 4e− 10 51.00

5b x6 > 0.485 2e− 17 44.55

6 x1 <= 0.52 AND x6 > 0.625 2e− 18 18.20

6a x1 <= 0.52 4e− 4 58.10

6b x6 > 0.625 5e− 17 30.75

7 x1 >= 0.33 AND x2 > 0.65 AND x7 > 0.428 4e− 11 9.30

7a x2 > 0.65 AND x7 > 0.428 2e− 04 14.95

7b x1 >= 0.33 AND x7 > 0.428 0.9 33.90

7c x1 >= 0.33 AND x2 > 0.65 2e− 12 17.35

8 x2 < 0.31 AND x5 > 0.5 AND x11 <= 0.288 6e− 12 6.4

8a x5 > 0.5 AND x11 <= 0.288 2e− 14 18.40

8b x2 < 0.31 AND x11 <= 0.288 2e− 12 15.90

8c x2 < 0.31 AND x5 > 0.5 1e− 13 14.90

risk levels while at higher cutoffs of x5, the cutoff is lower than 1 signifying lower risk.

The is again consistent with the ground truth since the time of event occurence depends

on −exp(−2(x4 − x5)), and a larger value of x4 would decrease and a greater value of x5

would increase the value of this term and hence decrease and increase the time of event
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Figure 6 Decomposition analysis for each rule in Table 2

occurence, respectively. The sensitivity analysis of the other rules can also be interpreted

in this context and seen to be consistent with our knowledge of the ground truth. Thus,

the sensitivity analysis helps us understand how each variable affects the event risk under

different conditions.
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Figure 7 Sensitivity analysis of rules from Table 2
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Figure 9 Comparison of sparsity performance of Regularized Cox and SURVFIT model on synthetic data

4.3.4. Comparison of predictive and sparsity performance of SURVFIT with stan-

dard survival models. We compare the predictive performance of the SURVFIT algorithm

to standard survival analysis methods such as random survival forests implemented in

randomForestSRC (Ishwaran et al. 2008), Cox regression (Cox 1972), and regularized Cox

regression (Tibshirani 1997) using the concordance index (C Index) metric (4.1). The

C Index for SURVFIT is calculated through the times-of-event occurence estimated by

SURVFIT as shown in Section 4.1. Fig. 8 shows box plots of the estimates of prediction
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error (1 - C Index) obtained over 100 independently sampled replicates. The following

performance evaluation procedure has been adopted: first we sample a training set of 1600

observations, and then an independent test set of 400 observations. The different models

are then trained on the training dataset and the reported performance evaluation is based

on on the test set. This procedure is repeated 100 times to obtain the C-Index estimates for

each of the different methods. It can be observed that the prediction errors of SURVFIT,

when considering rules with all non-zero coefficients is lower than prediction errors of other

methods. To compare the error rates of the different methods, we use the paired Wilcoxon

rank sum test on our C-Index estimates. For each pair of the methods, we perform the

following test:

Null hypothesis: C-Index1 = C-Index2

Alternative hypothesis: C-Index1 �= C-Index2

The p-Values from each of these pairwise tests are provided in Table 3. It can be seen

that the performance of the methods are significantly different from each other.

Table 3 p-value of pairwise Wilcoxon rank sum test on C-index obtained by each of these methods on

synthetic data

FOGLASSO randomForestSRC Cox L1 regularized Cox

SOCP 0.0002563 9.3e-09 1.86e-09 0.00113

FOGLASSO 1.86e-08 1.86e-09 0.04592

randomForestSRC 1.82e-06 1.3e-07

Cox 1.86e-09

Our goal is not only to get a model that is accurate in terms of prediction but also

exhibits sparsity in the number of variables. To do this we compare the false positives in the

variables involved in the SURVFIT model with variables involved in the regularized Cox

regression model. Fig. 9 compares a box plot of the variable selection error (false positive

rate, (2)) of the regularized Cox model and SURVFIT obtained over 100 independently

sampled replicates. As the figure shows, regularized Cox-regression does slightly better on

average than SURVFIT on our synthetic data in terms of variable selection, although the

spread of error is higher. The other models like randomForestSRC and Cox regression use

all variables in the data, therefore a comparison of variable selection with these models is
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not meaningful. The true positive rate, i.e., the proportion of correct variables identified is

equal to 1 for both models, i.e., both SURVFIT and regularized Cox regression select all

of the significant variables.

5. A Real-World Case Study: MIMIC Sepsis Data

MIMIC-III (Medical Information Mart for Intensive Care) (Johnson et al. 2016) is a com-

prehensive database comprising anonymized information relating to patients admitted to

the Beth Israel Deaconess Medical Center in Boston, MA between 2001 and 2012. The

data consists of over 53,000 adult ICU admissions during this time period. In this paper,

we utilize a subset of inpatient admissions which were diagnosed with at least one of sep-

sis, or severe sepsis, or septic shock, which are increasingly severe sepsis conditions. This

subset has 2,840 samples in total. Sepsis is a common ailment caused by infections and

characterized by whole body inflammation which accounts for 2% of hospitalizations and

25% of ICU bed utilization’s in the United States. It is the second leading cause of death

among ICU patients, the third leading cause of death worldwide, and the main cause of

hospital mortality (Gotts and Matthay 2016, Liu et al. 2014). Understanding mortality

risk from sepsis would be beneficial for physicians in selecting a more efficient manage-

ment approach. Several recent studies have focused on predicting mortality risk based on

variables related to predisposition (Moreno et al. 2008), pre-existing and co-morbid condi-

tions (Ford et al. 2016), cytokines and immune system interleukin’s (Andaluz-Ojeda et al.

2012), and gene expression analysis (Sweeney et al. 2018). A recent study on early sepsis

detection by Shashikumar et al. (2017) has used heart rate and blood pressure dynam-

ics data. As the mechanism of how these variables impact the mortality risk is known

to be complex, we use SURVFIT to extract rules and study the interactions among the

variables. Out of the 2,840 patient observations in our dataset, 1,097 (38.6%) are mortal

event instances with a record of time of death and the remaining are censored with time

of discharge as the censor time. We investigated 78 variables in our analysis, consisting

of patient characteristics such as age, race, gender, weight, clinical history; physiological

measurements such as respiratory rate, blood pressure, heart rate, oxygen saturation etc.,

and summary statistics of physiological measurements and laboratory test results such as

blood urea nitrogen, creatinine, white blood cell count, and hemoglobin etc.
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5.1. Sepsis Survival Results.

We choose γ = 5 × 10−6, λ1 = 50 and λ2 = 10 for our SURVFIT model through cross-

validation. The top 8 rules extracted by SURVFIT are presented in Table 4, along with

their p-values of the log-rank test, their support, and the results of the decomposition and

sensitivitiy analysis. We obtain a total of 13 significant variables involved in the top 8 rules

affecting survival risk. Aspartate-aminotransferase, oxygen saturation (O2-sat.), Alanine-

aminotransferase, arterial-pH, age, heart-rate, Alanine-aminotransferase(tests), diastolic

BP (noninv-dia-BP), length of stay, systolic BP (noninv-sys-BP) are the variables associ-

ated with sepsis mortality risk. We quantitatively, and descriptively evaluate their inter-

action effects on mortality. Each of these rules is significant, i.e., as shown in the p values

of the log-rank test. The Kaplan–Meier curves of the rules are shown in Fig. 10. The

Kaplan–Meier curves reveal that the rules 1, 2, 4, 5 and 7 are risk-reducing rules, i.e.,

patients who endorse these rules have less risk of mortality, and the rules 3, 6 and 8 are

risk-increasing rules. Based on the decomposition analysis of the rules, i.e., p-values shown

in Table 4 and survival curves of decomposition analysis shown in Fig. 11, we are able to

gain a greater understanding of the nature of the interactions of the variable in each of the

rules. For example, in rule 1, while both Aspartate-aminotransferase(mean) and oxygen

saturation, O2-sat.(mean) are significant in predicting the risk, O2-sat.(mean) is the critical

factor due to its lower p value. In rule 2, the interaction between Alanine-aminotransferase

(mean) and arterial-pH (mean) is significant in predicting the mortality. Decomposition

analysis of rule 3 demonstrates an interaction of heart-rate(sd) and arterial-pH(mean) to

be highly significant while interaction between age and arterial-pH is not. The removal of

heart-rate(sd) from rule 4 reduces the rule discrimination ability the most, making it the

critical factor. Likewise, in other rules we observe that diastolic blood pressure (noninv-dia-

BP), systolic blood pressure (noninv-sys-BP) and length of stay (total LOS) also influence

the mortality rate. In rule 8, decomposition analysis reveals that noninv-sys-BP(mean)

is the critical factor of the rule while heart-rate(tests) has no contribution despite being

involved in the rule. The literature studying sepsis mortality supports our results, as the

variables covered in these rules as well as their cutoff values have been found to be signif-

icant in predicting the mortality associated with sepsis. For example, rule 1 suggests that

higher saturated oxygen, (O2-sat(mean) > 92.5) is associated with a lower mortality risk.

Our findings are consistent with the results found by Leone et al. (2009) who reported a
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Figure 10 Kaplan–Meier survival curves with 95% confidence intervals for rules in Table 4

lower level of oxygen saturation in non-survivors as compared to survivors, and a value

below 78 is associated with increased risk of mortality among patients of septic shock in

their experiments. Alanine aminotransferase (alt), and aspartate aminotransferase (ast)

are liver enzymes that are biomarkers of abnormal liver functions which is often found

in sepsis patients (Nesseler et al. 2012). In rules 1 and 2 we see that a higher Aspartate-

aminotransferase and Alanine aminotransferase signifies increased mortality risk, high lev-

els of both enzymes have been found to significant predictors of sepsis associated liver

injury (Dou et al. 2019, Zagory et al. 2017) in literature. In rule 6, standard deviation

of oxygen saturation (O2-sat(sd)) is found to be a significant predictor of mortality, and

higher deviations are associated with higher mortality. A similar result was found by Krafft

et al. (1993) who investigated spontaneous changes in oxygen saturated in sepsis patients,

and reported a significantly higher number of severe changes in O2-sat in non-surviving

patients when compared to surviving patients. However, the literature does not discuss the

significance of interactions between the variables found in our model.

Sensitivity analysis of some critical factors of the rules are reported in Fig. 12. The sensi-

tivity analysis figures show the odds ratio (and 95% confidence interval) of the rules change

when the cutoff values of variables are changed while keeping cutoffs of other variables in
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Table 4 Top 8 rules identified with double sparse penalty from Sepsis survival data and their decomposition

analysis. The final rules selected after decomposition analysis are highlighted in gray.

ID Rule p Value Support

1 Aspartate-aminotransferase (mean)<= 308 AND O2-sat. (mean)> 92.5 2e− 70 89.6

1a Aspartate-aminotransferase (mean)<= 308 2e− 38 91.62

1b O2-sat. (mean)> 92.5 2e− 83 97

2 Alanine-aminotransferase (mean)< 2778.3 AND arterial-pH (mean)> 7.2 8e− 150 81.83

AND O2-sat. (sd)<= 3.23

2a arterial-pH (mean)> 7.2 AND O2-sat. (sd)<= 3.23 3e− 148 81.93

2b Alanine-aminotransferase (mean)< 2778.3 AND O2-sat. (sd)<= 3.23 8e− 59 86.97

2c Alanine-aminotransferase (mean)< 2778.3 AND arterial-pH (mean)> 7.2 8e− 240 92.18

3 age > 73.85 AND heart-rate (sd) <= 38.74 AND arterial-pH (mean) > 7.25125 3e− 05 37.21

3a heart-rate (sd) <= 38.74 AND arterial-pH (mean) > 7.25125 3e− 240 92.14

3b age > 73.85 AND arterial-pH (mean) > 7.25125 1e− 05 37.39

3c age > 73.85 AND heart-rate (sd) <= 38.74 > 7.25125 4e− 19 40.21

4 has.septicshock = F AND Alanine-aminotransferase (tests) > 3.5 2e− 23 34.78

4a has.septicshock = F 3e− 17 50.38

4b Alanine-aminotransferase (tests) > 3.5 1e− 23 69.82

5 noninv-dia-BP (mean)> 34.3 AND O2-sat. (sd)<= 5.8 4e− 32 25.03

AND noninv-sys-BP (mean) > 111.5

5a O2-sat. (sd)<= 5.8 AND noninv-sys-BP (mean) > 111.5 3e− 32 25.07

5b noninv-dia-BP (mean)> 34.3 AND noninv-sys-BP (mean) > 111.5 4e− 25 26.30

5c noninv-dia-BP (mean)> 34.3 AND O2-sat. (sd)<= 5.8 3e− 60 95.21

6 Aspartate-aminotransferase (mean)<= 2585 AND O2-sat. (sd)> 3.1 5e− 42 13.6

6a Aspartate-aminotransferase (mean)<= 2580 5e− 33 98.97

6b O2-sat. (sd)> 3.1 2e− 51 14.01

7 total-los> 0.52 AND heart-rate (tests) s> 478 AND arterial-pH (mean)> 7.25 1e− 37 12.07

7a heart-rate (tests) s> 478 AND arterial-pH (mean)> 7.25 1e− 37 12.07

7b total-los> 0.52 AND arterial-pH (mean)> 7.25 5e− 290 90.59

7c total-los> 0.52 AND heart-rate (tests) s> 478 2e− 37 12.11

8 heart-rate (tests) > 7 AND noninv-sys-BP (mean)<= 99.61 2e− 27 8.91

8a heart-rate (tests) > 7 1 99.4

8b noninv-sys-BP (mean)<= 99.61 2e− 30 9.08

the rule at the base level. Analysis of O2-sat. in rule 1 shows that an O2-sat.(mean) value

greater than 90 leads to an odds ratio much lower than 1, and hence decreased mortality

risk. A further increase in the O2-sat. shows a steady increase in risk showing that very
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Figure 11 Decomposition analysis curves of rules in Table 4
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Figure 12 Sensitivity analysis of critical factors in rules from Table 4

high levels of oxygen saturation (above 95%) will increase mortality risk. This analysis is

in line with a study by Pope et al. (2010) which reports that both abnormally high and

low levels of oxygen saturation are associated with increased mortality in patients with

suspected sepsis. Our sensitivity analysis is able to resolve such interactions, and predict

these complex effects. In rule 2, we see that arterial-pH below 7.2 has a slightly higher
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odds ratio, and therefore risk compared to when it is between 7.2 and 7.4. Any higher

arterial-pH(mean) drastically increases the odds ratio implying that a high arterial-pH is

a strong indicator of mortality. In rule 3, as cutoff for age increases, the odds ratio and

therefore the risk of mortality of rule endorsing observations increases steadily implying

that the older population is at greater risk of mortality. Advanced age has been found to

be a strong predictor of mortality among sepsis patients (Yang et al. 2010, Dd et al. 1990).

Rules 5 and 8 show that a high diastolic or low systolic blood pressure will increase mor-

tality risk. These insights into the affect of blood pressure are similar to those obtained by

prior research in a study conducted by Shashikumar et al. (2017) who used blood pressure

and heart rate dynamics to determine risk. Meanwhile, in rule 7, we find longer length of

stays are associated with higher risk until a stay of about 50 days, the large confidence

interval of the odds ratio at stays which are any higher makes it hard to make a conclusion

about the risk in this case.

5.1.1. Comparison with Cox Regression and Random Survival Forest. We again

run experiments over 100 independently sampled subsets of the sepsis data to compare the

predictive performance of the SURVFIT model with the survival random forest and the

Cox model. We use 4-fold cross-validation (Hastie et al. 2009) to estimate the error rates

of the 3 models being compared. This is done as follows: first we divide the dataset into 4

equal and exclusive parts. Then, one of the parts is considered the test set and the models

are trained on the remaining 3 parts after which performance evaluation is done on the

test set. This is done 4 times, each time considering a different part as the test set. This

entire procedure is repeated 25 times for 25 different random divisions of training and the

testing set to obtain the C-Index estimates for each of the different methods. The results

in Fig. 13 show that, while the survival random forest and SURVFIT achieve comparable

results, both methods significantly outperform the Cox model on this dataset.

To compare the differences in error rates by different methods, we use the paired

Wilcoxon rank sum test on our C-Index estimates. For each pair of the methods, we perform

the following test:

Null hypothesis: C-Index1 = C-Index2

Alternative hypothesis: C-Index1 �= C-Index2

The p-Values of each of these pairwise tests are provided in Table 5. It can be seen that

the performance of all 3 methods are significantly different from each other. The p-Values
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Figure 13 Comparison of predictive performance of Random Survival Forest and SURVFIT and Cox regression

on MIMIC-III Sepsis data

of the tests show that the error rate of the Cox model is clearly higher than both ran-

domforestSRC and SURVFIT, and the random survival forest method, randomforestSRC,

achieves a lower error than SURVFIT. These results show that, on this dataset, SURV-

FIT yields greater interpretability than randomForestSRC at the cost of some prediction

performance loss.

Table 5 p-value of pairwise Wilcoxon rank sum test on C-index obtained by each of these methods on Sepsis

data

randomForestSRC Cox

SURVFIT 3.1e-05 2.98e-11

randomForestSRC 2.9e-11

6. Conclusion

Regression models dealing with survival data such as the Cox regression model are often

used as confirmative tools but are limited by their inability to discover significant inter-

action terms from the data unless explicitly specified. This limitation is addressed by the

proposed SURVFIT method which can be used to search for significant interactions among

the variables. Different from existing rule learning methods, SURVFIT extracts a doubly-

sparse set of rules (i.e., which are sparse both in their cardinality as well as the cardinality

of the variables involved in them) for survival data. We develop the learning formulation
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of SURVFIT, and further propose and evaluate fast optimization strategies. We present

a rule analysis framework to analyze the extracted survival rules through statistical test-

ing, decomposition analysis, and sensitivity analysis to draw deeper insights from them.

SURVFIT could be used solely as a data analysis method that could reveal insights about

the contributions and interactions of the variables. Its results could also used to augment

the Cox regression as well, i.e., with higher-order interactions. Moreover, the absence of

any underlying assumptions about the data makes our model quite robust. In summary,

SURVFIT provides a sparse, efficient and highly interpretable tool that can be used to

detect and explain the properties of predictive rules from survival data. We have also

developed the R package, SURVFIT, to implement the rule learning algorithm and rule

analysis framework presented in this paper. Future directions to SURVFIT may include

development of more structured solutions, such as ones with hierarchical restrictions on the

variables in the rules, as well as learning rule sets such that the rule endorsement subsets

are highly unique, i.e., rules are different from each other not only in terms of the variables

involved but also in terms of the observations they endorse.

7. Software and Computational Details

R package ranger (Wright and Ziegler 2017) was used to build survival random forest and

inTrees (Deng 2014) was modified by us to extract an exhaustive rule list from ranger. An

R implementation of FOGLASSO based on SLEP (Liu et al. 2009) was used to implement

the first-order method. The SOCP formulation was solved using CPLEX solver. Compre-

hensive codes to implement solutions of both formulations, extract survival rules, and use

the proposed rule-analysis framework are available in a self-contained SURVFIT package

downloadable from https://github.com/hamzameer/SURVFIT.
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