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Survival data analysis has been leveraged in medical research to study disease morbidity and mortality, and
to discover significant bio-markers affecting them. A crucial objective in studying high dimensional medical
data is the development of inherently interpretable models that can efficiently capture sparse underlying
signals while retaining a high predictive accuracy. Recently developed rule ensemble models have been
shown to effectively accomplish this objective; however, they are computationally expensive when applied to
survival data and do not account for sparsity in the number of variables included in the generated rules. To
address these gaps, we present SURVFIT, a “doubly sparse” rule extraction formulation for survival data.
This doubly sparse method can induce sparsity both in the number of rules and in the number of variables
involved in the rules. Our method has the computational efficiency needed to realistically solve the problem
of rule-extraction from survival data if we consider both rule sparsity and variable sparsity, by adopting
a quadratic loss function with an overlapping group regularization. Further, a systematic rule evaluation
framework that includes statistical testing, decomposition analysis and sensitivity analysis is provided. We
demonstrate the utility of SURVFIT via experiments carried out on a synthetic dataset and a sepsis survival

dataset from MIMIC-III.
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1. Introduction

When analyzing biological and medical datasets, an often encountered scenario is the need
to simultaneously analyze multiple variables and understand their impact on a certain
disease or biological condition. In this endeavor, regression methods have been a typical
approach. These methods help us understand the relative importance of variables primarily
in terms of their average effects on the outcome rather than their synergistic interactions.
Though adding interaction terms to the regression model can certainly enable their applica-

tion in evaluating the significance of these interaction terms, regression models themselves



are not adequate for discovering such interactions due to both computational and statisti-
cal challenges, i.e., the number of potential interactions grows at a super-exponential rate
regarding the number of variables. The rule learning approach is a natural way to address
these challenges. An old song since its inception in the early 70s and 80s as a typical
approach of Artificial Intelligence, it now finds its new tune in the 21st century as a result
of considerable developments in the fields of machine learning and optimization such as
random forests (Breiman 2001) and sparse regularization models such as LASSO (Tibshi-
rani 1996). Rulefit (Friedman and Popescu 2008) is a good example of a model that cleverly
combines these methods by first generating a huge list of rules from a tree ensemble, and
then applying LASSO to select a minimum set of rules that can predict the outcome with
a good accuracy. Compared to rule learning methods developed before Rulefit that mostly
used heuristic algorithms (Cendrowska 1987, Cohen 1995) or logic deduction approaches
(Michalski 1980, Quinlan 1990) to derive rules, Rulefit is both computationally efficient,
inherited from random forest and LASSO, and statistically well justified, as random forest
uses bootstrap aggregation to generate an ensemble of tree models and has the ability to
cover a wider range of the rule space, therefore being less susceptible to being stuck in
local optima. An additional advantage of applying rule based models to biomedicine is
that they can be easily communicated to, and evaluated by medical professionals. Several
recent works have successfully applied rule based models to diverse biomedical datasets to
understand risk-predictive profile patterns and build predictive models for diseases, includ-
ing Type 1 diabetes (Lin et al. 2014), Type 2 diabetes (Patil et al. 2010), depression (Lin
et al. 2018), classification of cancer gene expression data (Glaab et al. 2012) etc. However,
these works were not focused on survival data. Survival rule models proposed in literature
(Fokkema 2017, Wrébel et al. 2017) lack the methodology to impose sparsity on the vari-
ables that constitute the rules. Sparsity in variables has been proven to be a main concern
in a wide range of applications. Surprisingly, sparsity of variables involved in the rules has
not yet been addressed in rule learning literature. Therefore, our research seeks to address
these gaps and focuses on a rule learning approach that can efficiently learn a “doubly
sparse” set of rules and analyze their properties for survival analysis, a field with critical

applications in biomedicine.



1.1. Background

Survival analysis is a classical field of statistical learning that has been widely used to
study how statistical factors influence morbidity and mortality for different diseases, e.g.
congestive heart failure (Paulon et al. 2020), gene selection and screening for lymphoma
(Pang et al. 2012) and pediatric trauma (Mittal et al. 2014), to name a few. Challenges
in survival analysis applied to medical data stem from complexity of underlying processes,

high dimensionality of datasets, and the incompleteness of time to event data.

1.1.1. Survival Analysis. Survival data is indexed by the sequence (t;,d;,x%;) for i €
{1,...,N} where N is the total number of observations and ¢; is the observation time,
i.e., t; = min (7;,C;), where T; is the time-to-event occurrence (event time) and C; is the
time of last observation (censoring time). The binary variable J; represents the status of
the i-th observation at the observation time, i.e., §; takes value 1 if the event has occurred
at t;, otherwise it takes value 0. Since event times are only available for a small subset of
the total observations, the study of survival data is a challenging task. Survival analysis
methods are used to model the survival function, S(t;x) denoting the probability that the
event has not yet occurred at time t for an observation with variables x. Assuming that
the time-to-event, T, is a continuous random variable with a probability density function

f(t;x), we can define the survival function, S(¢;x), as

S(t;x):PI"{TZt}:/tOO f(s;x)ds. (1)

The hazard function, h(t;x) is the instantaneous rate of occurrence of the event at time ¢
that is then defined as

Prit<T <t+dt| T >t Prit<T <t+4+dt, T >t t;
h(t;x) = lim r{t<T<t+dt| —}:1' rt<T<t+dt, —}:f(ax)

. 2
dt—0 dt Fra) Pr{T > t}dt S(t;x) @)

Survival analysis is a mature field which includes several standard parametric, semi-
parametric, and non-parametric methods as well as modern machine learning models. In
the popular Cox regression model (Cox 1972), a proportional hazards assumption that
the effects of the predictor variables upon survival are constant over time is made. Cox
regression, like other parametric generalized linear models, assumes a specific linear link
between the predictor variables and the hazard function such that the ratio of hazards

between two observations remains constant over time. Interactions between variables may



be incorporated in this model, but they need to be done explicitly. Thus, machine learn-
ing models such as survival trees (LeBlanc and Crowley 1992) and tree ensembles, such
as random survival forests (Ishwaran et al. 2008), have been developed to mitigate the
limitations of parametric models. Survival trees are a flexible approach to deal with these
challenges as they make no assumptions on the response function and can detect interac-

tions automatically.

1.1.2. Survival Trees. Parametric (and semi-parametric) regression models impose a
specific link function on the response and face challenges in incorporating interactions
between variables. Trees provide a flexible approach that can detect interactions in variables
without explicitly specifying them beforehand. They also do not assume a specific link
function and are widely used as they are easy to interpret and understand for medical
professionals. Trees naturally group together observations with similar outcomes which
leads them to be highly interpretable. The main difference between classical decision trees
and survival trees is in the splitting criteria used to partition the data - survival trees
use criteria that make each child node to be most similar in terms of their survival or
hazard functions. Several splitting criteria have been developed for survival trees, e.g.,
the maximum log-rank statistic (Segal 1988, LeBlanc and Crowley 1992) and the log-rank
score (Hothorn and Lausen 2003).

1.1.3. Random Survival Forests. Random forests are an ensemble model generated
by combining many decision or survival trees where each tree is built on a randomly
bootstrapped sample of data and a randomly selected subset of variables. The average
outcome of all of these binary trees is the output of the random forest. Random forests
were initially developed for regression and classification problems (Breiman 2001) and later
extended to apply to survival data, (Ishwaran et al. 2008, Wright and Ziegler 2017) where
an ensemble of survival trees is used to build a forest. For a given input, an average of the
cumulative hazard prediction of all the survival trees in the ensemble is the output of the

random survival forest.

1.1.4. Sparse Regularization. Modern medical datasets are high dimensional, which
leads to challenges associated with the curse of dimensionality, particularly in datasets
with many correlated variables. This makes it critical to build models that are sparse with

respect to the number of variables, and to identify the most significant variables affecting
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the underlying process. Development of sparse regularization methods for survival anal-
ysis is a line of efforts seeking to deal with the challenges of high dimensional data in
both regression-based and tree-based methodologies. Given a data matrix X € R"*™ of n
observations and m variables where m is large, our goal in variable selection is to choose
a number of variables k(< m) that are the most significant predictors of the output. Con-
sider a model parametrized by the coefficients corresponding to the variables, 3 and a
loss function £(3;X) that is to be minimized to obtain model coefficient estimates. Sparse
regularization works by regularizing the loss function with sparsity inducing norms such
as the £, norm, ||8]|1 =>_,_,|5i| that was first proposed as the LASSO model (Tibshirani
1996) for linear regression. The ¢; norm has the property of shrinking the coefficients closer
to zero which enables variable selection by eliminating those variables whose coefficients
are nearly zero. An important direction in sparse regularization is structured sparsity reg-
ularization to obtain desired model characteristics such as selection of groups of variables,
i.e., selecting all variables in a predefined group of variables or none at all. The Group
LASSO (Yuan and Lin 2006) solves the group selection problem by using an ¢, ; norm reg-
ularization, Zﬁll |Bgll2, where B, are coefficients in group g, belonging to a set of groups
G and the ¢, norm is given by ||Byll2 = 1/>_;c, 57 The Sparse Group LASSO (Simon et al.
2013a) generalizes the Group LASSO to also induce within group sparsity in the solution
by using a regularization that is the sum of ¢5; and ¢; norm, i.e., Zﬁl 1Byll2+ |Bll1- As the
complexity of the sparsity-inducing norms increases, their adoption to survival regression
models such as the Cox regression (Cox 1972) still poses significant algorithmic challenges
despite the computational advantages of these methods in the typical regression setting.
While most of these efforts mainly focus on variable selection when the link function of the
model is linear, the advances in sparse regularization approaches also positively impacted
the work on tree-based methods in regression and classification like Rulefit (Friedman
and Popescu 2008) as well as in survival analysis, such as the method developed in pre
(Fokkema 2017), where a sparse set of survival rules are generated by constructing an ¢;-
regularized Cox regression model over an exhaustive set of rules extracted from the data
through bootstrapped survival trees. However, the Cox partial likelihood function used in
pre has difficulty in scaling to high dimensional data. Although the regularized Cox model
can handle relatively high dimensions, the optimization algorithms that are built on the
Cox partial likelihood function scale poorly when regularized with structured norms such

as Group LASSO and Sparse Group LASSO (Simon et al. 2013b).



1.2. Our Contributions

We propose a new rule learning method, SURVFIT, with three main contributions. First,
we aim to fill in a gap that concerns rule learning with variable sparsity, i.e., “double
sparsity” for survival data analysis. To achieve this, we propose a formulation that adopts
a quadratic loss function and an overlapping group regularization term. The quadratic loss
function allows us to bypass the partial log-likelihood loss function of the Cox models that
has caused considerable computational difficulty for high-dimensional applications, and
the proposed regularization enables us to not just select the most important rules but also
induce sparsity of variables involved in the selected rules. This “double sparsity”, in both
rules and variables, has so far not been addressed in the literature of rule learning. Second,
we propose and compare different optimization strategies for solving our optimization
problem and discuss their advantages and trade-offs. Third, we provide a systematic rule
evaluation framework for evaluating and examining the statistical significance of the rules
extracted via SURVFIT. The framework includes statistical testing of rules’ ability to
discriminate between low risk and high risk observations, decomposition analysis, and
sensitivity analysis of the cutoff values. An overall presentation of this framework is shown
in Fig. 1. The rest of this paper is organized as follows: Section 2 will introduce the
details of SURVFIT, derive the optimization strategy and algorithms, and Section 3 will
describe the rule analysis framework. In Section 4, we will present both simulation studies
to examine sparsity properties of our method, and a comprehensive data analysis of a
medical dataset using SURVFIT. Section 6 will summarize our contributions and conclude
this paper. Note that, in this paper, we use lower- or upper-case letters, e.g., x or X,
to represent scalars, bold-face lower-case letters, e.g., x, to represent vectors, bold-face
upper-case letters, e.g., X, to represent matrices, and upper-case italic letters, e.g., X, to

represent random variables.

2. Methodology
Rule learning is a challenging problem mainly due to the combinatorial nature of rules,
i.e., a rule is expressed as the product of a few indicator functions I(-) on propositions of

values taken by variables in an observation x,

ri(x) = [ [ (2 € sp). (3)
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Figure 1 A schematic outline of the SURVFIT algorithm

For continuous variables, s, is a contiguous interval while for categorical variables, it is an
explicitly specified set. A rule either gives 0 or 1 as its outcome for an input observation.
If its outcome is 1, it means all the conditions on its constituent variables are satisfied,
ie., {z,€ spk}ax‘. We say that rule r is endorsed by observation x if 7(x) = 1. Through this
combinatorial nature, rules provide an effective semantics to capture interactions among
variables, not only in the qualitative sense, i.e., which variables interact with which, but
also in the quantitative sense, i.e., the cutoff values used in the conditions of the rules. It is
also due to this combinatorial nature that rules are information-rich, but computationally
and statistically challenging to detect from data. Recent breakthroughs in rule learning
benefit from an insight that a decision tree can be readily decomposed into a set of rules

as shown in Fig. 2. Tree ensemble models such as random forests can therefore be used to
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generate a huge set of rules. Then, formulations could be developed to filter this set and
select a sparse set of the most representative and informative rules. Rule learning methods
such as Rulefit (Friedman and Popescu 2008) and pre (Fokkema 2017) follow this line.
However, these methods do not consider the sparsity in the variables that are involved
in the extracted rules. Sparsity of variables have proven to be a critical trait of machine
learning models that can achieve robust prediction performance and interpretability in
practice. An immediate example that will be shown in the medical application in this
paper is that variables collected in healthcare applications are usually highly correlated,
and thus it is important to be able to generate rules that involve only a sparse selection
of significant variables. For example, two variables may show up in different rules, though

only one variable is truly significant, and the other is redundant.

EXTRACTED RULES \

X1 <=c1 &Xy; € {ab,c}

X1 <=c¢y & Xy & {a,b,c}

X1 >c1 &Xg <=cC3

X1 >c1 &Xg > cC3 /

Figure 2 An example decision tree and corresponding rules extracted from terminal nodes

2.1. Rule generation
In order to generate an abundant set of rules that will be pruned by our learning formu-
lation, we use the following algorithm to build the random survival forests.
1. Draw a given number of bootstrap samples from the original data.
2. Grow a survival tree for each bootstrapped sample as follows:
(a) Use one of the splitting criteria discussed in 1.1.2 to recursively build a tree using
a randomly selected subset of variables for each split.
(b) Grow the tree until no new child nodes can be formed because of the stopping
condition that each node must contain a minimum number of unique events.
3. Aggregate all the survival trees to obtain an ensemble.
4. Extract rules of the desired length and complexity from the tree ensemble to generate

a large rule list.



2.2. The loss function

This initial set of rules is denoted as {ry(x)}{, where K is the total number of rules. We
then develop a learning formulation to guide the selection of the final rules, which should be
a minimum number of rules (i.e., the number should be much smaller than K') that could
achieve optimal prediction on the time-to-event outcome of survival data. It is tempting
to use the existing Cox proportional hazards regression model and take the K rules as K
input variables, then conduct sparse learning on this Cox model-based formulation. This
is a reasonable approach, but the partial likelihood function used in the Cox regression
model has been found to scale poorly in high-dimensional applications, particularly with
complex group norms (Simon et al. 2013b), including the recently developed pre (Fokkema
2017), a rule learning method for survival analysis, that is also built on the negative partial
log-likelihood loss in the Cox proportional hazards model. Thus, we resort to another loss
function. In this paper, we concern the linear model, but our method could be extended

to nonlinear models as well. The prediction by the linear model is,

t(xi) =Bo+ > Berr(xi)- (4)

k=1
We adopt the robust loss function developed in Ke et al. (2017),

. 1 2 : 2
min 1(8,X) := {“521} ) (t(xi) —t;)" + {“520} % (min(0,¢(x;) — t;)) " (5)
The first term in (5) is the least-squared loss that penalizes the difference between the
predicted outcome ¢(x;) and the real outcome t; for each complete observation x;. The
second term is a squared hinge loss which penalizes the predictions for censored data only
when the predicted event time #(x;) of censored observation x; is smaller than the censor

time ¢;. The penalty is zero when ¢(x;) is greater than ¢;. The hyperparameter ~ controls

the influence of censored data in parameter estimation and is selected via cross-validation.

2.3. Doubly Sparse Rule Extraction

Consider the regression optimization problem (5) applied to rules, i.e, let 3 be the coef-
ficients of the complete set of rules, and X the rule data matrix. Each column in X is a
binary variable denoting whether or not the observations endorse a rule. To achieve spar-
sity in both rules and variables, we integrate two regularization terms simultaneously. On

one hand, to enforce sparsity on the rules, we adopt the ¢/; norm that was used in the least
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absolute shrinkage and selection operator (LASSO) regularization for regression proposed
by Tibshirani (1996), i.e., it regularizes the loss function with ¢; norm penalty on the coef-
ficients corresponding to rules (||B|/1 =>_;_, |3i|) to push some coefficients to 0. In the rule
learning literature for regression, Rulefit (Friedman and Popescu 2008) and pre (Fokkema
2017) utilise LASSO to extract a sparse rule list from a rule ensemble. Following this line,

we propose the following formulation to enforce sparsity in the cardinality of rules

Bzargmgﬂ 1B, X)+ -8, (6)
where [(3,X) is the squared error loss for regression. As we have mentioned, this formu-
lation does not enforce sparsity among the variables involved in the extracted rules. As
one of the main contributions of this work, that is to enforce a “doubly sparse” set of
rules, our idea is inspired from the work on sparsity-inducing norms for structured variable
selection (Jenatton et al. 2011). A particularly useful concept is the Overlapping Group
LASSO regularization. Here, as Fig. 3 shows, the rules form a group structure due to their
overlapping use of the variables. To exploit this structural property in order to enforce

sparsity on the variables, the regularization term we propose to use is therefore,

Q(B)=>_ [lw? o8|, (7)

Geg

where G is a set of overlapping groups of coefficients; wgeg are |3|-dimensional vectors
such that ij >0 if j € G and ij =0 otherwise; x oy denotes element-wise multiplication
of two vectors, x and y. This regularization term Q(3), despite its difference from the ¢,
norm from the surface, is like an ¢; norm at the group level to promote group sparsity. A
few different group structures that may be used to obtain specific sparsity patterns were
explored by Jenatton et al. (2011), though the challenge of group construction was not
discussed since it requires prior information about the problem under consideration and the
required sparsity patterns. Since our work has a well-defined goal, i.e., the variable sparsity
in a rule ensemble, we can develop a natural way to construct the groups. To do this, we
first choose our set of groups G = {G1,...Gp} such that each group G,, corresponding
to the variable z,, contains the indices of the rules which involve the variable z,. That
is, if there are n, number of rules containing variable x,, then G, = {p1,...py,}, where

{p1,-.pn, } €{1,... K} and all rules r,, (1 <j <n,) contains the variable x, in at least
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one of its combinatorial statements. Next, for each group G in G, we define B¢, a vector
in RI¢l, that consists of the elements of 3 belonging to G. Now, the formulation (6) could
be further developed as

P
B =arg min 1(8,%) + A1+ Bl + X2 > 5186, I> (8)
p=1
Note that here ¢, is an optional weight for each group. In our case, g, = \/1/|G,| to

normalize the penalty term for groups of varying sizes. The hyperparameters \; and A
can be determined by cross-validation. The obtained solution is such that the potential
nonzero patterns in the model are a complement of an intersection of a subset of groups.
Fig 3 provides a representation of the sparsity structure that this regularization will induce.
For example, if the group 4 is left out of the model, then all the coefficients belonging to
this group will be zero. Since group 4 corresponds to the fourth variable (x,), and contains
coefficients of all rules containing x4, all such rules are left out of the model. Thus, we
are left with a complement of the intersection of the groups with group 4, and obtain a
subset of rules that does not contain variable 4. The ¢; regularization term here produces

general within-group sparsity among all rules to select the most significant rules. Therefore

[ — | "1

Figure 3 Example of variable-sparse structure induced by overlapping group lasso regularization in SURVFIT.

Grouped by variables

When the group corresponding to variable 4 (red) is left out, it zeroes out all the the coefficients of

all rules containing variable 4 (crossed out).

A

a larger value of Ay will induce greater group level sparsity in the resulting coefficients, 3,
which, for the selection of groups G proposed by us will mean greater degree of variable

sparsity in the extracted rule set.
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2.4. Optimization Strategy

The challenge to solve the formulation (8) is that the overlapping group structure intro-
duces interdependency among the decision variables of the optimization problem. For
non-overlapping groups (Yuan and Lin 2006), efficient algorithms that depend on seper-
ability of variables, such as block coordinate descent can be applied (Simon et al. 2013b).
To overcome this challenge, we reformulate this problem as a second-order cone program
(SOCP) in Section 2.4.1, and use the interior point method to solve it optimally. How-
ever, this strategy will increase the problem size and therefore the computational cost.
Alternative methods that may be more efficient include proximal methods, where a key
challenge is to develop efficient solutions of the proximal operator. For instance, Chen
et al. (2012) proposed a smoothing proximal gradient method where a smooth approxi-
mation of the overlapping group lasso norm (7) and the gradient of this approximation
are derived. This smoothing strategy enables a fast iterative shrinkage-thresholding algo-
rithm (FISTA) (Beck and Teboulle 2009) to solve the problem. Lei Yuan et al. (2013)
proposed the FOGLASSO algorithm using an approximate dual of the proximal operator
of the overlapping group lasso norm and its solution. We discuss their algorithm briefly
in the following section. Chen et al. (2012) showed that the objective function of their
semi-smooth approximation converges to the optimal solution, and Lei Yuan et al. (2013)
observed that though FOGLASSO lacks a convergence guarantee, their algorithm almost
always converges to the optimal solution in practice. However, neither study the sparsity
structure of the solution they obtained in comparison to the sparsity structure of a solu-
tion which does not employ approximations. An understanding of the solution structure
obtained is critical in high dimensional problems with multiple optimal solutions where
the goal is not just to obtain a solution with an optimal value but also to minimize the

number of nonzero coeflicients in the solution.

2.4.1. SOCP optimization. In what follows, we cast the formulation (8) as a second-
order cone program (SOCP). First, we introduce a variable, z; = min(0,#(x;) — t;),Vi €
{i|6; =0}. Then, we linearize the first regularization term in (8) by introducing two new
variables, 37,3~ such that 3=068" -3, |3|=068"+ 8", and 87,8~ > 0. Third, to deal

with the ¢, overlapping group norm, we introduce new variables y € R” such that

Vp > 1Be,ll2 ¥pe{l,... P}. 9)
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The reformulated problem can be written as

P
Jmin ARS8 —tl3 a3 A (BT +87) + 0 Y gy, (10)
P22, p=1

with the constraints,

8.8 >0, (11)
z <0, (12)
z<B(3"-5)—c, (13)
yi> (8 — Ba)ll: Vie{L,...P}. (14)

Here A is the rule data matrix corresponding to event observations, B is the rule data
matrix corresponding to censored observations and, t and c are the event times and censor
times respectively, and (14) is a second-order cone constraint. This problem can now be

solved by standard SOCP solvers. We use CPLEX in our experiments.

2.4.2. FOGLASSO. Another algorithm that can solve the formulation approximately
is the FOGLASSO algorithm (Lei Yuan et al. 2013) implemented in the SLEP (Liu et al.
2009) MATLAB package. Here we briefly introduce some details of the FOGLASS algorithm
for the sake of completeness. FOGLASSO uses an accelerated proximal gradient method
where the coefficient estimates at each iteration are, 3;,1 = W/’\\;ﬁ(sz — 11'(s;)), where s; is
the affine combination of the current and previous estimates 3; and 3;_; as used in FISTA
(Beck and Teboulle 2009), L; is an appropriate constant determined via backtracking line
search by the Armijo-Goldstein condition (Armijo 1966), and 7(-) is the proximal operator
of the non-smooth regularization term, d)if (B)=A1- |81+ A2 2;1 @ Ba,||2- Then, the

main optimization problem of the proximal operator is derived to be

1
me(v) = argmin {g12(8) = 518 — o[’ + 012(8) }. (15)

FOGLASSO uses an efficient computational algorithm to solve this proximal operator by
reformulating it as a smooth and convex dual problem. A pre-processing step is developed
to identify many zero groups, which reduces the complexity of the optimization problem.
However, a trade off is that their proximal operator solution is inexact, and it is stated
that the optimal convergence rate is not guaranteed, though the algorithm works well in

practice.



14

2.4.3. Scalability and Computational Analysis Here we provide an in-depth analysis
of the computational complexity of SURVFIT as well as the existing baseline methods in
the literature.

The package pre uses the Cox-lasso formulation to extract rules. The time complexity
for Cox-regression is O(NK?) while that of the Cox-lasso is O(NK) (Wang et al. 2019).
However, there are significant computational challenges to optimizing the Cox partial like-
lihood loss function. The partial likelihood does not naturally decouple over individuals
or subsets of individuals, therefore when regularized with a non-smooth term such as the
overlapping group lasso, first order proximal gradient descent methods like FOGLASSO,
prox-Grad and alternating direction method of multipliers (Boyd et al. 2004) cannot be
used. This also means that the stochastic gradient-based optimization methods are not
suitable for the task (Tarkhan and Simon 2020). We have not come across any works that
have addressed these computational challenges in our review. One approach could be to
use the standard Newton-Ralphson second order scheme (Boyd et al. 2004), however this
is not practical for even medium-sized problems because it involves inverting large matrices
at each iteration, which itself has complexity O(K?), infeasible to solve our problem of rule
selection since we start with a large number of rules. Our approach of using a quadratic
loss function instead of Cox-partial log likelihood loss skirts this issue, allowing us to use
efficient first order and second order optimization schemes (8).

In this paper, we have discussed two different optimization schemes, SOCP and
FOGLASSO to solve Problem (8). Using the quadratic loss function instead of the Cox
partial likelihood loss allows us to formulate the problem as a second order cone program
and solve it using CPLEX solver. The solver uses the barrier interior point method (IPM),
a second order method known to converge in O(log(2)) iterations, where € is the accuracy
at convergence. The per-iteration time complexity of IPM (Boyd et al. 2004) in our case
is O(K*(N + > pel P |G,|)). First order proximal gradient methods such as FOGLASSO
(Liu et al. 2009) and Prox-Grad (Chen et al. 2012) have been proposed to efficiently solve
the problem of convex loss functions regularized with an overlapping group lasso loss.
The algorithms take more iterations to converge than the second-order IPM algorithm,
ie O(%) iterations. However, the per iteration complexity is lower by orders of magni-
tude thereby reaching convergence faster. For Prox-Grad, the per-iteration complexity is

ONK +3 c1..plGpl) (Chen et al. 2012). In practice IPM is found to be more accurate
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than proximal methods though proximal methods are more efficient and scalable for large-
scale problems. Thereby, we see that applying an overlapping group regularization term
to induce variable sparsity for the standard Cox partial likelihood loss has a time com-
plexity of atleast O(NK?®) while our formulation can be solved by first order methods
in O(NK 43 ¢,..p|Gy|) and second order methods in O(K*(N+ 3 .. p|Gy|)). This
is much more efficient in high-dimensional problems such as rule extraction where often

K >> N, i.e., the number of rules is much greater than the number of observations.

3. Interpretability of the Rules

Most rule learning methods in the literature of machine learning only concern rule discov-
ery, namely the identification of important rules from data such as Rulefit (Friedman and
Popescu 2008) and pre (Fokkema 2017). For instance, a rule suggests an interaction among
a set of variables, and the essence of an interaction is that the variables give a greater effect
when combined than taken individually. A rule learning algorithm may generate a set of
rules, but it cannot prove that the interactions are genuine. Here, we further develop a
rule analysis framework that employs a combination of statistical methods such as survival
data analysis, hypothesis testing, and regression analysis to evaluate the significance and

to better understand the implications of the discovered rules in various contexts.

3.1. Statistical Testing.

We use statistical testing to evaluate whether the extracted rules are significantly associated
with the outcome. Specifically, we analyze whether the subjects endorsing each rule have
a significantly higher or lower risk of onset of the event as compared to subjects not
endorsing the rule. For this goal, the Kaplan-Meier curve is used to study the separation of
the survival functions of the groups of observations defined by each rule. We also employ
the log-rank test (Mantel 1966), which is a hypothesis testing method used to examine

differences in risk of event occurrence between the two groups.

3.2. Decomposition Analysis.

Decomposition analysis is used to examine the rules to see if the interactions among the
variables are genuine. Basically, we decompose the rule by removing one variable at a time
and evaluating the impact of this removal, i.e., by statistically evaluating the difference
using the Kaplan-Meier curve and log-rank tests. If the removal of a variable is found

to have little impact on the overall significance of the rule, which is possible since the
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rule learning algorithm uses a greedy predictive metric to guide the rule selection process,
then we should trim the rule by removing this variable. On the other hand, the variable
which has the greatest impact on the significance of the rule is said to be the dominant
or critical variable of that rule. And if the combination of two or more variables has a
much higher association with the risk than either of the variables taken individually, then
the interaction of those two variables is highly significant in predicting the risk. Those
are possible scenarios the decomposition analysis could shed light on and reveal more

understanding of the rules and their constituent variables.

3.3. Sensitivity Analysis.

Besides the combinatorial characteristic of the rules, cutoff values of the constituent vari-
ables are also essential information in defining the interactions among the variables. Sen-
sitivity analysis is conducted to evaluate how sensitively the statistical significance of the
rule depends on the cutoff values of the variables used in the rule. We study the change in
the odds ratio of the two groups defined by the rule as the cutoff value of a variable in a
rule changes. The odds ratio (OR) (Bland and Altman 2000) is the ratio of the probability
of event occurring in the subgroup endorsing the rule to the ratio of the event occurring
in the other subgroup. This sensitivity analysis would reveal different scenarios for the
cutoff values as well, e.g., there is sometimes indeed a best cutoff value for a factor, with
a cutoff value that maximizes the statistical significance of the rule, and around the best
value there is a either a sharp or smooth descending slope. For some other variables, there
seems to be a range of cutoff values that are equally good. Thus, sensitivity analysis could

reveal unique insights regarding the variables and the rules that engage them.

4. Numerical Experiments

In this section we conduct numerical experiments to evaluate the proposed SURVFIT
method, compare the solutions produced by the two optimization strategies described in
Section 2.4, and compare SURVFIT with the baseline approach that uses a regularized
cox regression model and survival random forest. One of our goals is to demonstrate the
variable sparsity property of SURVFIT. Therefore, the rules extracted with (8) and without
(6) doubly sparse regularization, and their decomposition, and sensitivity analysis, are
also presented. Predictive and variable selection performance for each of the models are
evaluated over 100 repetitions of the same experimental setup, with 80/20 partitions of

the data for training/testing.
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4.1. Evaluation Criteria
The following measures are used to rank, and evaluate the significance of the rules extracted
by SURVFIT.

1. Importance. We rank the rules obtained by our model by the importance measure,

I(r) which is defined as
I(r) =B/ s(r)(1 = s(r), (16)

where s(r) is the support and Br is the coefficient estimate of rule r.
2. Support. The support of a rule, s(r) is defined as the fraction of total observations

that endorse the rule,

s(r)= w (17)

3. Odds Ratio. The odds ratio is the ratio of the odds of event occurence in the data
endorsing the rule to the odds of event occurence in data not endorsing the rule.

Furthermore, the following measures are used to evaluate and compare the performance
of our method with baseline models.

1. Concordance index (C-Index): Harell’s concordance index (Harrell et al. 1982) is
used to estimate and compare the predictive performance of survival models. The c-index
estimates the probability that in randomly selected pair of test subjects, the subject with
the earlier event occurence has an earlier model prediction of event time. Therefore a
completely random prediction will achieve a c-index of 0.5.

2. False positive rate (FPR): The FPR is a measure of the models capability to select a
sparse set of significant variables. It is defined as the ratio of the number of incorrect (or

noisy) variables selected by the model to the total number of variables.

4.2. Synthetic Data

We simulate a dataset consisting of N = 2000 observations with P = 60 variables using an
approach similar to the one adopted in Friedman and Popescu (2008). The event times
(18) are simulated such that only 7 variables (z; — x7) affect the target, another 7 variables
(x18 — 714) are correlated in varying degrees to the first 7 variables, and the remaining 46

variables are purely noise. The response variable t; for each input x; is taken to be
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where the function F'(x) is defined as

F(x)= 4H(—(1 —x;)?) — 0.55 % exp{—2(z4 — x5) } + 1.75 * sin(wg — x7) (19)

j=1
and € ~ N(0,0?), where o? is chosen to keep a signal to noise ratio of 3. The response
t is then scaled to make sure it is positive. The parameters of this function are chosen
in a way to obtain approximately equal representation of each predictive variable in the
exhaustive rule list. We assume that 35% of the simulated data is censored. To account for
this, the event times of a random subset consisting of 35% of the data are multiplied with a
uniform random variable to simulate the censored times. The remaining 65% of the data is
assumed to be complete. To simulate each of the correlated variables in {zg...z14}, we first
sample a correlation p € (0,1) from a uniform distribution by which it is correlated to the
corresponding original variable in {x;...z7}, then we choose © = p- o2+ /1 — p?-o,2%,
where x is the correlated variable in {zgs...z14} and z* is the residual of a least-squared
regression between x and its corresponding original variable in {x;...x7}. The response
simulation model (19) involves explicit interactions between (z1,22,23) in the first term,

(z4,25) in the second term, and between (xg,27) in the third term.

4.3. Synthetic Data Results
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Figure 4  Number of variables included in the top rules extracted at various values of )\, for the SOCP (left) and

FOGLASSO (right) optimization methods.
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4.3.1. Comparison of the SOCP algorithm with FOGLASSO. Fig. 4 compares the
number of variables included in the top ranked rules extracted at various values of A\ for
the SOCP and FOGLASSO methods. Firstly, both algorithms show the effectiveness of the
SURVFIT formulation to produce a doubly-sparse set of rules which are also sparse in the
number of variables involved in the rules, i.e., it is observed that the extracted rules contain
fewer variables when )\, is increased. Secondly, we observe that comparing with our SOCP
algorithm, FOGLASSO leads to rules with more variables. It is worth mentioning that
in our experiments, solving the problem using proximal smoothing algorithm introduced
by Chen et al. (2012) leads to a selection of rules which had even more variables than
FOGLASSO. This difference in the structure of the solutions under these algorithms may be
attributed to the approximate nature of the algorithm used to solve the proximal operator
in FOGLASSO, and the smoothing approximation of the overlapping group norm (7) used
by Chen et al. (2012) which lead to a less sparse solution in terms of groups i.e variable

selection, a trade off for their computational advantage.

4.3.2. Quality and efficiency of rule extraction. The hyperparameters, A\; =5 and
A2 = 20 are chosen after cross validation for the following analysis. The SURVFIT algorithm
then extracts the highly predictive rules which are also sparse in the number of variables
among them. SURVFIT, like other rule models based on sparse regularization, produces a
rank for each rule. One way to compare different methods is to see the quality of highly
ranked rules, i.e if noisy or low quality rules have high rank, the algorithm is less useful.
The rules are ranked based on the importance measure introduced in Section 4.1. In our
experiment, we compare the top 8 rules which are extracted by SURVFIT (in Table 2)
and the rules extracted by ¢; penalized optimization without the variable sparsity penalty
(in Table 1). One main interest of this numerical study is to see if SURVFIT could detect
significant rules without falsely introducing noisy variables. Table 2 presents the top 8
rules extracted via SURVFIT which involve 7 variables, xy, xs, 4 — x7 and a singular
false positive, x1;. (The significant variable z3 is not picked in the top 8 rules though
it does show up in the total list of significant rules with non-zero coefficients). This is
consistent with the ground truth that has been used in the synthetic data generation
as shown in (18). A remarkable observation is that SURVFIT is resilient to the noise
in the data which was designed for variables xg — x14 to be statistically correlated with

x1 — x7. To further demonstrate this point, Table 1 lists the top 8 rules extracted without
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doubly-sparse regularization, i.e., only employing ¢; norm penalty to obtain sparsity in
the cardinality of rules. In contrast to SURVFIT we can observe that the rules in Table
1 contain a total of 15 variables, of which many are false positives. Thus, doubly-sparse
regularization used in SURVFIT is effective to recover the true variables and genuine
interactions in the data generating process. Fig. 4 shows the number of variables involved
in the top rules returned by SURVFIT for different values of A,. Increasing the value of
the variable-sparsity parameter, \s leads to rules which are more sparse in the number of
variables. For instance, at Ay =0, the top 10 rules involve 16 variables, while for Ay = 80,
the top 10 rules involve only 7 variables. The difference is even more stark when comparing
the top 100 rules: there are close to 50 variables at Ay =0, while at Ay = 80, the top 100
rules only contain 16 variables. We conclude that our proposed SURVFIT approach is able
to extract a doubly-sparse set of rules involving only the most significant variables in the

data.

4.3.3. Rule analysis. Table 2 not only presents the top 8 rules extracted via SURVFIT,
but also their decompositions, p values of the log-rank test, and support (4.1) of each of
these rules. Also, Fig. 5 shows the Kaplan-Meier survival curves for these rules. We observe
from the Kaplan-Meier curves that, endorsement of rules 1-6 and rule 8 is associated with
higher survival rates, while endorsement of rule 7 is associated with lower survival rate. As
we show in the following discussion, these rules recover the variable effects and interactions
on mortality encoded in the data generation process. The decomposition analysis (besides
the p-values shown in Table 1, the decomposition curves for the rules are also plotted in
Fig. 6) also reveals interesting insights into the data. For instance, on rule 2 we can see
that there is a real interaction between x4 and x5, as removal of either hugely impacts the
significance of the rule. This is consistent with the ground truth model as the way the two
variables are incorporated into the data-generating mechanism is through the functional
exp{—2(x4—x5)}. A similar observation holds true for rule 3 and its decomposition analysis
reveals the interaction between xg and x7. The decomposition analysis on rule 4 is also
insightful, as it actually shows that with x5 alone the significance of the rule is stronger,
indicating that there is no synergistic interaction between x; and x5 so there is no need
to keep variable x; in the rule. This shows that rule 4 contains noise resulting from the
greedy nature of the tree-growing algorithm used. While the double-sparsity enforced by

SURVFIT aims to reduce this noise, we also need decomposition analysis to further filter
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out any residual noise. Similar conclusion holds true for the decomposition analysis on rule
5, rule 6, and rule 7. We could still keep some significant, but not explicitly interacting
variables in the rules, e.g., x5 in rule 5 and x; in rule 6, since it is hard to call these two
rules interrupted by noise, given that x5 and z; contribute to the overall significance of the
rules though their contributions are quite marginal. Here there is no obvious contradiction
with the ground truth model since all the variables are truly involved in the ground truth,

although not in explicit interaction terms, an implicit interaction exists.
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Figure 5 Kaplan—Meier survival curves with 95% confidence intervals for each rule in Table 2

Next we analyze the sensitivity of the cutoff values of the variables. Fig. 7 shows how
the overall significance of the rules, as measured by the odds ratio and its 95% confidence
interval changes with change in the cutoff value of the variables in the rules. For instance,
in the sensitivity analysis of Rule 1, we see that increasing the cutoff value of x5 reduces
the odds ratio, meaning that at higher values of x5 the probability of event occurence falls
off. This is consistent with both the Kaplan Meier curve associated with rule 1 as well as
the data-generating mechanism. The sensitivity analysis of rule 2 shows how the odds ratio
would change with change in cutoff of each of x4 and x5, while keeping the other cutoff

constant. At smaller cutoff values of x4, the odds ratio is greater than 1 signifying higher
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Table 1 Top 8 Rules Identified without double sparsity penalty (6) and Corresponding Log-Rank p-Values
Rule ID || Rule p Value || Support (%)
1 x4>0.532 AND 249 > 0.033 8e—13 | 37.05
la x4 >0.532 4e —15 || 38.3
1b x49 > 0.033 0.01 96.6
2 x5>0.47 AND x19 <=0.705 3e—19 [ 42.25
2a x5 >0.47 3e—16 || 46
2b x10 <=0.705 3e—04 |92

3 x9 <=0.309 AND z5 > 0.5 AND z1; <=0.289 6e—12 [/ 6.40
3a x5>0.5 AND z1; <=0.289 2¢e —14 || 18.40
3b 9 <=0.309 AND z1; <=0.289 2e—12 |/ 15.90
3c x9 <=0.309 AND z5 > 0.5 le—13 || 14.90
4 x9 <=0.45 AND x4 > 0.486 AND z5; <=0.892 || 3.5e — 18|/ 23.25
4a x> 0.486 AND x5, <=0.892 2.5e — 17 || 44.05
4b 29 <=0.45 AND x5, <=10.892 5e —12 || 50.60
4c 29 <=0.45 AND x4 > 0.486 2¢e —18 || 23.55
5 x1 <=0.25 AND x4 > 0.442 AND z1; <=0.346 |[6e—13 | 6.90
5%:) x> 0.442 AND z1; <=10.346 6e —16 || 25.80
5b x1 <=0.25 AND z1; <=0.346 le—09 |[15.25
5¢ x1 <=0.25 AND x4 > 0.442 le—13 | 13.45
6 xg > 0.48 AND z7 > 0.48 AND z39 <= 0.893 2e —22 ||20.85
6a x7>0.48 AND 239 <=0.893 3e—10 || 46.20
6b x> 0.48 AND 239 <=0.893 2e — 17 |1 44.90
6¢ 26 > 0.48 AND x7 > 0.48 3e—22 21.00
7 x4 <=0.494 AND 29 <=0.553 AND 213 >0.549 || 3e —12 || 10.35
7a r9 <=0.553 AND x13 > 0.549 2e —11 18.60
7b x4 <=0.494 AND x5 > 0.549 9e —09 || 12.60
Tc x4 <=0.494 AND z9 <=0.553 4e — 15 || 44.30
8 x4 <=0.323 AND 94 > 0.886 AND x93 > 0.0043 || 3e — 10 || 61.45
8a Xog > 0.886 AND x95 > 0.0043 0.2 98.00
8b x4 <=0.323 AND x5 > 0.0043 2¢e —11 || 62.65
8c x4 <=0.323 AND x4, > 0.886 4e —15 || 61.60
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Table 2 Top 8 Rules Identified with double sparsity penalty (8) and Corresponding Log-Rank p-Values. The

final rules selected after decomposition analysis are highlighted in gray.

Rule ID || Rule p Value || Support (%)
1 x5 > 0.687 7.5e— 15| 21.5
2 x4 <=0.52 AND z5 > 0.395 Te — 25 32.80
2a x4 <=0.52 8e — 15 60.20
2b x5 > 0.395 3e—14 54.40
3 xg > 0.479 AND z; > 0.48 3e—23 21.0
3a x¢ > 0.479 2e —17 ]| 45.25
3b x7 > 0.48 3e—10 46.55
4 x1 <0.4 AND x5 >0.71 2e—9 8.09
4a r1<0.4 2e — 6 44.80
4b x5 >0.71 le—10 18.25
) 2o <=0.45 AND z¢ > 0.485 6e — 18 23.55
Ha To <=0.45 4e — 10 51.00
5b xg > 0.485 2¢ — 17 || 44.55
6 x1 <=0.52 AND z¢ > 0.625 2e — 18 18.20
6a r1 <=10.52 de —4 58.10
6b x> 0.625 oe —17 ] 30.75
7 x1 >=0.33 AND 25 >0.65 AND z7; > 0.428 || 4e — 11 9.30
Ta o >0.65 AND z7 > 0.428 2e — 04 14.95
b x1>=0.33 AND x; > 0.428 0.9 33.90
Tc x1 >=0.33 AND 25 > 0.65 2e — 12 17.35
8 22 <0.31 AND z5> 0.5 AND x1; <=0.288 || 6e — 12 6.4
8a x5 > 0.5 AND z1; <=0.288 2¢—14 18.40
8b 2 < 0.31 AND z1; <=0.288 2e — 12 15.90
8c 22 <0.31 AND z5>0.5 le—13 14.90

risk levels while at higher cutoffs of x5, the cutoff is lower than 1 signifying lower risk.

The is again consistent with the ground truth since the time of event occurence depends

on —exp(—2(z4 — x5)), and a larger value of x4 would decrease and a greater value of x5

would increase the value of this term and hence decrease and increase the time of event
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Figure 6 Decomposition analysis for each rule in Table 2

occurence, respectively. The sensitivity analysis of the other rules can also be interpreted
in this context and seen to be consistent with our knowledge of the ground truth. Thus,
the sensitivity analysis helps us understand how each variable affects the event risk under

different conditions.
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Figure 7 Sensitivity analysis of rules from Table 2
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Figure 9 Comparison of sparsity performance of Regularized Cox and SURVFIT model on synthetic data

4.3.4. Comparison of predictive and sparsity performance of SURVFIT with stan-
dard survival models. We compare the predictive performance of the SURVFIT algorithm
to standard survival analysis methods such as random survival forests implemented in
randomForestSRC (Ishwaran et al. 2008), Cox regression (Cox 1972), and regularized Cox
regression (Tibshirani 1997) using the concordance index (C Index) metric (4.1). The
C Index for SURVFIT is calculated through the times-of-event occurence estimated by
SURVFIT as shown in Section 4.1. Fig. 8 shows box plots of the estimates of prediction
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error (1 - C Index) obtained over 100 independently sampled replicates. The following
performance evaluation procedure has been adopted: first we sample a training set of 1600
observations, and then an independent test set of 400 observations. The different models
are then trained on the training dataset and the reported performance evaluation is based
on on the test set. This procedure is repeated 100 times to obtain the C-Index estimates for
each of the different methods. It can be observed that the prediction errors of SURVFIT,
when considering rules with all non-zero coefficients is lower than prediction errors of other
methods. To compare the error rates of the ditferent methods, we use the paired Wilcoxon
rank sum test on our C-Index estimates. For each pair of the methods, we perform the
following test:
Null hypothesis: C-Index; = C-Index,
Alternative hypothesis: C-Index; # C-Indexs

The p-Values from each of these pairwise tests are provided in Table 3. It can be seen

that the performance of the methods are significantly different from each other.

Table 3 p-value of pairwise Wilcoxon rank sum test on C-index obtained by each of these methods on

synthetic data

FOGLASSO | randomForestSRC | Cox | L1 regularized Cox
SOCP 0.0002563 9.3e-09 1.86e-09 0.00113
FOGLASSO 1.86e-08 1.86e-09 0.04592
randomForestSRC 1.82e-06 1.3e-07
Cox 1.86e-09

Our goal is not only to get a model that is accurate in terms of prediction but also
exhibits sparsity in the number of variables. To do this we compare the false positives in the
variables involved in the SURVFIT model with variables involved in the regularized Cox
regression model. Fig. 9 compares a box plot of the variable selection error (false positive
rate, (2)) of the regularized Cox model and SURVFIT obtained over 100 independently
sampled replicates. As the figure shows, regularized Cox-regression does slightly better on
average than SURVFIT on our synthetic data in terms of variable selection, although the
spread of error is higher. The other models like randomForestSRC and Cox regression use

all variables in the data, therefore a comparison of variable selection with these models is
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not meaningful. The true positive rate, i.e., the proportion of correct variables identified is
equal to 1 for both models, i.e., both SURVFIT and regularized Cox regression select all

of the significant variables.

5. A Real-World Case Study: MIMIC Sepsis Data

MIMIC-III (Medical Information Mart for Intensive Care) (Johnson et al. 2016) is a com-
prehensive database comprising anonymized information relating to patients admitted to
the Beth Israel Deaconess Medical Center in Boston, MA between 2001 and 2012. The
data consists of over 53,000 adult ICU admissions during this time period. In this paper,
we utilize a subset of inpatient admissions which were diagnosed with at least one of sep-
sis, or severe sepsis, or septic shock, which are increasingly severe sepsis conditions. This
subset has 2,840 samples in total. Sepsis is a common ailment caused by infections and
characterized by whole body inflammation which accounts for 2% of hospitalizations and
25% of ICU bed utilization’s in the United States. It is the second leading cause of death
among [CU patients, the third leading cause of death worldwide, and the main cause of
hospital mortality (Gotts and Matthay 2016, Liu et al. 2014). Understanding mortality
risk from sepsis would be beneficial for physicians in selecting a more efficient manage-
ment approach. Several recent studies have focused on predicting mortality risk based on
variables related to predisposition (Moreno et al. 2008), pre-existing and co-morbid condi-
tions (Ford et al. 2016), cytokines and immune system interleukin’s (Andaluz-Ojeda et al.
2012), and gene expression analysis (Sweeney et al. 2018). A recent study on early sepsis
detection by Shashikumar et al. (2017) has used heart rate and blood pressure dynam-
ics data. As the mechanism of how these variables impact the mortality risk is known
to be complex, we use SURVFIT to extract rules and study the interactions among the
variables. Out of the 2,840 patient observations in our dataset, 1,097 (38.6%) are mortal
event instances with a record of time of death and the remaining are censored with time
of discharge as the censor time. We investigated 78 variables in our analysis, consisting
of patient characteristics such as age, race, gender, weight, clinical history; physiological
measurements such as respiratory rate, blood pressure, heart rate, oxygen saturation etc.,
and summary statistics of physiological measurements and laboratory test results such as

blood urea nitrogen, creatinine, white blood cell count, and hemoglobin etc.
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5.1. Sepsis Survival Results.

We choose v =5 x 107%, A\ =50 and Ay = 10 for our SURVFIT model through cross-
validation. The top 8 rules extracted by SURVFIT are presented in Table 4, along with
their p-values of the log-rank test, their support, and the results of the decomposition and
sensitivitiy analysis. We obtain a total of 13 significant variables involved in the top 8 rules
affecting survival risk. Aspartate-aminotransferase, oxygen saturation (Os-sat.), Alanine-
aminotransferase, arterial-pH, age, heart-rate, Alanine-aminotransferase(tests), diastolic
BP (noninv-dia-BP), length of stay, systolic BP (noninv-sys-BP) are the variables associ-
ated with sepsis mortality risk. We quantitatively, and descriptively evaluate their inter-
action effects on mortality. Each of these rules is significant, i.e., as shown in the p values
of the log-rank test. The Kaplan—Meier curves of the rules are shown in Fig. 10. The
Kaplan—Meier curves reveal that the rules 1, 2, 4, 5 and 7 are risk-reducing rules, i.e.,
patients who endorse these rules have less risk of mortality, and the rules 3, 6 and 8 are
risk-increasing rules. Based on the decomposition analysis of the rules, i.e., p-values shown
in Table 4 and survival curves of decomposition analysis shown in Fig. 11, we are able to
gain a greater understanding of the nature of the interactions of the variable in each of the
rules. For example, in rule 1, while both Aspartate-aminotransferase(mean) and oxygen
saturation, Oy-sat.(mean) are significant in predicting the risk, Oq-sat.(mean) is the critical
factor due to its lower p value. In rule 2, the interaction between Alanine-aminotransferase
(mean) and arterial-pH (mean) is significant in predicting the mortality. Decomposition
analysis of rule 3 demonstrates an interaction of heart-rate(sd) and arterial-pH(mean) to
be highly significant while interaction between age and arterial-pH is not. The removal of
heart-rate(sd) from rule 4 reduces the rule discrimination ability the most, making it the
critical factor. Likewise, in other rules we observe that diastolic blood pressure (noninv-dia-
BP), systolic blood pressure (noninv-sys-BP) and length of stay (total LOS) also influence
the mortality rate. In rule 8, decomposition analysis reveals that noninv-sys-BP(mean)
is the critical factor of the rule while heart-rate(tests) has no contribution despite being
involved in the rule. The literature studying sepsis mortality supports our results, as the
variables covered in these rules as well as their cutoff values have been found to be signif-
icant in predicting the mortality associated with sepsis. For example, rule 1 suggests that
higher saturated oxygen, (Os-sat(mean) > 92.5) is associated with a lower mortality risk.

Our findings are consistent with the results found by Leone et al. (2009) who reported a
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Figure 10 Kaplan—Meier survival curves with 95% confidence intervals for rules in Table 4

lower level of oxygen saturation in non-survivors as compared to survivors, and a value
below 78 is associated with increased risk of mortality among patients of septic shock in
their experiments. Alanine aminotransferase (alt), and aspartate aminotransferase (ast)
are liver enzymes that are biomarkers of abnormal liver functions which is often found
in sepsis patients (Nesseler et al. 2012). In rules 1 and 2 we see that a higher Aspartate-
aminotransferase and Alanine aminotransferase signifies increased mortality risk, high lev-
els of both enzymes have been found to significant predictors of sepsis associated liver
injury (Dou et al. 2019, Zagory et al. 2017) in literature. In rule 6, standard deviation
of oxygen saturation (Os-sat(sd)) is found to be a significant predictor of mortality, and
higher deviations are associated with higher mortality. A similar result was found by Krafft
et al. (1993) who investigated spontaneous changes in oxygen saturated in sepsis patients,
and reported a significantly higher number of severe changes in Os-sat in non-surviving
patients when compared to surviving patients. However, the literature does not discuss the
significance of interactions between the variables found in our model.

Sensitivity analysis of some critical factors of the rules are reported in Fig. 12. The sensi-
tivity analysis figures show the odds ratio (and 95% confidence interval) of the rules change

when the cutoff values of variables are changed while keeping cutoffs of other variables in
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Table 4 Top 8 rules identified with double sparse penalty from Sepsis survival data and their decomposition

analysis. The final rules selected after decomposition analysis are highlighted in gray.

ID H Rule H p Value H Support
1 | Aspartate-aminotransferase (mean)<= 308 AND Os-sat. (mean)> 92.5 2e—70 | 89.6
la || Aspartate-aminotransferase (mean)<= 308 2e —38 ]/ 91.62
1b || Os-sat. (mean)> 92.5 2e—83 |97
2 || Alanine-aminotransferase (mean)< 2778.3 AND arterial-pH (mean)> 7.2 8e — 150 | 81.83
AND Os-sat. (sd)<=3.23
2a || arterial-pH (mean)> 7.2 AND Os-sat. (sd)<=3.23 3e—148 1 81.93
2b || Alanine-aminotransferase (mean)< 2778.3 AND Oy-sat. (sd)<=3.23 8e—59 | 86.97
2¢ || Alanine-aminotransferase (mean)< 2778.3 AND arterial-pH (mean)> 7.2 8e —240 | 92.18
3 |lage > 73.85 AND heart-rate (sd) <=38.74 AND arterial-pH (mean) > 7.25125 || 3e — 05 || 37.21
3a || heart-rate (sd) <=38.74 AND arterial-pH (mean) > 7.25125 3e—240 | 92.14
3b || age > 73.85 AND arterial-pH (mean) > 7.25125 le—05 |/ 37.39
3c || age > 73.85 AND heart-rate (sd) <=38.74 > 7.25125 4e—19 |/40.21
4 || has.septicshock = I AND Alanine-aminotransferase (tests) > 3.5 2e —23 || 34.78
4a || has.septicshock = F 3e—17 | 50.38
4b || Alanine-aminotransferase (tests) > 3.5 le—23 |/ 69.82
5 || noninv-dia-BP (mean)> 34.3 AND Os-sat. (sd)<=5.8 4e —32 | 25.03
AND noninv-sys-BP (mean) > 111.5
5a || Og-sat. (sd)<=5.8 AND noninv-sys-BP (mean) > 111.5 3e—32 | 25.07
5b || noninv-dia-BP (mean)> 34.3 AND noninv-sys-BP (mean) > 111.5 4e —25 |126.30
5¢ || noninv-dia-BP (mean)> 34.3 AND Os-sat. (sd)<=5.8 3e—60 | 95.21
6 || Aspartate-aminotransferase (mean)<= 2585 AND Os-sat. (sd)> 3.1 be—42 | 13.6
6a || Aspartate-aminotransferase (mean)<= 2580 5e—33 | 98.97
6b || Og-sat. (sd)> 3.1 2e —51 || 14.01
7 | total-los> 0.52 AND heart-rate (tests) s> 478 AND arterial-pH (mean)> 7.25 | le—37 | 12.07
Ta || heart-rate (tests) s> 478 AND arterial-pH (mean)> 7.25 le—37 || 12.07
7b || total-los> 0.52 AND arterial-pH (mean)> 7.25 5e —290 | 90.59
7c || total-los> 0.52 AND heart-rate (tests) s> 478 2e—37 | 12.11
8 || heart-rate (tests) >7 AND noninv-sys-BP (mean)<=99.61 2e—27 |8.91
8a || heart-rate (tests) >7 1 99.4
8b || noninv-sys-BP (mean)<=99.61 2¢—30 | 9.08

the rule at the base level. Analysis of Os-sat. in rule 1 shows that an O,-sat.(mean) value
greater than 90 leads to an odds ratio much lower than 1, and hence decreased mortality

risk. A further increase in the Os-sat. shows a steady increase in risk showing that very
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Figure 12 Sensitivity analysis of critical factors in rules from Table 4

high levels of oxygen saturation (above 95%) will increase mortality risk. This analysis is
in line with a study by Pope et al. (2010) which reports that both abnormally high and
low levels of oxygen saturation are associated with increased mortality in patients with
suspected sepsis. Our sensitivity analysis is able to resolve such interactions, and predict

these complex effects. In rule 2, we see that arterial-pH below 7.2 has a slightly higher
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odds ratio, and therefore risk compared to when it is between 7.2 and 7.4. Any higher
arterial-pH(mean) drastically increases the odds ratio implying that a high arterial-pH is
a strong indicator of mortality. In rule 3, as cutoff for age increases, the odds ratio and
therefore the risk of mortality of rule endorsing observations increases steadily implying
that the older population is at greater risk of mortality. Advanced age has been found to
be a strong predictor of mortality among sepsis patients (Yang et al. 2010, Dd et al. 1990).
Rules 5 and 8 show that a high diastolic or low systolic blood pressure will increase mor-
tality risk. These insights into the affect of blood pressure are similar to those obtained by
prior research in a study conducted by Shashikumar et al. (2017) who used blood pressure
and heart rate dynamics to determine risk. Meanwhile, in rule 7, we find longer length of
stays are associated with higher risk until a stay of about 50 days, the large confidence
interval of the odds ratio at stays which are any higher makes it hard to make a conclusion

about the risk in this case.

5.1.1. Comparison with Cox Regression and Random Survival Forest. We again
run experiments over 100 independently sampled subsets of the sepsis data to compare the
predictive performance of the SURVFIT model with the survival random forest and the
Cox model. We use 4-fold cross-validation (Hastie et al. 2009) to estimate the error rates
of the 3 models being compared. This is done as follows: first we divide the dataset into 4
equal and exclusive parts. Then, one of the parts is considered the test set and the models
are trained on the remaining 3 parts after which performance evaluation is done on the
test set. This is done 4 times, each time considering a different part as the test set. This
entire procedure is repeated 25 times for 25 different random divisions of training and the
testing set to obtain the C-Index estimates for each of the ditferent methods. The results
in Fig. 13 show that, while the survival random forest and SURVFIT achieve comparable
results, both methods significantly outperform the Cox model on this dataset.

To compare the differences in error rates by different methods, we use the paired
Wilcoxon rank sum test on our C-Index estimates. For each pair of the methods, we perform
the following test:

Null hypothesis: C-Index; = C-Index,
Alternative hypothesis: C-Index; # C-Index,
The p-Values of each of these pairwise tests are provided in Table 5. It can be seen that

the performance of all 3 methods are significantly different from each other. The p-Values
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Figure 13 Comparison of predictive performance of Random Survival Forest and SURVFIT and Cox regression

on MIMIC-III Sepsis data

of the tests show that the error rate of the Cox model is clearly higher than both ran-
domforestSRC and SURVFIT, and the random survival forest method, randomforestSRC,
achieves a lower error than SURVFIT. These results show that, on this dataset, SURV-
FIT yields greater interpretability than randomForestSRC at the cost of some prediction

performance loss.

Table 5 p-value of pairwise Wilcoxon rank sum test on C-index obtained by each of these methods on Sepsis

data

randomForestSRC Cox

SURVFIT 3.1e-05 2.98e-11
randomForestSRC 2.9e-11

6. Conclusion

Regression models dealing with survival data such as the Cox regression model are often
used as confirmative tools but are limited by their inability to discover significant inter-
action terms from the data unless explicitly specified. This limitation is addressed by the
proposed SURVFIT method which can be used to search for significant interactions among
the variables. Different from existing rule learning methods, SURVFIT extracts a doubly-
sparse set of rules (i.e., which are sparse both in their cardinality as well as the cardinality

of the variables involved in them) for survival data. We develop the learning formulation
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of SURVFIT, and further propose and evaluate fast optimization strategies. We present
a rule analysis framework to analyze the extracted survival rules through statistical test-
ing, decomposition analysis, and sensitivity analysis to draw deeper insights from them.
SURVFIT could be used solely as a data analysis method that could reveal insights about
the contributions and interactions of the variables. Its results could also used to augment
the Cox regression as well, i.e., with higher-order interactions. Moreover, the absence of
any underlying assumptions about the data makes our model quite robust. In summary,
SURVFIT provides a sparse, efficient and highly interpretable tool that can be used to
detect and explain the properties of predictive rules from survival data. We have also
developed the R package, SURVFIT, to implement the rule learning algorithm and rule
analysis framework presented in this paper. Future directions to SURVFIT may include
development of more structured solutions, such as ones with hierarchical restrictions on the
variables in the rules, as well as learning rule sets such that the rule endorsement subsets
are highly unique, i.e., rules are different from each other not only in terms of the variables

involved but also in terms of the observations they endorse.

7. Software and Computational Details

R package ranger (Wright and Ziegler 2017) was used to build survival random forest and
inTrees (Deng 2014) was modified by us to extract an exhaustive rule list from ranger. An
R implementation of FOGLASSO based on SLEP (Liu et al. 2009) was used to implement
the first-order method. The SOCP formulation was solved using CPLEX solver. Compre-
hensive codes to implement solutions of both formulations, extract survival rules, and use
the proposed rule-analysis framework are available in a self-contained SURVFIT package

downloadable from https://github.com/hamzameer/SURVFIT.
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