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Abstract—We present V2V, a novel deep learning framework, as a general-purpose solution to the variable-to-variable (V2V) selec-
tion and translation problem for multivariate time-varying data (MTVD) analysis and visualization. V2V leverages a representation
learning algorithm to identify transferable variables and utilizes Kullback-Leibler divergence to determine the source and target vari-
ables. It then uses a generative adversarial network (GAN) to learn the mapping from the source variable to the target variable via the
adversarial, volumetric, and feature losses. V2V takes the pairs of time steps of the source and target variable as input for training,
Once trained, it can infer unseen time steps of the target variable given the corresponding time steps of the source variable. Several
multivariate time-varying data sets of different characteristics are used to demonstrate the effectiveness of V2V, both quantitatively
and qualitatively. We compare V2V against histogram matching and two other deep learning solutions (Pix2Pix and CycleGAN).

Index Terms—Multivariate time-varying data, variable selection and translation, generative adversarial network, data extrapolation

1 INTRODUCTION

To understand various physical and natural phenomena, scientists pro-
duce multivariate time-varying data (MTVD) from large-scale scien-
tific simulations. For large-scale simulations, the limited I/O band-
widths cannot match the rate of data production. In most cases, sci-
entists could only afford to sparsely store the outputs for post hoc
analysis and visualization. In this paper, we focus on the variable-to-
variable (V2V) translation as an extrapolation task for MTVD. That
is, given a variable sequence, for example, variable MF of the com-
bustion data set, we aim to generate another variable sequence, for
example, variable YOH of the same data set.

For scientific applications, it is meaningful to generate one vari-
able sequence conditioned on another variable sequence because of
the following reasons. First, scientists often simulate a large number of
ensemble runs for generating multiple MTVD sequences but are only
allowed to store a fraction of these sequences. Our solution allows sav-
ing one ensemble run entirely (i.e., all the time steps) while sparsely
sampling the rest of runs (e.g., only the early time steps) as they can
be faithfully recovered later on. In this way, scientists can save more
runs, supporting a more accurate examination of the dynamic features
of MTVD. Second, through V2V translation, scientists can discover
the relationships among different variables and focus on variables of
interest during post hoc investigation. As variable sequences depend
on each other, studying the difficulty of transferring one sequence to
another will shed new light on MTVD analysis and visualization.

Translating one variable sequence to another variable sequence
poses four main challenges. First, understanding the relationships
among different variables in MTVD is critical for V2V translation.
Choosing two arbitrary variables for translation could lead to unex-
pected results since the randomly chosen variables may exhibit dra-
matically different patterns. Therefore, variable selection should be
considered so that high-quality V2V translation can be achieved. Sec-
ond, once the transferable variables are determined, choosing the ap-
propriate source and target variables is still crucial since the translation
difficulty could vary given a different variable as input. Third, unlike
volume temporal and spatial super-resolution tasks that aim to inter-
polate data through their neighborhood information, V2V translation
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performs extrapolation instead of interpolation, which is a much more
difficult task. Fourth, both global and local information must be con-
sidered simultaneously as multivariate temporal patterns in different
regions are non-linear and non-uniform. Assuming the translation is
local and linear may not ensure acceptable results: we may produce
blurred features, resulting in fewer details in the visualization (i.e., di-
rect volume rendering and isosurface rendering).

To tackle these challenges, we propose a novel solution for address-
ing the V2V translation problem for MTVD analysis and visualiza-
tion, inspired by image-to-image translation tasks and representation
learning techniques. V2V is a comprehensive framework for select-
ing transferable variables and synthesizing variable sequences. We
leverage generative adversarial networks (GANs) to learn the variable
mapping non-linearly and non-locally. Our solution consists of three
stages: feature learning (aiming to find the relationships among dif-
ferent variables for MTVD), translation graph construction (aiming to
detect the source and target variables), and variable translation (aim-
ing to learn a mapping function from one variable to another variable).
The training data could be obtained at earlier time steps from the two
variable sequences. During inference, V2V can synthesize a variable
sequence conditioned on another variable at later time steps. Quantita-
tive and qualitative results with several data sets with different charac-
teristics demonstrate the effectiveness of V2V. Also, we compare V2V
against three other solutions: histogram matching [35], Pix2Pix [19],
and CycleGAN [47]. Our results indicate that V2V achieves better
quality using the data-, image-, and feature-level quality measures.

‘We summarize our contributions as follows. First, V2V is the first
work in scientific visualization that applies deep learning techniques
for variable selection and translation. Second, we propose a new ar-
chitecture for the V2V translation task, which is different from the
ones often used in the image-to-image translation task. Third, we
conduct a thorough experiment to investigate how variable selection
results could impact variable translation results.

2 RELATED WORK

Multivariate relationships. Researchers have studied point-wise cor-
relation coefficients [8, 32, 38, 3] and gradient similarity measure [36].
Wang et al. [41] studied the information flow between variable pairs
using transfer entropy for investigating variable causal relationships.
Biswas et al. [2] classified variables using surprise and predictability
derived from information theory and leveraged a graph-based repre-
sentation for variable exploration. Liu et al. [26] designed the proba-
bilistic association graph based on the informativeness and uniqueness
concepts to uncover the hidden associations between different vari-
ables. Tao et al. [39] considered isosurface similarities across the time
and variable dimensions for time-varying multivariate data and de-
signed the matrix of isosurface similarity map for visual exploration.



Unlike these works, we investigate variable relationships using their
latent features learned from a neural network and select variable pairs
suitable for subsequent translation study.

Deep learning for scientific visualization. As deep learning so-
lutions have solved a series of problems in image classification, im-
age super-resolution, and image generation, researchers have recently
attempted to explore the use of deep learning in solving scientific vi-
sualization problems. Examples include super-resolution generation
in the spatial [46, 43, 9], temporal [13], and image [42] domains,
volume rendering pipeline replacement [1, 17, 37], data reconstruc-
tion [11], workload balancing [18], and ensemble parameter space
exploration [16]. Even though interpolation tasks have been investi-
gated [46, 13, 9], in the context of MTVD extrapolation, no work has
been done that synthesizes a variable sequence conditioned on another
sequence, which is accomplished by this work.

Representation learning. Representation learning is a focused
goal of many deep learning solutions. For example, Girdhar et al.
[7] utilized an autoencoder to learn representative features of 3D ob-
jects for producing novel 3D objects and the corresponding 2D im-
ages. Chen et al. [4] designed LassoNet that attempts to learn a latent
mapping from viewpoint and lasso to point cloud regions for lasso
selection of 3D point clouds. Han et al. [10] proposed FlowNet, an
autoencoder that learns the latent representations of streamlines and
stream surfaces for dimensionality reduction and representative selec-
tion. Porter et al. [31] established a CNN to select representative time
steps for time-varying multivariate data. Instead of selecting represen-
tative data or patches, V2V aims to find relationships among different
variables in MTVD. Moreover, the learned relationships can guide us
in choosing transferable variables for V2V translation.

Paired image-to-image translation. Deep learning solutions have
achieved great success in image-to-image translation tasks, such as
super-resolution and colorization. For image super-resolution, Dong
et al. [6] proposed a CNN that learns the mapping from low-resolution
images to high-resolution images. Johnson et al. [20] designed a
CNN that simultaneously processes image style transfer and super-
resolution tasks by minimizing content and style losses. Ledig et al.
[22] presented a GAN for inferring photo-realistic high-resolution im-
ages from low-resolution images via optimizing adversarial and per-
ceptual losses. For image colorization, Zhang et al. [44] designed a
deep learning solution that produces vibrant and realistic colorful im-
ages conditioned on gray-scale images. Zhang et al. [45] established
a CNN which directly maps a gray-scale image, along with sparse,
local user “hints” to an output colorization and propagates user ed-
its. Isola et al. [19] utilized conditional GANs for studying various
image-to-image translation problems, such as aerial-to-map, day-to-
night, and edge-to-photo. Park et al. [29] proposed a spatially-adaptive
normalization layer for synthesizing photo-realistic images based on a
semantic layout. Unlike image-to-image translation, in the context of
scientific visualization, V2V establishes a variable selection process
for choosing appropriate variable pairs for translation.

3 vav

Let us denote VY& = {VYarn yvan ... YVaml a5 a set of variables in
the given MTVD, and V¥ = {V{*7 V¥ ... V}¥} as the temporal
sequence of variable i, where m is the number of variables and 7 is the
number of time steps. VY21 : k] is a subset of VY2, which has the first
k time steps (n > k). VYa4i[l : k] is also the samples we take to train
our deep learning model. V7 and V5 denote, respectively, the ground
truth (GT) and synthesized variables from V2V. F‘Jfar" is the feature of
variable i at the jth time step. Finally, let L, H, and W be the spatial
dimensions of V&',

Our goal is to learn a mapping function 7 from one variable se-
quence VY« to another variable sequence VY¥%, namely, VY4 =
T (V¥¥a). As sketched in Figure 1 (a), our approach consists of three
stages: feature learning, translation graph construction, and variable
translation. At the feature learning stage, we collect the available time
steps from all variables of the given MTVD and utilize a U-Net [33] to
learn their latent features. Then we leverage t-SNE [40] for dimension-
ality reduction where the latent feature of per variable and per time step
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Fig. 1: (a) Overview of V2V. For feature learning, a U-Net is applied to
extract features from variables and t-SNE is used to project the features
for estimating variable similarity. A translation graph is constructed
based on the learned variable features. For variable translation, vari-
able pairs are selected and V2V is trained for learning the translation
mapping. (b) Training and testing data from the volume sequence.

is projected onto a 2D space. The t-SNE projection helps us analyze
and understand the similarities and differences among these variables,
which provide us hints on whether or not a given pair of variables is
transferable. Among all the variables, we select a transferable vari-
able group (e.g., {VY¥1 ... V¥4 }) where p < m. As an example,
the transferable variable group for the example shown in Figure 1 is
{H, H+, He, He+}.

At the translation graph construction stage, given the transferable
variable group, we estimate the transferable difficulty of variable b
conditioned on variable a, and construct a translation graph ¢ based on
the computed transferable difficulty among different variables. Then,
the source variable and target variable are selected from ¢.

At the variable translation stage, we train a V2V network to learn
the mapping between the two variable sequences (i.e., VY3« —VVab)
based on the translation graph result. Our V2V includes one generator
(G) and one discriminator (D). G consists of three modules: feature
extraction, feature translation, and variable translation. The feature
extraction module extracts rich semantic information from the input
variable. The feature translation module translates the features from
the source variable to the target variable at different scales. The vari-
able translation module translates the refined features to the target vari-
able domain. As shown in Figure 1 (b), in our experiments, the training
data consist of early time steps of VY%« and V¥ and the testing data
consist of later time steps of V¥#« and V&%,

For U-Net training, we utilize the mean squared error (MSE) as
the loss function to compute the difference between the reconstructed
and GT variables. For V2V training, we leverage adversarial, volu-
metric, and feature losses to optimize the network. Next, we describe
our approach in detail, including the network architectures of feature
learning (Section 3.1) and variable translation (Section 3.3), as well as
the algorithm for constructing the translation graph (Section 3.2).

3.1 Feature Learning

At the feature learning stage, we leverage a U-Net that takes the avail-
able time steps of all variables from the same MTVD as input and
outputs feature descriptors per variable and per time step. U-Net also
allows the reconstruction of a variable at a time step from the corre-
sponding feature descriptor. Skip connections in U-Net can bridge dif-
ferent semantic features of the same scale, avoiding information loss
during reconstruction.
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Fig. 2: Network architecture of V2V. (a) G contains eight Conv layers, four DeConv layers, and three transformation blocks. (b) D includes four

Conv layers, four SN layers, and one GAP layer.

Algorithm 1 Translation graph construction.

Require: A set of variables: {VYa' vVVvar ...
initialize a translation graph ¢ with vary,- - -

,Vvan L
,var, as nodes and no

edge
fori=1---pdo
for j=1---ido

if £(F¥ F¥¥/) < € then
Compute TD(VY2% || VY&i) and TD(VYi||VVa5)
if TD(VYa||VYai)y < TD(VY¥i||VV2) then
add an edge from var; to var; to ¢
else
add an edge from var; to var; to ¢
end if
end if
end for
end for
return ¢

In general, U-Net is composed of an encoding path and a decoding
path. There are four convolutional (Conv) layers in the encoding path
and four composites of deconvolutional (DeConv) layers and Conv
layers in the decoding path. In the encoding path, each of the first three
Conv layers reduces the input’s dimension by half. The feature maps
start with 64 and double in the following Conv layers. Then, we apply
one Conv layer to transform the learned features into a 1D vector with
512 components. In the decoding path, DeConv layers are utilized to
upscale the feature back to the original dimension, and the following
Conv layers are utilized to fuse and refine feature maps. To keep the
information flowing smoothly and avoid information loss, we concate-
nate the feature maps from the Conv layer in the encoding path and the
feature maps from the DeConv layer as input for the consecutive Conv
layer for refinement. The feature maps start with 256 and reduce by
half in the following DeConv layers. We keep the same feature maps
in each Conv layer followed by each DeConv layer. Note that the con-
catenation happens at the corresponding scale (i.e., these two tensors
have the same resolution). Rectified linear unit (ReLU) [28] is uti-
lized after each Conv or DeConv layer to help the network learn faster
and perform better. After the final Conv layer, tanh(-) is applied for
normalization (in the range of [—1,1]).

Loss function. In order to ensure that the synthesized variables are
close to the GT variables, we use MSE as the loss function to train
U-Net. The MSE loss is defined as

u
£ =Y IV;=Vjll,
j=1

(1

where V; and v ; are, respectively, the GT and synthesized variables
of the jth training sample, u = k x m is the number of training samples,
and || - ||, is L, norm.

3.2 Translation Graph Construction

After the transferable variable group (e.g., {V'¥",--- VY7 1) is deter-
mined, we define the transferable difficulty (TD) of V¥ conditioned
on VY& ag follows

TD(VVa[[VVar) = F, " |[F)") @

)

L

i

where F," is the feature of variable j at time step 7, KL(:||-) is
Kullback-Leibler divergence, and £ is the total available time steps.
The transferable order for the variable pair i and j is given by
min{TD(V"¥||V¥&) TD(V'¥||VYa)}. 3)
A translation graph ¢ can be constructed based on the calculation of
TDs between different variable pairs. The process is described in Al-
gorithm 1. Given a pair of variables, we first compute the Euclidean
distance of these two variables in the feature space. The distance de-
termines whether or not these two variables are transferable. If the
distance is less than a threshold €, then we compute TD for the two
variables, and determine the transferable order based on Equation 3.

3.3 Variable Translation

Generator. G consists of three modules. The feature extraction mod-
ule utilizes four Conv layers to extract the features from the input vari-
able. Each Conv downscales the input by half, and a ReL U is followed
to accelerate the training and improve model performance. The feature
translation module leverages three transformation blocks to translate
the features from the source variable to the target variable at different
scales and feed into the variable translation module. Each transforma-
tion block includes two paths. One path contains three Conv layers,
and the other path contains one Conv layer. Finally, these two paths
are connected by addition [15]. The variable translation module uti-
lizes four DeConv layers and four Conv layers followed by ReLU to
map the feature to the output variable domain. Each DeConv upscales
the input twice. In addition, after each DeConv layer, we stack the
outputs from DeConv and the feature translation stage together and
feed into a Conv layer. The two stacked outputs share the same scale,
and the Conv layer does not change the scale of the input. Note that
we only use tanh(-) in the final Conv layer. The architecture of G is
sketched in Figure 2 (a).

Discriminator. D includes four Conv layers, four spectral normal-
ization (SN) [27] layers, and one global average pooling (GAP) [25]
layer. Each Conv downscales the input by half, and SN is followed
by Conv to normalize the weights in Conv for training stabilization.
Leaky ReLU activation (¢ = 0.2) is applied after each Conv layer. Fi-
nally, one GAP is leveraged to squeeze the output into a tensor with
1 x 1x1x 1. No activation function is added after GAP. The architec-
ture of D is sketched in Figure 2 (b).

Loss function. As suggested by Han and Wang [13], we apply
adversarial, volumetric, and feature losses to optimize V2V so that the
synthesized variables are close to the GT variables. The adversarial
loss is defined as

min 26 = Eyeys [(D(GIV)) = 1)7], @
r%;ﬂfu = lIEvevs [DV)] + lEVeVT [(DGV) =1, )

2 2

where 6 and 6p are the learnable parameters in G and D, and E[]
denotes the expectation operation.

The volumetric loss is defined as
) - V‘ ‘2} )

Ly =Eyreys yevr [|IGV (6)

where || - ||> denotes the L, norm.
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Fig. 3: PSNR (top row) and SSIM (bottom row) of synthesized variables (TEMP, YOH, and H+) under HM, Pix2Pix, CycleGAN, and V2V.

The feature loss is defined as

N

1
Dg/ﬂ :]E/ —
F 1% eVS,VeVTkg,1 N

HFEGW) =FKW)Ih], D

where N is the total number of Conv layers in D, Ny is the number of
elements in the kth Conv layer, and F*(-) denotes the feature represen-
tation at the kth Conv layer.

The overall loss for G is the combination of the three losses

min.ZG = A (Eyeyr [(D(GV) = 1)°]) + oy + s, ®)

where A1, A, and A3 are weights, each in the range of [0, 1].

Note that adversarial, volumetric, and feature losses serve different
purposes in V2V training. Adversarial loss aims to judge the realness
of the synthesized volumes from the generator. Volumetric loss seeks
to ensure that the synthesized volumes are close to the GT volumes.
Feature loss aims to stabilize the training process and enhance the vi-
sual quality.

Table 1: The variables and dimensions of each data set.

data set variables dimension (x X y X z X 1)
climate SALT, TEMP 360 x 66 x 27 x 200
combustion  CHI, HR, MF, YOH 480 x 720 x 120 x 100
ionization H, H+, He, He+, H2, PD, T 600 x 248 x 248 x 100

Table 2: Average PSNR and SSIM values.
lighted in bold.

The best ones are high-

data set (vi—wp) method PSNR (dB) SSIM
HM 3.12 0.642

. Pix2Pix 21.39 0.695
climate (SALT—TEMP) CycleGAN ~ 20.78 0616
Vav 31.69 0.797

HM 12.96 0.291

. Pix2Pix 20.46 0.585
combustion (ME=YOH) ¢ .GAN 2056 0.351
Vav 28.73 0.776

HM 19.62 0.668

o Pix2Pix 40.58 0.887
ionization (H—H+) CycleGAN  37.59 0.812
Vav 45.75 0.951

4 RESULTS AND DISCUSSION
4.1 Data Sets and Network Training

We experimented with our approach using the data sets listed in Ta-
ble 1. We implemented V2V based on PyTorch [30] and used a sin-
gle NVIDIA TESLA P100 GPU for training. For feature learning,
we used the bicubic kernel with a downscaling factor of four to down-
scale combustion and ionization data sets for fast training. For variable
translation, we used the original resolution for training; however, for
each epoch, we randomly crop the volumes. This cropping mechanism
can reduce training cost and GPU memory consumption. We point out
that V2V can be applied to volumes of arbitrary size because it is fully
convolutional. We scaled the range of V¥ to [—1,1]. All learnable
parameters in U-Net and V2V are initialized using He et al. [14] and
the Adam algorithm [21] is applied for parameter update. We set one
training sample per mini-batch. For training U-Net, the learning rate is
set to 10~*. For training V2V, different learning rates for G and D are
set as suggested by Roth et al. [34]. The learning rates for G and D are
10~% and 4 x 10~*, respectively. B; = 0.0, B, = 0.999. A; = 1073,
Ay =1, and A3 =5 x 10~!. We trained U-Net and V2V for 50 and 150
epochs for all data sets, respectively. We sampled the first 40% time
steps for training and the rest for inference. All these hyperparameters
are determined based on experiments.

4.2 Results
Baselines. We compare one baseline solution for variable selection:

e Biswas et al. [2]: It is an information-theoretic approach for vari-
able grouping. Once grouped, users can select representative
variables for further exploration. We leverage this solution to
select variable pairs as the input to the V2V translation task.

Note that Biswas et al. is a solution for variable selection only, and
not for variable translation. For translation comparison, we implement
three baseline solutions for the V2V translation task:

e Histogram matching (HM) [35]: HM is a traditional approach for
translating one data set to another one conditioned on the content
and style of the data. We apply HM to translate variable j at time
step k conditioned on variable i at time step k and variable j at
time step k — 1.

e Pix2Pix [19]: Pix2Pix is the first paired image-to-image transla-
tion framework. The original Pix2Pix architecture is leveraged
for the V2V translation task.

e CycleGAN [47]: CycleGAN is a deep learning solution for un-
paired image-to-image translation. Since the variables are paired
in our V2V translation task, we replace the identity loss in Cy-
cleGAN with the volumetric loss in V2V.
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Table 3: Average IS values at chosen isovalues. The best ones are highlighted in bold.

HM Pix2Pix CycleGAN V2v
data set (vi—v2) v=-04 v=0.3 v=-04 v=0.3 v=-04 v=0.3 v=-04 v=0.3
climate (SALT—TEMP)  0.12 0.15 0.83 0.85 0.73 0.79 0.92 0.91
v=-09 v=0.65 v=-055 v=-09 v=-055 v=-09 v=-09 v=-0.55
combustion (MF—YOH)  0.23 0.19 0.72 0.69 0.47 0.49 0.82 0.84
v=—-09 v=-09 v=-09 v=-09 v=-09 v=-09 v=-096 v=09
ionization (H—H+) 0.32 0.41 0.82 0.84 0.79 0.81 0.92 0.95

Table 4: Total training time (in hour), average inference time (in sec-
ond), and model size (MB) under Pix2Pix, CycleGAN, and V2V.

training  training inference = model
data set method epochs time time size
Pix2Pix 150 6.79 3.52 6
climate CycleGAN 200 56.44 4.63 26
Vv2v 150 15.36 4.01 14
Pix2Pix 150 31.21 187.45 6
combustion  CycleGAN 200 169.08 220.36 26
Vv2v 150 53.14 194.72 14
Pix2Pix 150 21.43 122.39 6
ionization CycleGAN 200 125.46 130.93 26
Vv2v 150 40.76 129.07 14

Table 5: Average PSNR and SSIM values for variable translations us-
ing Biswas et al. [2] and V2V. The better ones are highlighted in bold.

data set variable pair  approach PSNR (dB) SSIM
combustion YOH—CHI  Biswasetal. 24.76 0.607
MF—CHI V2v 35.76 0.829
ionization T—H+ Biswasetal. 33.41 0.827
H—H+ V2v 45.75 0.951

For a fair comparison, we use the same loss functions (i.e., adversarial,
volumetric, and feature losses) designed for V2V to train Pix2Pix and
CycleGAN.

Due to the page limit, we show the frame-to-frame comparison re-
sults in the accompanying video. Unless otherwise stated, we display
all visualization results using the inferred volumes (refer to Figure 1
(b) for an example). The same settings for lighting, viewing, trans-
fer function (for direct volume rendering), and isovalue (for isosurface
rendering) are applied to all visualization results for the same data set.
With respect to the GT, we compare our V2V results with those of

Table 6: Average PSNR and SSIM values for different V2V transla-
tions of the ionization data set. H is the source variable.

target variable  PSNR (dB)  SSIM
H+ 45.75 0.951
He 37.44 0.837
He+ 39.99 0.874
PD 31.68 0.616

HM, Pix2Pix, and CycleGAN.

Evaluation metrics. For quantitative evaluation, we compute, be-
tween the synthesized variables and GT variables, the peak signal-to-
noise (PSNR) at the data level, structural similarity index (SSIM) at
the image level, and isosurface similarity (IS) [13] at the feature level.

Quantitative and qualitative analysis. In Figure 3, we show the
data (PSNR) and image (SSIM) level results using HM, Pix2Pix, Cy-
cleGAN, and V2V. At the data level, for the climate (SALT—TEMP)
data set, all four curves exhibit a periodic pattern since each time step
denotes the temperature for each month and 12 time steps are for one
year. The PSNR values of V2V outperform those of HM, Pix2Pix, and
CycleGAN. For the combustion (MF—YOH) data set, PSNR values
decrease as time step goes. This is because, at the later time steps, the
temporal behavior becomes more turbulent and complex, making the
prediction more difficult. Again, V2V still outperforms HM, Pix2Pix,
and CycleGAN. For the ionization (H—H+) data set, it is clear that
V2V achieves the highest PSNR values for each time step. At the im-
age level, V2V can still produce higher SSIM values compared with
HM, Pix2Pix, and CycleGAN. It is the clear winner for the climate
(SALT—TEMP), combustion (MF—YOH), and ionization (H—H+)
data sets. For the combustion (MF—YOH) data set, due to the in-
crease of visual content, the SSIM values decrease as time step goes.
In Table 2, the average PSNR and SSIM values for HM, Pix2Pix, Cy-
cleGAN, and V2V are reported. Again, V2V achieves the best PSNR
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Fig. 5: Comparison of isosurface rendering results of the climate (SALT—TEMP) data set at time step 167. The chosen isovalues are v = —0.4

(top row) and v = 0.3 (bottom row).
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Fig. 6: Comparison of isosurface rendering results of the combustion (MF—YOH) data set at time step 53. The chosen isovalues are v = —0.9

(top row) and v = —0.55 (bottom row).

and SSIM values. Note that the PSNR and SSIM curves of HM sud-
denly decrease after time step 40 for the combustion and ionization
data sets since we only use 40% data for training. The error accumu-
lates when predicting the later time steps. Since the climate data set is
periodic, the PSNR and SSIM curves of HM do not exhibit a similar
pattern as that of the other two data sets.

In Figure 4, the volume rendering results of the volumes synthe-
sized by HM, Pix2Pix, CycleGAN, and V2V are shown. For the cli-
mate (SALT—TEMP) data set, the rendering results synthesized by
Pix2Pix and CycleGAN contain artifacts. The result generated by HM
cannot well capture the main structure, while the result produced by
V2V is much smoother and similar to the GT. For the combustion
(MF—HR) data set, V2V produces finer details with respect to GT,
while HM and CycleGAN fail to recover the volume well. Pix2Pix
generates some artifacts and is unable to recover the content around the
volume boundary. For the ionization (H—H+) data set, V2V achieves
the best result compared with HM, Pix2Pix, and CycleGAN. For ex-
ample, for the Pix2Pix result, there are fewer details at the top part,
and there are some artifacts at the bottom layer. For the CycleGAN
result, it produces more orange content at the bottom part and fails to
accurately recover the top part. For the HM result, it generates more
purple and yellow content at the top part.

In Figures 5, 6, and 7, the isosurface rendering results of the vol-
umes synthesized by HM, Pix2Pix, CycleGAN, and V2V using the
climate (SALT—TEMP), combustion (MF—YOH), and ionization
(H—H+) data sets are displayed. For each data set, we choose one
time step and two isovalues to render the isosurfaces. For the cli-
mate (SALT—TEMP) data set, it is evident that V2V can generate the
highest quality isosurfaces compared with HM, Pix2Pix, and Cycle-
GAN. HM fails to construct the isosurfaces close to GT, and the iso-
surfaces extracted from Pix2Pix and CycleGAN are filled with noises
and artifacts. Similar observations can be made for the combustion
(MF—YOH) data set where V2V generates the highest quality isosur-
faces compared with HM, Pix2Pix, and CycleGAN. For the ioniza-
tion (H—H+) data set, V2V produces the highest quality isosurfaces.

Pix2Pix and CycleGAN fail to construct the isosurface at the top part,
and HM synthesizes fake features compared with the GT results. Fur-
thermore, the average IS values for these three data sets are reported
in Table 3. The average IS values also demonstrate that V2V achieves
the best quality. Moreover, among Pix2Pix, CycleGAN, and V2V, Cy-
cleGAN has almost the worst performance in terms of PSNR, SSIM,
and IS. This is because, unlike image-to-image translation, where the
translation is symmetric (e.g., day to night), in V2V translation, the
translation is asymmetric (e.g., it is more challenging to translate from
CHI to MF compared with translating from MF to CHI). Therefore,
adding cycle consistency will hurt the translation performance. As for
Pix2Pix, this architecture is too simple to capture the complex struc-
ture changes between the variables.

In Table 4, we report the total training time (in hour), the average
inference time (in second), and model size for Pix2Pix, CycleGAN,
and V2V, respectively. As we can see, CycleGAN takes the longest
training time since it needs to go through the network six times in one
iteration (i.e., two discriminators, one cycle of X—Y—X, and another
cycle of Y—X—Y). Pix2Pix and V2V only need to go through the
network twice in one iteration (i.e., one discriminator and one gener-
ator). As for the inference time, there is no significant difference. In
terms of model size, V2V needs 14MB to store parameters.

Comparison against compression. In Figure 8, we compare V2V
and an advanced lossy compression (LC) method [24, 23] using iso-
surface rendering results. This LC method can achieve a high com-
pression rate while producing less data distortion. To achieve a fair
comparison, we set a similar PSNR value (i.e., 29.5 dB) for both ap-
proaches. As we can see, the isosurfaces generated by LC include
significant noises and artifacts compared with those produced by V2V.

Evaluation of variable selection. To show the effectiveness of the
proposed variable selection solution, we compare V2V against Biswas
et al. [2]. We only use Biswas et al. to choose transferable variable
pairs, as it does not perform variable translation. Once the pairs are
selected from either V2V or Biswas et al. we apply the same solution
(i.e., V2V) for translation. The training time of the variable selec-
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Fig. 7: Comparison of isosurface rendering results of the ionization (H—H+) data set at time step 92. The chosen isovalues are v = —0.96 (top

row) and v = —0.9 (bottom row).
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Fig. 8: Isosurface rendering results using the combustion (CHI) data
set at time step 60. The chosen isovalues are v = —0.7 (top row) and
v = 0.3 (bottom row).

tion stage for the combustion and ionization data sets is 1.86 and 2.14
hours, respectively. The training time depends on the number of vari-
ables and the dimension of the data set. In Figure 9, we show clustered
graphs and translation graphs of the combustion and ionization data
sets using Biswas et al. and V2V, respectively. Note that the clustered
graphs of Biswas et al. are fully-connected and undirected, while the
translation graphs of V2V are partially-connected and directed. For
the combustion data set, Biswas et al. demonstrates that YOH and CHI
are more similar compared with MF and CHI, while V2V leads to the
opposite conclusion. For the ionization data set, Biswas et al. demon-
strates that T and H+ are similar, while H and H+ are distinguishable;
however, V2V gets the opposite results.

To evaluate the effectiveness of these two variable selection ap-
proaches, we choose two pairs from Biswas et al. (i.e., YOH—CHI
and T—H+) and two from V2V (i.e., MF—CHI and H—H+) for the
translation task. The results are shown in Figures 10 and 11. As we
can see, for Biswas et al. YOH—CHI and T—H+ are not success-
fully judged from both volume and isosurface rendering results. For
example, the volume rendering of CHI and H+ cannot exhibit a good
visual quality compared with GT. As for the variable pairs selected
by V2V, the translation results are satisfactory. Table 5 reports the
average PSNR and SSIM values under these two variable translation
schemes. Overall, based on the chosen source and target variables,
V2V achieves higher PSNR and SSIM values in the translation task.
These results indicate that, unlike V2V, variable pairs selected accord-
ing to Biswas et al. may not be suitable for variable translation.

To further evaluate the effectiveness of the variable selection pro-
cess, we use the ionization data set, choose H as the source variable,

(a) Biswas et al. [2]

(b) V2V

Fig. 9: Comparison of clustered graphs (left column) and translation
graphs (right column). Top row: combustion. Bottom row: ionization.
For both graphs, the distance between two variables in the 2D graph
indicates their similarity.

and translate it to H+, He, He+, and PD. In Figure 12, we show the vol-
ume rendering results. For H—+H+, H—He, H—He+, the synthesized
results are similar to GT. However, for H—PD, V2V fails to recover
the details of PD, particularly, the structure of the top part is not cap-
tured. This failure may be explained by a large distance between H
and PD shown in the translation graph (Figure 9 (b)). The isosurface
rendering results are shown in Figure 13. For H—H+ and H—He,
the isosurfaces generated by V2V are close to GT and almost exhibit
the same volumetric features. For H—He+, V2V can still recover the
isosurfaces but miss some details. For example, the detailed surface
features at the top part are missing in the isosurface synthesized by
V2V. For H—PD, V2V fails to generate high-quality isosurface com-
pared with the GT isosurface. For example, the isosurface generated
by V2V consists of noises and artifacts, and details are missing at the
bottom layer. We also report the average PSNR and SSIM values in
Table 6. The quantitative results also confirm the difficulty of translat-
ing H to PD. Based on the proposed solution, for the combustion set,
scientists can save 60 time steps for the variables YOH and CHI if MF
is the source variable, and 18.53GB storage is saved in total. As for
the ionization, 21.05GB can be saved if H is the source variable since



(a) Biswas et al. [2] (b) V2V () GT
Fig. 10: Comparison of variable selection approaches via volume ren-
dering. Variable pairs selected by Biswas et al. are YOH—CHI (top
row) and T—H+ (bottom row). Variable pairs selected by V2V are
MF—CHI (top row) and H—+H+ (bottom row). The displayed time
steps are 80 and 50 for CHI and H+, respectively.

(a) Biswas et al. [2]
Fig. 11: Comparison of variable selection approaches via isosurface
rendering. Variable pairs selected by Biswas et al. are YOH—CHI (top
row) and T—H+ (bottom row). Variable pairs selected by V2V are
MF—CHI (top row) and H—H+ (bottom row). The chosen isovalues
are v= —0.6 (top row) for CHI and v = —0.1 (bottom row) for H+. The
displayed time steps are 80 and 50 and for CHI and H+, respectively.

(b) V2V (c) GT

these variables (H+, He, and He+) are only stored 40 time steps.

Evaluation of variable order. To verify that the translation order
does impact the translation performance, we use the combustion data
set and choose two translations, MF—CHI and CHI—MF. The results
are demonstrated in Figure 14. As we can see, CHI—-MF is unsatis-
factory since the synthesized isosurfaces fail to capture the interesting
features compared with GT. However, MF—CHI is successful since
the generated isosurfaces are very close to GT. This asymmetric trans-
lation is likely because the essential information in MF is richer than
that in CHI, which makes MF—CHI easier than CHI—MF.

4.3 Hyperparameter Study

To evaluate V2V, we study these hyperparameter settings: training
epochs, training samples, crop size, and feature translation module.
The detailed discussion is given below.

Training epochs. We investigate how the increasing number of
training epochs influences the rendering quality of the synthesized
volumes. Isosurface rendering results obtained at different num-
bers of training epochs are shown in Figure 15 for the combustion
(MF—YOH) data set. We can see that there are some artifacts at the
bottom-right and top-left corners with 100 epochs, while these artifacts
are eliminated with 150 epochs. Moreover, we observe that the PSNR
values improve with 150 epochs. However, there is no significant dif-

- N\ ,',.‘/
(a) H+ (b) He (c) He+ (d) PD
Fig. 12: Comparison of volume rendering results of the ionization data

set at time step 60. H is chosen as the source variable. Top row: V2V.
Bottom row: GT.
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Fig. 13: Comparison of isosurface rendering results of the ionization
data set at time step 60. H is chosen as the source variable. Top row:

(a) H+ (b) He () He+ (d) PD
V2V. Bottom row: GT.

ference between synthesized results between 100 and 150 epochs. So,
we recommend using 150 epochs to train V2V.

Training samples. We study how the number of training samples
impacts visual quality, PSNR, and SSIM. 20%, 40%, and 60% training
samples are applied to train V2V using the climate (SALT—TEMP)
data set. As shown in Figure 16, only using 20% samples to train V2V
could lead to some artifacts in volume rendering results while using
40% can mostly remove these artifacts. As for isosurface rendering,
the isosurface result generated by using 20% samples could miss some
details with v = 0.45. In addition, the average PSNR and SSIM curves
under different training samples are displayed in Figure 17 (a). As we
can observe, PSNR and SSIM values improve with the use of more
training samples. But this comes with longer training time, as indi-
cated in Figure 17 (b). We observe that beyond 40% samples, there
is almost no improvement in visual quality. Hence, we suggest using
40% samples to train V2V.

Crop size. Due to the GPU memory constraint, V2V cannot pro-
cess the whole scalar data at the same time. Therefore, we crop subvol-
umes to train V2V. We train V2V with subvolume sizes of 128 x 642,

(a) V2V (b) GT

(c) V2V
Fig. 14: Evaluation of translation order using the combustion data set
via isosurface rendering at time step 72. Top row: MF—CHI (TD =
7.10). Bottom row: CHI—MF (TD = 8.07). The chosen isovalues are
v = —0.6 (1st and 2nd columns) and v = 0.5 (3rd and 4th columns).

(d) GT
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Fig. 15: Comparison of isosurface rendering results under different
training epochs using the combustion (MF—YOH) data set at time
step 70. The chosen isovalues are v = —0.7 (top row) and v = —0.3
(bottom row).

(c) 66%

(b) 40%
Fig. 16: Comparison of volume rendering (1st row) and isosurface
(2nd row) rendering results under different training samples using the
climate (SALT—TEMP) data set at time step 176. The chosen iso-
value is v = 0.45 (2nd row).

(a) 20%

192 x 962, and 256 x 1282 using the ionization (He—He+) data set.
The average PSNR and SSIM curves are shown in Figure 17 (c). We
can see that using a larger subvolume size helps as V2V can learn
richer semantic information. As for visual quality, we calculate the
difference images [13], which are provided at the bottom-right corner,
for a clear comparison. As shown in Figure 18, we can now see vi-
sual differences more clearly, particularly at the head of the ionization.
Even though it takes more time to train with a larger subvolume size,
as shown in Figure 17 (d), we still recommend using the subvolume
size of 256 x 1282 to train the ionization (He—He+) data set.
Feature translation module. To study what influences the visual
quality of the volumes generated by V2V, we conducted such an ex-
periment that trains V2V without using the feature translation module
(FTM), i.e., the three purple transformation blocks shown in Figure 2
(a). The results are shown in Figure 19. We can see that more green
content and less yellow content are rendered from the volume gener-
ated by V2V without FTM. We speculate that FTM serves the role of
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Fig. 17: Comparison of hyperparameter settings. (a) Average PSNR
and SSIM under different training samples. (b) Average training time
(per epoch) under different training samples. (c) Average PSNR and
SSIM under different crop sizes. (d) Average training time (per epoch)
under different crop sizes.

(a) 128 x 642 (b) 192 x 96  (c) 256 x 1282 (d) GT
Fig. 18: Comparison of volume rendering (1st row) and isosurface
(2nd row) rendering results under different crop sizes using the ion-

ization (He—He+) data set at time step 80. The chosen isovalue is
v=-0.9.

(2) V2V w/o FTM (b) V2V (¢) GT
Fig. 19: Comparison of volume rendering results under different ar-
chitectures using the combustion (MF—CHI) data set at time step 70.

refining and filtering the features extracted at different scales during
variable translation, improving translation quality.

5 CONCLUSIONS AND FUTURE WORK

We have presented V2V, a new deep learning solution for selecting
variables and translating variable sequences for MTVD analysis and
visualization. Leveraging GAN, V2V can map one variable sequence
to another variable sequence while achieving better visual quality of
direct volume rendering and isosurface rendering than HM and two
other deep learning solutions (Pix2Pix and CycleGAN). Besides qual-
itative comparison, quantitative evaluation results using PSNR (data-
level), SSIM (image-level), and IS (feature-level) also confirm the ef-
fectiveness of our approach.

V2V can work in the in situ visualization setting. In this scenario,
at simulation time, we store the complete sequence for one variable
(i.e., all the time steps) while saving the rest of variable sequences
sparsely (i.e., only the early time steps) for storage saving. During
postprocessing, these reduced variable sequences are synthesized back
to their original sequences with high fidelity.

V2V is part of our research effort on data augmentation for sci-
entific visualization, which refers to the addition of spatial, tempo-
ral, and variable details to reduced data by incorporating informa-
tion derived from internal and external sources. V2V addresses the
variable-domain data augmentation, while our previous work on TSR-
TVD [13] addresses the temporal-domain data augmentation. We are
working on SSR-TVD [12], the spatial-domain data augmentation, to
complete this research. In the future, we would like to extend our
framework to handle multiple variable translations. That is, given a
variable sequence, our framework can simultaneously extrapolate mul-
tiple variable sequences using multi-domain translation [5]. Besides,
we will also explore other applications of the extracted features, for ex-
ample, utilizing these features in other scientific data generation and
analysis tasks, such as super-resolution and feature tracking.
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APPENDIX
1 CHOICE OF FEATURE EXTRACTOR

For the choice of feature extractor, we tried different network archi-
tectures, such as autoencoder, GAN, and U-Net. All these approaches
generate similar features in the projection view. However, U-Net
achieves better reconstruction quality than autoencoder and requires
less training time than GAN. Hence, we chose U-Net as our feature
extractor. The U-Net parameter details are reported in Table 1.

Table 1: U-Net architecture parameter details.

type kernel size output channels  output size
input N/A 1 LxHxW
Conv+ReLU 4 64 L/2xH/2xW/2
Conv+ReLU 4 128 L/AxH/4xW/8
Conv+ReLU 4 256 L/8xH/8xW/8
Conv+ReLU L/8xH/8xW/8 512 Ix1Ix1
DeConv+ReLU 4 256 L/8xH/8xW/8
Conv+ReLU 3 256 L/8xH/8xW/8
DeConv+ReLU 4 128 L/AxH/4AxW/4
Conv+ReLU 3 128 L/4AxH/4xW/4
DeConv+ReLU 4 64 L/2xH/2xW/2
Conv+ReLU 3 64 L/2xH/2xW/2
DeConv+ReLU 4 32 LxHxW
Conv+Tanh 3 1 LxHxW
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Fig. 1: t-SNE projection of the ionization data set. Each point in the
projection space represents one time step. The zoomed-in views show
how the time steps vary for the selected variables.

2 FEATURE UTILIZATION

Besides applying extracted features for measuring the similarity be-
tween different variables, we can leverage them for useful analysis of
the multivariate time sequence, such as highlighting which time steps
are shifted or which variables should be prioritized. As shown in Fig-
ure 1, we show how the ionization data set varies as the time step goes
in each variable sequence. In the figure, each point in the t-SNE pro-
jection represents one time step. We connect these points from the first
to the last. As we can observe, the pattern exhibited by the features
from one variable can highlight which time steps have shifted or devi-
ated from the rest to guide the selection of representative time steps.
In addition, if multiple variables are displayed in the feature space, we
can also find the similarities and differences among those variables.
For instance, based on the distances in the projection space for the
ionization data set, we can see that H2, PD, and T should be simu-
lated anyway (i.e., we cannot rely on V2V to synthesize these variable
sequences), while H, H+, He, and He+ are transferable. Therefore, sci-
entists can save the whole sequence of H and only the early sequences
of H+, He, and He+ for V2V training and translation.

3 CHOICES OF BASELINES

In general, the translation solution can be classified into two cate-
gories: direct translation and disentangled translation. Direct transla-
tion, such as Pix2Pix and CycleGAN, establishes a neural network to
learn a mapping function from input to output. It can handle large data
since cropping is supported. Disentangled translation, such as [2, 1, 3],
first disentangles the input into two independent vectors (e.g., content
and style vectors), and then swaps different content and style vectors
from different inputs to generate diverse outputs. However, this ap-
proach could not handle large data since the content and style vectors
are global information that cannot be extracted from cropped data. In
addition, the data generated by disentangled translation are “fake” (i.e.,
there is no corresponding ground truth), which leads to a difficulty in
evaluation. As such, we chose direct translation solutions (Pix2Pix
and CycleGAN) as our variable-to-variable translation baselines.

4 CHALLENGES FOR IN SITU APPLICATION

It is possible to apply V2V to in situ settings. Our in situ context is for-
mulated as follows. In multivariate time-varying data simulations, sci-
entists first generate all variable sequences from the early time steps.
Once those data are collected, scientists can leverage our variable se-
lection solution to determine the transferable variable pairs and decide
which variables may not need to be simulated further. The simula-
tion then resumes, with only a subset of variables being simulated and
their data stored. This scheme can reduce the cost of the simulation
and save disk storage. During post hoc analysis, scientists can apply
the trained V2V model to generate the missing variable sequences for
further analysis and visualization.

Nevertheless, applying such a solution to the in situ context poses
several challenges. First, as the network training could only be done
offline (as the training takes a long time), the simulation needs to be
“paused” once the training data are obtained. Halting the simulation
entails additional work, such as saving the checkpoints. Second, we
assume that the network trained using the early time steps would serve
as a reasonably good predictor for inferencing variable sequences at
the later time steps, which may depend on each application’s nature
and may not always hold. Third, for image translation, a neural net-
work model could be trained on a large amount of data to generate di-
verse and realistic images. However, this is not the case for scientific
data because of the lack of training data and the added training cost
(2D images vs. 3D volumes). However, one can still train a model on
a certain domain (e.g., combustion) with limited training data and later
apply the model to translate different variable sequences or ensemble
runs of the same domain. To conclude, although feasible, incorporat-
ing V2V into in situ settings requires significant research effort.
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