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Abstract—We present SSR-TVD, a novel deep learning framework that produces coherent spatial super-resolution (SSR) of
time-varying data (TVD) using adversarial learning. In scientific visualization, SSR-TVD is the first work that applies the generative
adversarial network (GAN) to generate high-resolution volumes for three-dimensional time-varying data sets. The design of SSR-TVD
includes a generator and two discriminators (spatial and temporal discriminators). The generator takes a low-resolution volume as
input and outputs a synthesized high-resolution volume. To capture spatial and temporal coherence in the volume sequence, the two
discriminators take the synthesized high-resolution volume(s) as input and produce a score indicating the realness of the volume(s).
Our method can work in the in situ visualization setting by downscaling volumetric data from selected time steps as the simulation runs
and upscaling downsampled volumes to their original resolution during postprocessing. To demonstrate the effectiveness of SSR-TVD,

we show quantitative and qualitative results with several time-varying data sets of different characteristics and compare our method
against volume upscaling using bicubic interpolation and a solution solely based on CNN.

Index Terms—Time-varying data visualization, deep learning, super-resolution, generative adversarial network.

1 INTRODUCTION

We present a novel deep learning framework for gen-
erating spatial super-resolution (SSR) of time-varying data
(TVD). That is, given a low-resolution sequence with each
volume, for example, of size 128 x 128 x 128, we aim to
generate the high-resolution sequence with each volume, for
instance, of size 512 x 512 x 512.

In scientific applications, upscaling low-resolution vol-
umes to high-resolution ones is meaningful because of the
following reasons. First, SSR can fit into the compression
pipeline where data is compressed then decompressed in
the scientific data analysis pipeline. Namely, scalar fields are
downscaled at simulation time and upscaled to the original
size during postprocessing. Moreover, SSR can achieve bet-
ter visual quality and higher quantitative scores compared
with state-of-the-art compression algorithms under the
same setting (e.g., compression ratio, mean squared error).
Second, with the SSR technique, the simulation can first run
in high-resolution, generating high-resolution volumes for a
certain number of time steps. It then runs in low-resolution,
generating low-resolution volumes for subsequent time
steps. During postprocessing, the high-resolution volumes
are used for network training. Once trained, the network
can then infer subsequent high-resolution volumes from
the low-resolution ones. Such a scenario provides resource-
saving at simulation time and quick verification/steering of
the underlying simulation. Third, large-scale scientific sim-
ulations often produce a temporal sequence with thousands
of time steps but could only save a small amount of data
(e.g., every hundredth time step) due to limited disk space
and I/0O speed. If the simulation data can be downsampled
individually and an effective upscaling approach is in place
to recover the downsampled data,then scientists can afford

e ] Han and C. Wang are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556. E-mail:
{jhan5, chaoli.wang}@nd.edu.

to save more temporally refined volumes (e.g., every tenth
time step) to enable more accurate investigation of dynamic
features of the underlying time-varying data set.

Generating a high-resolution volume sequence from a
low-resolution volume sequence poses two challenges. The
first challenge is that the high-resolution sequence should
maintain good temporal coherence. Unlike single volume
super-resolution, we must consider a new solution that
explicitly takes into account temporal coherence for volume
sequence super-resolution. The second challenge is that
human perception should be considered in the evaluation
of upscaled volumes. Common methods usually design a
deterministic interpolation kernel (e.g., trilinear or bicubic
interpolation) for volume upscaling. These interpolations
are performed only conditioned on a static interpolation
kernel rather than a dynamic one to process different in-
terpolated regions, and therefore, may blur features and
result in artifacts in the rendered image. Meeting the desired
visual quality is difficult if a deterministic kernel is applied
to different local regions.

To address the above challenges, we advocate a deep
learning approach as the neural network can learn features
and their relationships from low-resolution volumes non-
uniformly and non-locally, thus producing high-resolution
volumes with high quality. Inspired by the sparse coding
framework and the image super-resolution technique, we
propose SSR-TVD that includes a generative model and
two discriminators for producing spatiotemporally coherent
SSR of a sequence of volumes using three different learning
losses. As shown in Figure 1 (a), in our experiments, the
training set consists of high-resolution volumes at earlier time
steps of the sequence, and the testing set consists of low-
resolution volumes at later time steps of the sequence. The
volumes in the training set are first downsampled as the
low-resolution volumes. We then train our SSR-TVD by
minimizing the loss function that considers adversarial loss,
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content loss, and feature loss. To demonstrate the effective-
ness of our approach, we show quantitative and qualitative
results with several time-varying data sets of different char-
acteristics. We compare our SSR-TVD against the widely-
used Bl and a solution solely based on CNN. We show that
our method can achieve a better volume quality at the data,
image, feature, and perception levels. The third row of Figure 4
shows our SSR-TVD results. The low-resolution volumes
are obtained by downsampling the original volumes using
the bicubic kernel with a downsampling factor of four in
each dimension. During inference, SSR-TVD upscales the
volumes back to the original resolution while achieving
superior visual quality compared with other methods.

The contributions of this paper are as follows. First,
our work applies generative adversarial networks (GANs) for
generating SSR from scalar volume sequences, including
multivariate cases. Second, we propose a novel generative
adversarial architecture for upscaling volume data, which
differs from the architectures commonly used in image and
video super-resolution tasks. Third, we conduct an exten-
sive comparison of SSR-TVD against BI and CNN using the
data, image, feature, and perception quality metrics. Fourth,
we investigate several hyperparameter settings and analyze
how they could impact the performance of SSR-TVD.

2 RELATED WORK

Deep learning for scientific visualization. Deep learning
solutions have swept across the scientific visualization com-
munity to solve different volume and flow visualization
tasks. For volume visualization, Zhou et al. [48] presented
a deep learning solution for upscaling volume data, which
preserves better local details and achieve higher quantitative
values (e.g., SSIM and PSNR). Cheng et al. [3] presented
a CNN-based system, which can discover and detect com-
plex structures for better volume data understanding and
visualization. Berger et al. [1] trained a generative model
to simulate the volume rendering process using different
viewpoints and transfer functions as input. Hong et al.
[16] combined GAN and CNN to enable the exploration
of volumetric data sets without explicit transfer function
and rendering pipeline. He et al. [14] designed InSituNet
that enables interactive posthoc exploration and analysis of
ensemble simulations with parameter values never run be-
fore through the use of a network that trains pre-generated
rendering images offline. Han and Wang [10] presented
TSR-TVD, a deep learning solution for interpolating miss-
ing intermediate time steps for analyzing and visualizing
time-varying data. Porter et al. [33] applied a CNN-like
autoencoder to simultaneously learn features from multiple
variables over time for selecting representative time steps.
Wang et al. [40] proposed DeepOrganNet, an end-to-end
deep neural net that generates fully high-fidelity 3D/4D
organ geometric models from single-view medical images.
Weiss et al. [43] designed an image-space solution that
upscales a low-resolution isosurface to a high-resolution
one.

For flow visualization, Hong et al. [17] used a recurrent
neural network to optimize the process of data allocation
data in particle tracing, which improves the I/O latency
in distributed and parallel flow visualization. Han et al.
[8] designed an autoencoder to extract latent features from
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streamlines and stream surfaces and applied dimensional-
ity reduction and user-assisted grouping for representative
selection from these features. Han et al. [9] proposed a two-
stage machine learning solution for vector field reconstruc-
tion that given a set of streamlines, low-resolution vectors
are first recovered and then upscaled to high resolution with
high quality. Xie et al. [44] proposed tempoGAN that synthe-
sizes SSR volume sequences where additional information
(e.g., velocity and vorticity fields) is utilized during training
to enhance temporal coherence. Guo et al. [7] designed SSR-
VED that produces coherent SSR of 3D vector field data with
a scaling factor of 4 or 8 in each dimension.

Our work is similar to scalar field upscaling [48], vector
field reconstruction [9], SSR-VFD [7], tempoGAN [44], and
TSR-TVD [10]. Zhou et al. [48] and Han et al. [9] used
CNNs to generate a high-resolution volume from a low-
resolution one and only considered a single scalar or vector
field. SSR-VFD only considers spatial coherence but not
temporal coherence. As for tempoGAN, it uses additional
information (velocity and/or vorticity) to ensure temporal
coherence. In contrast, we use GAN in our network design
and achieve spatiotemporally coherent volume sequence
super-resolution for TVD without considering additional
information. TSR-TVD and SSR-TVD both use a genera-
tive framework and follow similar loss function design.
However, to ensure temporal coherence, TSR-TVD explicitly
includes a temporal component with multiple ConvLSTM
layers, while SSR-TVD uses a temporal discriminator similar
to that presented in tempoGAN. Furthermore, TSR-TVD
upscales the temporal dimension while SSR-TVD upscales
the spatial dimensions.

Image and video super-resolution. Deep learning has
achieved great success in image and video super-resolution.
For images, Dong et al. [4] proposed an autoencoder that
upscales single images with an upscaling factor of three (i.e.,
the scaled image is nine times of the original one in size).
Ledig et al. [23] established a GAN with residual blocks to
infer photo-realistic natural images for an upscaling factor
of four. Zhang et al. [46] proposed a deep CNN with a
channel attention mechanism to achieve better visual single
image super-resolution results. For videos, Sajjadi et al.
[37] utilized the early synthesized high-resolution frames
to predict the subsequent frames through a recurrent video
super-resolution solution. This treatment yields temporally-
consistent results while reducing the computational cost. Jo
et al. [20] proposed a DNN that generates dynamic upsam-
pling filters and a residual image so that the low-resolution
image can utilize the dynamic filter to generate a high-
resolution image directly, and the computed residual can
refine the structural details. Pérez-Pellitero et al. [32] estab-
lished an adversarial recurrent network for video upscaling,
where a temporally-consistent loss is computed through
estimating the optical flow of two frames to guarantee the
temporal coherence among different frames.

Our work is different from the above works. To estimate
an accurate optical flow, researchers need to label a lot of op-
tical flows to train a deep learning model. However, for vol-
umetric data, this means that we need to label optical flow
and train the corresponding model for each data set, which
is time-consuming and impractical. Therefore, instead of
utilizing optical flow, we leverage a temporal discriminator



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

to guarantee temporal coherence, which does not require
an additional model to calculate extra information from the
volumes. Besides, it also reduces training complexity. As for
RNN, it is difficult and time-consuming to train since the
gradient is calculated based on time and easy to vanish.
Instead of using optical flow and RNNs to maintain tem-
poral coherence, we propose a generative model that uses
spatial and temporal discriminators to guarantee spatial and
temporal coherence among different volumes.

Conditional GANs. GANs were introduced by Good-
fellow et al. [5]. In a GAN model, two networks play a
competitive game. Namely, one network (i.e., generator)
generates data samples from observations to be undistin-
guishable with the real data. In contrast, the other net-
work (ie., discriminator) focus on judging the realness
between the real and fake samples. As for conditional
GANs (cGANSs) [28], the generator synthesizes data from
observations rather than noise. cGANs have been applied
in video prediction [27], image synthesis [35], and photo
generation [45]. Several works [19], [23], [31] have also
used cGANs for image-to-image translations. But instead
of only considering adversarial loss, other losses (such as
L, regression, perceptual loss) are applied to require the
output to be conditioned on the input. These works have
achieved impressive results on image inpainting [31], image
super-resolution [23], and future state prediction [47].

Our method differs from the above works in several
aspects. First, we propose a novel module that combines
residual block [13] and skip connection [36] to enhance
the performance of SSR-TVD. Second, we leverage several
techniques to stabilize SSR-TVD training, including a new
feature loss and spectral normalization [29]. Third, we apply
GAN to generate volume sequence super-resolution for 3D
time-varying data sets.
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Fig. 1: (a) The training and testing sets from the volume
sequence. (b) Overview of SSR-TVD. During training, a
generator (G) is guided by two discriminator networks: one
focuses on the spatial aspect (D;) and the other focuses on
the temporal aspect (D,). During inference, only G is kept
while D, and D; are discarded.

3 SSR-TVD

We aim to estimate a mapping function F from a low-
resolution volume sequence V¥ to a high-resolution volume
sequence VE  while taking into account temporal coher-
ence. Namely, VI = 7 (V). As shown in Figure 1 (b), SSR-
TVD consists of three networks: a generator G, a spatial dis-
criminator D, and a temporal discriminator D;. G takes VL
as input, and output G(V'), a synthesized high-resolution
volume. D, takes V! or G(V') as input, and produces a
score which indicates the realness of the input. Ideally, D,
will output 1 or 0 if the input is V! or G(VT), respectively.
As for Dy, the input is three consecutive volumes (i.e., a
volume subsequence at three consecutive time steps), and
the output is a score that describes the realness of these
volumes. We choose three instead of five or more time steps
to keep the computational cost low. We organize this section
as follows. First, the design idea of SSR-TVD is offered,
including the loss functions and the architectures of G, D,
and D;. Then, we will detail how to optimize SSR-TVD and
stabilize the training process.

3.1 Loss Function

Notations. Let us denote VI = {V ... VIl as a set
of low-resolution volumes where V' is the low-resolution
volume at the ith time step, and VI = {VH ... vH}
as a set of high-resolution volumes where V! is the
high-resolution counterpart of ViL. L, H, W are the
dimensions of high-resolution volumes We also denote
VtL = {(V1L7 V2L7 VESL)v T (VanQa V;‘,l, Vr%)} and Vzlf{ =
{(Vle VY2H7 VSH)’ T (Vr?—% V’r?—l? Vr?)} Let 0¢, 0p, and
0p, be the learnable parameters in G, D, and D, respec-
tively.

Adversarial loss. Following Mao et al. [26], we define
the adversarial loss for G, D, and D; as follows

min L =Eyevt[(Ds(G(V)) — 1)?]+
Eyevi[(D(G(V) = 1)),

minLp, =(Eyeva[(Ds(V) - 2]+ o
Evevi[(Ds(G(V)))?])/2,

min Lp, =Evevi[(De(V) ~ 1)+ "
Eyevi[(Dd(G(V)*)/2,

where E[-] denotes the expectation operation.

Following the above equations, a generative model G
can learn to fool discriminators Dg and D;. D, is trained
to distinguish super-resolved volumes from real volumes in
the spatial aspect, and D, is trained to distinguish super-
resolved volumes in the temporal aspect. Through adver-
sarial learning, G’ can learn a mapping from low-resolution
volumes to high-resolution ones, and these synthesize high-
resolution volumes are highly similar to real volumes and
thus difficult to classify by D, and D;. This approach also
encourages perceptual-driven quality in contrast to gener-
ating super-resolution volumes through only minimizing
voxelwise error measurements, such as L loss.

Content loss. Recent works [19], [31] have suggested that
adding a traditional loss, such as L, distance, can improve
the training stability compared against purely adversarial

)
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learning. The role of the discriminator keeps the same, but
the generator aims to not only generate indistinguishable
volumes but also achieve a low mean squared error com-
pared with real data. Therefore, we explore this option by
using Ly distance to optimize SSR-TVD.

Lp, = ]Ev’evg,vevg[HG(V/) = V2], (4)

where || - ||2 denotes Ly norm.

Feature loss. We also incorporate a novel feature loss
based on the discriminator D;. This loss constrains G to
produce similar features at different scales compared with
real volumes. Specifically, features of synthesized volumes
from different convolutional (Conv) layers of D, are ex-
tracted and matched to these intermediate representations
of real data at the same scale. Let us denote the feature
representation extracted from the kth Conv layer as F*.
Then the feature loss is calculated as

T-1 4
Ly = Ev’evg,vevg{ Z F[HF]C(V)
k=1 K

—FHGV))lla), )

where T is the total number of Conv layers in Dy and
N}, denotes the number of elements in the kth Conv layer.
This feature loss shares a similar purpose as the perceptual
loss [21], [39], which has shown useful for improving GAN
training and perceptual quality.

Taking all losses into consideration, the final loss func-
tion for G is defined as

min Lo =M (Eyeve[(Ds(G(V)) = 1)°]+

Eyeve[(Di(G(V)) = 1)%]) + AL, + AsLr,
(6)
where Ai, Ay, and A3 are hyperparameters, which control
the relative importance of these three terms (adversarial,
content, and feature loss).
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Fig. 2: Network architecture of SSR-TVD. (a) G, (b) D, or
Dy, and (c) IB. G has two DeConv layers and seven IBs. D;
and D; share the same structure, while D, takes one volume
as input and D; takes three consecutive volumes as input.

3.2 Network Architecture

Generator. As shown in Figure 2 (a), G takes V¥ as input,
and outputs V!, a high-resolution version of V™. To en-
hance the performance, we add two additional considera-
tions in G: (1) combining low-level and high-level features
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through skip connection, (2) applying spectral normalization
(SN) after each Conv layer. The skip connection connects
feature maps from previous layers to the following layers so
that the gradient can be backpropagated through multiple
paths. In a residual block, the input is operated with three
Conv layers without changing the spatial size, and the result
of one Conv layer is added to the original input as a residual
operation. These considerations effectively reduce gradient
vanishing and allow us to build deeper networks.

The core of the generator G lies in the identical blocks
(IBs). Each IB has two learning paths: one consists of
four Conv layers appended by SN, instance normalization
(IN) [38], and ReLU [30], and the other one contains one
Conv layer appended by SN. These two paths are bridged
by skip connection, as shown in Figure 2 (c). We set the kernel
size to 3 x 3 x 3, padding with 1 for all Conv layers in all
IBs. Specifically, three IBs are applied to the low-resolution
volume to extract semantic information, then two decon-
volutional (DeConv) layers are utilized to upscale the low-
resolution learned features. After each DeConv layer, we
apply two IBs to refine the features. Besides, we use dense
connection [18] to keep the information flowing smoothly
in SSR-TVD. In the final IB layer, tanh(-) is applied. In
Table 1, we list the kernel size and the number of feature
maps in each learning layer.

TABLE 1: Architecture parameter details of G.

type kernel size  output channels  output size

input N/A 1 L/4x H/4 x W/4
IB+ReLU 3 16 L/4x H/4 x W/4
IB+ReLU 3 64 L/4x H/4 x W/4
IB+ReLU 3 128 L/4x H/4 x W/4
DeConv+ReLU 4 128 L/2x H/2 x W/2
IB+ReLU 3 128 L/2x H/2 x W/2
IB+ReLU 3 64 L/2x H/2x W/2
DeConv+ReLU 4 32 LxHxW
IB+ReLU 3 8 LxHxW
IB+Tanh 3 1 L xHxW

Discriminators. To discriminate real volumes from syn-
thesized ones in spatial and temporal aspects, we train two
discriminator networks (D, and Dy) to distinguish spatial
difference and temporal difference. As sketched in Figure 2
(b), discriminators are composed of several Conv, SN layers
and Leaky ReLU activation (o = 0.2). In addition, following
the guidelines in Radford et al. [34], we use the Conv
operation to replace pooling layers throughout the network.
Each D, or D, contains five Conv layers for downsampling
the inputs, and the number of feature maps is set to 64,
128, 256, 512, and 1, respectively. We set the kernel size and
stride to 4 and 2 to downscale the input for each dimension
at each Conv layer except the final Conv layer. In the final
Conv layer, it produces a 1 x1x 1 dimensional output. We do
not use the activation function in the last Conv layer. Note
that D, and D; share the same structure but not the same
weights, the only difference is that the input to D, is one
volume, while the input to D is three consecutive volumes
(we concatenate V", V!, and V}Y,).

Algorithm. As sketched in Algorithm 1, our SSR-TVD
training algorithm consists of three parts: training Dg (spa-
tial discriminator), training D; (temporal discriminator),
and training G (generator). The algorithm runs over a
certain number of epochs T, and for each epoch, it trains
the three networks successively. In order to generate high-
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Algorithm 1 SSR-TVD training algorithm.

Require: initial generator parameters ¢, initial spatial discriminator
parameters 6 p_, and initial temporal discriminator parameters 6,
Require: number of D updates np_ per G iteration, number of Dy
updates np, per G iteration, number of G updates ng per D or Dy
iteration, number of training epochs T, learning rate ag, ap,, and
ap, for G, Ds, and Dy respectively
fort=1---T do
fori=2---n—1do
sample low-resolution data V,L.L, (V,L.Iil, ViL, ‘/#1
resolution data VH, (VE,, VH, Vfil)
forl---np, do
compute Lp_ based on Equation 2

oLp
eDs = oDs - aDs 80D:§

end for
forl---np, do

compute Lp, based on Equation 3
Op, = 0p, — ap, 22t
Dy — YDy Dy 90,

end for
forl---ngdo
compute L based on Equation 6

) and high-

Oc =0 — ag 358
end for
end for
end for

quality results, we should make the training process stable
and avoid the model from collapsing, which means that
the discriminators need to loop through the real data and
synthesized data several times. Therefore, we usually set
np, =Np, > NG-

3.3 Optimization

We study two techniques that stabilize the training of SSR-
TVD. SN is applied in G as well as in Dy and D;. Second,
the two time-scale update rule (TTUR) [15] is leveraged since
it can enhance the ability of discriminators in distinguishing
real and fake volumes and reducing the computational cost.
SN. Miyato et al. [29] proposed SN, a weight normal-
ization approach, that can stabilize the training of GANS.
Unlike other normalization techniques, where additional
hyperparameyers are required, SN only needs to set a
spectral norm after Conv layers. In addition, SN can save
computational cost during training. We also find that the
generator can get benefits from adding SN because it can
prevent model collapse and avoid unusual gradients.
TTUR. Regularization of discriminator [6] often slows
down the process of GAN learning, because the generator
can update once until regularized discriminators update
multiple times (e.g., 5) during training. Heusel et al. [15]
advocated using two different learning rates (i.e., TTUR)
for generator and discriminator. The goal is to mitigate the
problem of setting multiple updating times in a regular-
ized discriminator per generator update, making it possible
to use fewer discriminator updates per generator update.
Thus, we utilize this technique in SSR-TVD optimization.

4 RESULTS AND DISCUSSION
4.1 Data Sets and Network Training

We experimented with our approach using the data sets
listed in Table 2. A single NVIDIA TESLA V100 GPU was
used for training. We obtained the low-resolution volumes
by downsampling the high-resolution volumes using the
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TABLE 2: The dimensions, number of training epochs, and
total training time of each data set.

data set high-res dimension epochs  training time
(variable) (x Xy X zXxt) (hours)
argon bubble 640 x 256 x 256 x 160 500 30
combustion (HR) 240 x 360 x 60 x 100 500 20
combustion (MF) 240 x 360 x 60 x 100 500 20
combustion (YOH) 240 x 360 x 60 x 100 500 20

five jets 128 x 128 x 128 x 100 500 18
hurricane 500 x 500 x 100 x 48 500 48
ionization (H) 600 x 248 x 248 x 100 400 20
ionization (H+) 600 x 248 x 248 x 100 400 20
ionization (He) 600 x 248 x 248 x 100 400 20
ionization (He+) 600 x 248 x 248 x 100 400 20
vortex 128 x 128 x 128 x 90 400 16

TABLE 3: Average PSNR and SSIM values. The best ones are
highlighted in bold.

PSNR (dB) SSIM
data set (variable)  BI CNN  SSR-TVD BI CNN  SSR-TVD
five jets 30724 28.476  40.145 0.809 0.840 0.867
fonization (F+) 16.000 26.663 38.584 0.898 0.745 0.902
ionization (He+)  17.116  24.033  34.738 0.869 0.708 0.870
vortex 21.926 37.337 40.795 0892 0.861 0.923

bicubic kernel with a downsampling factor of four and a
constant padding. For each epoch, at each time step, four
low-resolution sub-volumes and the corresponding high-
resolution ones are cropped randomly. This cropping mech-
anism entails a low computational cost and requires less
GPU memory. Note that we can apply the generative model
to volumes of arbitrary size as it is fully convolutional.
Because the value range for the output of the final activation
function tanh () is [~1, 1], we scaled the range of V' input
volumes to [0,1] and that of V! volumes to [—1,1]. For
optimization, we initialized parameters in SSR-TVD using
those suggested by He et al. [12] and applied the Adam
optimizer [22] to update the parameters. We set one training
sample per mini-batch. We set the learning rate with 4x10~4
for D, and D, 107 for G, 81 = 0.5, 2 = 0.999. We set
M =103 =1,and \3 =5 x 1072. We set € to 10~* in
SN for numerical stability, and ng, np,, and np, to 1, 2, and
2, respectively. All these hyperparameters are determined
empirically.

4.2 Results

Due to the page limit, we could not always show SSR-TVD
results for multiple time steps in the paper. These frame-
to-frame comparison results are shown in the accompany-
ing video. Unless otherwise stated, all visualization results
presented in the paper for volumes synthesized by SSR-
TVD are the inferred results (i.e., the network does not
see these volumes during training). These inferred results

TABLE 4: Average IS values at selected isovalues. The best
ones are highlighted in bold.

BI SSR-TVD
data set (variable) v = —-0.803 v =—-0.608 v =-0.803 v = —0.608
ionization (He+) 0.43 0.57 0.76 0.80
v=0 v=0.1 v=0 v=0.1
vortex 0.82 0.85 0.87 0.92

TABLE 5: MOS values. The best ones are highlighted in bold.

volume rendering

isosurface rendering

data set (variable) BI CNN SSR-TVD BI CNN  SSR-TVD
combustion (HR) 242 283 3.57 2.05 3.05 3.90
combustion (MF — YOH) 3.05 2.80 3.38 244 323 3.73
ionization (He+) 2.75 243 4.08 244 3.23 3.73
vortex 430 4.32 4.38 3.63 3.85 418
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Fig. 3: PSNR of synthesized volumes (top row) and SSIM of rendered images (bottom row) under BI, CNN, and SSR-TVD.

are not observed in the training data (see Figure 1 (a)
for an illustration). We use the same setting for lighting,
viewing, and transfer function (for volume rendering) for
all rendering results of the same data set. In reference to the
ground truth (GT), we compare our SSR-TVD results against
BI and CNN. For network analysis, please refer to Section 1
in the Appendix.

Evaluation metrics. We use the peak signal-to-noise ratio
(PSNR) to evaluate the quality of synthesized volumes at the
data level. We apply the structural similarity index (SSIM) [41]
to evaluate the quality of volume rendering images at the
image level. Besides volume rendering, we also compare
SSR-TVD against Bl in terms of volumetric features, ex-
pressed in the form of isosurface. To quantify the similarity
between two isosurfaces extracted, respectively, from the
synthesized and GT volumes, we compute their isosurface
similarity (IS) [2] at the feature level. The larger the IS, the
more similar the two surfaces are. Finally, for each method
being compared, we use the mean opinion score (MOS) to
evaluate how close its rendering image is with respect to
the GT image. We recruited ten students and asked them
give a five-point score to each pair of images, where 1 is
the lowest perceived quality, and 5 is the highest perceived
quality. The mean of these scores is reported as MOS.

Quantitative and qualitative analysis. In Figure 3, we
quantitatively compare SSR-TVD results against BI and
CNN-based results at the data level (PSNR) and image
level (SSIM). We utilize a post-upsampling framework [23],
[42] as our CNN-based baseline model. We can see that in
general, SSR-TVD achieves better performance compared
with Bl and CNN. At the data level, SSR-TVD produces the
highest PSNR values across all four data sets. For the five
jets and vortex data sets, PSNR values gradually decrease
toward the end of the time sequence for SSR-TVD. This is
because we only use 40% of the data (i.e., the early time
steps) for training, which makes SSR-TVD produce a lower
PSNR at the end of the time sequence. However, if we
increase the training samples by using more time steps for
training, SSR-TVD achieves higher PSNR for these later time
steps. For the ionization (H+) and ionization (He+) data sets,
PSNR values decrease at the first 40 time steps, then increase
toward the end of the time sequence for CNN and SSR-TVD.
This is because visual contents increase at the early time

steps, then decrease at the later time steps. The more visual
contents in a volume, the more difficult to predict. In Table 3,
we report the average PSNR and SSIM values over the entire
volume sequence for BI, CNN, and SSR-TVD. Again, SSR-
TVD performs the best in terms of PSNR and SSIM. In terms
of model storage, the model size of SSR-TVD is 60.6 MB,
while that of CNN is 20.3 MB.

At the image level, SSR-TVD still generates higher SSIM
compared with BI and CNN. It is the clear winner for the
five jets and ionization (H+) data sets. SSR-TVD produces
an average SSIM of 0.867 and 0.902, but BI only produces
an average SSIM of 0.809 and 0.898, respectively. For the
ionization (He+) data set, Bl and SSR-TVD yield very close
SSIM curves, and both are better than CNN. For the vortex
data set, the SSIM curves exhibit more fluctuation for both
methods. However, in general, SSR-TVD still outperforms
BI and CNN by yielding higher SSIM values.

In Figure 4, we compare rendering results of the syn-
thesized volumes generated by BI, CNN, and SSR-TVD. For
the combustion (HR) data set, it is evident that SSR-TVD
preserves more local details compared with BI and CNN.
For instance, BI produces more orange and green content
on the right side, and CNN generates more artifacts in the
rendering images. It is clear that SSR-TVD produces a higher
visual quality for the five jets data set. SSR-TVD produces
more details in red (jets) and cyan (cap) parts, while BI
cannot recover the red and cyan parts well and generates
some artifacts and CNN fails to construct the cyan and
green parts. For the ionization (He+) data set, it is clear
that SSR-TVD produces a better visual result at the bottom
layer compared with BI and CNN. Moreover, the rendering
images generated by Bl and CNN contain some noises. For
the hurricane data set, SSR-TVD produces a better visual
result at the center (eye) of the hurricane. It also produces
finer details at the four corners of the volume. For the vortex
data set, there is no significant difference among all three
methods compared with GT, but upon closer examination,
we can observe that SSR-TVD yields closer results at the
bottom part. We also observe that all rendering images
generated by CNN have artifacts. The possible reasons are
(1) volumes are different from images in that a rendering
process is involved, which is not captured by the post-
upsampling framework; (2) applying deconvolution with-
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(a) combustion (HR) (b) five jets

(c) hurricane

(d) ionization (He+) (e) vorfex

Fig. 4: Volume rendering results of same-variable inference. Top to bottom: BI, CNN, SSR-TVD, and GT.

out skip or dense connection cannot recover information
(such as volume smoothness) which is not presented in the
learned feature vector.

In Figure 5, we compare the rendering results of the
synthesized volumes generated by Bl and SSR-TVD through
different-variable inference. Different-variable inference de-
notes that given one variable X of one data set used for
training, another variable Y of the same data set is applied
for inference (i.e., X — Y). For HR — MF of the combus-
tion data set, SSR-TVD produces smoother visual results
compared with BI. For example, the yellow part at the top-
right corner and the green part at the bottom-right corner
are closer to GT. For MF — YOH of the combustion data
set, SSR-TVD generates more details compared with BI. For
example, the orange part at the top-right corner and the
red part at the bottom-middle corner. As for H — He of
the ionization data set, it is clear that SSR-TVD gives high-
quality visual results while Bl leads to artifacts at the bottom
layer and the surrounding region. For He+ — H+ of the
ionization data set, BI still fails to recover the bottom layer
and generates some artifacts at the middle layer, while SSR-
TVD reconstructs these regions more faithfully.

In Figures 6 and 7, we compare isosurface rendering
results of the synthesized volumes generated by BI and

SSR-TVD using the combustion (MF), ionization (He+), five
jets, and vortex data sets. For each data set, we choose two
time steps and two isovalues to render the isosurfaces. For
the combustion (MF) data set, it is obvious that SSR-TVD
generates high-quality isosurfaces compared with BI, since
BI fails to construct the isosurface close to GT at time steps
76 and 90 (we can see that the surface is filled with noises).
For the ionization (He+) data set, it is clear that for time step
62, the isosurface generated by SSR-TVD contains more de-
tails (e.g., the bottom layer and the head). For time step 78,
SSR-TVD produces high-quality isosurfaces since BI fails to
construct the isosurface at the bottom layer. For the five jets
data set, SSR-TVD still generates closer isosurfaces than BI,
such as the head of the five jets for v = —0.4. For the vortex
data set, SSR-TVD generates smoother isosurface than BI,
such as the middle-left corner for time step 87. Moreover,
the isosurfaces produced by SSR-TVD are similar to GT,
for example, both SSR-TVD and GT generate some “open”
features at the middle-right corner for time step 87, while
these features synthesized by BI are closed. Furthermore,
we report in Table 4 the average IS values over the entire
volume sequence for these three data sets. The quantitative
results also confirm that SSR-TVD leads to isosurfaces of
better quality than BL
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(a) BI

(b) SSR-TVD (©) GT

Fig. 5: Volume rendering results of different-variable infer-
ence. Top to bottom: combustion (YOH — MF), (b) com-
bustion (MF — YOH), (c) ionization (H — He), and (d)
ionization (He+ — H+). Displayed here are MF, YOH, He,
and H+.

In Figure 8, we compare isosurface rendering results
of the synthesized volumes generated by BI and SSR-TVD
using different-variable inference. For the combustion (MF
— HR) data set, it is clear that the isosurface generated by
SSR-TVD preserves more structural details. For example, Bl
misses some details at the middle-left corner under v = 0.85
at time steps 64 and 80. For the ionization (H — H+) data
set, the isosurfaces generated by SSR-VTD are smoother
compared with those of BI. For example, BI fails to recover
the bottom layer of the ionization well since it still produces
many artifacts there.

To evaluate the perceptual quality of images (i.e., volume
rendering images or isosurface rendering images) rendered
from volumetric data synthesized by BI, CNN, and SSR-
TVD, compared with those rendered from the GT data,
we conducted a user study. For each rendering option, we
picked four data sets for comparison, and for each data
set, we chose six different time steps. Hence, we collected
a total of 144 image pairs (72 pairs for volume rendering
and 72 pairs for isosurface rendering) for comparison. For
each image pair, we set the left image as rendered from data
synthesized by one of the three methods (BI, CNN, or SSR-
TVD) and the right image as always rendered from the GT
data. We recruited ten graduate students as participants in
the study. The participants were asked to evaluate how close
the left image is to the right image, by giving an integer
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score ranging from 1 (least similar) to 5 (most similar).
Participants were allowed to go back and forth during their
evaluation to adjust the scores accordingly, especially at the
beginning, when they needed to calibrate the scores. Par-
ticipants were informed that several factors, including the
overall impression, content shift, local color/shape preser-
vation, and noisy level, should be considered during the
evaluation. After a brief introduction, each participant took
about half an hour to complete the study and was paid $10.
In Table 5, we report the average MOS values. As we can
see, across these four data sets and two rendering options,
SSR-TVD always achieves the best MOS.

In Figure 9, we compare isosurface rendering results of
the synthesized volumes generated by SSR-TVD and a state-
of-the-art lossy compression (LC) scheme [24], [25] which
can effectively control data distortion while significantly
reducing data size. We study two aspects (i.e., under the
same compression ratio and under the same PSNR) for a
fair comparison. Regardless of the training samples used for
SSR-TVD, we set the compression ratio for the combustion
data set to 14.98 = (60 x 19.78)/(60 x 0.31 + 60.6), where
60 is the total number of time steps for inference, 19.78 MB
is the data size of the high-resolution volume for one time
step, and 60.6 MB is the model size. As shown in the top row
of Figure 9, we can see that the isosurfaces generated by LC
are not as smooth at the top-left corner as those produced
by SSR-TVD. Under the same PSNR (i.e., 30 dB), we can
observe that LC fails to recover the structural details for the
corresponding isosurfaces and produces more artifacts, as
shown in the bottom row of Figure 9.

4.3 Discussion

Like other deep learning techniques, it takes a significant
amount of time to train SSR-TVD. In Figure 3 (b) and (d)
in the Appendix, we report the time curves for two data
sets under different hyperparameter settings. With 40% of
training samples and subvolume size of 16 x 16 x 16, it takes
sixteen hours to train the vortex data set (400 epochs) and
two full days to train the hurricane data set (500 epochs).
As the number of training samples or the subvolume size
increases, the training time increases as well. However,
because of the use of cropping, the training time actually
depends on the (cropped) subvolume size rather than the
volume size. Due to the limited GPU memory, for large
volumes (e.g., hurricane, ionization), we infer individual
subvolumes to form the entire volume. For small volumes
(e.g., five jets, vortex), we infer the entire volumes directly.
The inference time is between ten minutes (vortex) to eight
hours (ionization) for the entire volume sequence.

Our current SSR-TVD framework has the following lim-
itations. First, the transfer function is not considered as
input for training SSR-TVD. We only treat the low-resolution
3D volumes as numerical data for synthesizing the corre-
sponding super-resolution results. During postprocessing,
we manually design 1D transfer functions that map high-
resolution volumes to color and opacity and calculate light-
ing for visualization.Nevertheless, quantitative evaluation
using PSNR at the data level and SSIM at the image level
shows that SSR-TVD outperforms Bl under both metrics. Al-
though considering the transfer function as input may help
improve the visual quality and SSIM, the training process
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(a) BI

(b) SSR-TVD
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Fig. 6: Isosurface rendering results of same-variable inference using the combustion (MF) data set for time steps 76 (1st
row) and 90 (2nd row), and ionization (He+) data set for time steps 62 (3rd row) and 78 (4th row). The value range is

normalized to [—1, 1]. For combustion (MF), (a-
(d-f): v = —0.608.

is highly dependent on the user-picked transfer function.
In addition, it could make the data preprocessing more
difficult. For example, how to choose a transfer function,
how many transfer functions are enough for training, and
how to incorporate the transfer function into optimizing the
deep learning pipeline.

Second, we only experiment with using the first segment
(i.e., starting from the first time step) of the time sequence as
the training samples, and therefore, the PSNR curves may
fall into the lower value range for the later time steps. We
can further investigate which segment of the time sequence
is the more characteristic and thus the best for training,
which is likely to be data set dependent.

Third, while SSR-TVD is capable of generating high-
resolution volumes on a scaling factor of four, it does not
synthesize fine details on some data sets. An example is
illustrated in Figure 10. As the results indicate, neither Bl nor
SSR-TVD could generate high-quality rendering results on
the argon bubble data set. Both approaches fail to produce
enough details on the rendering images. We suspect that this
is because SSR-TVD has limited ability to estimate complex
data distributions. For verification, we plot the histograms
of four different data sets, as shown in Figure 11. We observe
that the vortex and five jets data sets exhibit Gaussian
distributions, and the hurricane data set follows a long-tail
distribution. The argon bubble data set, however, does not

c): v = —0.216, (d-f): v = 0.569. For ionization (He+), (a-

c): v = —0.803,

follow any single data distribution but presents a mixture
of Gaussian and long-tail distributions. The corresponding
transfer function also crosses both distributions (refer to
Figure 11 (a)). We note that GAN encounters a similar
problem in image generation tasks. If the training pool
contains images of various kinds of scenes, GAN will fail
to generate high-quality results, since the data distribution
is too complex for GAN to learn. As such, most works on
GAN only focus on image collections of the same kind of
scene (e.g., the indoor scene with furniture) rather than
image collections of diverse scenes, such as ImageNet. In
the future, we will design powerful modules to improve the
ability of SSR-TVD in learning complex data distributions.

5 CONCLUSIONS AND FUTURE WORK

We have presented SSR-TVD, a new deep learning solution
for generating SSR of TVD. Using adversarial, content, and
feature losses, SSR-TVD can upscale the volumes by a factor
of four (making the size of each output volume 64 times
the size of the input volume) while achieving better visual
quality for volume upscaling compared with the de facto
standard of BI and a solution solely based on CNN. Quan-
titative evaluation using PSNR (data-level), SSIM (image-
level), IS (feature-level), and MOS (perception-level) also
confirms the effectiveness of SSR-TVD.
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Fig. 7: Isosurface rendering results of same-variable inference using the five jets data set for time step 46 (top row) and
vortex data set for time step 87 (bottom row). For five jets, (a-c): v = —0.2, (d-f): v = 0.4. For vortex, (a-c): v = 0, (d-f):

v=0.1.

SSR-TVD is an intermediate step of our research effort
toward data augmentation for scientific visualization. Given a
time-varying volume data set of size, for example, 128 X
128 x 128 with 100 time steps, SSR-TVD generates the SSR
volume sequence of size, for example, 512 x 512 x 512
for each volume while keeping the temporal resolution the
same. Previously, we presented TSR-TVD [10] which gener-
ates the temporal super-resolution (TSR) volume sequence
of, for example, 500 time steps, while keeping the spatial
resolution the same. Eventually, we would like to achieve
spatiotemporal super-resolution (STSR) by producing the
volume sequence of size, for example, 512 x 512 x 512 with
500 time steps. Upscaling both spatial and temporal dimen-
sions plays an important role in handling time-varying data
produced from large-scale scientific simulations as scientists
can only sparsely sample the simulation output because
of the scarce storage space. Beyond spatiotemporal dimen-
sions, our recent work on V2V [11] addresses variable selec-
tion and translation problems for multivariate time-varying
data. Our research will provide a promising alternative for
scientists to make better decisions depending on the nature
of the simulations and the characteristics of the data.
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APPENDIX

1 NETWORK ANALYSIS

In order to evaluate SSR-TVD, we analyze the following
hyperparameter settings: training epochs, training samples,
subvolume size, temporal coherence, spatial coherence, and
training stability. A detailed discussion is provided as fol-
lows.

(d) 400 epochs (e) 500 epochs

Fig. 1: Volume rendering results under different training
epochs using the five jets data set. The best match with GT
is the result with 500 epochs.

(f) GT

A\ \l "7"7"”":7"/77"

(c) 300 epoch:

(b) 200 e[;ochs

(d) 400 epochs

Fig. 2: Volume rendering results under different training
epochs using the vortex data set. The best match with GT
is the result with 400 epochs.

(e) 500 epochs

Training epochs vs. visual quality. We investigate how
the quality of the synthesized volume using SSR-TVD
evolves with the increasing number of training epochs. Ren-
dering of the volumes obtained after different numbers of
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Fig. 3: Comparison of hyperparameter settings. (a) Average
PSNR and SSIM and (b) average time (per epoch) under
different training samples using the ionization (He+) data
set. (c) Average PSNR and SSIM and (d) average time (per
epoch) under different subvolume sizes using the vortex
data set.

training epochs is illustrated in Figures 1 and 2. For the five
jets data set, during the whole training process, the change
of the cyan part is unstable. For example, the rendering
results from 300 and 500 epochs are better than the results
from 200 and 400 epochs. However, the green part gets
increasingly closer to GT as we apply more training epochs.
For example, the green tail on the left part vanishes after
500 epochs, which matches GT. Moreover, we observe that
after 500 epochs, there is no significant difference among
synthesized results with different numbers of epochs, so we
choose 500 epochs to train the five jets data set. For the
vortex data set, we find that in the first 400 epochs, SSR-
TVD generates better visual quality. For example, the red
tail at the top-left corner becomes smaller as the training
goes. However, after 400 epochs, the visual quality actually
gets worse as SSR-TVD begins overfitting. Hence, we choose
400 epochs to train the vortex data set.

Training samples vs. PSNR and SSIM. For an upscaling
factor of four, we study the influence of the number of
training samples on PSNR. We use 20%, 40%, 60%, and 80%
training samples to train SSR-TVD on the ionization (He+)
data set. We plot the average PSNR and SSIM curves under
different numbers of training samples, as shown in Figure 3
(a). We can see that PSNR and SSIM can be improved by
using more training samples. However, this demands longer
training time, as shown in Figure 3 (b). We observe that
visual quality does not benefit from using more training
samples. As a trade-off, we use 40% samples to train SSR-
TVD.

Subvolume size vs. PSNR and SSIM. We perform
training with subvolume sizes of 8 x 8 x 8, 16 x 16 x 16,
and 24 x 24 x 24 on the vortex data set. The average PSNR
and SSIM curves are shown in Figure 3 (c). We can observe
that training SSR-TVD benefits from a larger subvolume size
since an enlarged receptive field helps the network capture
more semantic information. However, a larger training sub-
volume size takes more time to train (as shown in Figure 3
(d)) and consumes more computing resources. As a trade-
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(a) time step 21 (b) time step 22

(c) time step 23 (d) time step 24

Fig. 4: Volume rendering results using the hurricane data set without (top row) and with (bottom row) considering temporal
coherence (D;) during training. In each image, we also show on the side, pixelwise image differences with respect to GT.

(a) without Dy

(b) with D, (c) GT

(d) without Dy (e) with Dy (f) GT

Fig. 5: Isosurface rendering results using the ionization (H+) data set for time step 74 without and with considering spatial
coherence (D;) during training. (a-c): v = —0.961, (d-f): v = —0.843.
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Fig. 6: Training loss curves of G, D, and D; using the vortex
data set.

off, we use the subvolume size of 16 x 16 x 16 to train
SSR-TVD.

Temporal coherence. To investigate the role of temporal
coherence in SSR-TVD training, we conduct an experiment
that trains SSR-TVD with and without considering D,. We
then render the resulting synthesized volumes and compare
the visual difference, as shown in Figure 4. For objective
comparison, we calculate pixel-wise differences as Han and

Wang [10] to generate the difference image. The difference
image is displayed at the top-left corner. The results indicate
that adding D; into SSR-TVD training can better preserve
the hurricane’s eye and its surroundings, especially for
Figure 4 (d). We also compute the SSIM values of the
corresponding time steps. Without considering D, the SSIM
values are 0.851, 0.845, 0.842, and 0.826 for the four consec-
utive time steps, respectively, while with considering Dy,
the SSIM values improve to 0.868, 0.864, 0.861, and 0.860,
respectively.

Spatial coherence. To investigate the role of spatial
coherence in SSR-TVD training, we conduct an experiment
that trains SSR-TVD with and without considering D;. We
then render isosurfaces extracted from the resulting synthe-
sized volumes and compare the visual difference, as shown
in Figure 5. In reference to GT, the results without adding D,
reconstruct the isosurfaces far worse than the results with
adding D,. Therefore, adding D, during training can yield
better spatially coherent results.

Training stability. To study the stability of training SSR-
TVD, we plot the loss curves of G, D, and D, as sketched
in Figure 6. We can see that the loss of G' decreases over
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the training process, while the losses of D, and D; fluctuate
four times during training. These fluctuations are caused by
the SSR-TVD training mechanism: G needs to compete with
D; and D;. The overall training process of G, D,, and D;
are stable, which confirms the stability of SSR-TVD.
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