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Abstract

Distributed energy resources (DERs), such as
rooftop solar panels, are growing rapidly and are
reshaping power systems. To promote DERs,
feed-in-tariff is usually adopted by utilities to pay
DER owners certain fixed rates for supplying energy
to the grid. Such a non-market based approach may
increase electricity rates and create inefficiency. An
alternative is a market based approach; i.e., consumers
and DER owners trade energy in a peer-to-peer (P2P)
market, in which electricity prices are determined by
real-time market supply and demand. A prevailing
approach to realize a P2P marketplace is through
double-side auctions. However, the auction complexity
in an energy market and the participants’ bounded
rationality may invalidate many well-established results
in auction theory and hence, cast difficulties for market
design and implementation. To address such issues,
we propose an automated bidding framework based
on multi-agent, multi-armed bandit learning through
repeated auctions, which is aimed to minimize each
bidder’s cumulative regret. Numerical results suggest
the potential convergence of such a multi-agent learning
game to a steady-state. We also apply the framework to
three different auction designs (including uniform-price
versus Vickrey-type auctions) for a P2P market to study
the impacts of the different designs on market outcomes.

1. Introduction

Distributed energy resources (DERs), broadly
termed to include distributed generation, storage and
demand response resources, are a vital part of a smart
energy grid, as such resources are clean and sustainable,
compared to fossil-fueled power plants, and can improve
system reliability and resilience with their proximity to
load. Many difficulties exist, however, in realizing the
perceived benefits of DERs. Such difficulties are largely
contributed by the physical characteristics of an electric
energy grid, and the complexities of designing a market
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upon such a grid. As stated in [1], there are two layers
in utilizing DER resources - the physical layer, and the
virtual layer.

At the physical layer, the supply and demand
of electric energy needs to be balanced at all time,
and electric currents travel based on Kirchhoff’s
laws through transmission/distribution networks. Such
attributes call for a centralized dispatch operation, such
as that organized by independent system operators in
the U.S. wholesale markets. However, the distributed
feature and the potentially very large number of DERSs
make such centralized dispatch extremely challenging.
In addition, without access to a high voltage transformer
(which most DERs do not have access to), energy
generated by DERs cannot travel far, due to significant
energy losses at low voltage level.

The virtual layer mainly concerns the market
mechanisms  (especially  pricing  mechanisms)
and  information  exchange  among  market
participants/consumers. ~ While supply bidding (or
double-side auction with demand bidding) and
uniform-pricing (aka locational marginal pricing, or
LMP) have been the norm for the U.S. wholesale
energy markets [2], the mechanisms to integrate DERs
are much less clear. If DERs are to participate in a
wholesale market, (besides the voltage/transmission
issues), they need aggegators to pool a large quantity
of DERSs together to be eligible to bid into a wholesale
markets. In doing so, DER owners will have to
relinquish control of their resources to the aggregators.
Instead of directly participating to a wholesale markets,
many have proposed to organize a distribution market,
similar to the wholesale counterpart, to dispatch local
DERs, and to clear the market through the so-called
distribution LMP (or DLMP) (e.g., [3, 4]. The DLMP
pricing mechanism, in our view, would encounter
significant issues in a DER market. While wholesale
markets are dominated by fossil-fueled plants with
varying marginal costs (which can then form an upward
sloping aggregated supply curve), a local DER market
is expected to be dominated by small solar and wind
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resources, which have practically zero marginal costs,
and demand response resources, whose marginal
benefits are difficult to quantify.! With energy storage,
the issues would be worse since storage resources
can arbitrate prices over time. Hence, we expect a
renewable-dominated local energy markets would
yield zero DLMPs most of the time (unless there are
persistent transmission constraints).

An alternative pricing mechanism to DLMP is
through a double-side auction in a peer-to-peer (P2P)
trading market, in which local energy producers
(referred to as prosumers) and consumers can freely
bid/ask their price and quantity, and energy prices
are determined at the intersection of the supply and
demand curves. This is the focus of this paper. While
auction designs have been well studied in the field of
economics and game theory [5, 6, 7, 8], several special
features of a peer-to-peer (P2P) energy market require
special attention. To name a few, a P2P energy market
inherently involves repeated auctions and exogenous
uncertainties (e.g., wind/solar availability), making
the analysis of market participants’ bidding/asking
strategies much more difficult. In addition, market
participants are likely to have bounded rationality in
the sense that they do not know their own valuation
of energy production and consumption. Furthermore,
their (implicit) valuations are likely dependent, such as
in a hot summer day, most buyers would value high
of energy consumption for air conditioning. All these
features would nullify the assumptions in classic auction
theory as they usually require that agents’ valuation to
be private and independent [9].

Despite the theoretical difficulties, P2P-based energy
market for DERs and prosumers have attracted
increasing attention, as summarized by several recent
review papers [10, 11, 12, 1]. Among the reviewed
works, several of them directly study the design and
implementation of a double-side auction, including (but
are not limited to) [13, 14, 15]. Our proposed framework
differs significantly from existing works in the literature
in the following aspects. (i) Acknowledging bidding
agents’ bounded rationality, we do not assume that the
agents know their own valuation of energy consumption
(such as the so-called utility function). Each agent only
needs to know their own past bids and the corresponding
payoffs. (ii) We explicitly consider repeated auctions’
(as opposed to a single-shot auction), and define the
metric — cumulative regret — to gauge each agent’s

1Or if there are combined heat and power plants in a local market
that use natural gas, biomass or solid waste, they will be on the margin

all the time, who then may choose not to participate in a local market
at all.

2It is well-known in the economics and game theory literature
that more diverse strategies can emerge, such as tacit collusion, in a
repeated game than in a static game.

bidding performance. (iii) The bidding strategies can be
fully automated and implemented through the so-called
energy management systems (or even a smart meter).

More specifically, our framework is based on a
multi-agent, multi-armed bandit learning approach.
Consider a double-side auction where supply and
demand bids are submitted in each time period h (e.g.,
hourly) in each day d. Within each h, as a starting
point, we assume that market participants only choose
a price to ask/bid, not quantities of energy. We further
discretize per-unit price bids (i.e., ¢/KWh) into K
possible choices. When each agent decides which price
to bid/ask, it is similar to choosing one slot machine,
out of K such machines, to pull the arm. In this case,
the agents are uncertain if they will win (bids cleared)
or lose (bids not cleared), and in the case of winning,
how much the payoff would be. This is similar to
the classic multi-armed bandit (MAB) learning problem
which has been well studied in the broad computer
science literature, such as [16, 17, 18, 19]. A key
difference here, however, is that each agent’s probability
of winning and their payoff distributions (of each arm)
depend on how other market participants bid/ask, and
a MAB-game is formed when all agents apply bandit
learning for deciding their bid/ask with incomplete
information feedback.

The MAB-game differs from a pure agent-based
simulation approach as certain theoretical results,
such as convergence to a steady-state, can be
obtained under certain conditions, as shown in [20].
Such a framework have been applied to integrate
price-responsive demand response into a wholesale
energy market with transmission constraints, and
extended the theoretical results to show that each
agent’s cumulative regret will converge to zero [21,
22, 23]. In this paper, we show the details of how
to apply the MAB-game framework in a double-side
auction situation, which is by no means trivial. While
establishing theoretical results is not the main goal
of this paper, our numerical simulations do suggest
of convergence to steady-state of the multi-agent
MAB-game. In addition, we demonstrate the versatility
of such a framework through studying three specific
auction designs: a replicate of the wholesale market’s
uniform-price auction, a variant of Vickrey double-side
auction [6], and maximum volume matching auction
(which is pay-as-bid/receive-as-ask) [7]. Based on the
simulations, from market participants’ perspective, the
uniform-price auction outperforms the other two as it
can offer higher clear quantities, total social welfare and
total normalized reward.

The rest of the paper is structured as follows.
In Section 2, we describe in details of how market
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participants bid/ask through bandit learning in a
double-side auction. In Section 3, three double-side
auction mechanisms are presented for P2P energy
trading market. Numerical simulations are presented
in Section 4 by comparing learning results in three
different auction mechanisms. Section 5 concludes the
paper and identifies potential future research directions.

2. Learning through Multi-agent MAB
Games

Without a P2P energy market, prosumers can only
sell their extra energy to the utility or distribution
system operator (DSO) at some pre-defined rate (such
as through a feed-in tariff, denoted as FIT). Similarly,
consumers can only buy energy from the utility under
some pre-approved rates. In this work, we consider
time-of-use (TOU) pricing, widely applied by utilities
in the U.S., for customers buying energy, i.e a fixed rate
for each time period (e.g. hourly). While in a bilateral
P2P marketplace, consumers and prosumers can trade
with each other at rates accepted by both buy-side and
sell-side. Intuitively, a marketplace is desired by both
sides if it can provide agents with some rate higher
than FIT for sellers, and lower than TOU for buyers.
Otherwise, agents can simply sign contract with the
utility to buy/sell at TOU/FIT.

To incentivize the growth of DERs, a double-side
auction can be organized for clearing bids/asks from
market participants in each time period. Agents need
to decide their unit price and quantities of energy
for submitting bids/asks to the auctions. In this
work we assume that with some smart devices using
historical and weather data, agents can accurately
forecast how much energy themselves will consume
or generate in very near future (e.g. in one hour),
and thus quantities can be easily decided for the
auctions. It is the bid/ask price that is difficult
to decide. To address the issue, we propose
a MAB-game learning approach for a multi-agent
system in which bidding/asking prices of agents are
automatically chosen by bandit learning algorithms (and
hence, can be easily implemented by control automation
devices without human intervention). For illustration
purposes, the herein presented formulas concern a single
trading-period h (e.g. 1 hour) across days. We consider
a set of agents A = A, U A, where A, and A, are
the sets of buyers and sellers, respectively. Further, we
let Prrr and Proy denote the FIT and TOU rate in
¢/KWh, respectively, and we only consider the situation
where the FIT is lower than the TOU rate, i.e. Prr <
Proy.

2.1. Discrete Price Arms

The majority of DERs are solar and wind resources,
and thus we consider their generation marginal costs as
zero despite of fixed installment and maintenance fees.
Therefore, any rate higher than FIT would be attractive
to DER owners. Similarly, energy buyers desire for
any rate lower than TOU rate. Therefore, any rate (in
¢/KWh) in the range [Pp;r, Proy] would profit both
energy buyers and sellers, and any reasonable agent
i € Ahas abidding/asking price space P; € Z=° which
contains both Prrr and Progy.

Herein, each discrete unit price in space P; is a
price arm that can be picked up for the agent’s bid/ask.
How to choose a price arm is complicated due to the
dynamics of auctions. For each individual agent, it
prefers a lower/higher auction clear price if it is a
buyer/seller. However, it is not necessary that an agent’s
bidding/asking price is the auction clear price which
depends on the collection of bids and asks. Since
agents are not bidding/asking based on their implicit
valuations (which are not known by agents), under some
auction designs, like uniform price double auction, some
agents may take chance by bidding/asking some extreme
high/low unit price to make their bids/asks more likely
to be accepted by the auction while enjoy the more
profitable clear price. In Section 2.3, we will discuss
the performance bound (i.e regret bound) of picking up
price arms in the auction games by bandit learning for
agents.

2.2. Rewards

The reward (or payoff) each agent receives in the
auction represents the normalized level of the actual
sent/received payment, A;, between the lower and upper
benchmarks by Proy and Prpp which are denoted
by A; and A;, respectively. Herein, we let ¢; denote
the demand/supply of agent 7, and ¢; is negative for
a buyer and positive for a seller, i.e. ¢ < 0lica,
and ¢; > 0|;ca,. For a buyer agent, the lower and
upper benchmarks refer to buying all of g; at Proy and
Prrr, respectively. In the opposite, a seller agent has
its lower and upper benchmarks with selling ¢; at Pr;r
and Proy . Therefore, we have

Ai=qi - [Prov - Lgicayy + Prir - Lgeay), (D

A = qi - [Prir - Lica,y + Prov - Leay] ()

The actual sent/received payment of each agent Vi &
A consists of two parts for trading in the auction and
with the utility, which are denoted by A¢" and A;‘;“f,
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respectively. Thus, we have
A = A%+ AV (3)

With attending the auction, market participants
send/receive payments based on the clear result.
Specifically, each agent’s sent/received payment in the
auction is calculated according to its clear price, p$*,
and clear quantity, ¢;'*, as below

Agzu _ pgu . q;zu. 4)

In auctions like uniform price double auction, all agents
have the same clear price. While in the maximum
volume matching auction [7], the agents may have
different clear price since they pay/receive at their
bid/ask price.

However, it is not necessary that all agents are
buying/selling in the P2P market since some agents’
bids/asks may not be (fully) cleared by the market. In
this case, for not wasting the (renewable) energy from
DERs, prosumers are allowed to sell the unclear energy
to the utility at Pryp. Also, consumers always can buy
their demand not satisfied by the P2P market from the
utility at Proy. Therefore, the sent/received payment
to/from the utility for agent ¢ is as below

At =pit- g, )

where p?t = Pprrifi € A, and pgt = Proy ifi €
Ay, and ¢}** denotes the unclear energy quantity.

Then we have ¢; = ¢%* + ¢**. When the agent’s
auction clear price p* € [Prrr, Prouv), we have A; €

[A;, A;] and thus we have the normalized reward m; €

[0, 1] calculated as below
mi = (A = Ag)/(A; = Ag). ©)

In Eq. (6), we can see for p{* = Pprr, a
buyer agent has m; = 1 while a seller agent has
m; = 0, and for pf* = Proy we have the opposite
values. However, in Section 2.1 we mentioned that the
agent’s bidding/asking price space P; contains Pgjp
and Proy, and thus the agent may bid/ask some
price outside the range [Prrr, Proy]. Though it is
counter-intuitive, the auction clear price p{* could be
outside [Prr7, Prou], even in the uniform-price double
auction if a significant population are doing so. In
the case pf* < Pprr, we consider m; = 1|;c4, and
7w = Oljea,; for p?* > Proy, m = 0|iea, and
m; = 1|;ea,. Combined with Eq. (6), we have m; =

1-Tgiea,y +0-Tyea,y, forpi™ < Pprr
(A — Ai)/ (A — A,

0-1peay +1-Thea,

for Prrr < p§* < Prou
for p?u > PTOUa

)

where A;, A;, and A; can be achieved by Eq. (1), (2),
and (3), respectively.

2.3. Pricing by Bandit Learning

As in Eq. (7), we can see the reward m; of each
agent highly depends on its clear price in auction which
further depends on its bid/ask and the collection of
other agents’ bids/asks. The dynamic auction games
result in nonstationary clear prices, which makes the
bidding/asking decision-making difficult for agents. In
regular game theory literature, the standard equilibrium
concept for dynamic games of incomplete information
is Perfect Bayesian Nash equilibrium (PBNE) [24,
25].  In a PBNE, the collection of each agent’s
action profile maps the entire history of the games
to each agent’s feasible set of actions, under the
assumption that each agent maintains their beliefs
of other competitors’ distribution of action space
based on the Bayes’ updating rule. For a large
population, the assumption requirement is impractical
and implausible for small-scale (in terms of computation
power) agents in P2P energy trading auctions. This
is where MAB-game comes in. Instead of tracking
their competitors’ tremendous states, agents only need
to look at their own history in repeated games.
A recent breakthrough on MAB-game in [20] has
provided us with the theoretical foundations in studying
the auction games with a large population in this
work. A key point in MAB-game with many agents
is that as every agent conducts its own stochastic
no-regret bandit learning independently in repeated
games, the finite system will approximately converge
to the unique mean field steady state (MFSS) of the
infinite population system. The population profile (i.e.
the proportion of population on each arm) is stationary
in the MFSS, and the approximation gets better as
the finite population increase. Under the stationary
population profile, efficient outcomes will be achieved
since each individual agent can solve its MAB problem
with stationary reward distributions as in classic MAB
problem settings.

We let f denote the energy quantities’ stationary
population profile of the agent set .4, where f(k)
represent the distribution of buying and selling energy
quantities on price arm k. With stationary population
profile f, each agent has its underlying optimal bid/ask
price arms whose associated clear price results in the
optimal reward as below

T (f) = }gggE[m(ﬁ k)], 8)

where 7, (f, k) denotes the reward of agent 4 for picking
up price arm k under population profile f.
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Suppose that for the trading-period h across D days
(i.e. D rounds in our context), agent ¢ uses a policy
o which is an algorithm picking up the next price arm
based on its learning history. The history is only about
the agent’s own sequence of played price arms and
corresponding observed rewards, which largely reduces
the knowledge dimension that the agent has to maintain.
Though the underling optimal reward 7} ( f) is unknown
to the agent, the policy o enables the agent to learn
about the distributions of rewards for each price arm.
Let I';(D, k) be the number of times price arm & has
been picked up by the policy ¢ during all the D rounds.
Then for agent ¢, we define its cumulative regret under
the policy o for every D rounds as below

Ay =7 (f) D= Elm(f,k)-To(D,k)]. )

keP;

The regret A, in Eq. (9) is the expected loss due to
the fact that the policy does not necessarily always pick
up the optimal price arm under the stationary population
profile which is unknown to the agent. The policy ¢ is
a no-regret bandit learning policy if the regret in Eq. (9)
satisfies:

%AU < R(D,K), (10)

for some o(1) function R in terms of D; where K is the
cardinality of P;, i.e. |P;| = K. Then R(D, K) gives
an upper bound to the average regret under the policy
o. For the bandit learning algorithms based on UCB
[17], such as UCB1, UCB-tuned and UCB2, we have
logarithmic regret bounds that are o(1) in terms of total
rounds D: R(D,K) = a(K) - 5In(D). Therefore, as
the auction games go on, the agent’s average regret goes
to 0.

3. Double Auction Designs

In this section, we first define the individual
monetary utility, corresponding total social welfare, and
auctioneer’s profit with a P2P energy market auction.
Then we discuss about three different double-side
auction designs that can be applied for the market
clear: the uniform-price auction, a variant of Vickrey
double-side auction [6], and the maximum volume
matching auction [7].

3.1. Social Welfare and Auctioneer’s Profit

As mentioned above, agents are rarely aware of their
private valuation of energy production and consumption.
To define agents’ individual monetary utility, we
consider it as profit for energy sellers and costs reduction

for buyers with participating the P2P market. Since
for renewable DER owners, the marginal cost is almost
zero, the total profit of energy seller i € Aj is as below

uiliea, =" - ¢ + Ppir - ¢}, (11)

which has the same value as A; in Eq. (3). For
consumers, they have to pay at Proy without the P2P
market, thus we have the cost reduction as

ui|i€Ab = (PTOU —p?u) : \qéw|- 12)

In spite of the auctioneer’s profit, the total social
welfare of all agents, denoted by Uy, is simply the
aggregation of all agents’ utility, i.e. Ua = D, 4 U
For the auctioneer (which can be played by the utility
or DSO), the total auction trading surplus it earns is
the sum of bid-ask price difference for each energy unit
traded in the auction, which is calculated as below

U= Y (08 gD = D 0 - gf),  (13)

€A, 1€A;
where U, denotes the auctioneer’s profit.
3.2. Uniform-Price Double Auction

If price is plotted as a function of aggregate energy
quantity following the convention in economics, then
the energy demand and supply curves slope downward
and upward, respectively, as shown in Fig. 1.
Graphically, the intersection (P*, Q*) of the supply and
demand curves clears the market at which the quantity
demanded is equal to the quantity supplied. The price
P* is the equilibrium price, and the corresponding
energy quantity is the equilibrium quantity. As such,
all agents pay/receive at the uniform price P*, and the
quantity Q* in total is traded in the auction. Then the
rest supply Qs — Q* is sold to the utility at Ppjp, in
which @) denotes the total energy supplied by DERs,
ie. Qs = ZieAs q;- Also, the unsatisfied demand is
purchased from the utility at Pror;. Therefore, in Fig.
1, the shadow area in light purple represents the total
social welfare U 4, i.e.

Ua = Prov - Q"+ Prrr - (Qs — Q). (14)
Since p{* = P* for all agents ¢ € A, and both
ZieAb g¢"| and Y7, 4 qf" are equal to Q*, by Eq.
(13) the auctioneer earns zero profit in the auction, i.e.
Upm =0.

3.3. Vickrey Variant Double Auction

Instead of paying/receiving at the uniform
equilibrium price, we consider a Vickrey-like auction,
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Figure 2: A Vickrey-like double auction market (Case
D).

similar to that in [26]. The mechanism works as follows:
similar to the uniform-price auction, all bids/asks are
sorted down/up by bid/ask price, and we can have
stair-wise demand/supply curves as shown in Fig. 2,
in which each stair represents the bid/ask pair of price
and quantity. We use subindex n to denote buyers, and
m to denote sellers. Without loss of generality, we
can assume that buyers’ bid prices are pb; > pby >
coe > pby > pbygy > -+ -;3 similarly, the sellers’ ask
prices are ps; < psy < PSSy < DSm41 < oo

At the critical intersection point (P*,Q*) where the
aggregate demand and supply meet, there are N buyers
and M sellers that are cleared. We consider the two

3Note that the total number of bidders is irrelevant here; only the
number of cleared buyers and sellers matter.

>
quantity
(KWh)

possibilities at the clearing: Case I (as shown in Fig. 2):

pbN > psar > pby 11, (15)
M—1 N M
D asm <D aba <D qsm, (16)
m=1 n=1 m=1

and Case II:

PSM+1 = PON = psur, (17
N-1 M N
Z qbn < Z qsn < Z qu- (18)
n=1 m=1 n=1

Here we only describe the clearing mechanism for
Case I, as Case II is similar.

Rule 1 If YV 'gp, > S M lys,, there is
overdemand. All the asks with m < M sell all
their supply ¢s,, at price psyy; all the asks withm > M
sell their supply at Ppryp to the utility. All the bids with
n < N buy at pby and each of them buys a volume
equal to gb, — (X0 gbn — Som ) gsim) /(N — 1);
all the unsuccessful bids buy at Proy from the utility.

Rule 2 If YN0 b, < Y MZlgs,,, there is
oversupply. All the bids with n < N buy all their
demand g¢b,, at price pby; all the bids with n > N buy
their demand at Pro from the utility. All the asks with
m < M sell at ps;; and each of them sells a volume
equal t0 gsm — (Xm_ dsm — Yon ;' qba) /(M — 1);
all the unsuccessful asks sell at Ppyp to the utility.

According to the clear rules, the total trade volume
in the auction is

N-1 M-1
Qau =min( Y gbn, Y gsm)- (19)
=1 m=1

n

Then the total social welfare for all agents can be
calculated as below (which is represented by the light
purple area in Fig. 2)

Ug= [(PTOU 7pr)+p51M] ‘Qau +PFIT'(Q37Q(LU)'

(20)

The auctioneer’s profit represented by the yellow
shadow area in Fig. 2 is as below

UM = (pr _pSM) ' Qau~ (21)

3.4. Maximum Volume Matching Double
Auction

Other than chasing socail welfare for agents or
profit for acutionner, the auction design proposed in
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[7] is for maximizing the traded volume given a set
of bids and asks. The idea of market clear can
be intuitively and graphically illustrated in Fig. 3.
Suppose the demand/supply curves are based on the
bids/asks shown in Fig 1. The supply curve is flipped
horizontally and then shifted right towards the demand
curve until the two curves touch. The distance, denoted
by Qgu, that it can move is the minimal horizontal
distance between the flipped supply curve and the
demand curve which is exactly the maximum trading
volume of the auction can be achieved. Then for the
energy quantity O through @, the corresponding bids
(pbn, gby,) on the demand curve and asks (ps, @Sm )
on the shifted supply curve are matched, and then
successfully matched buyers/sellers pay/receive at their
bid/ask price, respectively. Let S, and S, denote the
set of successful bids and asks, respectively. The supply
amount Qs — Q4 of the unsuccessful asks is sold to
the utility at Pryr, and also the unsatisfied demand is
bought at Proy .

According to the clear mechanism, the total social
welfare of all agents is as below (represented by the light
purple shadow area in Fig. 3)

Ua = Y (Prou — pbn)gbn
neSy
+ Z PSmAqSm + PFIT(QS - Qau)~
meES,

(22)

The auctioneer’s profit is still the auction trading
surplus (represented by the yellow shadow area in Fig.
3) as below:

Um= > (0bn-qbn) = > (P - gsm).  (23)

nesy meS,

4. Numerical Simulations

In this section, we present the simulation results with
distributed bandit learning corresponding to the three
double-side auction designs for P2P energy trading as
described in the previous section.

4.1. Input Data

4.1.1. Decision epochs and temporal resolution
As a starting point, we do not consider time-linking
constraints in our models, and each trading window
is independent of others in a day. The simulations
presented herein concern a single one-hour trading
period for the peak hour 17:00 - 18:00 across 300 days,
ie. D = 300.

4.1.2. TOU/FIT and decision space We consider
fixed TOU/FIT across days, and we let Proy = 11
¢/KWh and Pr;r = 5 ¢/KWh. All agents has the
same decision space P that contains all the discretized
price arms through 0 ¢/KWh to 14 ¢/KWh, and thus
Prou/Prir are included in P.

4.1.3. Bandit learning algorithms for pricing For
picking up price arms to bid/ask in the auctions, each
agent i € A uniformaly chooses its bandit learning
algorithms among UCB1, UCB-tuned, UCB2, and € —
greedy. Interested readers can refer to [17] for the
details of the algorithms.

4.1.4. Consumers and energy demand to buy In
the numerical test cases, we simulate 2000 distributed
residential household consumers that participate in the
auctions, i.e. |Ap| = 2000. According to the Residential
Residential Energy Consumption Survey (RECS) by
U.S. Energy Information Administration (EIA) [27], a
residential customer consumes about 30 KWh per day
on average. Consider it is a peak hour, we naively
let consumers repeatedly sample their energy demand
quantities from a Uniform distribution U(1.5,2) in
KWh, independently, for the hour across days, which
is slightly higher than the average consumption level.

4.1.5. Prosumers and energy supply to sell On
the sell-side, we also consider 2000 prosumers with
DERs, ie. |As;] = 2000. For the DERs, we
only consider two renewable resources, solar and
wind, for small-scale distributed agents in this work.
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Table 1: Wind turbine models

Model KW Rating
Energy Ball HEA V100 1.I1m 0.5
Bergey BWC XL.1 1

True North Power Arrow 2m 1.23
Future Energy FE1048U 1.8m 1.5
Hummer 3.1m 2
Energy Ball HEA V200 1.98m 2.23
Southwest Windpower Skystream 3.7m 2.63
Westwind 3.7m 3.1

Due to the popularity of distributed residential solar
panels (especially in western), we assume 4/5 of the
prosumers have solar-based distributed generation, and
the other 1/5 have wind-based. In the simulations,
we use System Advisor Model (SAM) [28] developed
by National Renewable Energy Laboratory (NREL) to
model residential generation by solar and wind. The
weather resource data for Arizona State by NREL is
used for the simulations in SAM.

For the solar generation, we consider all panels have
nameplate capacity as 2 KWdc with DC to AC ratio of
1.2 and inverter efficiency of 96%. For each distributed
solar resource owner, the module type and array type
have equal chance to be one of {Standard, Premium,
Thin Film} and {Fixed Open Rack, Fixed Root Mount, 1
Axis Tracking, 1 Axis Backtracking, 2 Axis Tracking},
respectively. All other inputs are set as default in
the Photovoltaic PVWatts simulations for distributed
residential in SAM. More details about photovoltaic
simulations can be found in [28, 29, 30].

For the simulations of distributed residential wind
generation, each wind-based prosumer samples its
turbine model uniformly from the 8 wind turbine models
listed in Table 1, and the number of turbines owned by
the prosumer is uniformly sampled among 1 through 4.
All other inputs are set as default in the Wind Residential
simulations in SAM. The turbines’ specifications, such
as wind power curves and turbine layout, can be found
in [28, 30].

4.2. Numerical Results

The three different auction designs are simulated
with the input data. We use UP, VV, and MV to
denote uniform price auction, Vickrey variant auction,
and maximum volume matching auction, respectively.

In Fig. 4, the clear quantity results of the auctions
are presented, and we can see the results all have a trend
of convergence. The counter-intuitive phenomenon is
that in the later phase, UP is more likely to have
a higher level of traded volume than MV which is

Auction Clear Quantity

2000

Quantity (KWh)

0 50 100 150 200 250 300
Round

Figure 4: Total clear energy quantities (KWh) in the
auctions.

designed to maximize traded volume. The reason is
that with bandit learning, agents are updating their
bids/asks dynamically, and thus the collective bids/asks
schedules are not necessarily the same for different
auctions. Besides the volume, we can see after a while of
learning, UP’s total clear quantity has smaller volatility
than the other two auction designs. Therefore, in terms
of auction clear quantity, UP outperforms VV and MV,
and thus the auction design can let more renewable
DERs be utilized.

Similar to the clear quantity, agents’ total social
welfare also display the convergence trend in the
auctions, as shown in Fig. 5. Associated with more
clear quantity, buyers and sellers in UP have higher
social welfare (in $) than in the other two auctions
in the later auctions. The performance of VV and
MYV are close to each other. Accordingly, for the
total normalized reward, the results display very similar
patterns as shown in Fig. 6.

Though UP outperforms the other two auctions for
benefiting market participants and incentivizing DERs,
it is not necessary that the auctioneer prefers it as well.
As discussed in Section 3, the auctioneer has no profit
in UP due to the zero trading surplus, which is validated
by our simulations as shown in Fig. 7. According to
the results, the auctioneer can achieve the most profit
in MV, though the profit fluctuations of MV are much
higher than VV’s.

5. Conclusion

In this work, we propose a multi-agent MAB-game
framework for market participants to (automatically)
choose bid/ask prices in a P2P, double-side auction.
The bandit learning approach allows each individual
agent to make a decision only according to its own
history, which is both privacy-preserving practical.
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Figure 5: Total social welfare ($) of all buyers and
sellers in the auctions.

Agents Nomalized Reward in Total
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Figure 6: Total normalized reward of all buyers and
sellers in the auctions.

We conduct simulations for the approach under
three different auction designs, and the results
suggest potential convergence of the cleared quantities,
total social welfare and total normalized reward
for agents. Moreover, the uniform-price double
auction outperforms the other two in terms of market
participants’ benefits. For auctioneer, the maximum
volume matching offers the highest profit.

While our work focuses on the virtual layer of
utilizing DERs, as mentioned in the introduction
section, it does not conflict with a local energy market
operated by a distribution system operator (DSO).
Indeed, a DSO is needed to maintain system feasibility
of the cleared bids. This would be similar to the early
days of the deregulated California wholesale energy
market, which had a separate power exchange (for
market clearing) and a system operator (for maintaining
physical feasibility). Such a market structure has
widely been considered as a main culprit for California
electricity market’s failure around year 2000 [31]. How
to avoid such failure in a local P2P market, or in general,
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Figure 7: Auctioneer’s profit ($) in the auctions.

how to maintain physical feasibility with the proposed
market mechanism will be a immediate research task.

Another future research direction will be to
investigate how blockchain technology can be utilized
within the MAB-game framework, either at the virtual
layer, or at the physical layer, to realize a fully
decentralized energy market.
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