

Verbal Working Memory as Emergent from Language Comprehension and Production

1 Steven Schwering¹, Maryellen C. MacDonald^{1*},

2 ¹Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA

3

4 *** Correspondence:**

5 Maryellen MacDonald

6 mcmcadonald@wisc.edu

7 **Keywords: working memory, language comprehension, language production, serial order,**
8 **long-term memory, lexical representations.**

9 **Abstract**

10 This article reviews current models of verbal working memory and considers the role of
11 language comprehension, and long-term memory in the ability to maintain and order verbal
12 information for short periods of time. While all models of verbal working memory posit some
13 interaction with long-term memory, few have considered the character of these long-term
14 representations or how they might affect performance on verbal working memory tasks.
15 Similarly, few models have considered how comprehension processes and production processes
16 might affect performance in verbal working memory tasks. Modern theories of comprehension
17 emphasize that people learn a vast web of correlated information about language and the world
18 and must activate that information from long-term memory to cope with the demands of
19 language input. To date, there has been little consideration in theories of verbal working memory
20 for how this rich input from comprehension would affect the nature of temporary memory. There
21 has also been relatively little attention to the degree to which language production processes
22 naturally manage serial order of verbal information. The authors argue for an emergent model of
23 verbal working memory supported by a rich, distributed long-term memory for language. On this
24 view, comprehension processes provide encoding in verbal working memory tasks, and
25 production processes maintenance, serial ordering, and recall. Moreover, the computational
26 capacity to maintain and order information varies with language experience. Implications for
27 theories of working memory, comprehension, and production are considered.

28 **Introduction**

29

30 In 1885, Hermann Ebbinghaus published his extensive verbal memory experiments and
31 observations, establishing a new theoretical approach to cognitive psychology through the formal
32 study of memory (Ebbinghaus, 1885/1913). In his quest to isolate the properties of memory,
33 Ebbinghaus observed that immediate recall of verbal material was utterly contaminated by long-
34 term knowledge of language. He found it impossible to isolate immediate memory when he
35 probed recall of meaningful verbal memoranda such as lines of poetry or narratives, and he
36 established critical methodological practices aimed at stripping away confounding factors. In his
37 attempt to isolate immediate memory, Ebbinghaus developed a collection of nonwords,
38 thousands of consonant-vowel-consonant syllables that could be used to construct lists for
39 immediate recall. The contamination of long-term experience persisted, as certain nonwords
40 exhibited "very important and almost incomprehensible variations as to the ease or difficulty
41 with which they are learned." (p. 23). Moreover, Ebbinghaus noted that even these novel
42 materials could not completely isolate immediate memory from other cognitive processes; visual,
43 acoustic, and articulatory components of verbal perception and action necessarily affected task
44 performance.

45 Over 130 years of research now contributes to answering the questions posed by
46 Ebbinghaus, and it is useful to ask how his catalyzing observations continue to influence
47 theoretical and methodological approaches to memory research. In this article, we critically
48 analyze Ebbinghaus' goal of isolating immediate memory as well as his warning that such
49 isolation may be impossible. Following some establishment of terms and definitions and a brief
50 sketch of some current models of immediate memory, we consider several intersecting points, all
51 of which stem from a language-based perspective on the ability to temporarily maintain verbal
52 information. First, we consider the dependence of immediate memory on long-term language
53 knowledge, as Ebbinghaus first observed, and consider the impact of these relationships on
54 modern theories of working memory. These modern accounts recognize some role for long-term
55 memory, but we argue that they have been slow to embrace more modern approaches to the
56 nature of long-term word representations and processing. Instead, we argue that language
57 comprehension and production processes underpin encoding, maintenance, and production of old
58 and new verbal memoranda without the need for separable buffers that are common in some
59 current memory models. A key development in some models of immediate memory is the
60 assumption that memory for words is separate from memory for their orders. In contrast, we
61 consider the many ways in which various word and order representations are intertwined in
62 language comprehension and production research and propose a new emergent account which
63 incorporates these representations in VWM. In closing, we consider implications of our
64 perspective on theories of language use and on related research areas.

65 **Working memory models and terminology**

66 There exists a fundamental disagreement about the definition of working memory (e.g.
67 Aben, Stapert, & Blokland, 2012; Cowan, 2008), as evidenced by a wide array of both
68 qualitative descriptions of immediate memory and competing memory models (see Cowan,
69 2017). We will focus on two general classes of models for how humans can encode verbal

70 material, maintain it for a brief period of time, and produce the memoranda by speaking or
 71 writing. Proponents of the two types of models that we discuss, the multicomponent models (e.g.
 72 Baddeley, Thomson, & Buchanan, 1975; Baddeley, 2000) and emergent models (e.g., Cowan,
 73 1993; Postle, 2006), do not always use terms in the same way, and so we begin with some
 74 definitions.

75 Verbal working memory (VWM) is commonly viewed as the temporary maintenance of
 76 verbal information (i.e., some aspects of language). Some researchers distinguish VWM as an
 77 immediate memory for processing of information (converting speech to meaning, say) from short
 78 -term memory (STM), a passive temporary store. However, as Buchsbaum & D'Esposito (2019)
 79 have noted, information is always being transformed in some way in the service of goal-directed
 80 behavior, and so we will use the term VWM to refer to both storage and processing, except
 81 where we specifically refer to theories invoking a STM component. Finally, VWM researchers
 82 have increasingly investigated the ability to recall verbal material in the same order it was
 83 presented. Thus, we discuss abilities to recall a word or nonword (termed *item memory*) and
 84 recall in the correct order in a list (*order memory*).

85 Multicomponent models, which get their name from the distinct components posited in
 86 the working memory system (Baddeley, 1992), draw a sharp distinction between passive storage
 87 of information in "buffers" and processing mechanisms such as speech perception and
 88 production processes. In this respect, multicomponent models are aligned with classical theories
 89 of working memory advanced by Ebbinghaus. In this view, the sole function of STM is to act as
 90 a site of storage. Specifically, multicomponent models posit a short-term buffer that maintains a
 91 rapidly degrading representation of memoranda (Baddeley, Lewis, & Vallar, 1984). Critically, in
 92 this perspective, long-term memory is separate from STM (e.g. Shallice & Warrington, 1970;
 93 1974), but via a process called *redintegration* (e.g., Hulme et al., 1997), LTM can provide cues
 94 to rebuild STM as it degrades (Lewandowsky & Farrell, 2000). LTM can interact with STM in
 95 other ways. With respect to language processing, some researchers claim that verbal STM is a
 96 buffer that stores partially processed linguistic representations (e.g. R. C. Martin & He, 2004; R.
 97 C. Martin & Romani, 1994), or is a specific subcomponent of language processing mechanisms
 98 dedicated to storage (Shallice & Papagno, 2019). Certain theories propose that the buffer holds
 99 copies of or pointers to representations derived from LTM that may require further processing in
 100 the future (Norris, 2017). Thus, whereas Ebbinghaus (1885) tried to isolate STM processes
 101 within an interacting system, the multicomponent models have converted that research goal into
 102 an architectural claim: STM is a distinct system with only the most limited, indirect contact with
 103 LTM and language processing mechanisms.

104 Although multicomponent accounts are the dominant perspective in VWM research,
 105 there is a long history of cautions about this approach. More than 25 years ago, Crowder (1993)
 106 predicted a wholesale reassessment of multicomponent models of VWM in favor of alternative
 107 approaches. He described the notion of a separate, dedicated short-term store (the
 108 multicomponent model) as "archaic and, to some of us, even downright quaint" and suggested
 109 that "Increasingly, the field is turning instead to a procedural attitude toward memory" (p. 143).
 110 Crowder's predictions were wildly inaccurate in their timeline, as multicomponent models of
 111 memory remain important and useful theories of VWM now many decades after Crowder
 112 predicted their demise. Nevertheless, Crowder correctly predicted the rise of alternative,
 113 emergent models of VWM that did away with separate buffers.

114 Emergent approaches do not generally distinguish between storage and processing
 115 mechanisms. Some earlier variants were called procedural models, defining VWM as a
 116 secondary product of procedures in support of other cognitive processes (Craik & Lockhart,
 117 1972; Crowder, 1993; D. M. Jones, Macken, & Nicholls, 2004; Kolars & Roediger, 1984). Other
 118 early theorizing by Saffran, N. Martin, and colleagues explored relationships between aphasic
 119 patients' VWM in the context of their language production abilities, informed by Dell's (1986)
 120 spreading activation model of language production (N. Martin, Saffran, & Dell, 1996; Saffran &
 121 Martin, 1997). We advocate this "rich emergent" approach here, where VWM is the activated
 122 portion of linguistic LTM (Acheson & MacDonald, 2009a, 2009b; Buchsbaum & D'Esposito,
 123 2018; Cowan, 1993; Hasson, Chen, & Honey, 2015; MacDonald, 2016; Postle, 2006). This
 124 approach emphasizes VWM as a complex of skills, honed by past language comprehension and
 125 production experience. On this view, knowledge of word meanings and other forms of linguistic
 126 knowledge shape performance in VWM tasks. Performance on VWM tasks co-opts language
 127 LTM, by which we mean any parts of LTM involved in language tasks, including knowledge of
 128 events, word meanings, word order, phonological form, and other information (Acheson &
 129 MacDonald, 2009b; MacDonald, 2016; MacDonald & Christiansen, 2002). LTM itself is
 130 characterized as a set of processing mechanisms employed to achieve goal-directed behavior
 131 rather than store a static set of memoranda chunked or compressed from prior experience
 132 (Buchsbaum & D'Esposito, 2019; Postle, 2006). In the case of WM for linguistic memoranda,
 133 we have proposed that the language production architecture is co-opted to maintain and order the
 134 memoranda, obviating the need for a separate memory buffer (Acheson & MacDonald, 2009b;
 135 MacDonald, 2016). Whereas, in the multicomponent model, effects of prior language knowledge
 136 in LTM have been attributed to secondary mechanisms (e.g. Hulme et al., 1997; Lewandowsky
 137 & Farrell, 2000), we see these LTM effects arising naturally from language production and
 138 comprehension processes. For example, language production is well known to favor serial orders
 139 that have been used frequently or recently (Bock, 1986a) and to group related words together in
 140 an utterance (Solomon & Pearlmuter, 2004). These biases in production may underlie effects of
 141 semantic grouping and similarity to natural language that have been observed in recall tasks (T.
 142 Jones & Farrell, 2018; Miller & Selfridge, 1950). Thus, we view temporary maintenance and
 143 ordering as the job of action systems, which must construct an action plan and maintain it before
 144 it can be executed, so that the action plan is the "memory of what is to come" (Rosenbaum,
 145 Cohen, Jax, Weiss, & van der Wel, 2007, p. 528). For language, the action planning system is
 146 language production, and the utterance plan is the memory of both what is to be produced and
 147 the order in which it will be produced at several levels, including words, phonemes, and
 148 articulatory gestures (Acheson & MacDonald, 2009b; MacDonald, 2016; N. Martin et al., 1996).
 149 On this view, VWM is simply the skill of maintaining and ordering linguistic material, and that
 150 skill, as with all subcomponents of language production and comprehension, emerges from
 151 actions of the language systems and varies with experience (MacDonald & Christiansen, 2002;
 152 MacDonald, 2016).

153 In contrast to the "rich emergent" account described above, some "limited emergent"
 154 accounts posit a more restricted interaction with language processes, with different systems
 155 working in parallel to support memory for items and their orders (Majerus, 2013; 2019). On this
 156 view, item memory engages ventral language pathways that process semantics, with dorsal
 157 pathways supporting order within the item (i.e. phonemes). In contrast, order memory for
 158 sequences of words themselves engages frontal-parietal networks and networks closely
 159 associated with attentional mechanisms. The item/order memory distinction has been supported

160 by findings that word characteristics, like frequency of use (Poirier & Saint-Aubin, 1996; Saint-
 161 Aubin & Poirier, 1999) and semantics (Majerus & D'Argembeau, 2011), largely affect memory
 162 for items but not memory for order. Furthermore, memory for items and order appear to engage
 163 distinct neural populations, as indicated by neuroimaging results (Guidali, Pisoni, Bolognini, &
 164 Papagno, 2019; Majerus et al., 2006; Majerus et al., 2008) and aphasic patient data (e.g. Majerus,
 165 Attout, Artielle, Van der Kaa, 2015; Majerus, Norris, & Patterson, 2007).

166 The separate item/order memory of more limited emergent accounts is consistent with a
 167 multicomponent approach, namely that LTM is able to support STM only in cases where the
 168 items and order conform to prior experience. Multicomponent models are particularly emphatic
 169 about this point, arguing that this is a critical reason a STM buffer must exist distinct from LTM
 170 (e.g. Norris, 2017). Some emergent accounts also recognize that there are limitations to LTM.
 171 For example, Majerus (2013) suggests that “the representations of the language system are able
 172 to support familiar item and order information, but not unfamiliar order information” (p. 4). This
 173 distinction between familiar and unfamiliar orders is problematic because it presumes a
 174 dichotomy between novel and familiar, when similarity to prior experience is actually
 175 continuous. We consider this point further in the section entitled “Problems with Limited
 176 Emergence.”

177 In the next sections, we contrast our rich emergent account against a variety of alternative
 178 multicomponent and more limited emergent memory models. Specifically, we describe current
 179 research on the nature of LTM language representations and the language comprehension and
 180 production processes that interact with LTM. Because all accounts of VWM must refer in some
 181 way to LTM, we argue that this characterization of language knowledge informs all theories of
 182 encoding, maintaining, and ordering verbal information.

183 **Word Representations in VWM and Language Research: No Word is an Island**

184 Since the time of Ebbinghaus, most VWM models have assumed discrete representations
 185 or “items” in memory. Often, verbal memory is conceptualized by the unit of the word, or word-
 186 like collections of phonemes (nonwords). For example, there are a multitude of studies
 187 investigating immediate or delayed word recall that document word accuracy across list position
 188 (e.g. Murdock, 1962; Watkins & Watkins, 1977), word omissions (e.g. Roodenrys, Hulme,
 189 Lethbridge, Hinton, & Nimmo, 2002), word intrusions (e.g. Coltheart, 1993), and so on.
 190 Furthermore, measurement of VWM capacity is often indexed by list span, or the average
 191 number of words recalled from lists (e.g., Daneman & Carpenter, 1980; Hulme & Tordoff,
 192 1989). In part, such descriptions are a convenient shorthand for bits of information (Miller, 1956)
 193 , but they also reflect certain assumptions about the isolability of memory representations. One
 194 common assumption is that word memory is supported by fully separable phonological and
 195 semantic codes (Howard & Nickels, 2005; R. C. Martin, 1987; R. C. Martin, Lesch, & Bartha,
 196 1999). Another is that order memory is separable from the memory for the word, itself; this view
 197 is further compounded by viewing the words in lists as separate from each other, especially in
 198 the case of novel word orders (Majerus, 2013, 2019).

199 Considering that all major memory models posit some kinds of ties with language
 200 representations, it bears asking how a compartmentalized view of item and order representations,
 201 and a compartmentalized view of item components (e.g. phonology, semantics, grammatical

202 role), accords with language research. In this section, we describe developments in both
 203 comprehension and production research that is completely antithetical to the isolated
 204 representations prevalent in much memory research. This work shows that different levels of
 205 language representation used in production and comprehension, what we refer to as language
 206 LTM, influence each other and are integrated. We suggest that this integration, and the statistical
 207 regularities between classically defined and supposedly dissociable representations that are
 208 critical for language research, have significant consequences for how verbal information is
 209 maintained. In other words, we argue that the nature of linguistic LTM representations, as
 210 revealed in research on language comprehension and production, is highly relevant to theories
 211 of VWM.

212 **Integrated representations in language processing.** Researchers' views about the nature of
 213 word representations and their use in comprehension and production have undergone enormous
 214 change in the last several decades. Initially, researchers believed that comprehension processes
 215 were modular, such that dedicated components worked independently to interpret language input
 216 (e.g., Frazier, 1987; Seidenberg, Tanenhaus, Leiman, & Bienkowski, 1982; see also Almeida &
 217 Gleitman, 2018, for more historical context and current views of modularity). Similarly, models
 218 of production were highly staged, with minimal interaction between different language
 219 representations (e.g. Levelt, Roelofs, & Meyer, 1999). Theories of word representation pointed
 220 to a lexicon with distinct levels (phonological, syntactic, semantic, e.g., Allport & Funnell,
 221 1981). Importantly, these models assumed that, regardless of the nature of LTM, language
 222 processes could selectively extract and operate over subcomponents of linguistic knowledge,
 223 such as processing phonology or syntax without meaning, with some later integration stage
 224 (Forster, 1985; Frazier, 1987). While this work did not often invoke VWM, the notions of
 225 separable language components and isolated processing systems are compatible to the orientation
 226 of multicomponent models.

227 More recent theories of language comprehension are far less aligned with these
 228 compartmentalized approaches. Instead they have emphasized extensive interaction between
 229 different kinds of language representations. This is most clearly demonstrated behaviorally in
 230 instances where certain information cannot be "turned off", even when it is beneficial to do so
 231 (e.g., Stroop, 1935). For example, Seidenberg and Tanenhaus (1979) demonstrated that the
 232 orthographic form of a word interfered with judgments of phonological form, meaning that one
 233 form of information in LTM (orthographic information) interfered with another form of
 234 information in LTM (phonological form). While early neuropsychological studies suggested that
 235 the subcomponents of language knowledge were represented with discrete neural codes
 236 (Dapretto & Bookheimer, 1999), more recent analyses support integrated representations. For
 237 example, Siegelman, Blank, Mineroff, and Fedorenko (2019) argue against previous evidence for
 238 divisions between syntactic and semantic representations during sentence comprehension.
 239 Similalry, Dikker, Rabagliati, Farmer, & Pylkkänen (2010) found that phonological/orthographic
 240 information contributes to syntactic analyses within 100 ms, even before a word has been
 241 recognized, because the phonological form is correlated with and therefore provides information
 242 about the likely grammatical category (noun, verb, etc.) of the to-be-recognized word. Together
 243 this work and others (e.g., Pereira et al., 2018) suggest that word comprehension and LTM
 244 representations are much more interconnected than was previously recognized.

245 This article is not the place for a full specification of how representations are integrated,
246 nor for the natural ongoing debates concerning how to characterize linguistic knowledge, but it is
247 worth noting why a number of researchers now assume extensive interaction and integration
248 among what has been traditionally described as distinct levels of linguistic information. In these
249 more integrated accounts, multiple sources of information interact in perception and
250 comprehension because those interactions are beneficial, essential really, to comprehend and
251 produce language in real time. Language contains strong correlations between different levels of
252 language knowledge, between language and the world, and between information earlier and later
253 in a linguistic signal to be interpreted. People are voracious statistical learners, and they leverage
254 their LTM of the statistical regularities between different kinds of information to comprehend
255 and produce language efficiently and accurately (Seidenberg & MacDonald, 2018). Indeed, the
256 combination of several partially informative information sources (phonology and semantics, for
257 example) is now seen as central to accounting for the speed with which comprehenders interpret
258 incoming language input despite the massive ambiguity known to pervade language; an
259 individual source of information only weakly constrains interpretation alone but is highly
260 effective in combination with other constraints (Graves, Binder, Desai, Conant, & Seidenberg,
261 2010; Joanisse & McClelland, 2015; MacDonald & Seidenberg, 2006; Seidenberg, 1997). Each
262 language comprehension experience is a source of learning (Chang, Dell, Bock, & Griffin,
263 2000), and a consequence of learning all this combinatorial information is that any one source of
264 information, including words, cannot be atomic or isolated (Willits, Amato, & MacDonald,
265 2015). Instead, words and other classically defined levels of representation are highly
266 intertwined, because learning (and therefore LTM) must capture a complex web of statistical
267 structure to maximize performance during language comprehension and production. Word
268 representations can be modeled as attractors in networks comprising various types of information
269 (phonological, semantic, etc., Hinton & Shallice, 1991), and some linguists and psycholinguists
270 now consider discrete notions such as *word* and *phoneme* to be convenient fictions, highly useful
271 for researchers' discussions but having more to do with people's conscious intuitions than with
272 the way that language is actually represented and processed in the brain (Baayen, Shaoul, Willits,
273 & Ramscar, 2016; Bybee & McClelland, 2005; Ramscar & Port, 2016).

274 **Separated representations in memory models.** These highly interactive approaches have not
275 yet penetrated much of the theorizing in most current multicomponent and emergent models of
276 VWM, which continue to emphasize individual "items" of memory. Multicomponent models
277 posit specialized, separate buffers, such as the phonological loop (Baddeley & Hitch, 1974),
278 which encode a single type of information. Initially, patient lesion data seemed to provide further
279 support to modular memory and language approaches, as in patients who exhibited impaired
280 memory abilities with spared language abilities (often called "STM patients", e.g., Warrington &
281 Shallice, 1969) and in cases reporting double dissociations of phonological and semantic
282 information in memory and language tasks, leading to a separation between phonology and
283 semantics in multicomponent models (R. C. Martin, Shelton, & Yaffee, 1994; R. C. Martin &
284 Romani, 1994). This dissociation between representations extends into memory for items and
285 their order. Certain aphasic patients demonstrate apparently isolable item or order memory
286 impairments (Attout, Kaa, George, & Majerus, 2012; Majerus, Attout, Artielle, & Van der Kaa,
287 2015), and this behavioral pattern is accompanied by neuroimaging evidence suggesting item
288 and order memory are supported by distinct neural populations (Attout, Magro, Szmalec, &
289 Majerus, 2019; Kalm & Norris, 2014).

290 A strict notion of “item” in memory becomes more complicated when considering the
 291 qualities of statistical information in linguistic LTM. For example, phonotactic long-term
 292 knowledge influences recall of novel words. Non-words consistent with the transitional
 293 probabilities of phonemes (or acoustic properties or articulatory gestures) in natural language are
 294 recalled better than non-words inconsistent with these patterns (Gathercole, Frankish, Pickering,
 295 & Peaker, 1999; Thorn & Frankish, 2005). Researchers have likewise extended these findings to
 296 suggest that both lexical and sublexical properties affect recall of non-words (Majerus, Van der
 297 Linden, Mulder, Meulemans, & Peters, 2004; Roodenrys et al., 2002). Tanida, Nakayama, and
 298 Saito (2019) further demonstrated an effect of forward and backward bimora transition
 299 probabilities on ordered recall. Together, these results suggest that memory of one phoneme or
 300 acoustic pattern influences memory of others via LTM of the phonological statistical structure of
 301 language. These “neighborhoods” of patterns in LTM can be quite subtle, as evidenced by
 302 improved recall for nonwords with regular pitch accent compared to irregular pitch accent, an
 303 effect moderated by phonotactic frequency (Tanida, Ueno, Lambon Ralph, & Saito, 2015; see
 304 also Yuzawa & Saito, 2006). Not only do these studies suggest that LTM is relevant for VWM,
 305 but they suggest multiple grain sizes of phonological information interact to inform performance
 306 in memory tasks.

307 Beyond phonological information, language users also track and leverage complex
 308 statistical regularities between different types of linguistic representations, such as between
 309 phonology and semantics. Our claim is not that phonology and semantics are completely merged
 310 (they are clearly not), but rather that they are intertwined to a degree that affects language use
 311 and VWM performance. Such regularities are not always obvious. Indeed, with some exceptions
 312 (Christiansen & Monaghan, 2016; Farmer, Christiansen, & Monaghan, 2006; Schmidtke,
 313 Conrad, & Jacobs, 2014), the mapping between phonology and semantics seems largely
 314 arbitrary. If phonology and semantics were completely distinct, then each representation could be
 315 stored in a separable buffer, consistent with multicomponent accounts. However, claims for a
 316 strict semantic-phonological divide break down when considering morphologically complex
 317 words, such as *painter*, *ideas*, *friendship*, and *working*. These words contain morphemes (-er, -s,
 318 -ship, -ing) for which the mapping from phonology to semantics is not arbitrary. The same
 319 mapping occurs repeatedly through the language (e.g. *worker*, *baker*, *seeker*, etc.), and words
 320 sharing these affixes form semantic-phonological neighborhoods that shape language LTM and
 321 behavior (Rueckl, Mikolinski, Raveh, Miner, & Mars, 1997; Seidenberg & Gonnerman, 2000).
 322 These relationships also encode grammatical form (e.g., -er is associated with nouns, -ing with
 323 verbs). It might be tempting to consider morphologically complex words as marginal and not
 324 part of more “typical” language, but morphologically complex words are common in English and
 325 their phonological-semantic-grammatical regularities have been shown to affect word learning in
 326 infants (Willits, Seidenberg, & Saffran, 2014). In adults, regularities between phonological,
 327 orthographic, semantic, and grammatical knowledge drive very early stages of language
 328 comprehension, even before conscious word recognition (Dikker et al., 2010). Even so, recent
 329 reviews suggest there is a “notorious lack of consensus” (p. 37) in the imaging literature about
 330 the brain representations of phonological, semantic, and morphological relationships among
 331 more complex words (Leminen, Smolka, Duñabeitia, & Pliatsikas, 2019). As such, it is clear that
 332 many representations simultaneously impact language comprehension and production, and it is
 333 unclear how any one representation could be extricated from this web of processing.

334 Given these regularities in language use, it is not surprising that morphophonological
 335 regularities also impact VWM. For example, the use of morphophonological cues has been well-
 336 studied in children's nonword repetition. Nonwords with morphophonological cues are recalled
 337 better than nonwords without such cues, and children with language impairments may be less
 338 sensitive to this effect (Archibald & Gathercole, 2006; Casalini et al., 2007; Estes, Evans, & Else-
 339 -Quest, 2007). Thus, experience with language, specifically the regular co-occurrences between
 340 phonology and semantics in morphologically complex words, affects VWM for nonwords
 341 (though see Szewczyk, Marecka, Chiat, & Wodniecka, 2018). These results have largely been
 342 examined with children completing single word repetition tasks. It would be worthwhile to
 343 extend this work to other tasks and populations. Incorporating regularities between phonology
 344 and semantics in stimuli (e.g. via use of affixes), could alter the apparent separability of
 345 phonology and semantics, as has been suggested by many memory and language studies (e.g. R.
 346 Martin, Shelton, & Yaffee, 1994).

347 The "primary systems" approach to memory and language use begins to incorporate some
 348 current insights about language representations and argues for phonology and semantics as
 349 separable yet interacting representations (Savill, Cornelissen, Pahor, & Jefferies, 2019; Ueno et
 350 al., 2014). Broadly, this approach supports emergent memory accounts, suggesting that the
 351 effects of semantics and phonology on word and non-word recall reflect a balance of processing.
 352 For example, when phonological support is weak, semantic support affects recall to a larger
 353 degree compared to when phonological support is strong (Savill, Cornelissen, Whiteley,
 354 Woollams, & Jefferies, 2019). In such accounts, the interactions between phonology and
 355 semantics emerge from processing in a quasi-regular domain, resulting in integrated
 356 representations. Ueno et al. (2014) demonstrated that words with low imageability are recalled
 357 worse than words with high imageability (i.e. effect of semantics), and this effect is exacerbated
 358 by words with an atypical pitch accent (i.e. effect of phonotactics). In line with the primary
 359 systems account, this suggests that the effect of phonotactics on recall depends in part on
 360 semantics. Interestingly, the researchers developed a neurobiologically constrained connectionist
 361 model of word comprehension, repetition, and production, demonstrating that phonological
 362 (ventral) and semantic (dorsal) language pathways are differentially engaged when processing
 363 typical and atypical phonotactic patterns. As a result, the semantic pathway was more engaged in
 364 processing atypical phonotactic patterns. Such research suggests that subtle phonological
 365 information may infiltrate a putative semantic pathway (see also Jefferies, R. W. Jones, Bateman,
 366 & Lambon Ralph, 2005).

367 The tracking of complex statistical patterns in support of language comprehension,
 368 production, and memory is not limited to within-word components like phonology and
 369 semantics; statistical regularities also support representation of word order. This point gets to the
 370 heart of the item vs. order distinction in VWM theorizing. Memory researchers readily agree that
 371 sentences are recalled better than scrambled lists of words (Brener, 1940), and this effect scales
 372 with list approximation to natural language sequence statistics (Miller & Selfridge, 1950). These
 373 effects are typically attributed to semantic coherence or episodic pattern recognition (Allen,
 374 Hitch, & Baddeley, 2018; Baddeley, Hitch, & Allen, 2009). However, episodic memory is not
 375 sufficient to explain the full range of results. Memory is similarly facilitated for lists of non-
 376 words that approximate natural language syntax (Epstein, 1961; 1962). Thus, meaning does not
 377 seem to be necessary to the effect. Jones & Farrell (2018) further demonstrated that people are
 378 more likely to recall sentence-like lists in an order consistent with syntactic knowledge, and that

379 errors are more likely to conform to prior syntactic knowledge than expected by chance (for
 380 corpus analyses tying language experience to memory performance, see [G. Jones et al., 2020](#);
 381 [Perham et al., 2009](#)). In each case, inter-item information affected memory for order by invoking
 382 long-term knowledge of language syntax, suggesting that memory for items and their order
 383 interact to support each other. For example, experience using English builds a LTM of the word
 384 *pull*. The LTM of *pull* not only encodes meaning and sound but also co-occurrence tendencies;
 385 *pull* is often flanked by words denoting animate entities and objects involved in a pulling event
 386 (as in *The girl pulled the cart*). We are emphatically not claiming that linguistic knowledge is
 387 limited to co-occurrence, merely that such knowledge includes linear relationships and that what
 388 might be viewed as multi-word frequency knowledge shapes both language use ([Seidenberg &](#)
 389 [MacDonald, 2018](#)) and memory (Arnon & Snider, 2010). While strict chaining accounts of
 390 ordering have generally fallen out of favor in memory research (e.g. [Hurlstone, Hitch, &](#)
 391 [Baddeley, 2014](#)), these studies suggest that inter-item associations are not only encoded and
 392 leveraged for performance in memory tasks (see also [Fischer-Baum & McCloskey, 2015](#), for
 393 discussion) but reinforced by LTM. Such effects are likely amplified by the presence of multi-
 394 morphemic words (such as *pulled*), because, as noted above, morphemes such as *-ed* also
 395 contain grammatical information and thus provide cues to inter-word relationships (see Epstein,
 396 1961; 1962). Thus, it is unclear to what extent item knowledge can be separated from order
 397 knowledge if the source of the order benefit is derived from the information associated with the
 398 individual words.

399 **The role of language processes in performing VWM tasks.** If performing a VWM task is
 400 dependent on language processes, such as comprehension for encoding (MacDonald &
 401 Christiansen, 2002), lexical production for item memory (Page et al., 2007), or sentence
 402 production skills for item ordering ([Acheson & MacDonald, 2009b](#); [MacDonald, 2016](#)), then
 403 theories of VWM must consider how theories of language comprehension and production
 404 constrain memory performance. Here, we describe some current models of language
 405 comprehension and production with a specific eye toward describing statistical regularities in
 406 language and the integrated representations in LTM that capture those regularities. Of course,
 407 these models were not explicitly designed to model performance in VWM tasks. There is an
 408 essential tension between the complexity of LTM representations and modeling: the more
 409 complex and intertwined the representations are thought to be, the more difficult it is to capture
 410 this complexity in a computational model. Few explicit emergent models of VWM exist, as some
 411 researchers have noted (Norris, 2017), though many models adopt principles consistent with the
 412 emergent approach (e.g. Botvinick & Plaut, 2006). However, from the language emergent
 413 perspective, theories of language comprehension and production should serve as a useful
 414 analogue, continuing the role models of language use have played in shaping memory research
 415 (e.g. N. Martin, Dell, Saffran, & Schwartz, 1994).

416 On this view, language comprehension and production processes underlie the encoding
 417 and retrieval mechanisms posited in memory accounts, respectively. Language comprehension
 418 processes extract meaning from input by mapping an input signal to a semantic representation of
 419 the entities and events being referred to (MacDonald & Hsiao, 2018). Often, comprehension
 420 processes involve partial predictions of upcoming input (Altmann & Mirković, 2009;
 421 Federmeier, 2007; Kuperberg & Jaeger, 2016), which means that comprehension processes
 422 routinely involve not only semantic integration of words that have been encountered but also
 423 generation of serial order expectations among representations of words that are likely upcoming

424 in the input. Similarly, interpretation of some language input can depend on material that comes
 425 later (Connine & Clifton, 1987; MacDonald, 1994). There are many language comprehension
 426 models that depend on integrated representations, variously capturing word segmentation
 427 (Christiansen, Allen, & Seidenberg, 1998), utterance interpretation without a separate word
 428 segmentation stage (Baayen et al., 2016), the learning of phonological forms (Plaut & Kello,
 429 1999), word reading and its relationship to phonology (Plaut, McClelland, Seidenberg, &
 430 Patterson, 1996; Seidenberg & McClelland, 1989), the learning of grammatical knowledge (J.
 431 Allen & Seidenberg, 1999), behavior in the visual world paradigm (Mayberry, Crocker, &
 432 Knoeferle, 2009), disorders of comprehension in individuals with developmental language
 433 disorder (also called specific language impairment, Joanisse & Seidenberg, 2003), and more. In
 434 turn, language production models attempt to generate a well-formed utterance from a message
 435 representation, either externally motivated in the case of a repetition task or internally generated
 436 in the case of self-generated production. Several interactive models exist, capturing lexical
 437 selection (i.e., retrieving words from LTM, Dell, Schwartz, Martin, Saffran, & Gagnon, 1997)
 438 and phrase (Dell, Burger, & Svec, 1997) or sentence production (Chang, Dell, & Bock, 2006;
 439 Dell & Chang, 2014). The Lichtheim-2 model implements an account of single word
 440 comprehension and repetition as well as the degradation of those processes in aphasia (Ueno,
 441 Saito, Rogers, & Lambon Ralph, 2011). All of these models share several core features that tie
 442 them to the emergent account. In each, learning algorithms, such as backpropagation, encode
 443 statistical knowledge in the connection weights updated through experience, forming the model's
 444 LTM. Each of these models also develops a VWM through learning; for example the TRACE
 445 model of speech perception (McClelland & Elman, 1986) got its name from the claim that the
 446 STM trace of the model emerged from the interacting layers of the network. No separable STM
 447 buffers divorced from LTM are employed in any of the above models.

448 Critically, integrated representations are a core part of these language models, most
 449 commonly instantiated as distributed representations in a network. Distributed representations, as
 450 their name implies, spread a representation over the entire network, via connection weights
 451 between layers. Integrated representations exhibit at least two key ties to distributed
 452 representations in connectionist language models. First, integrated representations emerge in
 453 processing via bidirectional spreading activation between layers, a feature evident in models of
 454 human comprehension and production (e.g., Dell, 1986; Seidenberg & McClelland, 1989).
 455 Second, the integrated representations blend processed information across the network such that
 456 phonological, semantic, lexical, and grammatical information cannot be strictly separated from
 457 other types of information (e.g., McClelland et al., 2010). Of course, we are not claiming that
 458 language models do not develop certain specializations for phonological, semantic, lexical,
 459 grammatical, and other types of information. Instead, specialization is a matter of degree, where
 460 complete modularity and complete overlap are less likely than an intermediate state (McClelland
 461 et al., 2010). For example, in some models, impairments of a discrete representation (e.g.
 462 phonology) disrupts the use of other representations (e.g. semantics), via layers that allow
 463 interaction between those representations (e.g. Monaghan & Woollams, 2017). Such models are
 464 most consistent with primary systems accounts (e.g. Ueno et al., 2014; Savill, Cornellisen, Pahor,
 465 & Jefferies, 2019). In other models, the integrated representations are not as explicit. For
 466 example, simple recurrent networks of comprehension and production, allow information to be
 467 processed through time. Such networks cross item and order information via recurrent
 468 connections (Botvinick & Plaut, 2006; Elman, 1991; Joanisse & Seidenberg, 2003), and there is
 469 no clear way in which item and order information can be separated.

470 Distributed representations as they are captured in connectionist models are not the only
 471 way to characterize integrated representations. We have focused on variations in distributed
 472 connectionist approaches as examples that most clearly embrace the interconnected
 473 representations that should affect theorizing about VWM, but other computational approaches
 474 could also incorporate integrated representations in processing (e.g., Frank & Goodman, 2014).
 475 Furthermore, localist representations, like the one implemented in Dell, Schwartz, Martin,
 476 Saffran, and Gagnon (1997), also have interaction among different types of information and have
 477 proven incredibly useful in describing mechanisms by which LTM engages with VWM.

478 **Potential research directions and predictions for a language-emergent VWM.** There are
 479 several predictions for VWM research that stem from the language emergent view, the first of
 480 which emphasizes the role of language production processes in serial ordering of the items in a
 481 memory list. Previous research has argued that production processes are engaged in maintenance
 482 and recall of verbal material, specifically that the utterance plan that maintains the to-be-uttered
 483 words in order also serves the maintenance and ordering functions during VWM tasks (Acheson
 484 & MacDonald, 2009b; MacDonald, 2016). As MacDonald (2016) discussed, this claim is much
 485 more controversial for some kinds of VWM tasks and performance than others. For example,
 486 Page, et al. (2007) posited a limited role for language production processes in ordering at the
 487 item level. They argued that parallels between word production processes and word recall in
 488 VWM tasks pointed to individual, word-level utterance plans playing a role in phonological
 489 maintenance in VWM, but ordering the words themselves (order memory) must be the purview
 490 of a dedicated short-term store. Lombardi and Potter (1992) and Potter and Lombardi (1998)
 491 hypothesized a different role for language processing: in VWM tasks involving whole sentence
 492 repetition, the comprehension system interprets the meaning of the sentence and the production
 493 system regenerates it from that meaning. The model we advocate incorporates the language
 494 system for remembering individual words, whole sentences, as well as all cases in-between,
 495 including ordering of word sequences that are less than full, coherent sentences. As there are
 496 very few tests of these ideas in the existing literature, our discussion addresses the kinds of word-
 497 ordering phenomena in language production that may be relevant to performance in VWM tasks.

498 An essential task in language production is the creation of serial order over many levels,
 499 including messages, words, sub-lexical forms such as phonemes, and articulatory gestures that
 500 enable overt language (Dell, Burger, et al., 1997). Acheson and MacDonald (2009b) extensively
 501 reviewed how the interactivity of phonological information with other information predicted
 502 serial order phenomena through the lens of language production research. They concluded that
 503 "...one key insight about the serial ordering of verbal information in language production is that
 504 serial ordering results from interactions across multiple levels of representation over time, that is
 505 to say, as a result of recurrent connectivity" (p. 54). For example, word ordering in language
 506 production is more likely to go awry when words share features, including both grammatical
 507 features (e.g., noun) and phonological features (Dell & Reich, 1981), meaning that phonological
 508 and lexico-grammatical information are together affecting serial ordering processes. Given
 509 Acheson & MacDonald's review, we do not focus on phonological interactions with word order
 510 here, but it is worth noting a few more recent phenomena relevant to their claims. A number of
 511 studies have investigated semantic-phonological interactions termed semantic binding, the
 512 finding that lexico-semantic knowledge affects the nature of phonological representations in
 513 VWM and other tasks (e.g., Hoffman, Jefferies, Ehsan, R. W. Jones, & Lambon Ralph, 2009;
 514 Patterson, Graham, & Hodges, 1994; Savill et al., 2017). Relatedly, Acheson and colleagues

515 conducted several studies suggesting that phonological and semantic information jointly affect
 516 serial order in VWM tasks in a way that would be expected from how information interacts in
 517 comprehension and production (Acheson, MacDonald, & Postle, 2011; Acheson, Postle, &
 518 MacDonald, 2010; see also Poirier, Saint-Aubin, Mair, Tehan, & Tolan, 2014). Similarly,
 519 Macken, Taylor, and D. M. Jones (2014) investigated the memory implications for prosody, the
 520 intonation patterns that span whole phrases and sentences in everyday language use, in VWM
 521 tasks. Like syntactic and discourse relations, prosody is another multi-word phenomenon that
 522 does not fit neatly into the item/order distinctions in memory tasks. Macken et al. found that
 523 prosodic phrasing does affect recall, which argues against individual word units in memory.

524 Far less research concerns the nature of sentence-level language planning and serial
 525 ordering in VWM tasks. We mention three findings from language production research that seem
 526 particularly relevant to claims about the role of language production in VWM, because all three
 527 point to the essential non-independence of words and word orders in utterance planning. First, a
 528 central tenet across essentially all approaches to language production is that lexico-semantic
 529 characteristics of individual words strongly affect their order in a sentence (Bock, 1987; Levelt,
 530 1993). An example is that animate entities like *woman* tend to appear earlier in utterances than
 531 inanimate words like *book*. This effect is thought to reflect a more general phenomenon linked to
 532 LTM retrieval, in which early-retrieved words enter the utterance plan first and end up in earlier
 533 positions in the utterance (Bock, 1987). Semantic features such as animacy affect retrieval and,
 534 consequently, serial position in the sentence (Bock, 1987; MacDonald, 2013). Second, the word
 535 orders that people produce tend to be ones that have been recently produced (Bock, 1986b;
 536 Weiner & Labov, 1983), but the strength of this effect is modulated by the particular words in
 537 the sentence: repeated words lead to more repeated word orders (see Pickering & Ferreira, 2008,
 538 for review). Again, words and their orders are interdependent. Third, word orders and the
 539 presence/absence of optional words in sentences vary with semantic relationships between
 540 words, where semantic similarity between two words yields more word omissions and different
 541 word orders than in the absence of semantic similarity across words (Gennari, Mirković, &
 542 MacDonald, 2012; Hsiao, Gao, & MacDonald, 2014; Montag, Matsuki, Kim, & MacDonald,
 543 2017). Thus, whereas the first two examples illustrated interactions between properties of a
 544 particular word and word order of an entire utterance, this example shows that semantic
 545 relationships between two words also affect word order. All of these examples of word and word
 546 order interdependence are broadly compatible with models of language production that represent
 547 production as activation of learned weights in a connectionist architecture; these representations
 548 arguably cross item and order memory (Chang et al., 2006; Dell & Chang, 2014; McCauley &
 549 Christiansen, 2014). On this view, language production models could serve as highly informative
 550 models of serial recall, especially when the models engage in sentence repetition (see Ueno,
 551 Saito, & Lambon Ralph, 2011 for word repetition and Fischer-Baum, 2018 for other potential
 552 commonalities in serial order representations). We see this approach as inconsistent with the
 553 currently dominant views of VWM, that memory for items (the words) and memory for their
 554 serial order are unrelated, accomplished by independent mechanisms (Guidali, Pisoni, Bolognini,
 555 & Papagno, 2019; Henson, Hartley, Burgess, Hitch, & Flude, 2003; Majerus, 2009).

556 These results and approaches offer several avenues for investigations of the relationship
 557 between serial ordering of words in language production and VWM tasks. For example, it is
 558 worth further consideration of the item-order distinction in some theories of VWM, particularly
 559 those that posit a role for LTM and language production for item memory but a special purpose

560 system for ordering the items (Majerus, 2009; Page et al., 2007). From the point of language
 561 production, serial order is crucial both across items (i.e. word order) and within items (syllable,
 562 phoneme, articulatory gesture orders). It is curious that within-word serial order demands are
 563 considered “item memory” rather than another example of ordering memory. For current
 564 purposes, a key difference between the two types of serial order would seem to be their
 565 regularity, in that phonological order is much more rigid than syntactic order. For example, the
 566 phonemes and articulatory gestures must be in a particular order to produce a given word, and
 567 the semantic identity of the word “binds” the sub-lexical representations and their order together
 568 —the semantic binding hypothesis (Patterson et al., 1994). Dell & Chang (2014) posit a similar
 569 kind of binding from message-level semantics to the serial orders of words, but this binding is
 570 weaker and more variable than in the word-phoneme case; there are statistical regularities
 571 between types of messages and sentence forms, but messages can usually also be conveyed with
 572 alternative word orders (MacDonald, 2016). In other words, the item-order distinction is really
 573 one of two different kinds of serial ordering demands and LTM, and the one called “item
 574 memory” (which includes ordering of phonological codes) is much stronger and more regular
 575 than the one called “order memory”. On that view, it should be possible to manipulate these
 576 contingencies in simulations or experimentally, perhaps with artificial languages in which
 577 “word” order and “phoneme” order vary in their rigidity. If, after learning the artificial language,
 578 participants had to perform a memory task, we predict that performance at both levels should
 579 respond to the regularities of past experience and thus strength of LTM constraints, in contrast to
 580 accounts positing a rigid item/order distinction (see also Acheson & MacDonald, 2009 for
 581 discussion of “item” vs. phoneme errors and Botvinick & Bylsma, 2005 for recall in artificial
 582 languages).

583 Another interesting domain is performance in Hebb repetition tasks, in which participants
 584 repeatedly encounter certain serial orders across lists (Guerrette, Saint-Aubin, Richard, &
 585 Guérard, 2018; Page, Cumming, Norris, McNeil, & Hitch, 2013). Performance in these tasks
 586 should at least initially be moderated by statistical regularities in the broader language (that is, in
 587 LTM, via prior experience with language), where certain words occur in certain serial orders
 588 more frequently than others. For example, we might expect that words referring to animate
 589 entities (*child, teacher*) would yield different serial order behavior than inanimate words (*book,*
 590 *table*) in ordered recall, because people’s broader experience ordering different types of words in
 591 their history of language production would affect how rapidly repeated patterns are learned.
 592 More generally, we expect serial ordering behavior to reflect both long-term language use and
 593 also rapid adaptation to more recent ordering contexts, a phenomenon that is robust in both
 594 language comprehension (Fine, Jaeger, Farmer, & Qian, 2013) and production (Bock, 1986a).
 595 Whereas Hebb repetition effects have been described in terms of repetition of specific tokens,
 596 syntactic priming effects in language processing carry across multi-word grammatical and
 597 semantic relations. If there are interactive representations between word and grammatical roles,
 598 then classic Hebb repetition effects should carry across these abstract relational categories and be
 599 moderated by fit with the category. Indeed, some studies have begun to examine these effects in
 600 sentence repetition (Allen, Hitch, & Baddeley, 2018; T. Jones & Farrell, 2018) and in recall of
 601 lists with grammatical dependencies (Perham, Marsh, & D. M. Jones, 2009) by considering how
 602 lists consistent with grammatical knowledge are recalled better than lists inconsistent with these
 603 patterns. The emergent account described here would further predict that the effect of
 604 grammatical knowledge would be moderated by semantic information of words, such as
 605 animacy, and morphophonological cues, reflecting interrelationships in LTM. For example,

606 recall of animate nouns should be greater than recall of inanimate nouns in the context of word
 607 lists that encourage a noun to be interpreted as an agent, because animate nouns are commonly
 608 agents of actions and inanimate nouns are not. Furthermore, this account would suggest rapid
 609 adaptation to novel orders would affect memory in a manner consistent with models of language
 610 production that learn over experience.

611 **Challenges for the multicomponent approach.** Rather than viewing memory representations as
 612 graded, integrated, and distributed, as described above, multicomponent models separate various
 613 representations into discrete components. For example, the phonological loop stores
 614 phonological representations in a buffer separate from other representations (Baddeley & Hitch,
 615 1974). Likewise, other researchers posit separate phonological and semantic buffers stemming
 616 from language mechanisms (R. C. Martin & Romani, 1994). These models are reminiscent of
 617 older, modular models of language comprehension and production that employ discrete stores
 618 and restricted interaction of information (Forster, 1985; Frazier, 1987). To capture the fully rich
 619 and interactive tapestry of language representations that are invoked in more current language
 620 research, multicomponent models would seem to require a combinatorial explosion of additional
 621 buffers for each form of interaction. In terms of parsimony and plausibility, this seems unlikely
 622 to be a tenable solution. R. Martin and colleagues offered a possible solution in which various
 623 language representations may interact in a multicomponent memory model by passing activity
 624 through layers with phonological and semantic buffers (e.g. R. C. Martin & Freedman, 2001).
 625 This approach may allow more interaction but is also inconsistent with much language research,
 626 as it specifically implies that certain language representations are processed independently and in
 627 sequence (MacDonald & Seidenberg, 2006). As far as we are aware, no research has explicitly
 628 considered how different forms of interactive representations could be modelled in VWM in a
 629 manner consistent with language comprehension and production research. Even so, it is unclear
 630 how integrated representations and interactive processing could be implemented in a
 631 multicomponent account.

632 An important route for LTM effects on VWM performance in multicomponent models is
 633 redintegration, a process that rebuilds decaying memory traces from LTM (R. J. Allen & Hulme,
 634 2006; Clarkson, Roodenrys, Miller, & Hulme, 2017; Roodenrys & Hinton, 2002; Roodenrys et
 635 al., 2002). The redintegration mechanism not only rebuilds the phonological loop with
 636 phonological information from LTM (Clarkson et al., 2017), it also is the mechanism invoked to
 637 account for other LTM effects that go beyond phonological structure, including influences of
 638 word frequency and long-term knowledge of semantics and word co-occurrences on VWM
 639 (Hulme et al., 1997; Roodenrys et al., 2002; Stuart & Hulme, 2009; Walker & Hulme, 1999). On
 640 this view, the redintegration process must use LTM outside the phonological domain to shore up
 641 decaying phonological buffers. It is not clear how that process would work if LTM
 642 representations are highly integrated. Such a process would imply that phonological
 643 representations are first stripped from their richly integrated encoding in LTM, maintained in a
 644 separate phonological buffer, and then recombined with their integrated representations at the
 645 time of recall.

646 Currently, empirical evidence in favor of emergent (Acheson, Hamidi, Binder, & Postle,
 647 2011; Buchsbaum & D'Esposito, 2018; Postle, 2006) and multicomponent accounts (for review
 648 see Shallice & Papagno, 2019; Yue, Martin, Hamilton, & Rose, 2019) has established little
 649 consensus. We recognize that many of the claims above are logical arguments, and further

650 empirical evidence could prove some of our assumptions faulty. Proponents of emergent models
 651 should see language comprehension and production mechanisms as consistent with VWM
 652 systems that stem from a richly structured and integrated LTM (Acheson & MacDonald, 2009b;
 653 Hughes, Chamberland, Tremblay, & D. M. Jones, 2016; G. Jones & B. Macken, 2015).
 654 Proponents of multicomponent models, however, may see these discussions of a rich language
 655 LTM and the processes that operate with it as simply more evidence for the sorts of information
 656 that could be encoded via language processes or that redintegration could use to reconstruct
 657 memory traces. Regardless, defining LTM representations is important for the advancement of
 658 memory models, and language models should provide insight into these LTM representations.

659 **Challenges for limited emergence.** Perhaps one of the most persistent complaints against the
 660 emergent account is its inability to handle aphasic patient data (Shallice & Papagno, 2019).
 661 Classically, patterns of behavior by patients with aphasia have been seen as evidence for the
 662 notion that STM and LTM are supported by distinct neural populations. Lesions to the medial
 663 temporal lobe have appeared to yield deficits of LTM with spared STM, typically assessed using
 664 lexical decision tasks and digit span tasks, respectively (Baddeley & Warrington, 1970; Cave &
 665 Squire, 1992; Penfield & Milner, 1958; Scoville & Milner, 1957; Warrington, Logue, & Pratt,
 666 1971). In contrast, damage to left parietal regions have been interpreted to cause impairments in
 667 verbal recognition tasks and digit span tasks with spans greater than 1 or 2 while sparing other
 668 cognitive functions and LTM (e.g. Shallice & Warrington, 1970; Shallice & Warrington, 1974;
 669 Vallar & Baddeley, 1984a; Warrington & Shallice, 1969; Warrington & Shallice, 1972). Thus,
 670 these studies of patients appeared to show a double dissociation of STM and LTM.

671 Some patient data may also support a dissociation between language processing and
 672 STM. For example, the patient K.F. reported in Warrington and Shallice (1969) exhibited strong
 673 repetition deficits with spared word knowledge, which would typically classify the patient as
 674 having conduction aphasia. However, given that the patient exhibited recognition deficits even
 675 when no verbal output was required by the task (i.e. pointing), Warrington and Shallice
 676 concluded that the patient's impairment was not limited to language repetition. Later work
 677 reinforced this notion in patients with impaired phonological discrimination with spared word
 678 recognition and short sentence comprehension (Basso, Spinnler, Vallar, & Zanobio, 1982; Silveri
 679 & Cappa, 2003; Vallar & Baddeley, 1984) as well as in patients with dissociable speech and
 680 STM deficits (R. C. Martin & Breedin, 1992). In a similar way, more recent research has
 681 attempted to unconfound item and order memory (Attout et al., 2012; Majerus et al., 2015).

682 However, the putative pure deficits of STM are frequently tainted by subtle language
 683 impairments (N. Martin & Saffran, 1992). For example, Warrington, Logue, & Pratt (1971)
 684 described a selective impairment of STM, yet those same patients exhibited difficulty in
 685 repetition of abstract words, reading, and fluent speech. Vallar and Baddeley (1984a; 1984b)
 686 claimed to have found a pure deficit of STM, yet that same patient exhibited impaired
 687 comprehension of longer sentences compared to other participants (1984a). Even the patients
 688 identified with fluent speech also exhibited abnormalities. For example, the patient described by
 689 Shallice and Butterworth (1977) exhibited paraphasic errors in speaking names and had difficulty
 690 comprehending spoken discourse and written text. Furthermore, comprehension difficulty was
 691 exacerbated for complex sentences. Jacquemot, Dupoux, Decouche, & Bachoud-Lévi (2006)
 692 claimed to have found patients with a specific STM impairment, yet those same patients also
 693 exhibited difficulty in language comprehension tasks and sentence repetition tasks, resulting in

694 phonological paraphasias. A truly pure deficit has proven quite elusive (though see Martin &
 695 Breedin, 1992). Rather than see these language deficits as stemming from a specific STM
 696 impairment, we see both as being driven by deficits in LTM. A complementary pattern is seen in
 697 other lines of research. For example, Hannula et al. (2006) found that hippocampal deficits cause
 698 impairments in relational processing at both short and long durations, upsetting prominent
 699 research suggesting that hippocampal activity is associated only with LTM. A strongly emergent
 700 perspective accords neatly with this data.

701 A recurrent theme in this review has been that the relationship between VWM and LTM
 702 depends on the nature of language LTM. Patient data is no exception. Reference to models of
 703 language production and comprehension reveal how apparent STM deficits could be captured by
 704 damage to LTM. N. Martin and Saffran (1992) presented the case of a patient with deep
 705 dysphasia who exhibited apparent errors of STM: difficulty producing nonwords and semantic
 706 errors in repetition. This patient exhibited fluent speech with semantic and phonological
 707 paraphasias. The researchers evaluated this patient's performance through the lens of the Dell
 708 (1986) interactive spreading activation model of lexical retrieval. This model employs discrete
 709 representations of phonology, lexical entries, and semantics that interact in a bidirectional
 710 network. The model was able to produce human-like lexical selection behaviors without any
 711 storage buffer separate from LTM. Critically, the model was able to capture putatively pure STM
 712 patient data solely through perturbation of the model parameters and without the inclusion of a
 713 distinct memory buffer. In this specific case, an increased decay rate reduced the ability of
 714 lexical representations to support lexical selection. The predictions afforded by this model were
 715 later confirmed in additional analyses of patient data by N. Martin, Dell, Saffran, & Schwartz
 716 (1994; see also Dell, Schwartz, N. Martin, Saffran, & Gagnon, 1997), and patient recovery was
 717 also able to be modelled using the same framework (N. Martin et al., 1996). These results
 718 suggest that a specification of the LTM representations relevant to language comprehension and
 719 production may help test claims about the representational basis of VWM and its relationship to
 720 LTM.

721 Findings such as these point to the need for contact between theories of VWM and
 722 perspectives on long-term representations of serial order in language. That is, the extent to which
 723 the above or similar results affect VWM models depends on the hypothesized nature of LTM,
 724 particularly the extent to which LTM could contribute to representations of novel memoranda
 725 and their order. Language LTM captures relations between words and levels of linguistic
 726 representation and therefore allows generalization to new cases. Indeed, any linguistic input is
 727 novel in many ways, such as a new word order, new speaker, new acoustic environment, and so
 728 on. By definition, the goal of language comprehension processes is to cope with novel input, and
 729 language production processes constantly generate novel utterances. The VWM literature offers
 730 a different perspective, with some claiming that buffers are needed explicitly to represent novel
 731 material (Norris, 2017). One challenge for memory research is the need to characterize a clear
 732 divide between "old" and "new," especially given that novelty means very different things in
 733 different memory models. Distributed language models provide a key demonstration of the
 734 emergent perspective. In such models, novel stimuli are processed with respect to their similarity
 735 to prior experience, without any need for separate systems dedicated to handling the
 736 particularities of novel items or orders. In parallel, emergent models of VWM are capable of
 737 producing novel sequences just using LTM, without dedicated short-term buffers (e.g. Botvinick
 738 & Bylsma, 2005; Botvinick & Plaut, 2006, 2009). Perhaps greater adoption of graded

739 representations of novelty could bridge the divide between language emergent and pure memory
740 accounts. Important behavioral data linking graded phonotactic LTM to VWM (e.g. Tanida,
741 Ueno, Lambon Ralph, & Saito, 2015) and graded grammatical LTM to VWM (e.g. T. Jones &
742 Farrell, 2018) already speaks to the usefulness of this approach.

743 **Implications for Language and VWM research**

744 We have cited a broad range of work in both VWM and in language comprehension and
745 production, and one of the striking features of that work is how very little the fields have to say
746 about each other. For example, it is completely uncontroversial that language comprehension and
747 production processes are constrained by what is commonly called “verbal working memory
748 capacity” in those fields, and yet the specific mechanisms posited in classic VWM models are,
749 with only a few exceptions, absent from theorizing about how limited capacities shape language
750 processes (see Caplan & Waters, 2013, for review and a different perspective). Similarly, while
751 VWM accounts assume that VWM abilities must be used in everyday activities, the connection
752 to actual theories of language use is equally scant. Here we discuss several fronts with more
753 potential for interaction among the fields.

754 *Implications for relating WM assessments to other measures*

755 The approach that we have advocated, in which performance on VWM tasks is heavily
756 supported by language processes, which are themselves dependent on long-term knowledge,
757 naturally leads to questions about what VWM tasks actually measure. This question is not only
758 central to theories of working memory but also has enormous practical significance, because
759 there is wide usage of tasks that are described as VWM assessments in clinical and educational
760 contexts—in typical and atypical child development, young adults, older adults, and patients
761 with brain injury. Whereas some researchers have considered poor VWM performance as a cause
762 of poor language skill, potentially ameliorated by working memory training (e.g., Ingvalson,
763 Dhar, Wong, & Liu, 2015), our language-emergent VWM view suggests that poor VWM
764 performance is a symptom associated with poor language skill. In other words, the abilities to
765 encode, maintain, and order verbal information are skills that emerge from language use, and
766 individuals who have higher language skills have richer LTM representations and more practiced
767 comprehension and production processes (see also G. Jones et al., 2020). Thus, we can view
768 tasks that are described as VWM tasks not as assessments of a separate VWM capacity but rather
769 as measures of a person’s skill in encoding and maintaining verbal information. Consistent with
770 this approach, there are now a number of reassessments of tasks that have previously been called
771 “working memory tasks,” with arguments that they are better viewed as assessments of language
772 skill, including but not limited to encoding, maintenance, and ordering. Tasks that have been
773 reinterpreted in this way include reading span (MacDonald & Christiansen, 2002), digit span (G.
774 Jones & B. Macken, 2015), nonword repetition (Edwards, Beckman, & Munson, 2004; Graf
775 Estes, Evans, & Else-Quest, 2007), sentence repetition (Klem et al., 2015), and immediate serial
776 recall of word lists (Perham et al., 2009). In each of these examples, the argument has the same
777 character. The apparent “verbal working memory task” does not measure a separate memory
778 capacity but instead measures the quantity and quality of language skill and experience relevant
779 to the specific demands of the task (see also D. Jones & Macken, 2018). Thus, nonword
780 repetition performance can be traced to knowledge of phonological patterns and vocabulary
781 (Edwards et al., 2004; Gupta & Tisdale, 2009), digit span performance can be linked to prior

782 experience with and statistical learning of digit sequences (G. Jones & Macken, 2015), and so
 783 on. The over-arching conclusion from this work is that the skill or computational capacity to
 784 perform some task is not independent of long-term language knowledge and experience
 785 (MacDonald & Christiansen, 2002). That is an essential claim of an emergent perspective.

786 A related claim is that if the working memory abilities are emergent from language and
 787 other systems, then training on working memory tasks themselves should have little inherent
 788 benefit (e.g. Soveri et al., 2017), unless they have extra components that increase vocabulary or
 789 other relevant language skills. VWM training has been applied to therapeutic contexts, such as
 790 with aphasic patients, but the effectiveness of such interventions is unclear, driven in part by
 791 methodological limitations of single case studies (Zakarias et al., 2019). VWM treatments almost
 792 always employ linguistic stimuli of some sort, meaning they inherently provide some language
 793 practice. Therefore, VWM is rarely divorced from linguistic LTM in the training. VWM training
 794 research could benefit from a consideration of the emergent perspective defined here by further
 795 developing language skill as opposed to a separate memory capacity.

796

797 *Implications for Attention, Task Subcomponents, and Domain Generality*

798 All theories of VWM have some mix of domain-specific and domain-general
 799 components. For example, the multicomponent model has the domain-specific phonological loop
 800 but also the general Central Executive, which guides behavior beyond maintenance of
 801 phonological forms. Similarly, emergent views have domain-general attention and other
 802 cognitive control processes, but the nature of the LTM activated can be domain specific, in that
 803 linguistic knowledge need not have the same properties as memory for smell or spatial relations.
 804 The specific emergent approach advocated here, in which language LTM and language
 805 comprehension and production processes underlie VWM functions, might initially seem more
 806 strongly domain-specific in character, given the strong modular perspective that has pervaded
 807 language research. However, “emergent from language processes” need not be “domain
 808 specific.” Indeed, there has been new interest in investigating how language use is supported by
 809 domain general processes of attention and episodic memory (Hepner & Nozari, 2019; Nozari,
 810 Trueswell, & Thompson-Schill, 2016; Van de Cavey & Hartsuiker, 2016), and interest in how
 811 distinct brain networks must coordinate to accomplish language comprehension and other
 812 complex cognitive processes (Fedorenko, 2014; Fedorenko, Behr, & Kanwisher, 2011). Close
 813 ties with attention have long been a component of emergent models (e.g. Cowan, 1993), and
 814 researchers are now considering the interrelationships between language and attention
 815 mechanisms with respect to VWM (Majerus, 2019). More generally, there is real interest in
 816 considering the extent to which language production processes are related to or are themselves
 817 emergent from more general action planning processes or domain-general sequencing systems
 818 (Anderson & Dell, 2018; Guidali et al., 2019; Van de Cavey & Hartsuiker, 2016). Long-term
 819 ordering knowledge across domains (e.g. Kaiser, 2012; Van de Cavey & Hartsuiker, 2016) may
 820 inform sequence ordering, further tying together domain general perspectives, emergent models,
 821 and language research. If language research continues to embrace more domain general
 822 processes, this development could have substantial consequences for debates about the
 823 relationship between language processes and VWM, including distinctions between
 824 multicomponent and emergent accounts. That is, if VWM and language researchers both

825 incorporate the same domain general processes, then the distinction between multicomponent
 826 models and emergent models becomes less theoretically important.

827 Perhaps one of the most compelling examples of how domain-general processes affect
 828 language use and temporary maintenance may be seen in conversational turn taking, which
 829 draws on episodic memory (Duff & Brown-Schmidt, 2012; Rubin, Watson, Duff, & Cohen,
 830 2014) and cognitive control. Using data from recordings of conversations in 10 languages,
 831 Stivers et al. (2009) found that speakers typically begin speaking less than 500 ms after the
 832 previous speaker has ended their conversational turn. A number of researchers have argued that
 833 this closely time-locked behavior requires extensive attention, maintenance, and cognitive
 834 control, because the next speaker simultaneously juggles a number of disparate tasks, some of
 835 which bear close similarity to demands of VWM tasks. The conversational demands on the
 836 person who will soon speak include: comprehending the person currently speaking; planning a
 837 response and maintaining that utterance plan until time to speak; predicting the timing of the
 838 current speaker's end point, which often involves predicting the actual words that the current
 839 speaker is likely to end on; and triggering an anticipatory in-breath and then exhalation to allow
 840 the speech to begin (De Ruiter, Mitterer, & Enfield, 2006; Levinson, 2016; Torreira, Bögels, &
 841 Levinson, 2015). Not surprisingly, turn taking and planning before speaking have high
 842 processing loads, as measured in a variety of methods (Barthel & Sauppe, 2019; Boiteau,
 843 Malone, Peters, & Almor, 2014; Kemper, Hoffman, Schmalzried, Herman, & Kieweg, 2011).
 844 Thus, while a participant's overall goals in a conversation and a VWM task are very different, it
 845 should be clear that the task demands of both activities overlap, including simultaneously
 846 encoding input while developing and maintaining plans to generate a response. Researchers are
 847 actively investigating the attention and cognitive control demands of language planning in
 848 advance of speaking, including serial ordering and monitoring of utterance plans (see Nozari &
 849 Novick, 2017, for review and Fischer-Baum, 2018 for potential implications for VWM tasks).
 850 Some methods manipulating selective attention to individual words in a list could prove to be
 851 useful for new studies of both VWM tasks and more typical language production (e.g., Nozari &
 852 Dell, 2012; Nozari & Thompson-Schill, 2013). We see this research as complicating the domain
 853 specific/general debates but also as an important arena for collaboration between VWM and
 854 language researchers.

855

856 *Implications for Language Production Research*

857 The view that language production is the engine of maintenance of verbal information
 858 has significant implications for language production research, because every VWM study can be
 859 seen as a particular subtype of language production, and therefore this work has the potential to
 860 inform theories of language production. Interaction between the fields has long been evident at
 861 phonological levels. There has been keen interest in phonological level speech errors as
 862 important data for theories of serial ordering in language production (Dell, 1984; Dell, Burger, et
 863 al., 1997), and there are extensive discussions of relationships between speech errors and recall
 864 errors in VWM tasks (Acheson & MacDonald, 2009a; Ellis, 1980; Hartley & Houghton, 1996;
 865 Page et al., 2007). In addition, VWM research has increasingly investigated the Hebb Repetition
 866 effect, the improved recall of repeated lists (Hebb, 1961; Oberauer, T. Jones, & Lewandowsky,
 867 2015). In parallel, production researchers have investigated the effects of learning on serial

868 ordering and speech errors in production (Anderson, Holmes, Dell, & Middleton, 2019; Dell,
 869 Reed, Adams, & Meyer, 2000). These investigations may be mutually informative, especially
 870 when placed in the context of computational models of ordering in VWM and models of
 871 language production which produce ordered sequences. As we have noted, some of these models
 872 have already suggested some parallels in ordering mechanisms between the two domains
 873 (Hartley, Hurlstone, & Hitch, 2016; Page & Norris, 2009).

874 There are also potential parallels beyond the phonological level, relevant to questions
 875 concerning the relationship between words and their production in ordered sequences.
 876 MacDonald (2016) argued that of the three most obvious task demand differences between
 877 immediate serial recall and everyday language production (item list vs. coherent message, recall
 878 signal vs. spontaneous production, and producing exact list order vs. flexible language
 879 production), the latter was particularly important for understanding relationships between
 880 language production and VWM. Whereas serial recall, by definition, must be in the presented
 881 order, a hallmark of language production at the phrase or sentence level is serial order flexibility
 882 —that almost any message can be conveyed via several different words and word orders. This
 883 difference is informative when considering how interference among similar words can affect
 884 performance in language production and VWM tasks. Interference among list items leads to item
 885 omissions and re-ordering of list items in recall; these are naturally treated as ordering errors,
 886 given the task demands in immediate serial recall (Baddeley, 1966; Page, et al., 2007; though see
 887 Saint-Aubin & Poirier, 1999). Language production is also subject to interference among words,
 888 which leads to omissions and alternative word orders, compared to production conditions
 889 without interference (Gennari et al., 2012; Hsiao et al., 2014). These shifts and omissions are not
 890 considered errors but in some sense evidence of production skill, that is, evidence for how the
 891 speaker uses alternative ordering to maintain fluency in the face of interference. What is missing
 892 in this literature is a better understanding of interference during production planning and
 893 maintenance, and how alternative word orders emerge in the face of this interference. These
 894 questions seem ripe for insight from and collaboration with VWM research.

895

896 *Implications for language comprehension*

897

898 Theories of language comprehension aim to explain how language percepts are
 899 recognized and interpreted. Important data in this endeavor has been measures of comprehension
 900 difficulty, or, more specifically, the relative difficulty of some kind of language compared to
 901 another. In the case of sentence-level comprehension research, the focus has been on why some
 902 kinds of sentences are harder than others, and VWM capacity has been a common explanatory
 903 factor in this field (MacDonald & Hsiao, 2018). Many researchers have invoked decay in VWM
 904 to explain comprehension difficulty of certain kinds of sentences, as the difficult sentences
 905 require integration over distant information that has degraded in working memory (Babyonyshev
 906 & Gibson, 1999; Gibson, 1998; Grodner & Gibson, 2005; Just & Carpenter, 1992). An
 907 alternative approach suggests that VWM and comprehension difficulty are constrained by
 908 interference rather than decay or capacity limitations (Glaser, Martin, Van Dyke, Hamilton, &
 909 Tan, 2013; Lewis, Vasishth, & Van Dyke, 2006; Van Dyke & Johns, 2012). This work

910 emphasizes that both encoding and retrieval of information becomes more difficult with
 911 increased semantic similarity between words, meaning that sentences with more interfering
 912 elements are more difficult to comprehend (see Van Dyke & Johns, 2012, for review). This area
 913 is therefore another in which VWM research could inform comprehension, particularly the
 914 influence of decay and/or interference (Oberauer, Farrell, Jarrold, & Lewandowsky, 2016). More
 915 generally, though, while language comprehension researchers have often invoked VWM
 916 limitations in accounts of comprehension difficulty, they have not necessarily aligned themselves
 917 with particular VWM models of encoding, maintenance, and retrieval processes (for some
 918 exceptions, see Caplan & Waters, 2013; Just & Carpenter, 1992; Lewis, Vasishth, & Van Dyke,
 919 2006; Martin & Romani, 1994).

920 At least initially, very few accounts of language comprehension ascribed a major role for
 921 experience in language comprehension difficulty, and thus these accounts were at least in
 922 principle aligned with a multicomponent perspective, in which a separate temporary store,
 923 separate from language knowledge, provided a bottleneck in encoding and maintenance that
 924 could explain comprehension difficulty. More recently, a number of researchers have suggested
 925 that both VWM capacity and language experience are important components in processing
 926 difficulty (Demberg & Keller, 2008; Staub, 2010). In a more fully emergent approach of VWM,
 927 the capacity to encode and maintain information (whether for everyday language use or a
 928 working memory task) is not independent of long-term memory, and thus not independent of
 929 experience with language (Acheson & MacDonald, 2009a; Botvinick & Plaut, 2006; G. Jones &
 930 Macken, 2015; MacDonald & Christiansen, 2002; McClelland & Elman, 1986). We see this
 931 emphasis on experience-based capacity as a basis for investigating parallels between
 932 comprehension processes and VWM. Moreover, the emphasis on experience also casts language
 933 use and memory as intertwined, learned skills, as noted in the discussion of revised
 934 interpretations of VWM tasks above. For example, memory researchers have noted relationships
 935 between novel word learning and the Hebb repetition effect (Szmalec, Duyck, Vandierendonck,
 936 Mata, & Page, 2009). If word representations are highly intertwined, as our emergent perspective
 937 claims, then sensitivity to the Hebb repetition effect and novel word learning should exhibit
 938 exploitation of statistical regularities between different sources of information (e.g. Cassidy &
 939 Kelly, 1991; Nygaard, Cook, & Namy, 2009) rather than mere memory capacity of the learner.

940

941 **Conclusions**

942 In this article, we have aimed to describe the rich nature of linguistic LTM and its
 943 consequences for VWM. While Ebbinghaus (1885) had inklings that LTM could not be fully set
 944 aside in studying VWM, we have suggested that the linkage between language LTM and VWM
 945 is far stronger than he imagined, in part because the LTM has a different quality than he and
 946 many others had hypothesized. A more thorough understanding of the nature of language
 947 processing, attention, and LTM, we claim, will accelerate the advancement of both VWM and
 948 language research. We have argued that words are not unrelated islands in LTM representations,
 949 and therefore they should not be treated as isolated items in VWM research. We have further
 950 argued that the processes of language comprehension and production underlie a person's ability
 951 to encode, maintain, and order verbal information. These skills are essential for everyday
 952 language use, change with experience and the richness of LTM, and are brought to bear on

953 VWM tasks. On this view, VWM and language research should be mutually informative.

954

References

955 Aben, B., Stapert, S., & Blokland, A. (2012). About the distinction between working memory
 956 and short-term memory. *Frontiers in Psychology*, 3.
 957 <https://doi.org/10.3389/fpsyg.2012.00301>

958 Acheson, D. J., Hamidi, M., Binder, J. R., & Postle, B. R. (2011). A common neural substrate for
 959 language production and verbal working memory. *Journal of Cognitive Neuroscience*, 23
 960 (6), 1358–1367. <https://doi.org/10.1162/jocn.2010.21519>

961 Acheson, D. J., & MacDonald, M. C. (2009a). Twisting tongues and memories: Explorations of
 962 the relationship between language production and verbal working memory. *Journal of*
 963 *Memory and Language*, 60(3), 329–350. <https://doi.org/10.1016/j.jml.2008.12.002>.

964 Acheson, D. J., & MacDonald, M. C. (2009b). Verbal working memory and language
 965 production: Common approaches to the serial ordering of verbal information.
 966 *Psychological Bulletin*, 135(1), 50–68. <https://doi.org/10.1037/a0014411>

967 Acheson, D. J., MacDonald, M. C., & Postle, B. R. (2011). The effect of concurrent semantic
 968 categorization on delayed serial recall. *Journal of Experimental Psychology. Learning,*
 969 *Memory, and Cognition*, 37(1), 44–59. <https://doi.org/10.1037/a0021205>

970 Acheson, D. J., Postle, B. R., & Macdonald, M. C. (2010). The interaction of concreteness and
 971 phonological similarity in verbal working memory. *Journal of Experimental Psychology.*
 972 *Learning, Memory, and Cognition*, 36(1), 17–36. <https://doi.org/10.1037/a0017679>

973 Allen, J., & Seidenberg, M. S. (1999). The emergence of grammaticality in connectionist
 974 networks. In B. MacWhinney (Ed.), *The emergence of language*. (pp. 115–151).
 975 Mahwah, NJ US: Lawrence Erlbaum Associates Publishers.

976 Allen, R., & Hulme, C. (2006). Speech and language processing mechanisms in verbal serial
 977 recall. *Journal of Memory and Language*, 55(1), 64–88.
 978 <https://doi.org/10.1016/j.jml.2006.02.002>

979 Allen, R. J., Hitch, G. J., & Baddeley, A. D. (2018). Exploring the sentence advantage in
 980 working memory: Insights from serial recall and recognition. *Quarterly Journal of*
 981 *Experimental Psychology*, 71(12), 2571–2585.
 982 <https://doi.org/10.1177/1747021817746929>

983 Allport, D. A., & Funnell, E. (1981). Components of the mental lexicon. *Philosophical*
 984 *Transactions of the Royal Society of London. B, Biological Sciences*, 295, 397–410.

985 Almeida, R. G. D., & Gleitman, L. R. (2018). *On Concepts, Modules, and Language: Cognitive*
 986 *Science at Its Core*. Oxford University Press.

987 Altmann, G. T. M., & Mirković, J. (2009). Incrementality and Prediction in Human Sentence
 988 Processing. *Cognitive Science*, 33(4), 583–609. <https://doi.org/10.1111/j.1551-6709.2009.01022.x>

990 Anderson, N. D., & Dell, G. S. (2018). The role of consolidation in learning context-dependent
 991 phonotactic patterns in speech and digital sequence production. *Proceedings of the*
 992 *National Academy of Sciences*, 201721107. <https://doi.org/10.1073/pnas.1721107115>

993 Anderson, N. D., Holmes, E. W., Dell, G. S., & Middleton, E. L. (2019). Reversal shift in
 994 phonotactic learning during language production: Evidence for incremental learning.
 995 *Journal of Memory and Language*, 106, 135–149.
 996 <https://doi.org/10.1016/j.jml.2019.03.002>

997 Archibald Lisa M. D., & Gathercole Susan E. (2006). Nonword Repetition: A Comparison of
 998 Tests. *Journal of Speech, Language, and Hearing Research*, 49(5), 970–983.
 999 [https://doi.org/10.1044/1092-4388\(2006/070\)](https://doi.org/10.1044/1092-4388(2006/070))

1000 Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-word phrases.
 1001 *Journal of Memory and Language*, 62(1), 67–82.
 1002 <https://doi.org/10.1016/j.jml.2009.09.005>

1003 Attout, L., Kaa, M.-A. V. der, George, M., & Majerus, S. (2012). Dissociating short-term
 1004 memory and language impairment: The importance of item and serial order information.
 1005 *Aphasiology*, 26(3–4), 355–382. <https://doi.org/10.1080/02687038.2011.604303>

1006 Attout, L., Magro, L. O., Szmalec, A., & Majerus, S. (2019). The developmental neural
 1007 substrates of item and serial order components of verbal working memory. *Human Brain
 1008 Mapping*, 40(5), 1541–1553. <https://doi.org/10.1002/hbm.24466>

1009 Baayen, R. H., Shaoul, C., Willits, J., & Ramscar, M. (2016). Comprehension without
 1010 segmentation: A proof of concept with naive discriminative learning. *Language, Cognition and Neuroscience*, 31(1), 106–128.
 1011 <https://doi.org/10.1080/23273798.2015.1065336>

1012 Babayonyshev, M., & Gibson, E. (1999). The Complexity of Nested Structures in Japanese.
 1013 *Language*, 75(3), 423–450.

1014 Baddeley, A. (1992). Working memory. *Science*, 255(5044), 556–559.
 1015 <https://doi.org/10.1126/science.1736359>

1016 Baddeley, A. D. (1966). The influence of acoustic and semantic similarity on long-term memory
 1017 for word sequences. *Quarterly Journal of Experimental Psychology*, 18(4), 302–309.
 1018 <https://doi.org/10.1080/14640746608400047>

1019 Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2009). Working memory and binding in sentence
 1020 recall. *Journal of Memory and Language*, 61(3), 438–456.
 1021 <https://doi.org/10.1016/j.jml.2009.05.004>

1022 Baddeley, A. D., & Warrington, E. K. (1970). Amnesia and the distinction between long- and
 1023 short-term memory. *Journal of Verbal Learning & Verbal Behavior*, 9(2), 176–189.
 1024 [https://doi.org/10.1016/S0022-5371\(70\)80048-2](https://doi.org/10.1016/S0022-5371(70)80048-2)

1025 Baddeley, A. (2000). The episodic buffer: A new component of working memory? *Trends in
 1026 Cognitive Sciences*, 4(11), 417–423. [https://doi.org/10.1016/S1364-6613\(00\)01538-2](https://doi.org/10.1016/S1364-6613(00)01538-2)

1027 Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), *Psychology of
 1028 Learning and Motivation* (Vol. 8, pp. 47–89). [https://doi.org/10.1016/S0079-7421\(08\)60452-1](https://doi.org/10.1016/S0079-7421(08)60452-1)

1029 Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-
 1030 term memory. *Journal of Verbal Learning and Verbal Behavior*, 14(6), 575–589.
 1031 [https://doi.org/10.1016/S0022-5371\(75\)80045-4](https://doi.org/10.1016/S0022-5371(75)80045-4)

1032 Baddeley, A., Lewis, V., & Vallar, G. (1984). Exploring the Articulatory Loop. *The Quarterly
 1033 Journal of Experimental Psychology Section A*, 36(2), 233–252.
 1034 <https://doi.org/10.1080/14640748408402157>

1035 Barthel, M., & Sauppe, S. (2019). Speech Planning at Turn Transitions in Dialog Is Associated
 1036 With Increased Processing Load. *Cognitive Science*, 43(7), e12768.
 1037 <https://doi.org/10.1111/cogs.12768>

1040 Basso, A., Spinnler, H., Vallar, G., & Zanobio, M. E. (1982). Left hemisphere damage and
 1041 selective impairment of auditory verbal short-term memory. A case study.
 1042 *Neuropsychologia*, 20(3), 263–274. [https://doi.org/10.1016/0028-3932\(82\)90101-4](https://doi.org/10.1016/0028-3932(82)90101-4)

1043 Bock, J. K. (1986a). Meaning, Sound, and Syntax: Lexical Priming in Sentence Production.
 1044 *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 12(4), 575–586.
 1045 <https://doi.org/10.1037/0278-7393.12.4.575>

1046 Bock, J. K. (1986b). Syntactic persistence in language production. *Cognitive Psychology*, 18(3),
 1047 355–387. [https://doi.org/10.1016/0010-0285\(86\)90004-6](https://doi.org/10.1016/0010-0285(86)90004-6)

1048 Bock, K. (1987). An effect of the accessibility of word forms on sentence structures. *Journal of
 1049 Memory and Language*, 26(2), 119–137. [https://doi.org/10.1016/0749-596X\(87\)90120-3](https://doi.org/10.1016/0749-596X(87)90120-3)

1050 Boiteau, T. W., Malone, P. S., Peters, S. A., & Almor, A. (2014). Interference between
 1051 conversation and a concurrent visuomotor task. *Journal of Experimental Psychology:
 1052 General*, 143(1), 295–311. <https://doi.org/10.1037/a0031858>

1053 Botvinick, M., & Bylsma, L. M. (2005). Regularization in Short-Term Memory for Serial Order.
 1054 *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 31(2), 351–358.
 1055 <https://doi.org/10.1037/0278-7393.31.2.351>

1056 Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural
 1057 network model. *Psychological Review*, 113(2), 201–233. [https://doi.org/10.1037/0033-295X.113.2.201](https://doi.org/10.1037/0033-

 1058 295X.113.2.201)

1059 Botvinick, M. M., & Plaut, D. C. (2009). Empirical and computational support for context-
 1060 dependent representations of serial order: Reply to Bowers, Damian, and Davis (2009).
 1061 *Psychological Review*, 116(4), 998–1001. <https://doi.org/10.1037/a0017113>

1062 Brener, R. (1940). An experimental investigation of memory span. *Journal of Experimental
 1063 Psychology*, 26(5), 467–482. <https://doi.org/10.1037/h0061096>

1064 Bresnan, J., Cueni, A., Nikitina, T., & Baayen, R. H. (2007). Predicting the dative alternation.
 1065 *Cognitive Foundations of Interpretation*, 69–94.

1066 Buchsbaum, B. R., & D'Esposito, M. (2018). A sensorimotor view of verbal working memory.
 1067 *Cortex*, 112, 134–148. <https://doi.org/10.1016/j.cortex.2018.11.010>

1068 Buchsbaum, B. R., & D'Esposito, M. (2019). A sensorimotor view of verbal working memory.
 1069 *Cortex*, 112, 134–148. <https://doi.org/10.1016/j.cortex.2018.11.010>

1070 Bybee, J., & McClelland, J. L. (2005). Alternatives to the combinatorial paradigm of linguistic
 1071 theory based on domain general principles of human cognition. *Linguistic Review*, 22
 1072 (2–4), 381–410. <https://doi.org/10.1515/tlir.2005.22.2-4.381>

1073 Caplan, D., & Waters, G. (2013). Memory mechanisms supporting syntactic comprehension.
 1074 *Psychonomic Bulletin and Review*, 20(2), 243–268. doi:10.3758/s13423-012-0369-9

1075 Casalini, C., Brizzolara, D., Chilosi, A., Cipriani, P., Marcolini, S., Pecini, C., Roncoli, S.,
 1076 Burani, C. (2007). Non-Word Repetition in Children with Specific Language
 1077 Impairment: A Deficit in Phonological Working Memory or in Long-Term Verbal
 1078 Knowledge? *Cortex*, 43(6), 769–776. [https://doi.org/10.1016/S0010-9452\(08\)70505-7](https://doi.org/10.1016/S0010-9452(08)70505-7)

1079 Cassidy, K. W., & Kelly, M. H. (1991). Phonological information for grammatical category
 1080 assignments. *Journal of Memory and Language*, 30(3), 348–369.
 1081 [https://doi.org/10.1016/0749-596X\(91\)90041-H](https://doi.org/10.1016/0749-596X(91)90041-H)

1082 Cave, C. B., & Squire, L. R. (1992). Intact verbal and nonverbal short-term memory following
 1083 damage to the human hippocampus. *Hippocampus*, 2(2), 151–163.
 1084 <https://doi.org/10.1002/hipo.450020207>

1085 Chang, F., Dell, G. S., Bock, K., & Griffin, Z. M. (2000). Structural priming as implicit learning:
 1086 A comparison of models of sentence production. *Journal of Psycholinguistic Research*,
 1087 29(2), 217–230.

1088 Chang, F., Dell, G. S., & Bock, K. (2006). Becoming Syntactic. *Psychological Review*, 113(2),
 1089 234–272. <https://doi.org/10.1037/0033-295X.113.2.234>

1090 Christiansen, M. H., Allen, J., & Seidenberg, M. S. (1998, June 1). Learning to Segment Speech
 1091 Using Multiple Cues: A Connectionist Model [Text].
 1092 <https://doi.org/info:doi/10.1080/016909698386528>

1093 Christiansen, M. H., & Monaghan, P. (2016). Division of Labor in Vocabulary Structure:
 1094 Insights From Corpus Analyses. *Topics in Cognitive Science*, 8(3), 610–624.
 1095 <https://doi.org/10.1111/tops.12164>

1096 Clarkson, L., Roodenrys, S., Miller, L. M., & Hulme, C. (2017). The phonological
 1097 neighbourhood effect on short-term memory for order. *Memory*, 25(3), 391–402.
 1098 <https://doi.org/10.1080/09658211.2016.1179330>

1099 Coltheart, V. (1993). Effects of phonological similarity and concurrent irrelevant articulation on
 1100 short-term-memory recall of repeated and novel word lists. *Memory & Cognition*, 21(4),
 1101 539–545. <https://doi.org/10.3758/BF03197185>

1102 Connine, C. M., & Clifton, C. Jr. (1987). Interactive use of lexical information in speech
 1103 perception. *Journal of Experimental Psychology: Human Perception and Performance*,
 1104 13(2), 291–299. <https://doi.org/10.1037/0096-1523.13.2.291>

1105 Cowan, N. (1993). Activation, attention, and short-term memory. *Memory & Cognition*, 21(2),
 1106 162–167. <https://doi.org/10.3758/BF03202728>

1107 Cowan, N. (2008). Chapter 20 What are the differences between long-term, short-term, and
 1108 working memory? In W. S. Sossin, J.-C. Lacaille, V. F. Castellucci, & S. Belleville
 1109 (Eds.), *Progress in Brain Research* (pp. 323–338). [https://doi.org/10.1016/S0079-6123\(07\)00020-9](https://doi.org/10.1016/S0079-6123(07)00020-9)

1111 Cowan, N. (2017). The many faces of working memory and short-term storage. *Psychonomic
 1112 Bulletin & Review*, 24(4), 1158–1170. <https://doi.org/10.3758/s13423-016-1191-6>

1113 Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory
 1114 research. *Journal of Verbal Learning and Verbal Behavior*, 11(6), 671–684.
 1115 [https://doi.org/10.1016/S0022-5371\(72\)80001-X](https://doi.org/10.1016/S0022-5371(72)80001-X)

1116 Crowder, R. G. (1993). Short-term memory: Where do we stand? *Memory & Cognition*, 21(2),
 1117 142–145. <https://doi.org/10.3758/BF03202725>

1118 Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and
 1119 reading. *Journal of Verbal Learning and Verbal Behavior*, 19(4), 450–466.
 1120 [https://doi.org/10.1016/S0022-5371\(80\)90312-6](https://doi.org/10.1016/S0022-5371(80)90312-6)

1121 Dapretto, M., & Bookheimer, S. Y. (1999). Form and Content: Dissociating Syntax and
 1122 Semantics in Sentence Comprehension. *Neuron*, 24(2), 427–432.
 1123 [https://doi.org/10.1016/S0896-6273\(00\)80855-7](https://doi.org/10.1016/S0896-6273(00)80855-7)

1124 De Ruiter, J. P., Mitterer, H., & Enfield, N. J. (2006). Projecting the end of a speaker's turn: A
 1125 cognitive cornerstone of conversation. *Language*, 515–535.

1126 Dell, G. S. (1984). Representation of serial order in speech: Evidence from the repeated phoneme
 1127 effect in speech errors. *Journal of Experimental Psychology: Learning, Memory, and*
 1128 *Cognition*, 10(2), 222–233. <https://doi.org/10.1037/0278-7393.10.2.222>

1129 Dell, G. S. (1986). A Spreading-Activation Theory of Retrieval in Sentence Production.
 1130 *Psychological Review*, 93(3), 283–321. <https://doi.org/10.1037/0033-295X.93.3.283>

1131 Dell, G. S., Burger, L. K., & Svec, W. R. (1997). Language Production and Serial Order: A
 1132 Functional Analysis and a Model. *Psychological Review*, 104(1), 123–147.

1133 Dell, G. S., & Chang, F. (2014). The P-chain: Relating sentence production and its disorders to
 1134 comprehension and acquisition. *Philosophical Transactions of the Royal Society of*
 1135 *London B: Biological Sciences*, 369(1634), 20120394.
 1136 <https://doi.org/10.1098/rstb.2012.0394>

1137 Dell, G. S., Reed, K. D., Adams, D. R., & Meyer, A. S. (2000). Speech Errors, Phonotactic
 1138 Constraints, and Implicit Learning: A Study of the Role of Experience in Language
 1139 Production. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 26
 1140 (6), 1355–1367.

1141 Dell, G. S., & Reich, P. A. (1981). Stages in sentence production: An analysis of speech error
 1142 data. *Journal of Verbal Learning and Verbal Behavior*, 20(6), 611–629.
 1143 [https://doi.org/10.1016/S0022-5371\(81\)90202-4](https://doi.org/10.1016/S0022-5371(81)90202-4)

1144 Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical Access
 1145 in Aphasic and Nonaphasic Speakers. *Psychological Review*, 104(4), 801–838.

1146 Demberg, V., & Keller, F. (2008). Data from eye-tracking corpora as evidence for theories of
 1147 syntactic processing complexity. *Cognition*, 109(2), 193–210.
 1148 <https://doi.org/10.1016/j.cognition.2008.07.008>

1149 Dikker, S., Rabagliati, H., Farmer, T. A., & Pylkkänen, L. (2010). Early occipital sensitivity to
 1150 syntactic category is based on form typicality. *Psychological Science*, 21(5), 629–634.
 1151 <https://doi.org/10.1177/0956797610367751>

1152 Duff, M. C., & Brown-Schmidt, S. (2012). The hippocampus and the flexible use and processing
 1153 of language. *Frontiers in Human Neuroscience*, 6, 69.
 1154 <https://doi.org/10.3389/fnhum.2012.00069>

1155 Ebbinghaus, H. (1885). *Memory: A contribution to experimental psychology*. New York, N.Y.:
 1156 Dover.

1157 Edwards, J., Beckman, M. E., & Munson, B. (2004). The interaction between vocabulary size
 1158 and phonotactic probability effects on children's production accuracy and fluency in
 1159 nonword repetition. *Journal of Speech, Language, and Hearing Research: JSLHR*, 47(2),
 1160 421–436. [https://doi.org/10.1044/1092-4388\(2004/034\)](https://doi.org/10.1044/1092-4388(2004/034))

1161 Ellis, A. W. (1980). Errors in speech and short-term memory: The effects of phonemic similarity
 1162 and syllable position. *Journal of Verbal Learning and Verbal Behavior*, 19(5), 624–634.

1163 Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical
 1164 structure. *Machine Learning*, 7(2–3), 195–225.

1165 Farmer, T. A., Christiansen, M. H., & Monaghan, P. (2006). Phonological typicality influences
 1166 on-line sentence comprehension. *Proceedings of the National Academy of Sciences of the*

1167 *United States of America*, 103(32), 12203–12208.
1168 <https://doi.org/10.1073/pnas.0602173103>

1169 Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language
1170 comprehension. *Psychophysiology*, 44(4), 491–505. <https://doi.org/10.1111/j.1469-8986.2007.00531.x>

1172 Fedorenko, E. (2014). The role of domain-general cognitive control in language comprehension.
1173 *Language Sciences*, 5, 335. <https://doi.org/10.3389/fpsyg.2014.00335>

1174 Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level
1175 linguistic processing in the human brain. *Proceedings of the National Academy of
1176 Sciences*, 108(39), 16428–16433.

1177 Ferreira, F. (1994). Choice of Passive Voice is Affected by Verb Type and Animacy. *Journal of
1178 Memory and Language*, 33(6), 715–736. <https://doi.org/10.1006/jmla.1994.1034>

1179 Fine, A. B., Jaeger, T. F., Farmer, T. A., & Qian, T. (2013). Rapid Expectation Adaptation
1180 during Syntactic Comprehension. *PloS One*, 8(10), e77661.
1181 <https://doi.org/10.1371/journal.pone.0077661>

1182 Fischer-Baum, S. (2018). Chapter Two—A Common Representation of Serial Position in
1183 Language and Memory. In K. D. Federmeier & D. G. Watson (Eds.), *Psychology of
1184 Learning and Motivation* (pp. 31–54). <https://doi.org/10.1016/bs.plm.2018.08.002>

1185 Fischer-Baum, S., & McCloskey, M. (2015). Representation of Item Position in Immediate Serial
1186 Recall: Evidence From Intrusion Errors. *Journal of Experimental Psychology: Learning,
1187 Memory, and Cognition*, No Pagination Specified. <https://doi.org/10.1037/xlm0000102>

1188 Forster, K. I. (1985). Lexical acquisition and the modular lexicon. *Language and Cognitive
1189 Processes*, 1(2), 87–108. <https://doi.org/10.1080/01690968508402073>

1190 Frank, M. C., & Goodman, N. D. (2014). Inferring word meanings by assuming that speakers are
1191 informative. *Cognitive Psychology*, 75, 80–96.
1192 <https://doi.org/10.1016/j.cogpsych.2014.08.002>

1193 Frazier, L. (1987). Sentence processing: A tutorial review. In M. Coltheart (Ed.), *Attention and
1194 Performance XII* (pp. 559–586). Retrieved from <http://doi.apa.org/psycinfo/1987-98557-025>

1195 Gathercole, S. E., Frankish, C. R., Pickering, S. J., & Peaker, S. (1999). Phonotactic influences
1196 on short-term memory. *Journal of Experimental Psychology: Learning, Memory, and
1197 Cognition*, 25(1), 84–95. <https://doi.org/10.1037/0278-7393.25.1.84>

1198 Gennari, S. P., Mirković, J., & MacDonald, M. C. (2012). Animacy and competition in relative
1199 clause production: A cross-linguistic investigation. *Cognitive Psychology*, 65(2),
1200 141–176. <https://doi.org/10.1016/j.cogpsych.2012.03.002>

1201 Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. *Cognition*, 68,
1202 1–76.

1203 Glaser, Y. G., Martin, R. C., Van Dyke, J. A., Hamilton, A. C., & Tan, Y. (2013). Neural basis of
1204 semantic and syntactic interference in sentence comprehension. *Brain and Language*, 126
1205 (3), 314–326.

1206 Epstein, W. (1961). The Influence of Syntactical Structure on Learning. *The American Journal
1207 of Psychology*, 74(1), 80–85. doi:10.2307/1419827

1208

1209 Epstein, W. (1962). A Further Study of the Influence of Syntactical Structure on Learning. *The
1210 American Journal of Psychology*, 75(1), 121-126. doi:10.2307/1419550

1211 Estes, K. G., Evans, J. L., & Else-Quest, N. M. (2007). Differences in the Nonword Repetition
1212 Performance of Children With and Without Specific Language Impairment: A Meta-
1213 Analysis. *Journal of Speech, Language, and Hearing Research*, 50(1), 177–195.
1214 [https://doi.org/10.1044/1092-4388\(2007/015\)](https://doi.org/10.1044/1092-4388(2007/015))

1215 Graves, W. W., Binder, J. R., Desai, R. H., Conant, L. L., & Seidenberg, M. S. (2010). Neural
1216 correlates of implicit and explicit combinatorial semantic processing. *NeuroImage*, 53(2),
1217 638–646. <https://doi.org/10.1016/j.neuroimage.2010.06.055>

1218 Grodner, D., & Gibson, E. (2005). Consequences of the serial nature of linguistic input for
1219 sentential complexity. *Cognitive Science*, 29(2), 261–290.

1220 Guerrette, M.-C., Saint-Aubin, J., Richard, M., & Guérard, K. (2018). Overt language production
1221 plays a key role in the Hebb repetition effect. *Memory & Cognition*, 46(8), 1389–1397.
1222 <https://doi.org/10.3758/s13421-018-0844-2>

1223 Guidali, G., Pisoni, A., Bolognini, N., & Papagno, C. (2019). Keeping order in the brain: The
1224 supramarginal gyrus and serial order in short-term memory. *Cortex; a Journal Devoted to
1225 the Study of the Nervous System and Behavior*, 119, 89–99.
1226 <https://doi.org/10.1016/j.cortex.2019.04.009>

1227 Gupta, P., & Tisdale, J. (2009). Does phonological short-term memory causally determine
1228 vocabulary learning? Toward a computational resolution of the debate. *Journal of
1229 Memory and Language*, 61(4), 481–502.

1230 Hannula, D. E., Tranel, D., & Cohen, N. J. (2006). The long and the short of it: relational
1231 memory impairments in amnesia, even at short lags. *Journal of Neuroscience*, 26(32),
1232 8352-8359. <https://doi.org/10.1523/JNEUROSCI.5222-05.2006>

1233 Hartley, T., & Houghton, G. (1996). A linguistically constrained model of short-term memory
1234 for nonwords. *Journal of Memory and Language*, 35(1), 1–31.
1235 <https://doi.org/10.1006/jmla.1996.0001>

1236 Hartley, T., Hurlstone, M. J., & Hitch, G. J. (2016). Effects of rhythm on memory for spoken
1237 sequences: A model and tests of its stimulus-driven mechanism. *Cognitive Psychology*,
1238 87, 135–178. <https://doi.org/10.1016/j.cogpsych.2016.05.001>

1239 Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an
1240 integral component of information processing. *Trends in Cognitive Sciences*, 19(6),
1241 304–313. <https://doi.org/10.1016/j.tics.2015.04.006>

1242 Hebb, D. O. (1961). Distinctive features of learning in the higher animal. In J. F. Delafresnaye,
1243 (Ed.), *Distinctive features of learning in the higher animal. Brain mechanisms and
1244 learning* Blackwell 37–46. (pp. 37–46). Blackwell.

1245 Henson, R., Hartley, T., Burgess, N., Hitch, G., & Flude, B. (2003). Selective interference with
1246 verbal short-term memory for serial order information: A new paradigm and tests of a
1247 timing-signal hypothesis. *Quarterly Journal of Experimental Psychology Section A*, 56
1248 (8), 1307–1334.

1249 Hepner, C. R., & Nozari, N. (2019). Resource allocation in phonological working memory: Same
1250 or different principles from vision? *Journal of Memory and Language*, 106, 172–188.
1251 <https://doi.org/10.1016/j.jml.2019.03.003>

1252 Hinton, G. E., & Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired
 1253 dyslexia. *Psychological Review*, 98(1), 74–95. <https://doi.org/10.1037/0033-295X.98.1.74>

1255 Hoffman, P., Jefferies, E., Ehsan, S., Jones, R. W., & Lambon Ralph, M. A. (2009). Semantic
 1256 memory is key to binding phonology: Converging evidence from immediate serial recall
 1257 in semantic dementia and healthy participants. *Neuropsychologia*, 47(3), 747–760.
 1258 <https://doi.org/10.1016/j.neuropsychologia.2008.12.001>

1259 Howard, D., & Nickels, L. (2005). Separating input and output phonology: Semantic,
 1260 phonological, and orthographic effects in short-term memory impairment. *Cognitive
 1261 Neuropsychology*, 22(1), 42–77. <https://doi.org/10.1080/02643290342000582>

1262 Hsiao, Y., Gao, Y., & MacDonald, M. C. (2014). Agent-patient similarity affects sentence
 1263 structure in language production: Evidence from subject omissions in Mandarin.
 1264 *Frontiers in Psychology*, 5, 1015.

1265 Hughes, R. W., Chamberland, C., Tremblay, S., & Jones, D. M. (2016). Perceptual-motor
 1266 determinants of auditory-verbal serial short-term memory. *Journal of Memory and
 1267 Language*, 90, 126–146.

1268 Hulme, C., Roodenrys, S., Schweickert, R., Brown, G. D., Martin, S., & Stuart, G. (1997). Word-
 1269 frequency effects on short-term memory tasks: Evidence for a redintegration process in
 1270 immediate serial recall. *Journal of Experimental Psychology: Learning, Memory, and
 1271 Cognition*, 23(5), 1217.

1272 Hulme, C., & Tordoff, V. (1989). Working memory development: The effects of speech rate,
 1273 word length, and acoustic similarity on serial recall. *Journal of Experimental Child
 1274 Psychology*, 47(1), 72–87. [https://doi.org/10.1016/0022-0965\(89\)90063-5](https://doi.org/10.1016/0022-0965(89)90063-5)

1275 Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across
 1276 domains: An overview of the literature and directions for future research. *Psychological
 1277 Bulletin*, 140(2), 339–373. <https://doi.org/10.1037/a0034221>

1278 Ingvalson, E. M., Dhar, S., Wong, P. C. M., & Liu, H. (2015). Working memory training to
 1279 improve speech perception in noise across languages. *The Journal of the Acoustical
 1280 Society of America*, 137(6), 3477–3486. <https://doi.org/10.1121/1.4921601>

1281 Jacquemot, C., Dupoux, E., Decouche, O., & Bachoud-Lévi, A.-C. (2006). Misperception in
 1282 sentences but not in words: Speech perception and the phonological buffer. *Cognitive
 1283 Neuropsychology*, 23(6), 949–971. <https://doi.org/10.1080/02643290600625749>

1284 Jefferies, E., Jones, R. W., Bateman, D., & Ralph, M. A. L. (2005). A semantic contribution to
 1285 nonword recall? Evidence for intact phonological processes in semantic dementia.
 1286 *Cognitive Neuropsychology*, 22(2), 183–212.
 1287 <https://doi.org/10.1080/02643290442000068>

1288 Joanisse, M. F., & McClelland, J. L. (2015). Connectionist perspectives on language learning,
 1289 representation and processing. *Wiley Interdisciplinary Reviews: Cognitive Science*, n/a-
 1290 n/a. <https://doi.org/10.1002/wcs.1340>

1291 Joanisse, M. F., & Seidenberg, M. S. (2003). Phonology and syntax in specific language
 1292 impairment: Evidence from a connectionist model. *Brain and Language*, 86(1), 40–56.

1293 Jones, T., & Farrell, S. (2018). Does syntax bias serial order reconstruction of verbal short-term
 1294 memory? *Journal of Memory and Language*, 100, 98–122.
 1295 <https://doi.org/10.1016/j.jml.2018.02.001>

1296 Jones, G., Justice, L. V., Cabiddu, F., Lee, B. J., Iao, L. S., Harrison, N., & Macken, B. (2020).
 1297 Does short-term memory develop?. *Cognition*.
 1298 <https://doi.org/10.1016/j.cognition.2020.104200>

1299 Jones, D., & Macken, W. (2018). In the beginning was the deed: Verbal short-term memory as
 1300 object-oriented action. *Current Directions In Psychological Science*, 27, 351–356.
 1301 <https://doi.org/10.1177/0963721418765796>

1302 Jones, G., & Macken, B. (2015). Questioning short-term memory and its measurement: Why
 1303 digit span measures long-term associative learning. *Cognition*, 144, 1–13.

1304 Jones, D. M., Macken, W. J., & Nicholls, A. P. (2004). The phonological store of working
 1305 memory: Is it phonological and is it a store? *Journal of Experimental Psychology:
 1306 Learning, Memory, and Cognition*, 30(3), 656–674. <https://doi.org/10.1037/0278-7393.30.3.656>

1308 Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual
 1309 differences in working memory. *Psychological Review*, 99(1), 122.

1310 Kaiser, E. (2012). Taking Action: A Cross-Modal Investigation of Discourse-Level
 1311 Representations. *Frontiers in Psychology*, 3. <https://doi.org/10.3389/fpsyg.2012.00156>

1312 Kalm, K., & Norris, D. (2014). The Representation of Order Information in Auditory-Verbal
 1313 Short-Term Memory. *Journal of Neuroscience*, 34(20), 6879–6886.
 1314 <https://doi.org/10.1523/JNEUROSCI.4104-13.2014>

1315 Kemper, S., Hoffman, L., Schmalzried, R., Herman, R., & Kieweg, D. (2011). Tracking talking:
 1316 Dual task costs of planning and producing speech for young versus older adults. *Aging,
 1317 Neuropsychology, and Cognition*, 18(3), 257–279.
 1318 <https://doi.org/10.1080/13825585.2010.527317>

1319 Klem, M., Melby-Lervåg, M., Hagtvet, B., Lyster, S.-A. H., Gustafsson, J.-E., & Hulme, C.
 1320 (2015). Sentence repetition is a measure of children's language skills rather than working
 1321 memory limitations. *Developmental Science*, 18, 146–154.
 1322 <https://doi.org/10.1111/desc.12202>

1323 Kolers, P. A., & Roediger III, H. L. (1984). Procedures of mind. *Journal of Verbal Learning and
 1324 Verbal Behavior*, 23(4), 425–449. [https://doi.org/10.1016/S0022-5371\(84\)90282-2](https://doi.org/10.1016/S0022-5371(84)90282-2)

1325 Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language
 1326 comprehension? *Language, Cognition and Neuroscience*, 31(1), 32–59.
 1327 <https://doi.org/10.1080/23273798.2015.1102299>

1328 Leminen, A., Smolka, E., Duñabeitia, J. A., & Pliatsikas, C. (2019). Morphological processing in
 1329 the brain: The good (inflection), the bad (derivation) and the ugly (compounding). *Cortex*
 1330 , 116, 4–44. <https://doi.org/10.1016/j.cortex.2018.08.016>

1331 Levelt, W. J. (1993). *Speaking: From intention to articulation* (Vol. 1). Retrieved from
 1332 <https://books-google-com.ezproxy.library.wisc.edu/books?hl=en&lr=&id=LbVCdCE-NQAC&oi=fnd&pg=PR13&dq=willem+levelt&ots=JZgFOf6cxM&sig=RJgg78qN4IqG-ZIDkHjZ3YQqE0k>

1335 Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech
 1336 production. *Behavioral and Brain Sciences*, 22(01), 1–38.

1337 Levinson, S. C. (2016). Turn-taking in Human Communication – Origins and Implications for
 1338 Language Processing. *Trends in Cognitive Sciences*, 20(1), 6–14.

1339 https://doi.org/10.1016/j.tics.2015.10.010

1340 Lewandowsky, S., & Farrell, S. (2000). A redintegration account of the effects of speech rate,
1341 lexicality, and word frequency in immediate serial recall. *Psychological Research*, 63(2),
1342 163–173.

1343 Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working
1344 memory in sentence comprehension. *Trends in Cognitive Sciences*, 10(10), 447–454.

1345 Lombardi, L., & Potter, M. C. (1992). The regeneration of syntax in short term memory. *Journal*
1346 *of Memory and Language*, 31(6), 713–733. https://doi.org/10.1016/0749-596X(92)90036
1347 -W

1348 MacDonald, M. C., & Seidenberg, M. S. (2006). Constraint satisfaction accounts of lexical and
1349 sentence comprehension. *Handbook of Psycholinguistics*, 2, 581–611.

1350 MacDonald, M. C. (1994). Probabilistic constraints and syntactic ambiguity resolution.
1351 *Language and Cognitive Processes*, 9(2), 157–201.
1352 https://doi.org/10.1080/01690969408402115

1353 MacDonald, M. C. (2013). How language production shapes language form and comprehension.
1354 *Frontiers in Psychology*, 4, 226. https://doi.org/10.3389/fpsyg.2013.00226

1355 MacDonald, M. C. (2016). Speak, act, remember: The language-production basis of serial order
1356 and maintenance in verbal memory. *Current Directions in Psychological Science*, 25(1),
1357 47–53. https://doi.org/10.1177/0963721415620776

1358 MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: Comment on
1359 Just and Carpenter (1992) and Waters and Caplan (1996). *Psychological Review*, 109(1),
1360 35–54; discussion 55–74.

1361 MacDonald, M. C., & Hsiao, Y. (2018). Sentence Comprehension. In S.-A. Rueschemeyer & G.
1362 Gaskell (Eds.), *Oxford Handbook of Psycholinguistics* (2nd Edition, pp. 171–196).
1363 Oxford, UK: Oxford University Press.

1364 Macken, W. J., Taylor, J. C., & Jones, D. M. (2014). Language and short-term memory: The role
1365 of perceptual-motor affordance. *Journal of Experimental Psychology: Learning, Memory,*
1366 *and Cognition*, 40, 1257–1270. doi:10.1037/a0036845

1367 Majerus, S. (2009). Verbal short-term memory and temporary activation of language
1368 representations: The importance of distinguishing item and order information. In
1369 *Interactions between short-term and long-term memory in the verbal domain* (pp.
1370 244–276). New York, NY, US: Psychology Press.

1371 Majerus, S. (2013). Language repetition and short-term memory: An integrative framework.
1372 *Frontiers in Human Neuroscience*, 7. https://doi.org/10.3389/fnhum.2013.00357

1373 Majerus, S. (2019). Verbal working memory and the phonological buffer: The question of serial
1374 order. *Cortex*, 112, 122–133. https://doi.org/10.1016/j.cortex.2018.04.016

1375 Majerus, S., Attout, L., Artielle, M.-A., & Van der Kaa, M.-A. (2015). The heterogeneity of
1376 verbal short-term memory impairment in aphasia. *Neuropsychologia*, 77, 165–176.

1377 Majerus, S., Belayachi, S., De Smedt, B., Leclercq, A. L., Martinez, T., Schmidt, C., Weekes, B.,
1378 & Maquet, P. (2008). Neural networks for short-term memory for order differentiate high
1379 and low proficiency bilinguals. *Neuroimage*, 42(4), 1698–1713.
1380 https://doi.org/10.1016/j.neuroimage.2008.06.003

1381 Majerus, S., & D'Argembeau, A. (2011). Verbal short-term memory reflects the organization of
 1382 long-term memory: Further evidence from short-term memory for emotional words.
 1383 *Journal of Memory and Language*, 64(2), 181–197.
 1384 <https://doi.org/10.1016/j.jml.2010.10.003>

1385 Majerus, S., Norris, D., & Patterson, K. (2007). What does a patient with semantic dementia
 1386 remember in verbal short-term memory? Order and sound but not words. *Cognitive*
 1387 *Neuropsychology*, 24(2), 131-151. <https://doi.org/10.1080/02643290600989376>

1388 Majerus, S., Van der Linden, M., Mulder, L., Meulemans, T., & Peters, F. (2004). Verbal short-
 1389 term memory reflects the sublexical organization of the phonological language network:
 1390 Evidence from an incidental phonotactic learning paradigm. *Journal of Memory and*
 1391 *Language*, 51(2), 297–306.

1392 Martin, N., Dell, G. S., Saffran, E. M., & Schwartz, M. F. (1994). Origins of Paraphasias in Deep
 1393 Dysphasia: Testing the Consequences of a Decay Impairment to an Interactive Spreading
 1394 Activation Model of Lexical Retrieval. *Brain and Language*, 47(4), 609–660.
 1395 <https://doi.org/10.1006/brln.1994.1061>

1396 Majerus, S., Poncelet, M., Van der Linden, M., Albouy, G., Salmon, E., Sterpenich, V.,
 1397 Vandewalle, G., Collette, F., & Maquet, P. (2006). The left intraparietal sulcus and verbal
 1398 short-term memory: Focus of attention or serial order?. *Neuroimage*, 32(2), 880-891.
 1399 <https://doi.org/10.1016/j.neuroimage.2006.03.048>

1400 Martin, N., & Saffran, E. M. (1992). A computational account of deep dysphasia: Evidence from
 1401 a single case study. *Brain and Language*, 43(2), 240–274. [https://doi.org/10.1016/0093-934X\(92\)90130-7](https://doi.org/10.1016/0093-934X(92)90130-7)

1403 Martin, N., Saffran, E. M., & Dell, G. S. (1996). Recovery in deep dysphasia: Evidence for a
 1404 relation between auditory–verbal STM capacity and lexical errors in repetition. *Brain and*
 1405 *Language*, 52(1), 83–113. <https://doi.org/10.1006/brln.1996.0005>

1406 Martin, R. C., Shelton, J. R., & Yaffee, L. S. (1994). Language Processing and Working
 1407 Memory: Neuropsychological Evidence for Separate Phonological and Semantic
 1408 Capacities. *Journal of Memory and Language*, 33(1), 83–111.
 1409 <https://doi.org/10.1006/jmla.1994.1005>

1410 Martin, R. C. (1987). Articulatory and phonological deficits in short-term memory and their
 1411 relation to syntactic processing. *Brain and Language*, 32(1), 159–192.
 1412 [https://doi.org/10.1016/0093-934X\(87\)90122-2](https://doi.org/10.1016/0093-934X(87)90122-2)

1413 Martin, R. C. (1993). Short-term memory and sentence processing: Evidence from
 1414 neuropsychology. *Memory & Cognition*, 21(2), 176–183.
 1415 <https://doi.org/10.3758/BF03202730>

1416 Martin, R. C., & Breedin, S. D. (1992). Dissociations between speech perception and
 1417 phonological short-term memory deficits. *Cognitive Neuropsychology*, 9(6), 509–534.
 1418 <https://doi.org/10.1080/02643299208252070>

1419 Martin, R. C., & Freedman, M. L. (2001). Short-term retention of lexical-semantic
 1420 representations: Implications for speech production. *Memory (Hove, England)*, 9(4),
 1421 261–280. <https://doi.org/10.1080/09658210143000173>

1422 Martin, R. C., & He, T. (2004). Semantic short-term memory and its role in sentence processing:
 1423 A replication. *Brain and Language*, 89(1), 76–82. [https://doi.org/10.1016/S0093-934X\(03\)00300-6](https://doi.org/10.1016/S0093-934X(03)00300-6)

1425 Martin, R. C., Lesch, M. F., & Bartha, M. C. (1999). Independence of Input and Output
 1426 Phonology in Word Processing and Short-Term Memory. *Journal of Memory and*
 1427 *Language*, 41(1), 3–29. <https://doi.org/10.1006/jmla.1999.2637>

1428 Martin, R. C., & Romani, C. (1994). Verbal working memory and sentence comprehension: A
 1429 multiple-components view. *Neuropsychology*, 8(4), 506–523.
 1430 <https://doi.org/10.1037/0894-4105.8.4.506>

1431 Mayberry, M. R., Crocker, M. W., & Knoeferle, P. (2009). Learning to attend: A connectionist
 1432 model of situated language comprehension. *Cognitive Science*, 33(3), 449–496.

1433 McCauley, S. M., & Christiansen, M. H. (2014). Acquiring formulaic language: A computational
 1434 model. *The Mental Lexicon*, 9(3), 419–436. <https://doi.org/10.1075/ml.9.3.03mcc>

1435 McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M.
 1436 S., & Smith, L. B. (2010). Letting structure emerge: Connectionist and dynamical
 1437 systems approaches to cognition. *Trends in Cognitive Sciences*, 14(8), 348–356.
 1438 <https://doi.org/10.1016/j.tics.2010.06.002>

1439 McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. *Cognitive
 1440 Psychology*, 18(1), 1–86.

1441 Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity
 1442 for processing information. *Psychological Review*, 63(2), 81–97.
 1443 <https://doi.org/10.1037/h0043158>

1444 Miller, G. A., & Selfridge, J. A. (1950). Verbal context and the recall of meaningful material.
 1445 *The American Journal of Psychology*, 63, 176–185. <https://doi.org/10.2307/1418920>

1446 Monaghan, P., & Woollams, A. M. (2017). Implementing the “Simple” model of reading
 1447 deficits: A connectionist investigation of interactivity. In *Neurocomputational Models of
 1448 Cognitive Development and Processing: Proceedings of the 14th Neural Computation
 1449 and Psychology Workshop* (pp. 69–81).

1450 Montag, J. L., Matsuki, K., Kim, J. Y., & MacDonald, M. C. (2017). Language Specific and
 1451 Language General Motivations of Production Choices: A Multi-Clause and Multi-
 1452 Language Investigation. *Collabra: Psychology*, 3(1). <https://doi.org/10.1525/collabra.94>

1453 Murdock Jr., B. B. (1962). The serial position effect of free recall. *Journal of Experimental
 1454 Psychology*, 64(5), 482–488. <https://doi.org/10.1037/h0045106>

1455 Norris, D. (2017). Short-term memory and long-term memory are still different. *Psychological
 1456 Bulletin*, 143(9), 992–1009. <https://doi.org/10.1037/bul0000108>

1457 Nozari, N., & Dell, G. S. (2012). Feature migration in time: Reflection of selective attention on
 1458 speech errors. *Journal of Experimental Psychology. Learning, Memory, and Cognition*,
 1459 38(4), 1084–1090. <https://doi.org/10.1037/a0026933>

1460 Nozari, N., & Novick, J. (2017). Monitoring and Control in Language Production. *Current
 1461 Directions in Psychological Science*, 26(5), 403–410.
 1462 <https://doi.org/10.1177/0963721417702419>

1463 Nozari, N., & Thompson-Schill, S. L. (2013). More attention when speaking: Does it help or
 1464 does it hurt? *Neuropsychologia*, 51(13), 2770–2780.
 1465 <https://doi.org/10.1016/j.neuropsychologia.2013.08.019>

1466 Nozari, N., Trueswell, J. C., & Thompson-Schill, S. L. (2016). The interplay of local attraction,
 1467 context and domain-general cognitive control in activation and suppression of semantic

1468 distractors during sentence comprehension. *Psychonomic Bulletin & Review*, 23(6),
1469 1942–1953. <https://doi.org/10.3758/s13423-016-1068-8>

1470 Nygaard, L. C., Cook, A. E., & Namy, L. L. (2009). Sound to meaning correspondences
1471 facilitate word learning. *Cognition*, 112(1), 181–186.
1472 <https://doi.org/10.1016/j.cognition.2009.04.001>

1473 Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory
1474 capacity? *Psychological Bulletin*, 142(7), 758–799. <https://doi.org/10.1037/bul0000046>

1475 Oberauer, K., Jones, T., & Lewandowsky, S. (2015). The Hebb repetition effect in simple and
1476 complex memory span. *Memory & Cognition*, 43(6), 852–865.
1477 <https://doi.org/10.3758/s13421-015-0512-8>

1478 Page, M. P. A., & Norris, D. (2009). A model linking immediate serial recall, the Hebb repetition
1479 effect and the learning of phonological word forms. *Philosophical Transactions of the
1480 Royal Society B: Biological Sciences*, 364(1536), 3737–3753.
1481 <https://doi.org/10.1098/rstb.2009.0173>

1482 Page, M. P., Madge, A., Cumming, N., & Norris, D. G. (2007). Speech errors and the
1483 phonological similarity effect in short-term memory: Evidence suggesting a common
1484 locus. *Journal of Memory and Language*, 56(1), 49–64.

1485 Page, M. P. A., Cumming, N., Norris, D., McNeil, A. M., & Hitch, G. J. (2013). Repetition-
1486 spacing and item-overlap effects in the Hebb repetition task. *Journal of Memory and
1487 Language*, 69(4), 506–526. <https://doi.org/10.1016/j.jml.2013.07.001>

1488 Patterson, K., Graham, N., & Hodges, J. R. (1994). The impact of semantic memory loss on
1489 phonological representations. *Journal of Cognitive Neuroscience*, 6(1), 57–69.
1490 <https://doi.org/10.1162/jocn.1994.6.1.57>

1491 Penfield, W., & Milner, B. (1958). Memory Deficit Produced by Bilateral Lesions in the
1492 Hippocampal Zone. *A.M.A. Archives of Neurology & Psychiatry*, 79(5), 475–497.
1493 <https://doi.org/10.1001/archneurpsyc.1958.02340050003001>

1494 Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., Botvinivk, M.,
1495 Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning from brain
1496 activation. *Nature Communications*, 9(1), 963. <https://doi.org/10.1038/s41467-018-03068>
1497 -4

1498 Perham, N., Marsh, J. E., & Jones, D. M. (2009). Syntax and serial recall: How language
1499 supports short-term memory for order. *The Quarterly Journal of Experimental
1500 Psychology*, 62(7), 1285–1293. <https://doi.org/10.1080/17470210802635599>

1501 Pickering, M. J., & Ferreira, V. S. (2008). Structural priming: A critical review. *Psychological
1502 Bulletin*, 134(3), 427–459. <https://doi.org/10.1037/0033-2909.134.3.427>

1503 Plaut, D. C., & Kello, C. T. (1999). The emergence of phonology from the interplay of speech
1504 comprehension and production: A distributed connectionist approach. In B. MacWhinney
1505 (Ed.), *The Emergence of Language* (pp. 381–415). Psychology Press.

1506 Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal
1507 and impaired word reading: Computational principles in quasi-regular domains.
1508 *Psychological Review*, 103(1), 56–115.

1509 Poirier, M., & Saint-Aubin, J. (1996). Immediate serial recall, word frequency, item identity and
1510 item position. *Canadian Journal of Experimental Psychology/Revue Canadienne de*

1511 *Psychologie Expérimentale*, 50(4), 408–412. <https://doi.org/10.1037/1196-1961.50.4.408>

1512 Poirier, M., Saint-Aubin, J., Mair, A., Tehan, G., & Tolan, A. (2014). Order recall in verbal short
1513 -term memory: The role of semantic networks. *Memory & Cognition*, 43(3), 489–499.
1514 <https://doi.org/10.3758/s13421-014-0470-6>

1515 Postle, B. R. (2006). Working memory as an emergent property of the mind and brain.
1516 *Neuroscience*, 139(1), 23–38. <https://doi.org/10.1016/j.neuroscience.2005.06.005>

1517 Potter, M. C., & Lombardi, L. (1998). Syntactic priming in immediate recall of sentences.
1518 *Journal of Memory and Language*, 38(3), 265–282.

1519 Ramscar, M., & Port, R. F. (2016). How spoken languages work in the absence of an inventory
1520 of discrete units. *Language Sciences*, 53, 58–74.
1521 <https://doi.org/10.1016/j.langsci.2015.08.002>

1522 Roodenrys, S., & Hinton, M. (2002). Sublexical or lexical effects on serial recall of nonwords?
1523 *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 28(1), 29–33.
1524 <https://doi.org/10.1037/0278-7393.28.1.29>

1525 Roodenrys, S., Hulme, C., Lethbridge, A., Hinton, M., & Nimmo, L. M. (2002). Word-frequency
1526 and phonological-neighborhood effects on verbal short-term memory. *Journal of
1527 Experimental Psychology: Learning, Memory, and Cognition*, 28(6), 1019.

1528 Rosenbaum, D. A., Cohen, R. G., Jax, S. A., Weiss, D. J., & van der Wel, R. (2007). The
1529 problem of serial order in behavior: Lashley's legacy. *Human Movement Science*, 26(4),
1530 525–554. <https://doi.org/10.1016/j.humov.2007.04.001>

1531 Rubin, R. D., Watson, P. D., Duff, M. C., & Cohen, N. J. (2014). The role of the hippocampus in
1532 flexible cognition and social behavior. *Frontiers in Human Neuroscience*, 8, 742.
1533 <https://doi.org/10.3389/fnhum.2014.00742>

1534 Rueckl, J. G., Mikolinski, M., Raveh, M., Miner, C. S., & Mars, F. (1997). Morphological
1535 Priming, Fragment Completion, and Connectionist Networks. *Journal of Memory and
1536 Language*, 36(3), 382–405. <https://doi.org/10.1006/jmla.1996.2489>

1537 Saffran, E. M., & Martin, N. (1997). Language and auditory-verbal short-term memory
1538 impairments: Evidence for common underlying processes. *Cognitive Neuropsychology*,
1539 14(5), 641–682.

1540 Saint-Aubin, J., & Poirier, M. (1999). The Influence of Long-term Memory Factors on
1541 Immediate Serial Recall: An Item and Order Analysis. *International Journal of
1542 Psychology*, 34(5–6), 347–352. <https://doi.org/10.1080/002075999399675>

1543 Savill, N., Cornelissen, P., Whiteley, J., Woollams, A., & Jefferies, E. (2019). Individual
1544 differences in verbal short-term memory and reading aloud: Semantic compensation for
1545 weak phonological processing across tasks. *Journal of Experimental Psychology:
1546 Learning, Memory, and Cognition*, 45(10), 1815–1831.
1547 <https://doi.org/10.1037/xlm0000675>

1548 Savill, N., Ellis, R., Brooke, E., Koa, T., Ferguson, S., Rojas-Rodriguez, E., Arnold, D.,
1549 Smallwood, J., Jefferies, E. (2017). Keeping it together: Semantic coherence stabilizes
1550 phonological sequences in short-term memory. *Memory & Cognition*, 1–12.
1551 <https://doi.org/10.3758/s13421-017-0775-3>

1552 Savill, N. J., Cornelissen, P., Pahor, A., & Jefferies, E. (2019). RTMS evidence for a dissociation
1553 in short-term memory for spoken words and nonwords. *Cortex*, 112, 5–22.

1554 https://doi.org/10.1016/j.cortex.2018.07.021

1555 Schmidtke, D., Conrad, M., & Jacobs, A. M. (2014). Phonological iconicity. *Frontiers in*
1556 *Psychology*, 5. https://doi.org/10.3389/fpsyg.2014.00080

1557 Scoville, W. B., & Milner, B. (1957). Loss of Recent Memory After Bilateral Hippocampal
1558 Lesions. *Journal of Neurology, Neurosurgery, and Psychiatry*, 20(1), 11–21.

1559 Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word
1560 recognition and naming. *Psychological Review*, 96(4), 523–568.

1561 Seidenberg, M. S., Plaut, D. C., Petersen, A. S., McClelland, J. L., & McRae, K. (1994).
1562 Nonword pronunciation and models of word recognition. *Journal of Experimental*
1563 *Psychology. Human Perception and Performance*, 20(6), 1177–1196.

1564 Seidenberg, M. S. (1997). Language acquisition and use: Learning and applying probabilistic
1565 constraints. (Cover story). *Science*, 275(5306), 1599. Retrieved from aph.

1566 Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the
1567 convergence of codes. *Trends in Cognitive Sciences*, 4(9), 353–361.
1568 https://doi.org/10.1016/S1364-6613(00)01515-1

1569 Seidenberg, M. S., & MacDonald, M. C. (2018). The Impact of Language Experience on
1570 Language and Reading: A Statistical Learning Approach. *Topics in Language Disorders*,
1571 38(1), 66–83. https://doi.org/10.1097/TLD.0000000000000144

1572 Seidenberg, M. S., & Tanenhaus, M. K. (1979). Orthographic effects on rhyme monitoring.
1573 *Journal of Experimental Psychology: Human Learning and Memory*, 5(6), 546–554.
1574 https://doi.org/10.1037/0278-7393.5.6.546

1575 Seidenberg, M. S., Tanenhaus, M. K., Leiman, J. M., & Bienkowski, M. (1982). Automatic
1576 access of the meanings of ambiguous words in context: Some limitations of knowledge-
1577 based processing. *Cognitive Psychology*, 14(4), 489–537.

1578 Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A
1579 neuropsychological study. *Quarterly Journal of Experimental Psychology*, 22(2),
1580 261–273. https://doi.org/10.1080/00335557043000203

1581 Shallice, T., & Butterworth, B. (1977). Short-term memory impairment and spontaneous speech.
1582 *Neuropsychologia*, 15(6), 729–735. https://doi.org/10.1016/0028-3932(77)90002-1

1583 Shallice, T., & Papagno, C. (2019). Impairments of auditory-verbal short-term memory: Do
1584 selective deficits of the input phonological buffer exist? *Cortex*, 112, 107–121.
1585 https://doi.org/10.1016/j.cortex.2018.10.004

1586 Shallice, T., & Warrington, E. K. (1974). The dissociation between short term retention of
1587 meaningful sounds and verbal material. *Neuropsychologia*, 12(4), 553–555.
1588 https://doi.org/10.1016/0028-3932(74)90087-6

1589 Siegelman, M., Blank, I. A., Mineroff, Z., & Fedorenko, E. (2019). An Attempt to Conceptually
1590 Replicate the Dissociation between Syntax and Semantics during Sentence
1591 Comprehension. *Neuroscience*, 413, 219–229.
1592 https://doi.org/10.1016/j.neuroscience.2019.06.003

1593 Silveri, M. C., & Cappa, A. (2003). Segregation of the Neural Correlates of Language and
1594 Phonological Short-Term Memory. *Cortex*, 39(4), 913–925.
1595 https://doi.org/10.1016/S0010-9452(08)70870-0

1596 Solomon, E. S., & Pearlmuter, N. J. (2004). Semantic integration and syntactic planning in
 1597 language production. *Cognitive Psychology*, 49(1), 1–46.
 1598 <https://doi.org/10.1016/j.cogpsych.2003.10.001>

1599 Soveri, A., Antfolk, J., Karlsson, L., Salo, B., Laine, M. (2017). Working memory training
 1600 revisited: A multi-level meta-analysis of n-back training studies. *Psychonomic Bulletin
 1601 and Review* 24(4), 1077–1096, doi:10.3758/s13423-016-1217-0

1602 Stallings, L. M., & MacDonald, M. C. (2011). It's not just the "heavy NP": Relative phrase
 1603 length modulates the production of heavy-NP shift. *Journal of Psycholinguistic Research*,
 1604 40(3), 177–187. <https://doi.org/10.1007/s10936-010-9163-x>

1605 Staub, A. (2010). Eye movements and processing difficulty in object relative clauses. *Cognition*,
 1606 116(1), 71–86. <https://doi.org/10.1016/j.cognition.2010.04.002>

1607 Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., ... Levinson, S.
 1608 C. (2009). Universals and cultural variation in turn-taking in conversation. *Proceedings
 1609 of the National Academy of Sciences*, 106(26), 10587–10592.
 1610 <https://doi.org/10.1073/pnas.0903616106>

1611 Stroop, J. R. (1935). Studies of interference in serial verbal reactions. *Journal of Experimental
 1612 Psychology*, 18(6), 643–662. <https://doi.org/10.1037/h0054651>

1613 Stuart, G. P., & Hulme, C. (2009). Lexical and semantic influences on immediate serial recall: A
 1614 role for redintegration. *Interactions between Short-Term and Long-Term Memory in the
 1615 Verbal Domain*, 157–76.

1616 Szewczyk, J. M., Marecka, M., Chiat, S., & Wodniecka, Z. (2018). Nonword repetition depends
 1617 on the frequency of sublexical representations at different grain sizes: Evidence from a
 1618 multi-factorial analysis. *Cognition*, 179, 23–36.
 1619 <https://doi.org/10.1016/j.cognition.2018.06.002>

1620 Szmałec, A., Duyck, W., Vandierendonck, A., Mata, A. B., & Page, M. P. A. (2009). The Hebb
 1621 repetition effect as a laboratory analogue of novel word learning. *Quarterly Journal of
 1622 Experimental Psychology* (2006), 62(3), 435–443.
 1623 <https://doi.org/10.1080/17470210802386375>

1624 Tanida, Y., Nakayama, M., & Saito, S. (2019). The interaction between temporal grouping and
 1625 phonotactic chunking in short-term serial order memory for novel verbal sequences.
 1626 *Memory*, 27(4), 507–518. <https://doi.org/10.1080/09658211.2018.1532008>

1627 Tanida, Y., Ueno, T., Lambon Ralph, M. A., & Saito, S. (2015). The roles of long-term
 1628 phonotactic and lexical prosodic knowledge in phonological short-term memory. *Memory
 1629 & Cognition*, 43(3), 500–519. <https://doi.org/10.3758/s13421-014-0482-2>

1630 Thorn, A. S. C., & Frankish, C. R. (2005). Long-Term Knowledge Effects on Serial Recall of
 1631 Nonwords Are Not Exclusively Lexical. *Journal of Experimental Psychology: Learning,
 1632 Memory, and Cognition*, 31(4), 729–735. <https://doi.org/10.1037/0278-7393.31.4.729>

1633 Torreira, F., Bögels, S., & Levinson, S. C. (2015). Breathing for answering: The time course of
 1634 response planning in conversation. *Language Sciences*, 6, 284.
 1635 <https://doi.org/10.3389/fpsyg.2015.00284>

1636 Ueno, T., Saito, S., Rogers, T. T., & Lambon Ralph, M. A. (2011). Lichtheim 2: Synthesizing
 1637 aphasia and the neural basis of language in a neurocomputational model of the dual
 1638 dorsal-ventral language pathways. *Neuron*, 72(2), 385–396.
 1639 <https://doi.org/10.1016/j.neuron.2011.09.013>

1640 Ueno, T., Saito, S., Saito, A., Tanida, Y., Patterson, K., & Lambon Ralph, M. A. (2014). Not
 1641 Lost in Translation: Generalization of the Primary Systems Hypothesis to Japanese-
 1642 specific Language Processes. *Journal of Cognitive Neuroscience*, 26(2), 433–446.
 1643 https://doi.org/10.1162/jocn_a_00467

1644 Vallar, G., & Baddeley, A. D. (1984). Phonological short-term store, phonological processing
 1645 and sentence comprehension: A neuropsychological case study. *Cognitive
 1646 Neuropsychology*, 1(2), 121–141. <https://doi.org/10.1080/02643298408252018>

1647 Van de Cavey, J., & Hartsuiker, R. J. (2016). Is there a domain-general cognitive structuring
 1648 system? Evidence from structural priming across music, math, action descriptions, and
 1649 language. *Cognition*, 146, 172–184. <https://doi.org/10.1016/j.cognition.2015.09.013>

1650 Van Dyke, J. A., & Johns, C. L. (2012). Memory Interference as a Determinant of Language
 1651 Comprehension. *Language and Linguistics Compass*, 6(4), 193–211.
 1652 <https://doi.org/10.1002/lnc3.330>

1653 Walker, I., & Hulme, C. (1999). Concrete words are easier to recall than abstract words:
 1654 Evidence for a semantic contribution to short-term serial recall. *Journal of Experimental
 1655 Psychology: Learning, Memory, and Cognition*, 25(5), 1256–1271.
 1656 <https://doi.org/10.1037/0278-7393.25.5.1256>

1657 Warrington, E.K., & Shallice, T. (1969). *The selective impairment of auditory verbal short-term
 1658 memory*. 92, 885–896.

1659 Warrington, E. K., Logue, V., & Pratt, R. T. C. (1971). The anatomical localisation of selective
 1660 impairment of auditory verbal short-term memory. *Neuropsychologia*, 9(4), 377–387.
 1661 [https://doi.org/10.1016/0028-3932\(71\)90002-9](https://doi.org/10.1016/0028-3932(71)90002-9)

1662 Warrington, Elizabeth K., & Shallice, T. (1972). Neuropsychological Evidence of Visual Storage
 1663 in Short-term Memory Tasks. *Quarterly Journal of Experimental Psychology*, 24(1),
 1664 30–40. <https://doi.org/10.1080/14640747208400265>

1665 Watkins, O. C., & Watkins, M. J. (1977). Serial recall and the modality effect: Effects of word
 1666 frequency. *Journal of Experimental Psychology: Human Learning and Memory*, 3(6),
 1667 712–718. <https://doi.org/10.1037/0278-7393.3.6.712>

1668 Weiner, E. J., & Labov, W. (1983). Constraints on the Agentless Passive. *Journal of Linguistics*,
 1669 19(1), 29–58.

1670 Willits, J. A., Amato, M. S., & MacDonald, M. C. (2015). Language knowledge and event
 1671 knowledge in language use. *Cognitive Psychology*, 78, 1–27.
 1672 <https://doi.org/10.1016/j.cogpsych.2015.02.002>

1673 Willits, J. A., Seidenberg, M. S., & Saffran, J. R. (2014). Distributional structure in language:
 1674 Contributions to noun-verb difficulty differences in infant word recognition. *Cognition*,
 1675 132(3), 429–436. <https://doi.org/10.1016/j.cognition.2014.05.004>

1676 Yue, Q., Martin, R. C., Hamilton, A. C., & Rose, N. S. (2019). Non-perceptual Regions in the
 1677 Left Inferior Parietal Lobe Support Phonological Short-term Memory: Evidence for a
 1678 Buffer Account? *Cerebral Cortex (New York, N.Y.: 1991)*, 29(4), 1398–1413.
 1679 <https://doi.org/10.1093/cercor/bhy037>

1680 Yuzawa, M., & Saito, S. (2006). The role of prosody and long-term phonological knowledge in
 1681 Japanese children's nonword repetition performance. *Cognitive Development*, 21(2),
 1682 146–157. <https://doi.org/10.1016/j.cogdev.2006.01.003>

1683 Zakariás, L., Kelly, H., Salis, C., & Code, C. (2018). The methodological quality of short-
1684 term/working memory treatments in post-stroke aphasia: a systematic review.
1685 *Aphasiology*, 32, 251-254. <https://doi.org/10.1080/02687038.2018.1490004> Zotero tab.