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Abstract— In this paper, we propose a real-time deep learning
approach for determining the 6D relative pose of Autonomous
Underwater Vehicles (AUV) from a single image. A team of
autonomous robots localizing themselves in a communication-
constrained underwater environment is essential for many
applications such as underwater exploration, mapping, multi-
robot convoying, and other multi-robot tasks. Due to the
profound difficulty of collecting ground truth images with
accurate 6D poses underwater, this work utilizes rendered
images from the Unreal Game Engine simulation for training.
An image-to-image translation network is employed to bridge
the gap between the rendered and the real images producing
synthetic images for training. The proposed method predicts
the 6D pose of an AUV from a single image as 2D image
keypoints representing 8 corners of the 3D model of the AUV,
and then the 6D pose in the camera coordinates is determined
using RANSAC-based PnP. Experimental results in real-world
underwater environments (swimming pool and ocean) with
different cameras demonstrate the robustness and accuracy
of the proposed technique in terms of translation error and
orientation error over the state-of-the-art methods. The code is
publicly available.1

I. INTRODUCTION

The ability to localize is crucial to many robotic applica-

tions. There are several environments where keeping track

of the vehicle’s position is a challenging task; particularly in

GPS-denied environments with limited features. A common

approach to address the localization problem is to use intra-

robot measurements for improved positional accuracy – an

approach termed Cooperative Localization (CL) [1]. Central

to CL is the ability to estimate the relative pose between the

two robots; this estimate can then be utilized to improve the

absolute localization based on the global pose estimates for

one of the two robots. A video overview is also available

online1.

In this paper, we propose and evaluate a deep pose

estimation framework for underwater relative localization,

called DeepURL. The primary application motivating this

work is underwater exploration and mapping by a team of
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Fig. 1: Two Aqua2 vehicles collecting images over a reef

require relative localization to efficiently cover the area.

autonomous underwater vehicles (AUVs) with a focus on

shipwreck and underwater cave mapping; environments that

are challenging to most existing localization methodologies

(e.g., visual and visual/inertial-based systems [2], [3]). Other

applications include convoying [4], environmental assess-

ments [5], informative navigation [6], and inspections.

The proposed methodology draws from the rich object

detection research and is adapted to the unique conditions

of the underwater domain. Traditionally, 6D pose estimation

(3D position and 3D orientation) is performed by match-

ing feature points between 3D models and images [7]–

[10]. While these methods are robust when objects are

well textured, they perform poorly when objects are fea-

tureless or textureless. In the underwater domain, partic-

ulates in the water generate undesired texture smoothing.

Recent approaches [11]–[16] to estimate 6D poses using

deep neural network perform well on standard benchmark

pose estimation datasets such as LINEMOD [17], Occluded-

LINEMOD [18], and YCB-Video [13], but they require ei-

ther intensive manual annotation or a motion capture system.

To the authors’ knowledge, a readily applicable method for

collecting underwater training data with the corresponding

accurate 6D poses is not available. In this work, we focus

on estimating the 6D pose of an Aqua2 vehicle [19] (shown

in Fig. 1). The observer is either another Aqua2 robot or an

underwater handheld camera. The proposed method utilizes

the Unreal Engine 4 (UE4) [20] with a 3D model of the

Aqua2 robot swimming, projected over underwater images

to generate training images with known poses for the pose

estimation network. Dissimilarity in images arising from

intrinsic factors such as distortion differences from different

cameras, external factors such as color-loss, poor visibility

quality, or the surroundings, hampers the performance of



classical deep learning-based 6D pose estimation methods

in the underwater domain. CycleGAN [21] was employed

to transform UE4 rendered images to image sets used for

training with varying in appearance, similar to real-world

underwater images.

Using a modified version of YOLOv3 [22] to detect an

object bounding box, the proposed network produces robust

6D pose estimates by combining multiple local predictions of

2D keypoints that are projections of 3D corners of the object.

Only grid cells inside the detected bounding box contribute to

the selection of 2D keypoints along with a confidence score.

Using the predictions with confidence, the most dependable

2D keypoint candidates for each 3D keypoint are selected to

yield a set of 2D-to-3D correspondences. These selected 2D

keypoints are used in the RANSAC-based PnP [23] algorithm

to obtain a robust 6D pose estimate.

The proposed framework has been tested in different

environments – pool, ocean – and different platforms, in-

cluding an Aqua2 robot and GoPro cameras, demonstrating

its robustness. The main contributions are as follows:

• A 6D pose prediction network that predicts object

bounding boxes and eight keypoints in image coordi-

nates. These 2D keypoints are then used in 2D-to-3D

correspondence to estimate 6D pose.

• We demonstrate the effective use of rendered image

augmentation2 in 6D pose prediction, eliminating the

need for ground truth labeling in real images. Uti-

lizing image augmentation from the rendered to the

underwater environment, the pose prediction network

becomes invariant to color-loss, texture-smoothing, and

other domain-specific challenges.

• We publish a dataset of the Aqua2 robot captured in

the ocean and swimming pool to further research in the

underwater domain3.

The next section reviews related works. Section III in-

troduces the proposed method, including the synthetic data

generated for training, and the pose estimation method.

Section IV presents first the ground truth data acquisition

used exclusively for testing, then quantitative results from

different datasets together with a comparison with other

methods are discussed. Finally, we conclude the paper with

future work in section V.

II. RELATED WORK

In this paper, we focus on 6D pose estimation using

RGB images without access to a depth map. RGB-D based

methods [24]–[26] are not applicable underwater given the

attenuation of infrared light at a very short distance. The

classical approach for 6D object pose estimation involves

extracting local features from the input image, matching

them with features from a 3D model to establish 2D-to-

3D correspondences from which a 6D pose can be obtained

through the PnP algorithm [7], [8], [10], [27]. Previous

2Traditionally Generative Adversarial Networks (GAN) [21] use the term
image translation for this operation, however, the term translation can be
confusing for a robotics application.

3https://afrl.cse.sc.edu/afrl/resources/datasets/

work studied local feature descriptors invariant to changes in

scale, rotation, illumination, and viewpoints [28], [29]. Even

though these feature-based techniques can handle occlusions

and scene clutter, they require sufficient texture to compute

local features. To deal with poorly-textured objects, some

efforts focused on learned feature descriptors using machine

learning techniques [30], [31].

In recent years, pose estimation research has been dom-

inated by frameworks utilizing deep neural network. These

methods can be broadly classified into two categories: ei-

ther regressing directly to 6D pose estimates [11], [13], or

predicting 2D projections of 3D keypoints on an image and

then obtaining pose via PnP algorithm [14], [15]. Xiang et

al. [13] estimate the object center in the image with the

distance of the center used for estimating the translation and

the predicted quaternions for object rotations. Peng et al. [32]

used a pixel-wise voting network to regress pixel-wise unit

vectors pointing to the keypoints and used these vectors to

vote for keypoint locations using RANSAC. Recent works

[33]–[35] researched on post-processing to refine the initial

pose estimates from the first step. Li et al. [36] disentangled

the pose to predict rotation and translation separately from

two different branches to increase accuracy.

Recent approaches [37], [38] for pose estimation focus on

local patches belonging to the object rather than producing

a single global prediction. The work of Hu et al. [16]

is closest to our approach in terms of using local image

patches which also learns a semantic segmentation mask

to select multiple keypoint locations from local patches

belonging to an object and providing those inputs to the

PnP algorithm. Regarding pose estimation using synthetic

datasets, Rozantsev et al. [39] used a two-stream network

trained on a synthetic and real dataset, and introduced loss

functions that prevent corresponding weights of two streams

from being too different from each other. Rad et al. [40]

proposed a method that learns a feature mapping from real to

synthetic datasets, and during inference transfers the features

of real images to synthetic and infers pose using synthetic

features. Some work has been done using a deep learning

framework for Aqua2 vehicle detection that enabled visual

servoing [4]. Koreitem et al. [41] used rendered images for

pose estimation based visual tracking of Aqua2, and our

approach outperforms their approach in terms of 6D pose

estimation accuracy.

Our work employs CycleGAN [21], a type of Generative

Adversarial Network (GAN), to generate a synthetic dataset

for training. GANs, introduced by Goodfellow et al. [42], are

used to generate images through adversarial training where

a generator attempts to produce realistic images to fool a

discriminator which tries to distinguish if the image is real

or generated. CycleGAN [21] is used for unpaired image-

to-image translation even in absence of corresponding real-

generated image pair. The main idea of CycleGAN is that

if an image is translated from one domain to another and

translated back, the resulting image should resemble the

original image.



Fig. 2: In training (outlined in red), the rendered images are translated to the synthetic images resembling Aqua2 swimming

in a pool or a ocean environment. The synthetic images are then fed to a common encoder, which is connected to two decoder

streams: Detection Decoder (object detection) and Pose Regression Decoder (6D pose regression). Only in inference (outlined

in purple), are the predicted 2D keypoint projections of 8 corners of the 3D Aqua2 model processed and utilized to obtain

a 6D pose using the RANSAC-based PnP algorithm.

III. THE PROPOSED SYSTEM

Figure 2 shows an overview of the proposed system. In

the training process, UE4 renders a 3D model of Aqua2

with known 6D poses projected on top of underwater ocean

images. The feature space between real underwater and

rendered images is aligned by transferring the rendered

images to target domains (swimming pool and ocean) using

CycleGAN [21], an image-to-image translation network.

The next stage consists of a Convolutional Neural Network

(CNN) that predicts the 2D projections of the 8 corners of

the object’s (Aqua2) 3D model, similar to [14], [15] and

an object detection bounding box. Even though [14], [15]

divide an image into grid cells, they use global estimates

of 2D keypoints for the object with the highest confidence

value. In our approach, each grid cell inside the bounding

box predicts the 2D projections of keypoints along with their

confidences focusing on local regions belonging to the object.

These predictions of all cells are then combined based on

their corresponding confidence scores using RANSAC-based

PnP during 6D pose estimation.

A. Domain Adaptation

We employ CycleGAN [21] for unpaired image-to-image

translation by learning functions to map the UE4 domain R

to the target domain T . We use generators G and F to transfer

domains: G : R −→ T and F : T −→ R. Discriminator, DR,

is designed to distinguish between rendered images in R,

and augmented fake images F (T ). Discriminator, DT , aims

to separate target images in T and augemented fake images

G(R). To improve image-to-image translation in CycleGAN,

cycle consistency is maintained by ensuring the reconstructed

images F (G(R)) ≈ R in addition to the adversarial loss. To

calculate adversarial loss, G tries to generate G(R), which

is so similar to T that can fool the discriminator DT . The

loss for G and DT is:

LG(G,DT , R, T ) = Et∼pdata(t)[logDT (t)]+

Er∼pdata(r)[log(1−DT (G(r))]
(1)

where t ∼ pdata(t) and r ∼ pdata(r) denotes the data distribu-

tion in T and R respectively, and E is the loss function,

which is L1-norm in our approach. Similarly we derive

LR(F,DR, T, R) following Eq. 1. The cycle consistency loss

Lcyc is defined as:

Lcyc(G,F ) = Er∼pdata(r)[||F (G(R))− r||1]+

Et∼pdata(t)[||G(F (t))− t||1]
(2)

In our proposed method, there are two target domains:

swimming pool, Tsp and an open-water ocean environment,

Tm. Therefore, we train two instances of CycleGAN(two

generators), G1 : R −→ Tsp and G2 : R −→ Tm. Fig. 3 shows

the CycleGAN training overview along with synthetic data

generation.

B. 6D Pose Estimation

The proposed network consists of an encoder, Darknet-

53 [22], and two decoders: Detection Decoder and Pose

Regression Decoder. The detection decoder detects objects

with bounding boxes, and the pose regression decoder re-

gresses to 2D corner keypoints of the 3D object model. The

decoders predict the output as a 3D tensor with a spatial

resolution of S × S and a dimension of Ddet and Dreg,

respectively. The spatial resolution controls the size of an

image patch that can effectively vote for object detection

and for the 2D keypoint locations. The feature vectors are

predicted at three different spatial resolutions. The decoder

stream detects features with multiple scales via upsampling

and concatenation with a depth of final layer, Ddet. The

pose regression stream also has a similar architecture, but

the final depth layer is maintained to be Dreg. Predicting in



Fig. 3: (a) CycleGAN learning process is shown. CycleGAN

learns two mapping functions; G : R −→ T and F :
T −→ R with two discriminators, DR and DT . (b) Only

using generator G, we perform image-to-image translation

of rendered images R to target images T .

multiple spatial resolutions with upsampling helps to obtain

semantic information at multiple scales using fine-grained

features from early on in the network.

Object Detection Stream: The object detection stream

is similar to the detection stream of YOLOv3 [22] which

predicts object bounding box. For each grid cell at offset

(cx, cy) from the top left corner of the image, the network

predicts 4 coordinates for each bounding box px, py, pw, ph.

Following [22], we use 9 anchor boxes obtained by k-means

clustering on COCO dataset [43] of size (10 × 13), (16 ×
30), (33 × 23), (30 × 61), (62 × 45), (59 × 119), (116 ×
90), (156 × 198), (373 × 326) divided among three scales.

The width and height are predicted as the fraction of the

anchor box priors aw, ah and the actual bounding box values

are obtained as

bx = σ(px) + cx

by = σ(py) + cy

bw = awe
pw

bh = ahe
ph (3)

where σ represents the sigmoid function. The sum of square

of error between the ground truth t∗ and coordinate predic-

tion t̂∗ is used as the loss function. The ground truth values

t∗ can be obtained by inverting equation Eq. (3). The object

detection stream also predicts the objectness score of each

bounding box by calculating its intersection over union with

anchor boxes and class prediction scores using independent

logistic classifiers as in [22]. The total object detection loss

Ldet is the sum of coordinate prediction loss, objectness score

loss, and class prediction loss. The total object detection loss

was introduced by Redmon et al. [44] to which we refer for

a complete description.

Pose Regression Stream: The pose regression stream pre-

dicts the location of the 2D projections of the predefined 3D

keypoints associated with the 3D object model of Aqua2. We

(a) (b)

Fig. 4: (a) The object detection stream predicts the bounding

box and assigns each cell inside the box to the Aqua2 object.

(b) The regression stream predicts the location of 8 bounding

box corners as 2D keypoints from each grid cell.

use 8 corner points of model bounding boxes as keypoints.

The pose regression stream predicts a 3D tensor with size

S × S ×Dreg. We predict the (x, y) spatial locations for the

8 keypoint projections along with their confidence values,

Dreg = 3× 8.

We do not predict the 2D coordinates of the 2D keypoints

directly. Rather, we predict the offset of each keypoint from

the corresponding grid cell as in Fig. 4(b) in the following

way: Let c be the position of grid cell from top left image

corner. For the ith keypoint, we predict the offset fi(c) from

grid cell, so that the actual location in image coordinates

becomes c + fi(c), which should be close to the ground

truth 2D locations gi. The residual is calculated as

∆i(c) = c+ fi(c)− gi (4)

and we define offset loss function, Loff, for spatial residual:

Loff =
∑

cǫB

8∑

i=1

||∆i(c)||1 (5)

where B consists of grid cells that fall inside the object

bounding box and ||.||1 represents L1-norm loss function,

which is less susceptible to outliers than L2 loss. Only

using grid cells falling inside the object bounding box for

2D keypoint predictions focuses on image regions that truly

belong to the object.

Apart from the 2D keypoint locations, the pose regression

stream also calculates the confidence value vi(c) for each

predicted point, which is obtained through the sigmoid func-

tion on the network output. The confidence value should be

representative of the distance between the predicted keypoint

and ground truth values. A sharp exponential function of the

2D euclidean distance between prediction and ground truth

is used as confidence. The confidence loss is calculated as

Lconf =
∑

cǫB

8∑

i=1

||vi(c)− exp(−α ||∆i(c)||2)||1 (6)

where ||.||2 denotes euclidean distance or L2 loss and pa-

rameter α defines the sharpness of the exponential function.

The pose regression loss of Eq. (8) takes up the form

Lreg = λoffLoff + λconfLconf (7)



For numerical stability, we down-weight the confidence

loss for cells that do not contain objects by setting λconf to

0.1, as suggested in [44]. For the cells that include the object,

λconf is set to 5.0 and λoff to 1. Therefore, the total loss of

the network is:

L = Ldet + Lreg (8)

(a) (b)

(c) (d)

Fig. 5: Inference strategy for combining pose candidates.

(a) Grid cells inside the detection box belonging to Aqua2

object overlaid on the image. (b) Each grid predicts 2D

locations for corresponding 3D keypoints shown as red dots.

(c) For each keypoints, 12 best candidates are selected based

on the confidence scores. (d) Using 12 × 8 = 96 2D-to-

3D correspondence pairs and running RANSAC-based PnP

algorithm yield accurate pose estimate as shown by the

overlaid bounding box.

C. Pose Refinement

During inference, the object detection stream of our

network predicts the coordinate locations of the bounding

boxes with their confidences and the class probabilities for

each grid cell. Then, the class-specific confidence score is

estimated for the object by multiplying the class probability

and confidence score. To select the best bounding box, we

use non-max suppression [45] with an IOU threshold of 0.4

and a class-specific confidence score threshold of 0.3.

Simultaneously, the pose regression stream produces the

projected 2D locations of the object’s 3D bounding box,

along with their confidence scores for each grid cell, as

shown in Fig. 5-b. The 2D keypoint predictions for grid cells

that fall outside of the bounding box (Fig. 5-a) from the

object detection stream are filtered out. In an ideal case, the

remaining 2D keypoints should cluster around the object cen-

ter. 2D keypoints that do not belong to a cluster are removed

using a pixel distance threshold of 0.3 times image width.

The keypoints with confidence scores less than 0.5 are also

filtered out. To balance the trade-off between computation

time and accuracy, we empirically found that using the 12

most confident 2D predictions for each 3D keypoint (Fig. 5-

c) produces an acceptable pose estimate after RANSAC-

based PnP [23]. Hence, we employ RANSAC-based PnP [23]

on 12× 8 = 96 2D-to-3D correspondence pairs between the

image keypoints and the object’s 3D model to obtain a robust

pose estimate, as shown in Fig. 5-d.

D. Implementation Details

To create the synthetic dataset, we train the CycleGAN

following the training procedure of [21]. We let the training

continue until it generated acceptable reconstruction. Once

CycleGAN can reasonably reconstruct for the target domain,

we use the model weights of that epoch to translate all

rendered images to synthetic images. Then, the synthetic

images are scaled to 416 × 416 resolution maintaining the

aspect ratio by padding zeros for training. During inference,

no augmentation is required, and the real images are directly

fed to the network.

The CNN is trained for 125 epochs on the synthetic

dataset, and the first 3 epochs are part of a warmup phase,

where the learning rate gradually increases from 0 to 1e-

4. We utilized the SGD optimizer with a momentum of 0.9

and a piecewise decay to decrease the learning rate to 3e-

5 and 1e-5 at 60 and 100 epochs, respectively. To avoid

overfitting, minibatches of size 8 were produced by applying

data augmentation techniques, including randomly changing

hue, saturation, and exposure of the image up to a factor of

1.5. In addition, images were randomly scaled, and affine

transformed by up to 25% of the original image size.

IV. EXPERIMENTS

This section describes first the datasets used, and then

results of the inference with the real Aqua2 robot swimming

in both a pool and the open ocean at Barbados.

A. Datasets Description

Training - Rendered/Synthetic Dataset: contains images

obtained by rendering an Aqua2 robot swimming with flipper

motion using UE4 and overlaying the resulted 3D model

over random underwater images. Rather than just overlaying

the 3D model of Aqua2, we simulate the flipper motion

to generate images with the flippers in various realistic

positions. This flipper motion makes the neural network

independent of the flipper position. The synthetic dataset is

obtained by the image-to-image translation network based

on CycleGAN described in III-A to create photo-realistic

images. The rendered dataset contains 37K images with

random depth between 0.75m and 3.0m and orientations

ranging from −50 to 50 degrees for roll, −70 to 70 degrees

for pitch, and −90 to 90 degrees for yaw.

Testing - Pool Dataset: To generate our pool dataset,

we deployed two robots: one robot observing the other

with a vision-based 2D fiducial marker (AR tag4) mounted

on the top used to estimate ground truth during two pool

4http://wiki.ros.org/ar_track_alvar



Translation
Error

Orientation
Error

REP-10px
Accuracy

ADD-0.1d
Accuracy

FPS

Tekin et al. [15] 0.278m 18.87◦ 9.33% 23.39% 54

PVNet [32] 0.486m 24.55◦ 23.22% 43.09% 37
DeepURL 0.068m 6.77◦ 25.22% 57.16% 40

TABLE I: Translation and Orientation errors (the lower the

better) along with REP-10px, ADD-0.1d accuracy (the higher

the better) and runtime comparison for the pool dataset

trials in indoor and outdoor pools, as shown in Fig. 6(a-d).

Approximately, 11K images were collected with estimated

localization, provided from the pose detection of the AR tag

and the relative transformation of the mounted tag to the real

robot. The dataset contains images with a distance between

two Aquas ranging between 0.5m to 3.5m.

Testing - Barbados 2017 Dataset: The Barbados 2017

Dataset consists of 188 real images collected during under-

water field trials off the west coast of Barbados used in [41],

see Fig. 6(i-l). The images are captured from an Aqua2

robot’s onboard camera. 6D pose of the robot in each of these

images is obtained using a custom-built annotator, which

allows the user to mark keypoints on the robot assigned

from the CAD model. The annotator then iteratively fits a

wireframe to the robot using its known dimensions.

Testing - Barbados GoPro Dataset: We collected images

underwater in Barbados of an Aqua2 robot swimming over

coral reefs using a GoPro camera, which differ significantly

from the images collected using another Aqua2 in terms of

hue, image size, and aspect ratio (see Fig. 6(e-h)). Given that

ground truth is unavailable for these images, this dataset was

only used to evaluate the proposed method qualitatively.

B. Evaluation Metrics

To evaluate the pose estimation capability of the proposed

system, we calculated the mean translation error as the

Euclidean distance between the predicted and the ground

truth translation. Let (Rot, trans) and (R̂ot, ˆtrans) be the

ground truth and predicted rotation matrices and translation,

respectively. For individual angle errors in terms of yaw, roll,

and pitch, we decomposed the rotation matrices Rot and R̂ot

into Euler angles and calculated their absolute difference.

The total orientation error is represented as Eq. (9), where

tr represents the trace of the matrix and the orientation error

is in the range of [0, π].

φ(Rot, R̂ot) = arccos
tr(RotT R̂ot)− 1

2
(9)

To evaluate the pose accuracy, we use standard metrics -

namely- 2D reprojection error [46] and the average 3D dis-

tance of the model vertices, referred to as ADD metric [13],

[14]. In the case of reprojection error, we consider the

pose estimate as correct if the average distance between 2D

projections of 3D model points obtained using predicted and

ground-truth poses is below a 10 pixels threshold, referred

to as REP-10px. Generally, a 5-pixel threshold is employed,

but we consider a threshold of 10 pixels to account for

uncertainties in ground truth due to the AR tag-based pose

estimation. The ADD metric takes pose estimate as correct if

the mean distance between the coordinates of the 3D model

vertices transformed by estimated and ground truth pose fall

below 10% of the model diameter, referred to as ADD-0.1d.

We also report the inference time of the algorithm in terms

of frames per second (FPS) on an RTX 2080 GPU.

C. Experimental Results

Evaluation on the Pool Dataset: We compare our method

with the state-of-the-art method of Tekin et al. [15] and

PVNet [32] trained on a synthetic dataset and tested on

real pool dataset. Translation and rotation errors along with

REP-10px and ADD-0.1d accuracy for the pool dataset are

presented in Table I, as well as the runtime comparisons on

Nvidia RTX 2080. DeepURL outperforms both the method

of Tekin et al. [15] and PVNet [32] in terms of rotation

and translation errors along with REP-10px and ADD-0.1d

accuracy. Moreover, the runtime performance is realtime,

outperforming PVNet [32] and only slightly slower than that

of Tekin et al. [15]. The improved performance comes from

two factors: 1) the use of a better detection pipeline and

2) bounding box based keypoint sampling introduced in this

paper. Whereas Tekin et al. [11] only used the keypoints with

the highest confidence, our bounding box based keypoint

sampling allows the selection of more appropriate keypoints

using RANSAC-based PnP. PVNet [32], compared to Deep-

URL, performed slightly inferior on REP-10px and ADD-

0.1d metrics and produced significantly higher translation

and orientation errors.

Figure 7 shows the translation and orientation error statis-

tics of an Aqua2 robot in the pool dataset. It is evident that

the proposed method performs well across all distances from

camera (0.5m-3.5m). Interestingly, at very close distance, the

method experiences higher orientation error due to the 2D

keypoints of Aqua2 not being precisely selected by the pose

regression decoder.

Evaluation on the Barbados 2017 Dataset: We report the

performance of our system on Real Barbados 2017 dataset in

terms of translation and rotation errors as shown in Table II.

DeepURL performs significantly better on translation error

and orientation error compared to the method of Koreitem

et al. [41].

Impact of Domain Adaptation: To understand the ef-

ficacy of using CycleGAN based domain adaptation, we

trained DeepURL only on rendered images. Even though the

network performed well on the validation set consisting of

rendered images only, without training on synthetic dataset

it was not able to generalize to real-world pool images.

The intuition is that the real-world underwater images differ

Translation

Error

Orientation

Error

Roll

Error

Pitch

Error

Yaw

Error

Koreitem et al. [41] 0.72m 17.59◦ 11.87◦ 4.59◦ 12.11◦

DeepURL 0.31m 11.98◦ 9.64◦ 3.30◦ 5.43◦

TABLE II: Translation and Rotation errors for the Barbados

2017 dataset [41]



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6: Sample detections from the different datasets. Green square is the 2D detection box, while the red wireframe is the

projection of the 3D bounding box of the robot. Top row: Pool dataset, observed Aqua2 vehicle carries a AR tag to generate

ground truth estimates; observing robot is another Aqua2. Middle row: GoPro footage during deployments in Barbados

in January 2020, observed robot has no additional components, the observing camera is a GoPro 7 camera. Bottom row:

Barbados 2017 dataset [41], observed robot is equipped with a Ultra-Short Baseline (USBL) modem, the observing robot is

an Aqua2 vehicle.

(a) (b)

Fig. 7: Boxplot summarizing the error statistic of (a) trans-

lation and (b) orientation in Pool Dataset with respect to

variable distance from camera.

significantly from rendered images in terms of texture, color

and appearance. Thus, creating image sets with different ap-

pearance and texture helps extensively in the training process

by reducing over-fitting and increasing generalization.

Failing Scenarios: Predictions of pose estimate might

be wrong either when the detection stream fails to predict

the object detection box, therefore, there is not enough

points for the RANSAC-based PnP algorithm (at least six

2D-to-3D correspondences are required), or PnP did not

converge. These detection failure scenarios are inherent in

YOLOv3 architecture. The system may also fail for position

or orientation not introduced in the training scenarios, such as

translation beyond 3.5m or orientation beyond the rendered

range described in Section IV-A.

V. CONCLUSION

In this work, we presented a system for 6D pose estimation

of an autonomous underwater vehicle for relative localization

underwater. The system learns to predict the 6D pose without

the need for any real ground truth, which enables pose

estimation in an environment where ground truth is difficult

to acquire. We also present a detection bounding box based

keypoint sampling strategy that is more robust to related

work [15], [32] which leads to a better estimate of the pose

of the observed robot, up to an order of magnitude is some

cases; see Table I.

Currently, the proposed network is being ported to an

Intel Neural Compute Stick 2 (Intel NCS2)5 and an NVidia

Jetson TX2 Module6 in order to deploy on an Aqua2 or a

BlueROV2 vehicle. The above two platforms were selected

based on their performance [47] and compatibility with the

proposed vehicles. Furthermore, the DeepURL framework

5https://software.intel.com/en-us/

neural-compute-stick
6https://developer.nvidia.com/embedded/jetson-tx2



will be integrated with the proprioceptive sensors of each

robot (IMU and depth) and either the USBL positioning of

the observer or the Visual-Inertial estimator [48] to recover

the pose of both robots in a global frame of reference.
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