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Abstract

Localization of molecular orbitals finds its importance in the representation of chem-

ical bonding (and anti-bonding) and in the local correlation treatments beyond mean-

field approximation. In this paper, we generalize the intrinsic atomic and bonding

orbitals [G. Knizia, J. Chem. Theory Comput. 2013, 9, 11, 4834-4843] to relativistic

applications using complex and quaternion spinors, as well as to molecular fragments

instead of atomic fragments only. By performing a singular value decomposition, we

show how localized valence virtual orbitals can be expressed in this intrinsic mini-

mal basis. We demonstrate our method on systems of increasing complexity, starting
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from simple cases such as benzene, acrylic-acid and ferrocene molecules, and then

demonstrating the use of molecular fragments and inclusion of relativistic effects for

complexes containing heavy elements such as tellurium, iridium and astatine. The

aforementioned scheme is implemented into a standalone program interfaced with sev-

eral different quantum chemistry packages.

1 Introduction

Although chemical bonding models are shrouded in mystery1 and even the concept of or-

bitals is sometimes met with scepticism2, one cannot deny the usefulness of orbitals in a

qualitative understanding of chemical concepts. While delocalized canonical molecular or-

bitals (MOs) resulting from a standard mean-field calculation such as Hartree–Fock (HF) are

useful to understand electronic excitations and spectroscopy, it is of interest to consider local-

ized molecular orbitals (LMOs) when relating first principles calculations to simple intuitive

models of chemical bonding. Several schemes have been developed to obtain such local-

ized orbitals using different concepts, such as Foster–Boys3, Edminston–Ruedenberg4, von

Niessen5 and Pipek-Mezey (PM)6 methods, among many others7–25. The various schemes

were recently reviewed by Høyvik and Jørgensen26. Often only the set of occupied MOs is

localized as this is sufficient to analyse the self-consistent field (SCF) wavefunction, i.e. the

single Slater determinant used in Hartree-Fock and Kohn-Sham27 Density Functional The-

ory (DFT). For a more complete understanding of interacting molecules in terms of frontier

orbitals it is, however, of interest to localize the virtual molecular orbitals as well. Virtual

LMOs can be determined using for instance the PM method28 but they are much more diffi-

cult to localize with standard schemes due to their more diffuse nature. Specific approaches

for virtuals have been proposed to solve this issue, like the protohard-virtual MOs29, the

least-change algorithm30 or the use of external quasi-atomic orbitals31. The use of powers of

the second central moment and powers of the fourth central moment localizations might also

be a better alternative18 for basis sets augmented by diffuse functions. LMOs are not only
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useful to have a better representation of chemical bonding and anti-bonding. They also have

a significant importance in local correlation treatments in post-HF methods like second or-

der Møller Plesset32–35, coupled cluster36–39, embedding approaches40–52, and multireference

methods53–56.

In this work, a generalization of the intrinsic atomic and bonding orbitals introduced

by Knizia57 (so-called IAOs and IBOs, respectively) to molecular fragments and relativistic

spinors is discussed. The idea of using an intrinsic minimal basis able to exactly span

the occupied space is not new31,57–61, and IAOs have been shown to be related to other

intrinsic minimal basis sets like the quasi-atomic orbitals62. We like to stress that other

works have generalized the PM localization to complex-valued orbitals63 and one-, two- or

four-component Kramers-restricted and unrestricted spinors64,65. Our method differs mainly

by performing our localization in a minimal reference basis of intrinsic fragment orbitals

(IFOs), where the term “fragment” denotes the ability to use either intrinsic molecular or

atomic orbitals. We also show how localized valence virtual orbitals can be obtained and

expressed in this intrinsic basis. The procedure described in this paper has been implemented

in a standalone program called Reduction Of Orbital Extent (ROSE) which can easily be

interfaced with several quantum chemistry packages. As expected from the use of an intrinsic

orbital basis, our intrinsic LMOs (ILMOs) are basis set insensitive, and the localization

procedure is cheaper and better behaved than PM localization57.

The paper is organized as follows. After a brief review of the construction of IFOs

(Sec. 2.1) and the localization procedure (Sec. 2.2), we discuss how valence virtual orbitals

can be expressed in this new minimal basis (Sec. 2.3). We end this theory section by the

generalization to Kramers spinors (Sec. 2.5). Computational details about the code and its

interfaces are provided in Sec. 3. The attractiveness of the IFOs and the resulting ILMOs is

presented in Sec. 4, where we show well known results like the basis set insensitivity of the

partial charges, the chemically sound representation of orbital bonding and antibonding, as

well as applications to relativistic cases. Conclusions and perspectives are finally given in
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Sec. 5.

2 Theory

In this section, we describe how the minimal set of IFOs is constructed and how the occupied

and valence virtual orbitals can be localized. The equations derived in this work follow

closely the original scheme of Knizia57, with as main difference that we express reference

orbitals in terms of a fragment MO basis instead of directly in a Gaussian Type Orbital

(GTO) basis. This allows treatment of 4-component relativistic orbitals, which can not

be straightforwardly expressed in terms of a single GTO function, in a simple manner.

Furthermore, the difference between atomic and molecular fragments disappears, so that

both atomic and molecular fragments can be considered in the same manner.

2.1 Intrinsic fragment orbitals

Consider a molecule composed of NA atoms and partitioned into NF different molecular (or

atomic) fragments labelled by k (k = 1, . . . , NF). Each fragment k contains Nk
A atoms such

that NA =
∑NF

k=1 N
k
A.

Let us start with a basis B1 of orthonormal MOs {|φp〉} for the full molecule, obtained

from a linear combination of basis functions {|χµ〉} which form a (generally non-orthogonal)

basis B1,

|φp〉 =

dim(B1)∑

µ=1

Cµp|χµ〉, (1)

where dim(B1) ≥ dim(B1). In the rest of the paper, the indexes p, q, . . . denote any MO of

B1. As the MOs are orthonormal, the overlap matrix of B1, S11, is the identity matrix and
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the closure relation can be written as

1 =

dim(B1)∑

p=1

|φp〉〈φp|. (2)

This relation holds for all functions lying in the space spanned by B1. We then introduce a

projector on the subspace spanned by the occupied MOs (indexed by i, j, . . .) as

O =
Nocc∑

i=1

|φi〉〈φi|. (3)

The complementary projector 1 − O spans the subspace of the virtual MOs in B1 (indexed

by a, b, . . .).

Then, consider NF other bases Bk (one per fragment k) of orthonormal MOs {|ϕk
t 〉},

obtained from a linear combination of (generally non-orthogonal) basis functions {|ζkν 〉}

forming the basis Bk,

|ϕk
t 〉 =

dim(Bk)
∑

ν=1

Ck
νt|ζkν 〉, (4)

where dim(Bk) ≥ dim(Bk). Note that the nature of the underlying basis functions {|ζkν 〉}

can be different for each fragment. One could for instance choose a large GTO set for one

fragment and a Slater type orbital (STO) set for another. As the fragments represent only a

small part of the full molecule, obtaining the fragment orbitals Bk from an SCF calculation

will typically be much cheaper than the calculation that yielded B1.

We select from these sets Bk a minimal set of MOs for the next step in which the sets of

fragment MOs are combined to form basis B2 of reference fragment orbitals (RFOs, indexed

by t, u, . . .). In analogy with the original scheme57, the RFOs constitute a minimal set

of depolarized fragment orbitals which are only polarized inside the fragments but not in

between different fragments. In most cases, the size of the minimal basis of each fragment

will simply be the sum of the minimal bases of each atom (i.e. its core and valence orbitals)
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composing the given fragment. In that case, the total dimension of B2 is

dim(B2) =

NF∑

k=1

Nk
A∑

a=1

nmin
a (5)

where nmin
a is the number of occupied and valence virtual orbitals of atom a. One may,

however, also use more advanced schemes in which the fragment orbitals themselves are the

results of a previous localization procedure. This then allows selection of a smaller set of

frontier orbitals that are localized in a region of interest. In the same spirit, one can also

truncate the set of (occupied and virtual) canonical orbitals of the fragments, for instance

by setting a cut off based on energy criteria as done in DIRAC66,67. With these definitions

we may proceed to construct IFOs which form a minimal basis of polarized fragment orbitals

that exactly span the occupied space of the full molecule in basis B1.

Let us now describe the steps to construct the IFOs, using matrix notation. The first step

is the calculation of the overlap matrices between B1 and B2. The overlap matrix S11 in B1 is

identity by construction, while S22 in B2 is in general not diagonal due to non-orthogonality

between MOs belonging to different fragments. For a partitioning of the molecule in two

fragments k and k′, S22 is given by,

S22 =






1 Skk′

Sk′k 1




 , (6)

which can of course be generalized to as many fragments as desired. The diagonal blocks

associated with each fragment are identity matrices with dimension (Nk
occ+Nk

vir), where Nk
occ

and Nk
vir are the number of occupied and valence virtual MOs of fragment k, respectively.

The off-diagonal blocks Skk′ have a rectangular form of dimension (Nk
occ+Nk

vir)×(Nk′

occ+Nk′

vir),

and are in general filled by non-zero elements. The overlap matrix between B1 and B2 is

denoted by S12 = S†21.

A new set of orthonormal depolarized occupied MOs {|φ̃i〉}Nocc

i=1 is constructed by project-
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ing the original occupied MOs of B1 into B2 and back into B1 as follows,

c̃ = P1←2P2←1C, (7)

where C is the coefficient matrix of the occupied MOs in B1. In the above [Eq. (7)] we have

introduced the convention of indicating coefficient matrices corresponding to orthonormal

sets of MOs by an uppercase symbol, while otherwise using lowercase. As B1 was defined

as the MO basis itself, this coefficient matrix is 0 everywhere except for the Nocc diagonal

elements which are equal to 1. P2←1 and P1←2 are projector matrices between the original

MOs of B1 and the RFOs of B2, and are implicitly defined by the following linear equations,

S22P2←1 = S21, (8)

S11P1←2 = S12. (9)

Note that because S11 is the identity matrix, P1←2 is simply equal to S12. In Eq. (7), the

depolarized occupied MOs are non-orthonormal because space B2 does not fully span B1.

Before constructing the minimal polarized IFO basis, we symmetrically orthonormalize these

depolarized MOs as follows,

C̃ = c̃
[
c̃†c̃

]−1/2
. (10)

The coefficient matrix encoding the expression of the IFOs in basis B1 then reads57

cIFO =
[

CC†C̃C̃† +
(
1−CC†

) (

1− C̃C̃†
) ]

P1←2,

(11)

where the first term in the right hand side of Eq. (11) acts on the occupied MO subspace and

the second term on the virtual subspace. The result is a number of IFOs corresponding to

7



dim(B2). The final step is to also symmetrically orthonormalize these IFOs [see Eq. (10)] thus

leading to CIFO. As a final note on the construction of the IFO basis, another formulation

is possible by replacing Eq. (7) by

c̃ = P2←1C, (12)

which is then symmetrically orthogonalized in B2 as

C̃ = c̃
[
c̃†S22c̃

]−1/2
. (13)

The two definitions are identical if the space B2 is completely spanned by B1, but will lead

to slightly different results if this is not the case. The second definition, may then lead to

somewhat simpler final equations as is discussed in detail in the supplementary material. In

our implementation either definition can be used, with the first one, originally proposed in

Ref. 57, serving as the default option.

2.2 Localized orbitals

The IFOs are interesting in their own right, but are in this work primarily used to define

localized MOs that provide an alternative but fully equivalent representation of a single

determinant wave function. The equivalence is guaranteed by defining the localization as

a sequence of unitary rotations among occupied orbitals that leave the density matrix and

therefore all observables unchanged. The localization procedure considered in this paper is

inspired by the PM scheme6 where only orbital overlaps need to be computed. It consists of

2 by 2 rotations of the occupied MOs {|i〉} until the following function is maximized,

L =

NF∑

k=1

∑

i′

[nk
i′ ]

4, (14)
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where |i′〉 =
∑

i Ui′i|i〉 are the rotated occupied orbitals and nk
i′ =

∑

t∈k〈i′|t〉〈t|i′〉 is the

number of |i′〉’s electrons located on all the IFOs t of (atomic or molecular) fragment k.

However, in contrast to PM6 the exponent is equal to 4 which leads to effectively identical

results as the square exponent used in PM but avoids discrete localizations in aromatic

systems57. Increasing the exponent in other localization procedures has also been shown to

penalize delocalized orbitals14,15. Also, the numerical advantage of Eq. (14) compared to

PM is that the 2 by 2 rotations are performed in the minimal and orthogonal IFO basis.

As a result, the ILMOs are insensitive to the choice of AO basis set in contrast to standard

PM orbitals. The localization procedure requires only few iterations, and is applied to the

occupied MOs as well as to the valence virtual MOs described in the next section.

2.3 Valence virtual orbitals

The IFOs are designed to exactly span the occupied space and only provide a minimal

description of the virtual space. While this space is too small to capture dynamic electron

correlation, these virtual orbitals are of interest for the purpose of analysis (e.g. in frontier

orbital theory), to connect to semi-empirical or tight-binding approaches, and to provide

starting orbitals for complete active space SCF procedures. We therefore consider localizing

this limited set of valence virtual orbitals (of dimension Nval
vir = dim(B2)−Nocc) in addition

to the occupied ones. While valence virtual IBOs were previously defined in Ref. 68, neither

explicit formulas nor the relativistic or fragment-orbital generalizations discussed in this text

were provided.

In order to construct the valence-virtual IFOs, we first project all Nvir = dim(B1)−Nocc

virtual orbitals to the IFOs. The resulting unnormalized orbital coefficient matrix Cvir is

then subjected to a singular value decomposition (SVD)

Cvir = UΣV†. (15)
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In this expression Cvir has dimension (dim(B2)×Nvir), U has dimension (dim(B2)×dim(B2)),

Σ has dimension (dim(B2) × Nvir) and V† has dimension (Nvir × Nvir). Because the IFOs

already span the space of the occupied orbitals, only Nval
vir singular values (diagonal elements

of Σ) will be nonzero. The eigenvectors U corresponding to these nonzero singular values

form a new set of valence virtuals which, together with the occupied, form the minimal set

of orthonormal MOs that can be expressed exactly in terms of IFOs. Those valence virtual

MOs can then be localized with the same procedure as for the occupied, described in the

previous section.

Note that many correlating, or “hard”, virtuals which cannot be expressed in terms of

IFOs are lost in this process. These hard virtuals are anyhow known to be more difficult to

localize compared to the valence virtual orbitals29. The inclusion of additional hard virtuals

can be done by increasing the size of dim(B2), i.e. by defining a lighter truncation in the

number of RFOs, or by adding additional correlation functions to the IFO basis on which

hard virtuals can be expressed on, for instance using quasi-atomic external orbitals31 or

protohard-virtuals29. As shown in the following, the standard valence virtual MOs nicely

depict σ- and π-antibonding orbitals and are analogous to the split-localized orbitals31,69.

Together with the occupied localized orbitals, the localized valence virtuals provide a very

good approximation to the weakly occupied correlating multiconfigurational SCF orbitals

in the full valence space31, and are thus a very good effective configurational basis for the

treatment of valence-internal correlation69. Inclusion of localized hard virtuals for correlated

post-SCF calculations is out of scope for the present paper but an implementation of such a

scheme is planned for the near future.

2.4 Approximate energy ordering

The ILMOs are in general not eigenfunctions of the original Fock operator. This invali-

dates concepts such as the highest occupied molecular orbital (HOMO) or lowest unoccupied

molecular orbital (LUMO) that are based on energy ordering. Depending on the degree of
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localization one may devise an alternative ordering of orbitals by grouping together orbitals

that are primarily localized on one fragment, but also then it is useful to have a secondary,

approximately energy-based, ordering criterion. For this we compute the diagonal matrix

elements of the Fock operator expressed in the ILMO basis. This quantity is meaningful as

long as primarily MOs with similar energies are mixed upon the generation of the ILMOs.

In our experience this is often the case and this additional label is then useful for instance

in quickly separating the energetically lower lying sigma orbitals from the pi-orbitals in

aromatic systems.

2.5 Treatment of complex and quaternion orbitals

Up to this point we did not specify the algebra of the basis functions and MO-coefficients.

In this section we will discuss the generalizations needed to work with orbitals resulting from

relativistic calculations in which the coefficient and overlap matrices are in general complex.

We will start by the easier discussion of restricted versus unrestricted SCF calculations in

non-relativistic theory for which the spin and spatial part of the orbitals can be considered

separately. The simplest case (i) is found when both the calculation giving rise to B1 as

well as the calculations for B2 are carried out with spin-restricted SCF. In this case the

coefficient matrices for α- and β-spinorbitals are identical. It then suffices to work with

matrices that follow the dimension of the number of spatial orbitals, a reduction of a factor

of 2 as compared to the use of spinorbitals. These matrices are also typically restricted to

be real as there is little advantage in defining complex orbitals. The second case (ii) occurs

if an unrestricted SCF calculation is used for B1. While it is still possible to use restricted

SCF calculations for the fragments, it is then necessary to apply two separate localization

procedures for α- and β-spinorbitals. As overlap between these sets of orbitals is strictly

zero, both the original and localized sets consist of spinorbitals written as a product of a

spin and a spatial part. Also in this case, the algebra can be kept real.

For relativistic calculations, that include the effect of spin-orbit coupling (SOC) in the
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generation of the MOs, the situation is different. The spin and spatial parts of the wave

function can not be factored in terms of a simple product, and overlap and coefficient ma-

trices are in general complex. The simplest treatment is to consider this as a generalization

(iii) of the unrestricted case in which the procedures described above are carried out for

complex hermitian matrices. This is what we anticipated in our notation in the previous

sections where we indicated hermitian conjugation for matrices rather than a simple trans-

pose as would be applicable for real algebra. No special implementations are needed for

this relativistic unrestricted case, as complex versions of matrix diagonalization, singular

value decompositions and linear equation solvers are readily available in standard linear al-

gebra libraries like LAPACK70 (zheevd, zgesvd, and zposv). While this approach is useful

for truly unrestricted calculations, the procedure leads to the undesirable loss of Kramers

symmetry for orbitals that were generated with a Kramers-restricted SCF algorithm71. In

this generalized form of restricted SCF, orbitals can be made to adhere to a strict pairing

in which the coefficients of one orbital can be obtained by operating with the anti-unitary

Kramers operator on the coefficients of its “Kramers partner”. Such a pairing is automat-

ically guaranteed in quaternion algebra, in which the Fock matrix and MO coefficients are

block diagonalized by a quaternion matrix transformation. Like in the nonrelativistic re-

stricted case (i) it is possible to work with matrices that have the dimension of the number

of spatial orbitals, albeit now with matrix elements that are quaternion. Compared to the

non-relativistic (or scalar relativistic) case (i) we have 4 times more unique real numbers in

the overlap or coefficient matrices. Compared to the relativistic unrestricted case (iii) there

are, however, 2 times less unique real numbers (as this corresponds to complex matrices of

twice the dimension). Carrying out the projections and localizations in quaternion algebra

is furthermore advantageous as this guarantees keeping proper pairing of orbitals, as needs

to be safeguarded explicitly in complex algebra65. We will below discuss how the above-

mentioned linear algebra techniques were adapted for use with quaternion orbitals. For this

purpose we define the quaternion MO-coefficients as:
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C = 0C + ĭ 1C + j̆ 2C + k̆ 3C, C† = (C∗)T , (16)

where xC (x = 0, . . . , 3) are real coefficient matrices, and ĭ2 = j̆2 = k̆2 = ĭj̆k̆ = −1 are a

basis for quaternion algebra.

We note that, since we work in the MO basis, the overlap matrix S11 is the identity

matrix and therefore real.

2.5.1 Gauss–Seidel method to solve linear equation

One of the first steps in the IFO’s construction is the determination of the projection ma-

trices. To this end the linear equation in Eq. (8) has to be solved, for which we chose the

Gauss–Seidel algorithm. As S22 is identity in the diagonal blocks and should have relatively

small values in the off-diagonal blocks, it is safe to say that S22 is close to diagonally dom-

inant, which is a sufficient but not necessary condition for convergence of the Gauss–Seidel

algorithm. In addition the S22 matrix is (except for ill-defined exactly overlapping frag-

ments) symmetric and positive definite which is another sufficient condition for convergence.

This algorithm is straightforward to implement with quaternion matrices as described in the

appendix (Algorithm 1).

2.5.2 Jacobi rotations for diagonalization and singular value decomposition

Symmetrical orthogonalization [Eq. (10)] and singular value decompositions can be carried

out with the aid of a diagonalization. For the latter purpose it us convenient to employ the

Jacobi eigenvalue algorithm as this can be adapted to the use of quaternion matrices. Our

implementation (Algorithm 2 in the appendix) follows closely the one in Ref. 72, except that

our Jacobi rotation matrices are not quaternion matrices but real matrices. This is possible

by rotating the matrix into the real plane by scaling the j-th basis vector by the phase Pij
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of the pivot Mij (where the pivot denotes the largest off-diagonal matrix element),

Pij = Mij/||Mij|| (17)

such that (for all n = 1, . . . , dim(M)),

Mnj ←− Mnj/Pij,

Mjn ←− Pij ×Mjn. (18)

Then, Jacobi rotations in the real plane can be applied straightforwardly as






Mik

Mjk




←−






cos(θ) − sin(θ)

sin(θ) cos(θ)











Mik

Mjk




 (19)

after scaling (dividing) the eigenvectors by the phase factor. The rotation matrices are

defined by cos(θ) and sin(θ) and are determined as follows,

w =
Mjj −Mii

2||Mij||
(20)

tan(θ) =







−w +
√
w2 + 1, if w ≤ 0

−w −
√
w2 + 1, otherwise

cos(θ) =
1

√

1 + tan(θ)2
,

sin(θ) = tan(θ) cos(θ). (21)

Turning to the SVD algorithm (Algorithm 3 in the appendix) used in Eq. (15), one

can again apply the above Jacobi eigenvalue algorithm on the quaternion Hermitian matrix

H = Cvir
(
Cvir

)†
if dim(B2) ≤ Nvir, or on H =

(
Cvir

)†
Cvir otherwise. One can then relate

the eigenvalues and eigenvectors of H to the singular values (square roots of the eigenvalues)

and the unitary matrices U and V, as also discussed in Ref. 72.
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2.5.3 Jacobi rotations in the localization procedure

In order to maximise L in Eq. (14), one has to rotate each pair of occupied orbitals |i〉 and

|j〉 (j < i). In real algebra57 the angle θ of the rotation

|i′〉 = cos(θ)|i〉+ sin(θ)|j〉,

|j′〉 = − sin(θ)|i〉+ cos(θ)|j〉, (22)

is defined as

θ = (1/4) atan2 (Bij,−Aij) (23)

where atan2(x,y) = arctan(x/y) with the resulting value being restricted to lie in the interval

[−π, π]. In this expression Bij is the actual gradient and Aij is (an approximation to) the

second derivative at θ = 0. They both are functions of the charge matrix elements of

fragment k,

Qk
ij =

∑

t∈k

Cocc∗
ti Cocc

tj , (24)

as follows (in real algebra):

Aij =
∑

F

[

3
((

QF
ii

)2
+
(
QF

jj

)2
) (

QF
ij

)2 − 1

2

(
QF

ii −QF
jj

) ((
QF

ii

)3 −
(
QF

jj

)3
)]

, (25)

Bij =
∑

F

[

2
((
QF

ii

)
3 −

(
QF

jj

)
3
)
QF

ij

]

(26)

When localizing valence virtual orbitals, Cocc needs to be replaced by the eigenvectors U

with non-zero singular values (see Sec. 2.3).

Let us now switch to cases of complex or quaternion algebra. To compute the rotation

angle θ in Eq. (23), both Aij and Bij needs to be real. As the matrix Qk is Hermitian, Qk
ii

elements are always real, but the Qk
ij elements are not. For complex and quaternion algebra,
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the rotation matrix should actually be replaced by (see Appendix B for more details)

|i′〉 = e−iτ cos(θ)|i〉+ eiτ sin(θ)|j〉,

|j′〉 = −e−iτ sin(θ)|i〉+ eiτ cos(θ)|j〉, (27)

where τ is an additional scalar rotation parameter. This choice leads to

Aij(τ) =
∑

F

[

3
((

QF
ii

)2
+
(
QF

jj

)2
)

ℜ
(
e2iτQF

ij

)2 − 1

2

(
QF

ii −QF
jj

) ((
QF

ii

)3 −
(
QF

jj

)3
)]

,(28)

Bij(τ) =
∑

F

[

2
((
QF

ii

)
3 −

(
QF

jj

)
3
)
ℜ
(
e2iτQF

ij

)]

(29)

We deal with this additional degree of freedom by choosing it to maximize the real part of

Bij(τ), i.e. e2iτ =
B̃∗

ij

|B̃ij |
with

B̃ij =
∑

F

[

2
((
QF

ii

)
3 −

(
QF

jj

)
3
)
QF

ij

]

, (30)

where QF
ij (and thus B̃ij) follows the algebra of the MO coefficients. These phase-adjusted

orbitals are used in the computation of the second derivative Aij and the rotation angle θ.

After the rotation, the phase of the orbitals is restored. More details on this procedure and

on the derivations of Aij and Bij are provided in Appendix B, and a pseudo-code can be

found in Algorithm 4 in Appendix A.4. The exact same procedure is applied to the valence

virtual MOs expressed in terms of IFOs in Eq. (15). In both cases the result is a set of

orbitals that correspond to half the space. The remaining orbitals can be generated via the

Kramers’ operator if needed.

3 Computational details

The IFOs and ILMOs are generated in a standalone program called Reduction of Orbital

Space Extent (ROSE)73. ROSE has been interfaced with DIRAC66,67 using quaternion
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spinors, Psi474 and PySCF75 using real spinors, as well as the ADF program76 which is

based on Slater type orbitals (STO). As complex spinors can also be used in ROSE, an

interface with the relativistic DFT code Respect77 is currently under development. Note

that formatted checkpoint files are also read and generated in ROSE, thus allowing for an

interface with GAUSSIAN78. For Gaussian Type Orbitals (GTO) codes, only the information

on the basis set and on the MO coefficients are required (for both the full molecule in basis

B1 and fragments in basis Bk). The overlap matrices are then computed within ROSE

by a standalone routine. For the STO basis of ADF, they are extracted from the ADF

data files with the Python Library for Automating Molecular Simulation (PLAMS)79 of the

Amsterdam Modeling Suite AMS80. Our current version only works with uncontracted basis

sets and only the non-relativistic, the exact two-component X2C with or without (i.e., scalar-

X2C) spin-orbit coupling, and the molecular mean-field X2C (X2Cmmf) Hamiltonians can

be used. Both restrictions are only of technical nature and we plan to lift these in the next

release of the ROSE software. The use of ROSE has been detailed in a manual accessible

online73 together with several examples including the interfaces with DIRAC, Psi4, PySCF

and ADF.

4 Results and discussions

In this section, we investigate the IFOs and ILMOs obtained by ROSE for different systems

of increasing complexity. First and in order to compare with existing results in the literature,

the benzene and the acrylic acid molecules with atomic fragments are considered. Then, our

generalizations to quaternion spinors and to molecular fragments are tested on the ferrocene

molecule, tellurazol oxide complexes (monomer and dimer), a linear chain of tellurium-

substituted poly-ethylene glycol oligomers (Te-PEG-4), an iridium complex, and finally a

system composed of an astatine anion surrounded by ten water molecules. To visualize

the complex-valued spinors, we will plot the orbital densities. When the inclusion of spin-
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orbit coupling does not affect the shape of the orbitals, we plot the scalar-X2C (real-valued)

orbitals to also display information on the phase.

4.1 Benzene and acrylic acid

As a first test case, we consider the benzene molecule using atomic fragments, for which

IBOs have been reported in Ref. 57. The cc-pVTZ and cc-pV5Z basis are used to construct

the MO basis B1 and the RFO bases Bk, respectively. To see the difference between a non-

relativistic and a relativistic calculation with spin-orbit coupling, we plot the IFOs (which

reduces to IAOs in this case) of one carbon atom. There are 5 of them, one for the 1s and the

2s and three for the px, py and pz atomic orbitals. As readily seen in the first row of Fig. 1,

the IFOs are polarized but remain atom-centered as expected. One can clearly distinguish

between the px, py and pz orbitals in the non-relativistic calculation, while in the relativistic

(second row in Fig. 1) IFOs of the carbon atom, one can recognize a spherical p1/2 orbital as

well as two p3/2 orbitals. All these orbitals are much more spherical than the non-relativistic

ones1. We then localize separately the sets of (canonical) occupied and valence virtual MOs

[constructed with the SVD in Eq. (15)] by maximising Eq. (14) in the IFO basis.

Turning to the shape of the resulting ILMOs in Figs. 2 and 3 for benzene and the acrylic

acid, respectively, one recognize the IBOs obtained in Ref. 57, as well as the σ-antibonding

ones in Fig. 6 of Ref. 31. Interestingly, even while the IFOs were not the same between

the non-relativistic and the relativistic case (see Fig. 1), we do not see any difference for the

ILMOs. This is indicative of the quenching of the atomic spin-orbit coupling in the formation

of molecular bonds81. Starting with benzene, we can attribute the following to the occupied

ILMOs of Fig. 2: a) C–C σ-bonding orbital (6 times degenerate), b) C–H σ-bonding orbital

(6 times degenerate), and c) delocalized (aromatic) π-bonds (3 times degenerate). Let us

now turn to the valence virtual ILMOs, which could be called intrinsic antibonding orbitals.

1Note that also in the non-relativistic case, use of complex or quaternion coefficients can yield spherical
orbitals as this allows for recombination of the real orbitals to form complex spherical harmonics. This
can be observed in DIRAC by setting the speed of light to a very large value within the relativistic X2C
framework: the orbital densities are then spherical but this calculation is otherwise non-relativistic.
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orbital, and the C–O and C–C σ-antibonding orbitals.

The localization procedure for benzene converged in 16 and 24 iterations for the occupied

and the valence virtual space, respectively, when no spin-orbit coupling is considered (i.e.

for both the non-relativistic case as well as the scalar-X2C one). However, adding spin-orbit

coupling increased the number of iterations to 24 for the occupied space. Importantly, we

observed that the quartic exponent in Eq. (14) is necessary to achieve convergence for this

aromatic system, as a quadratic exponent would lead to a continuum of maximal local-

izations, as discussed in Ref. 57. For the acrylic acid, only 11 and 13 iterations achieved

convergence without spin-orbit coupling, against only a small increase to 12 for X2C in the

occupied space.

4.2 Ferrocene with molecular fragments

Let us now look at the ILMOs of the ferrocene molecule, where molecular fragments are

composed of each cyclopentadienyl ring C5H
−
5 and the isolated Fe2+ cation. The cc-pVDZ

and the cc-pVTZ basis were used to construct the MO basis B1 and the RFO bases Bk,

respectively. Compared to the IAOs which are centred on the atoms, the IFOs based on

molecular fragments are now centred on the different fragments and can be delocalized

on several atoms belonging to a given fragment. This example is a perfect illustration of

the usefulness of using molecular fragments instead of atomic ones. We furthermore note

that the localization procedure (using Jacobi rotations) is extremely hard to converge when

atomic fragments are considered. For instance, in the X2C case convergence is reached in

the occupied space after 336 iterations, while the localization in the virtual space reaches

a plateau with a final gradient of 10−8 (instead of 10−15 like for the other systems studied

in this paper). For cases like this, in which simple Jacobi optimization is problematic, it is

possible to consider more robust optimizations based on an exponential parametrization of

the unitary transformation, where the gradient and Hessian of the localization function with

respect to orbital rotations are estimated16,21,64.
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three remaining virtual ILMOs are 72.2%, 80.9% and 81.3% localized on the Fe atom, the

rest being equally spread on the cyclopentadienyl rings.

4.3 Tellurazol oxide complexes

To probe the influence of spin-orbit coupling on localization requires inclusion of elements of

the fourth or lower rows of the periodic table. For this purpose we selected the Te-substituted

polyethylene glycol oligomers that comprise a suitable benchmark system for relativistic

algorithms82. In this section, we consider two different calculations. First, we consider one

tellurazol oxide complex for which atomic fragments are used. Second, we consider a dimer of

tellurazol oxide complexes, each monomer defining one molecular fragment used to construct

the IFOs. The uncontracted dyall.2zp83 basis was used to construct B1 and Bk. Geometries

are extracted from Ref 82.

4.3.1 Atomic fragments

Starting with atomic fragments, we first take a look at the difference in the IFOs with and

without spin-orbit coupling. As readily seen in Fig 5, the IFOs (which reduces to IAOs

here) are very close to the well-known d (first row), s and p (second row) orbitals in the

scalar-relativistic case (left panel). However, adding spin-orbit coupling (X2C, right panel)

leads to a mixture of the above orbitals, like seen in Fig. 1 for benzene. For the d-orbitals we

now have two degenerate 4d3/2 orbitals and three degenerate 4d5/2 orbitals with all a rather

spherical density.

Somewhat surprisingly we do not see the increased effect of spin-orbit coupling in the

shape of the ILMOs that look very similar in the non-relativistic, scalar relativistic and full

relativistic calculations. The scalar-X2C spinors are plotted in Fig. 6. Again, the occupied

ILMOs (first row of Fig. 6) give a very good representation of chemical bonding. One can

easily recognize the Te–C σ-bonding orbital (H-5 in Fig. 6) more than 99% localized on two

atomic centers, the π-bonding orbitals more than 95% localized on two atomic centers (H-4
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more than 99% and 8 by more than 97%.

4.4 Te-PEG-4

We then investigated a simpler (without double bonds) but larger system, i.e. a linear chain

of tellurium-substituted poly-ethylene glycol oligomers (Te-PEG-4)82. The uncontracted

dyall.2zp83 basis were used for both B1 and Bk, together with atomic fragments. While the

original canonical MOs can be delocalized over all the atoms of the molecule, the ILMOs,

both occupied and virtual, are localized on at most two atomic-centers. In Fig. 8 we show

some of the highest occupied and lowest virtual ILMOs. Just like in the other systems,

one can easily identify the bonding nature of the orbitals, that is a) a Te–H σ-antibonding

orbital, b) a Te–C σ-antibonding orbital, c) lone pair orbital of the Tellurium atom, d)

Te–C σ-bonding orbital and e) Te–H σ-bonding orbital. Note that due to the symmetry of

the system, a), b), d) and e) are exactly two times degenerate, but also very close in energy

to other related orbitals (for instance, orbital in a) with other Te–H σ-antibonding orbitals

involving the other Tellurium atoms). We remind that the term ‘energy’ should be regarded

following the discussion in Sec. 2.4. Lower in energy, we find C–H and C–C σ-bonding orbitals

followed by the one-center-localized 4s and 5d orbitals of the Tellurium atoms, etc. Higher

in energy, the remaining valence virtual MOs are C–H and C–C σ-antibonding orbitals. All

ILMOs are more than 99% localized on maximally two atomic centers.

4.5 The fac-Irppy3 complex

To demonstrate the ADF interface we choose a well-known complex of iridium with three

phenylpyridinate (ppy) ligands. This complex is one of the first phosphors used to emit

light from triplet excitons in organic light emitting diode (OLED) devices84 and similar

compounds with different heavy metals and different ligands are being investigated to further

enhance OLED performance85. For analysis of the anisotropy of the emission and coupling

of the phosphor to the host material it is convenient to work in a local picture. This is easily
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possible using ILMOs. The uncontracted DZP Slater type basis86 that is supplied with

the ADF program were used for both B1 and Bk. We consider here two possible ways to

obtain such localized orbitals. The simplest procedure is to define atomic fragments and this

approach does largely remove the ligand delocalization of the canonical 5d orbitals (HOMO-2

to HOMO) and produces almost pure 5d orbitals (11% delocalization over the ppy fragments

for HOMO-2 and HOMO-1 and 5% for HOMO, compared to 48% and 36% for canonical

orbitals, respectively). One also obtains a total of 84 virtual orbitals that are mostly localized

on the ppy fragments. A more compact description of the valence virtual space is possible by

defining the ppy units as molecular fragments and keeping just the lowest canonical virtuals

of each ppy unit in the IFO basis. Such a reduction of the basis set by removing virtual

orbital from fragments is already an option when ADF is started in fragment mode, but this

procedure does also affect the resulting occupied orbital space and SCF energy as effects of

polarization and charge-transfer are only accounted for in an approximate way. This problem

does obviously not occur in post-SCF localization. We chose to limit basis B2 to include just

the lowest 2 virtuals of each ppy fragment and kept the valence space of the Ir identical to the

atomic fragment run. In the occupied space we then obtain three almost atomic 5d orbitals

(99% for HOMO, 93 % for HOMO-1 and HOMO-2) and in the valence virtual space we have

9 orbitals consisting of three sets of three-fold degenerate orbitals. The lowest three orbitals

are displayed in Fig. 9 and are 95 % localized on a single ppy ligand with 5% admixture of

Ir orbitals. The fact that considering molecular fragments led to an even better localization

of the occupied 5d orbitals than was obtained with atomic fragments is an indirect effect

of the truncation of basis B2 for the former. Keeping all the 27 valence virtual orbitals of

each ppy fragment does lead to a localization of 91% for HOMO-2, and 85% for HOMO-1

and HOMO (not shown). We believe that the compact and transparent description of the

valence space offered by the use of molecular fragments will prove useful for analysis. The

possibilities for truncation can be beneficial in post-SCF applications as a smaller and more

localized virtual space can reduce the computational cost of the algorithms significantly.
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fragment (see for instance H-11 and H-1 in Fig. 10). H-11 corresponds to a bonding orbital

between the oxygen and the two hydrogens of the water molecule, while H-1 features the

lone pair of the oxygen. The ILMOs with a strong contribution from the valence p orbitals

of the astatine anion (see H-23, H-14 and H in Fig. 10) are for more than 80% localized on

the astatine atom with the remainder spread on the surrounding water molecules.

In this case the ILMOs do not look like the p-type orbitals of the astatine anion, as

shown in the non relativistic case (see H-9, H-1 and H in the frame of Fig 10), as the

atomic spin-orbit coupling is not quenched in the molecular environment. This is the first

system studied here for which there is a clear difference in the ILMOs upon adding spin-orbit

coupling. This a posteriori localization lends support to embedding approaches in which the

density is partitioned a priori, the p-orbitals of the astatine anion can be considered fully

occupied and are not delocalized much over the water molecules. Thus, those ILMOs are

practically the IFOs for which the presence of spin-orbit coupling leads to rather spherical

p orbital densities. Finally, all our twenty virtual LMOs are anti-bonding orbitals between

the oxygen and each of the hydrogen of each water molecules. Some of them are oriented

towards the astatine anion and thus partially delocalized (see L+9 in Fig. 10), while others

are fully localized on the water fragments (see L in Fig. 10). Again, as the orbitals of the

astatine anion are all filled, there is no virtual orbital left in the minimal basis B2 for the

astatine. Thus, no virtual IFO and ILMO are found for the astatine anion.

5 Conclusions

A generalization of the intrinsic atomic (and bonding) orbitals of Knizia57 to complex and

quaternion spinors, as well as an extension to molecular fragments instead of atomic ones

are described in this paper. The calculations are performed with the Reduction of Orbital

Space Extent (ROSE). ROSE is a flexible standalone code which can be interfaced with

several quantum chemistry codes. For now, interfaces with DIRAC66,67, Psi474, PySCF75 and
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ADF76 have been implemented. As expected, our orbitals have the same advantages of the

original ones, i.e. they are not tied to the basis set and they are a very good representation

of chemical bonding. As the IFOs form a minimal polarized basis, only a limited set of

virtual orbitals can be localized in this basis. By performing a singular value decomposition,

we first express a reduced set of valence virtual orbitals in terms of IFOs. The latter are

then as easy to localize as the occupied ones and provide a good representation of anti-

bonding orbitals. In order to test our method, different systems with increasing complexity

are investigated. We started with simple molecules such as benzene and the acrylic acid

with atomic fragments. Then, we showed how considering molecular fragments instead

of atomic ones can improve the convergence of the localization procedure, as seen for the

ferrocene, or provide a more compact representation of the ligand virtual space for Irppy3.

Systems with significant relativistic effects such as tellurazol oxide complexes, a linear chain

of tellurium-substituted poly-ethylene glycol oligomers Te-PEG-4, and the astatine anion

surrounded by water molecules were studied, and orbitals were successfully localized. We

think this implementation will be useful for embedding techniques, like in the context of the

automated valence active space46, density matrix embedding theory43 or the localized active

space self-consistent field method51, to cite a few. The investigation of our localized occupied

and virtual orbitals in the context of local correlated methods is left for future work, but we

expect that they can provide a very good approximation to the weakly occupied correlating

multiconfigurational SCF orbitals in the full valence space31, and are thus a very good

effective configurational basis for the treatment of valence-internal correlation69.
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(43) Wouters, S.; Jiménez-Hoyos, C. A.; Sun, Q.; Chan, G. K.-L. A practical guide to density

matrix embedding theory in quantum chemistry. J. Chem. Theory Comput. 2016, 12,

2706–2719.

(44) Libisch, F.; Marsman, M.; Burgdörfer, J.; Kresse, G. Embedding for bulk systems using

localized atomic orbitals. J. Chem. Phys. 2017, 147, 034110.

(45) Chulhai, D. V.; Goodpaster, J. D. Improved accuracy and efficiency in quantum em-

bedding through absolute localization. J. Chem. Theory Comput. 2017, 13, 1503–1508.

(46) Sayfutyarova, E. R.; Sun, Q.; Chan, G. K.-L.; Knizia, G. Automated construction of

molecular active spaces from atomic valence orbitals. J. Chem. Theory Comput. 2017,

13, 4063–4078.

(47) Lee, S. J.; Welborn, M.; Manby, F. R.; Miller III, T. F. Projection-Based Wavefunction-

in-DFT Embedding. Acc. Chem. Res. 2019, 52, 1359–1368.

37



(48) Wen, X.; Graham, D. S.; Chulhai, D. V.; Goodpaster, J. D. Absolutely Localized

Projection-Based Embedding for Excited States. J. Chem. Theory Comput. 2019,

(49) Claudino, D.; Mayhall, N. J. Automatic partition of orbital spaces based on singular

value decomposition in the context of embedding theories. J. Chem. Theory Comput.

2019, 15, 1053–1064.

(50) Claudino, D.; Mayhall, N. J. Simple and efficient truncation of virtual spaces in em-

bedded wave functions via concentric localization. J. Chem. Theory Comput. 2019, 15,

6085–6096.

(51) Hermes, M. R.; Gagliardi, L. Multiconfigurational self-consistent field theory with den-

sity matrix embedding: the localized active space self-consistent field method. J. Chem.

Theory Comput. 2019, 15, 972–986.

(52) Hermes, M. R.; Pandharkar, R.; Gagliardi, L. The Variational Localized Active Space

Self-Consistent Field Method. J. Chem. Theory Comput. 2020, 16, 4923–4937.
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(88) Bouchafra, Y.; Shee, A.; Réal, F.; Vallet, V.; Gomes, A. S. P. Predictive Simulations

of Ionization Energies of Solvated Halide Ions with Relativistic Embedded Equation of

Motion Coupled Cluster Theory. Phys. Rev. Lett. 2018, 121, 266001.

A Pseudo-codes

A.1 Gauss–Seidel algorithm

The pseudocode to solve Eq. (8) with the Gauss–Seidel method applied on quaternion spinors

is given in Algorithm 1. This algorithm is easily applied in a complex or quaternion form.

The only non-standard operations are the quaternion multiplication in the calculation of Xji

and the definition of an Euclidean norm for quaternion algebra in the “do until” loop.
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Algorithm 1 Gauss–Seidel algorithm. Solve linear equation AX = B where A is a
diagonally-dominant or symmetric and positive matrix (sufficient but not necessary con-
dition).

1: Inputs: A ≡ S22, B ≡ S21. Outputs: X ≡ P21

2: Initialization: X = S21

3: for i = 1 to dim(B2) (columns)

4: do until ||Xn
i −Xn+1

i || < 10−15

5: Xn
i = Xi

6: for j = 1 to dim(B1) (rows)

7: Xji =

Bji −
dim(B1)∑

k 6=j

Ajk ×Xki

Aii

8: end

9: Xn+1
i = Xi

10: end

11: end
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A.2 Diagonalization algorithm

Algorithm 2 Jacobi eigenvalue algorithm of a Hermitian square matrix M with dimension
n, such that E†ME = D

1: Input: M. Outputs: E, D

2: Initialization: ||p|| = 1 (pivot norm), E = 1

3: do until ||p|| < 10−15

4: Find the pivot p (maximal off-diagonal element of the upper triangular matrix M)

5: p = Mij

6: Compute the phase P = p/||p||
7: for k = 1 to n

8: Ekj = Ekj/P

9: if k = j then cycle

10: Mkj = Mkj/P ; Mjk = Mjk × P

11: end

12: w = (Mjj −Mii)/||2p||
13: if w ≤ 0 then

14: tan(θ) = −w +
√
w2 + 1

15: else

16: tan(θ) = −w −
√
w2 + 1

17: end

18: cos(θ) =
1

√

tan(θ)2 + 1
; sin(θ) =

tan(θ)
√

tan(θ)2 + 1

19: Mii = Mii − tan(θ)||p|| ; Mjj = Mjj + tan(θ)||p||
20: Mij = Mji = 0

21: for k = 1 to n

22:

[
Eki

Ekj

]

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
Eki

Ekj

]

23: if (k = i) or (k = j) then cycle

24:

[
Mik

Mjk

]

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
Mik

Mjk

]

25: Mki = M∗
ik ; Mkj = M∗

jk

26: end

27: end

28: D ≡M

29: Sort E and D by ascending order 46



The pseudocode of the Jacobi eigenvalue algorithm for quaternion spinors is given in Algo-

rithm 2. The crucial step is to rotate the matrix into the real plane by scaling the j-th basis

vector by the phase factor, before performing the rotation in the real plane. Similarly, the

eigenvectors are also to be rotated only after scaling them with the phase factor.

A.3 SVD algorithm

The pseudocode of the Jacobi singular value decomposition algorithm for quaternion spinors

is given in Algorithm 3.
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Algorithm 3 Jacobi singular value decomposition algorithm, solve A = UΣV†. A and Σ
are rectangular matrices of dimension m × n, U and V are unitary matrices of dimension
m×m and n× n, respectively.

1: Input: A. Outputs: U, {Σii}i=1,...,nval
, V

2: Initialization: l = min(m,n)

3: if l = m then

4: M = AA†

5: call Algorithm 2(input: M, output: E, D)

6: Sort E and D by descending order

7: U = E ; Σii = Dii, i = 1, . . . , l

8: for i = 1 to l

9: for j = 1 to n

10: Vji =
(
A†U

)

ji
/Σii

11: end

12: end

13: else

14: M = A†A

15: call Algorithm 2(input: M, output: E, D)

16: Sort E and D by descending order

17: V = E ; Σii = Dii, i = 1, . . . , l

18: for i = 1 to l

19: for j = 1 to m

20: Uji = (AV)ji /Σii

21: end

22: end

23: end

Note that we do not get the whole U or V matrix depending on the value of min(m,n).

This is not an issue as only Nval
vir will have non-zero eigenvalues and only the corresponding

eigenvectors are of interest to us. Furthermore, one has to be careful when dividing by a

singular value close or equal to 0. But again, for the purpose of this paper, we did need not

consider such singular values and their associated vectors.
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A.4 Localization procedure

The pseudocode to maximise Eq. (14) by performing 2 × 2 Jacobi rotations on quaternion

spinors is given in Algorithm 4. Just as in Sec. 2.5.3, we omit the superscript k of Qk
ij

[Eq. (24)] for ease of notation.

Algorithm 4 Jacobi 2× 2 rotations to maximize Eq. (14).

1: Input & Output: C ≡ Cocc
IFO

2: Initialization: Grad = 1

3: do until Grad < 10−15

4: for i = 2 to Nocc

5: for j = 1 to i− 1

6: for k = 1 to NF (number of fragments)

7: Compute Qii, Qjj, Qij

8: B̃ij = B̃ij + 4Qij(Q
3
ii −Q3

jj)
9: end

10: Compute ||B̃ij||, Pij = B̃ij/||B̃ij||
11: for k = 1 to NF (number of fragments)

12: Aij = Aij −Q4
ii −Q4

jj + 6(Q2
ii + Q2

jj)ℜ
(
Qij × P ∗ij

)2
+ Q3

iiQjj + QiiQ
3
jj

13: end

14: Compute θ = (1/4) atan2 (||B̃ij||,−Aij)

15: for t = 1 to dim(B2)
16: C ′ti = cos(θ)Cti + sin(θ)(Ctj × P ∗ij)

17: C ′tj = − sin(θ)(Cti × Pij) + cos(θ)Ctj

18: Cti = C ′ti and Ctj = C ′tj

19: end

20: Compute Grad = Grad + ||Bij||2

21: end

22: end

23: Grad =
√

Grad/(Nocc(Nocc − 1)/2)

24: end

Just as in the diagonalization procedure described in Algorithm 2, the crucial step of the
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algorithm is to multiply the i-th vector by the phase Pij and the j-th vector by the phase

P ∗ij. Once this is done, real rotation matrices can be applied to the quaternion spinors until

Eq. (14) is maximized.

B Orbital localization: Technical details

B.1 Formal goal and notation

For a given set of orbitals {φi; i ∈ {1, . . . , No}} (typically either the set of occupied molecular

orbitals, valence-virtual orbitals, or some subset of either), one can define a multitude of

scalar functionals L({φi}) which characterize the degree of locality of the orbital set. Here

we concentrate on a class of generalized PM-like6 functionals,

L
(
{φi}

)
=

No∑

i=1

∑

F

h
(
nF (φi)

)
, (32)

where h(n) is a scalar function mapping the real interval [0, 1] to R (we will consider h(n) = n2

and h(n) = n4 as special cases), and nF (φi) is a function which quantifies which fraction

of orbital φi is attributed to system fragment F . We consider nF (φi) which fulfill ∀F :

nF (φi) ≥ 0 and
∑

F nF (φi) = 1 (at least approximately) and which are concretely given by

an expression

nF (φi) = 〈φi|P̂F |φi〉 (33)

for some definition of fragment-dependent operators {P̂F}.2

Let {φi; i ∈ {1, . . . , No}} denote the set of input orbitals. The goal of the localization

procedure is to find an unitary transformation Û within span{φi} for which the transformed

2The operators P̂F can be most naturally defined if the system fragments F originate from a partitioning
the full-system Hilbert space; alternatively, they can be defined by one of several atomic partitionings of the
electron charge distribution.6,23.
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orbitals {Ûφi} maximize the localization functional Eq. (32):

Û = arg max
unitary Û

L
(
{Ûφi}

)
. (34)

B.2 Localization by incremental 2×2-updates in C2

In Eq. (22) of the main text and appendix A.4 we describe a simple, but generally well-

working, algorithm for orbital localization in the sense of Eq. (34). The algorithm is a

revision of the method described by PM6, and, like PM’s, works by incrementally applying

2× 2 Jacobi rotations

Ûθ|φi〉 := cos(θ)|φi〉+ sin(θ)|φj〉

Ûθ|φj〉 := − sin(θ)|φi〉+ cos(θ)|φj〉, (35)

to all unique pairs of orbitals i, j ∈ {1, . . . , No} (with i 6= j) in the localization set (we

also formally define Ûθ to act as identity operator outside span{φi, φj}). In this, each such

2 × 2 rotation individually either exactly or approximately solves the localization problem

described by Eq. (34) in the one-dimensional subspace of rotations (parameterized by the

rotation angle θ). In this section, we explain the construction of the 2× 2 update formula in

Eqs. (22) and (23). The real version of the angle parameterization in Eq. (23) (which differs

from PM’s6) and the concrete formulas for Aij and Bij were already provided in Ref. 57,

but no technical details of their derivation.

In the complex case, Eq. (35) is not the most general 2× 2 unitary transformation which

covers all degrees of freedom which physically could potentially become relevant. Rather, as

explained in Sec. B.4, formally it should be replaced by

Û{θτ}|φi〉 := e−iτ cos(θ)|φi〉+ eiτ sin(θ)|φj〉,

Û{θτ}|φj〉 := −e−iτ sin(θ)|φi〉+ eiτ cos(θ)|φj〉, (36)
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where θ, τ ∈ R are the two scalar rotation parameters.

B.3 Solution to the 2× 2 localization problem

To proceed, let i and j denote two fixed orbital indices, and consider the maximization

of localization functional L Eq. (32) with respect to only the unitary transformation Û{θτ}

between φi and φj described by Eq. (36). Eq. (32) makes clear that Û{θτ} cannot affect any

term of L’s orbital sum except the two involving φi or φj; therefore, maximizing the full L

of Eq. (32) with respect to Û{θτ} is equivalent to maximizing the simpler two-term target

function

L(θ, τ) :=
∑

F

[

h
(

nF

(

Û{θτ}φi

))

+ h
(

nF

(

Û{θτ}φj

))]

. (37)

To proceed, we first evaluate nF

(

Û{θτ}φi

)

and nF

(

Û{θτ}φj

)

. Defining the hermitian-matrix

elements (cf. Eq. (33))

QF
kl := 〈φk|P̂F |φl〉 (38)

and abbreviating c := cos(θ) (∈ R), s := sin(θ) (∈ R), z := eiτ (∈ C, |z| = 1), c̃ = z c, and

s̃ := z s, we get

nF

(

Û{θτ}φi

)

= 〈Û{θτ}φi|P̂F |Û{θτ}φi〉

= 〈c̃∗φi + s̃φj|P̂F |c̃∗φi + s̃φj〉

= |c̃∗|2 〈φi|P̂F |φi〉+ |s̃|2 〈φj|P̂F |φj〉+ c̃s̃〈φi|P̂F |φj〉+ s̃∗c̃∗〈φj|P̂F |φi〉
︸ ︷︷ ︸

2csℜ(z2〈φi|P̂F |φj〉)

= c2QF
ii + s2QF

jj + 2csℜ(z2QF
ij). (39)
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In the last step, we used c, s ∈ R. Proceeding in the same way for nF of Û{θτ}|φj〉, we find

nF

(

Û{θτ}φj

)

= 〈Û{θτ}φj|P̂F |Û{θτ}φj〉

= 〈−s̃∗φi + c̃φj|P̂F | − s̃∗φi + c̃φj〉

= s2QF
ii + c2QF

jj −s̃c̃QF
ij − c̃∗s̃∗QF

ji
︸ ︷︷ ︸

−2csℜ(z2QF
ij)

= s2QF
ii + c2QF

jj − 2csℜ(z2QF
ij). (40)

Inserting these back into the functional, we get

L(θ, z) =
∑

F

h
(
c2QF

ii + s2QF
jj + 2csℜ(z2QF

ij)
)

+
∑

F

h
(
s2QF

ii + c2QF
jj − 2csℜ(z2QF

ij)
)
. (41)

For some functions h(n), this expression can be evaluated into a simple closed-form result,

which allows immediately reading off the resulting conditions for stationarity. For example,

for the special case h(n) = n2, Eq. (41) yields

L2(θ, z) =
∑

F

[
1

4
sin(4θ)

(
4(QF

ii −QF
jj)ℜ

(
z2QF

ij

))
+

1

4
cos(4θ)

(

(QF
ii −QF

jj)
2 − 4ℜ

(
z2QF

ij

)2
)

+
1

4

(

3(QF
ii)

2 + 2QF
iiQ

F
jj + 4ℜ

(
z2QF

ij

)2
+ 3(QF

jj)
2
)]

, (42)

and the exact maximum of this expression upon variation of θ can be straightforwardly

written down (see below).

However, not all h can be treated just like that (e.g., h(n) = n4 cannot, which was the

original default for the IBO construction57). For the general case, we therefore first construct

an approximation to L(θ, z), and then use it to determine an approximate extremum of L.

To this end, we substitute θ = 1
4

arctan(x) into L of Eq. (41), and then expand L in a power
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series around x = 0:

L
(
1
4

arctan(x), z
)

=
∞∑

k=0

xk

k!

[
dkL

(
1
4

arctan(x), z
)

dxk

∣
∣
∣
∣
x=0

]

. (43)

Retaining only terms up to second order, this yields

L
(
θ(x), z

)
=

1

2
Aij(z) x2 + Bij(z) x + Cij +O(x3). (44)

where Aij(z), Bij(z) and Cij denote the 2nd, 1st, and 0th order coefficients, respectively.

For a general smooth function h(n) : [0, 1] 7→ R with first derivative h′ and second derivative

h′′, these coefficients can evaluated as

Aij(z) =
∑

F

[
1

4
ℜ
(
z2QF

ij

)
2
(
h′′
(
QF

ii

)
+ h′′

(
QF

jj

))
− 1

8

(
QF

ii −QF
jj

) (
h′
(
QF

ii

)
− h′

(
QF

jj

))
]

Bij(z) =
∑

F

[
1

2
ℜ
(
z2QF

ij

) (
h′
(
QF

ii

)
− h′

(
QF

jj

))
]

Cij =
∑

F

(
h
(
QF

ii

)
+ h

(
QF

jj

))
. (45)

Concrete expressions for the special cases of h(n) = n2 and h(n) = n4, yielding the two

formulas presented with the original IBO method, are provided in Tab. 2. However, a large

variety of other convex functions h(n) yield stable localization algorithms; the properties of

more general h(n) will be considered elsewhere.

For L(θ, τ) to be extremal with respect to variations in θ, ∂L/∂θ must vanish. Translated

to L’s second order approximation Eq. (44), this yields the stationarity condition

∂L(x, z)

∂x
= Aij(z) x + Bij(z) = 0 (46)
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Table 2: Coefficients Aij(z), Bij(z), and Cij of the expansion L(θ(x), z) =
∑

F h
(
nF

(
Û{θτ}φi

))
+
∑

F h
(
nF

(
Û{θτ}φj

))
= 1

2
Aij(z) x2 + Bij(z) x + Cij +O(x3) [Eq. (44)],

where θ(x) = 1
4

arctan(x), obtained for various functions viable as h(n) in L [Eq. (32)].

General h(n)

Aij(z) =
∑

F

[
1

4
ℜ
(
z2QF

ij

)2 (
h′′
(
QF

ii

)
+ h′′

(
QF

jj

))
− 1

8

(
QF

ii −QF
jj

) (
h′
(
QF

ii

)
− h′

(
QF

jj

))
]

Bij(z) =
∑

F

[
1

2
ℜ
(
z2QF

ij

) (
h′
(
QF

ii

)
− h′

(
QF

jj

))
]

Cij =
∑

F

[

h
(
QF

ii

)
+ h

(
QF

jj

)]

h(n) = n2

Aij(z) =
∑

F

[

ℜ
(
z2QF

ij

)2 − 1

4

(
QF

ii −QF
jj

)2
]

Bij(z) =
∑

F

[(
QF

ii −QF
jj

)
ℜ
(
z2QF

ij

)]

Cij =
∑

F

[(
QF

ii

)2
+
(
QF

jj

)2
]

h(n) = n4

Aij(z) =
∑

F

[

3
((

QF
ii

)2
+
(
QF

jj

)2
)

ℜ
(
z2QF

ij

)2 − 1

2

(
QF

ii −QF
jj

) ((
QF

ii

)3 −
(
QF

jj

)3
)]

Bij(z) =
∑

F

[

2
((
QF

ii

)
3 −

(
QF

jj

)
3
)
ℜ
(
z2QF

ij

)]

Cij =
∑

F

[(
QF

ii

)4
+
(
QF

jj

)4
]
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for x, and therefore as approximate extremum of L(θ, z) any rotation angle

θ =
1

4

(

arctan

(

−Bij(z)

Aij(z)

)

+ πn

)

(n ∈ Z) (47)

However, not all of those solutions are minima, and some lead to spurious rotations by 180◦

(i.e., swaps of the output orbitals Û{θτ}φi and Û{θτ}φj, which are mathematically admissible

but physically meaningless).

In order to establish the correct choice of solutions in Eq. (47), and also rationalize

our original choice of the parametrization θ = 1
4

arctan(x), we consider the special case of

h(n) = n2. For this special case h(n) = n2, one can show by direct calculation that L(θ, z)

can be exactly expressed in terms of cos(4θ) and sin(4θ) and the series coefficients Aij(z),

Bij(z), and Cij defined in Eq. (45):

L2(θ, z) =
(
Cij + Aij(z)

)
+ Bij(z) sin(4θ)− Aij(z) cos(4θ). (48)

For h(n) = n2, this coincides with L2 from Eq. (42). The stationary condition ∂L2(θ, z)/∂θ =

0 then becomes

Bij(z) cos(4θ) = −Aij(z) sin(4θ), (49)

which has the solution set

θ ∈
{

1
4

(
2πn + arctan2(Bij(z), −Aij(z))

)
; n ∈ Z

}
∪

{
1
4

(
2πn + arctan2(−Bij(z), Aij(z))

)
; n ∈ Z

}
. (50)

The set described by Eq. (50) is equivalent to the one described by Eq. (47), but here

rewritten in terms of the two-argument arctan2(y, x) function3. So which of those θ should

3The two-argument arctan(y, x) function is available in many programming languages. For x > 0, it
evaluates to arctan(y, x) = arctan(y/x), and otherwise takes account of the signs of both the x and the y
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we choose as rotation parameter? To clarify that, we evaluate L′′2(θ, z) := ∂2L2(θ, z)/∂θ2 for

the stationary points. After simplifying and abbreviating Aij := Aij(z) and Bij := Bij(z),

one finds

L′′2
(
nπ
2

+ 1
4

arctan2(−Bij, Aij), τ
)

= +16
√

A2
ij + B2

ij

L′′2
(
nπ
2

+ 1
4

arctan2(Bij, −Aij), τ
)

= −16
√

A2
ij + B2

ij. (51)

This implies that the upper set of solutions characterizes the minima of L2 (positive second

derivative at stationary points), while the lower set characterizes the maxima. Since our

localization functionals are meant to be maximized, we need to select a solution from the

lower set. Additionally, we can just use the n = 0 solution without loss of generality:

while the solutions for all n ∈ Z are technically admissible, choosing a n 6= 0 will change

θ 7→ θ + n · 90◦, and therefore only cause physically inconsequential swaps and/or sign-flips

the output orbitals in Eq. (36). Therefore, for θ we can indiscriminately employ the update

formula described in the main text:

θ =
1

4
arctan2(Bij(z), −Aij(z)). (52)

B.4 Determining the relative phase factor τ

A general (2,2)-shape complex unitary transformation4 U can have four real scalar degrees

of freedom. However, in our application, there are two redundant degrees of freedom as the

resulting two new orbitals can be multiplied with arbitrary phase factors without influencing

the value of the functional n (and L). The only relevant additional degree of freedom,

compared to the case of real orbitals, is therefore a larger freedom to change their relative

arguments to yield a unique arc angle to point (x, y) in the full range [−π, π]; note that arctan(y/x) itself
cannot distinguish the cases of (x, y) and (−x,−y), and therefore is only uniquely defined for a half-circle
arc.

4In linear algebra, the Cn unitary group is called U(n); while the group name would simplify notation
here, we have many other U symbols, and using it may cause ambiguities. We therefore describe U(n) as
“(n,n)-shape unitary matrices”.
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phase z2 = e2iτ , as this phase may take a complex value rather than just reducing to a sign.

The gradient Bij(τ) depends on this value as we have

Bij(τ) =
∑

F

bFij ℜ
(
e2iτQF

ij

)
(53)

=
∑

F

bFij
[
cos(2τ)ℜ

(
QF

ij

)
− sin(2τ)ℑ

(
QF

ij

)]

= cos(2τ)ℜ
(
B̃ij

)
− sin(2τ)ℑ

(
B̃ij

)

where bFij are real coefficients that depend on the definition of h(n) and B̃ij =
∑

F bFijQ
F
ij is

the (complex) gradient before we apply the phase transformation. In principle, one could

consider evaluating the functional Eq. (44) at its extremum x = −Bij(τ)/Aij(τ) (Eq. (46))

as a function of τ ,

Lmax(τ) = Cij −
1

2

Bij(τ)2

Aij(τ)
(54)

and determining which phase factor would make this stationary. Unfortunately, this is

not straight-forward due to the ℜ(e2iτQF
ij)

2 term in Aij(τ), which offers no obvious way of

deferring the real component extraction in the computation of the sum over the fragments F .

Instead, we choose the value of τ such that Bij is maximized, so that we locate an extremum

of Bij with respect to a variation in τ . Since Cij is real and independent of τ , and since close

to a solution x ≈ 0 the Bij x term will also dominate the 1
2
Aij x

2 term in the second order

expansion L(x) in Eq. (44), this procedure should be able to reach a stationary point of L

with respect to both θ and τ at convergence. This choice of phase factor may be viewed as
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writing the unitary transformation of Eq. (35) as

U(θ, τ) =






e−iτ cos(θ) eiτ sin(θ)

−e−iτ sin(θ) eiτ cos(θ)




 (55)

=






cos(θ) sin(θ)

− sin(θ) cos(θ)











e−iτ 0

0 eiτ




 ,

comprising a phase transformation of the two orbitals to make the gradient real, followed by

rotation in the real plane. After the rotation, one may transform back to the original plane

by choosing

U′(θ, τ) =






cos(θ) e2iτ sin(θ)

−e−2iτ sin(θ) cos(θ)




 (56)

=






eiτ 0

0 e−iτ











cos(θ) sin(θ)

− sin(θ) cos(θ)











e−iτ 0

0 eiτ




 ,

We implemented the latter transformation by first accumulating B̃ij as a complex number

to obtain e−2iτ =
B̃∗

ij

|B̃ij |
. Multiplying orbital j with this phase factor yields:

B̃′ij = B̃ij

B̃∗ij

|B̃ij|
=
|B̃ij|2
|B̃ij|

= |B̃ij| (57)

so that the gradient is maximized, as desired. The phase-adjusted orbitals are used in the

computation of the second derivative Aij and the rotation angle θ as discussed in section

B.2. After the rotation, the phase of the orbitals is restored.
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Supporting Information (SI) for:

Generalization of intrinsic orbitals to Kramers-paired

quaternion spinors, molecular fragments, and valence

virtual spinors

Bruno Senjean, Souloke Sen, Michal Repisky, Gerald Knizia, Lucas Visscher

S3 Review of the intrinsic atomic orbital construction

The main text provides a new generalization of intrinsic atomic orbitals to intrinsic frag-

ment orbitals and four-component relativistic orbitals. In order to provide some background

information, and make this work self-contained, in this appendix we review and clarify math-

ematical aspects of the IAO construction in the original non-relativistic AO context. Apart

from providing background information on the current work, this also provides a complete

derivation of the previously rather terse theoretical details of the IAO method in Ref. 57,

and discusses a slight revision with improves formal properties. Concretely:

• The argument of why the IAOs span the occupied space is explicitly formulated in

terms of equations (instead of text as in the original article), and full derivations of all

involved equations are given.

• The IAO definition is slightly revised; the revised IAOs are simpler to construct, and

provide near-indistinguishable results to the original IAOs.
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• The matrix formulation of the IAO construction is derived, and an optimal set of

working equations is given.

S3.1 Computational, free-atom AO, and intrinsic AO bases

The original IAO method aims to construct a set of one-particle states—the IAOs—which

have the same dimension and conceptual meaning as a minimal basis, but at the same time

is capable of exactly spanning the occupied orbitals of a previously computed SCF (Hartree-

Fock or Kohn-Sham) wave function |Φ〉 (and thereby is also capable of exactly representing

the corresponding many-electron SCF determinant itself).

In the previous version of the method,57 this is achieved by applying a combination of

subspace projections (described next) to an input set of tabulated free-atom atomic orbitals;

these tabulated functions are expected to closely represent the “chemical” AOs of free atoms,

and by placing them on the positions of the atoms in a molecule they can be used as a

minimal molecular AO basis. This minimal basis then could be used for interpretative

purposes, because each of its AO basis functions uniquely corresponds to an actual atomic

orbital in the chemical sense. However, due the complete lack of polarization functions in the

basis, which are required to model the shifts in electronic structure of atoms as they come

in contact with each other in a molecule, in general a minimal basis of free-atom AOs—no

matter how accurate these represent the actual free atoms—does not have the capability of

representing molecular wave functions with any degree of quantitative accuracy. The IAO

method aims to rectify this by retaining a minimal basis, but changing the original free-atom

AOs it contained into molecule-intrinsic AOs by incorporating information obtained from an

already computed molecular wave function.

S3.2 Rationalization of the IAO subspace projection formula

In order to rationalize the construction achieving this, imagine the following scenario. As-

sume we have been given a molecule and computed for it an accurate SCF wave function |Φ〉
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in a large computational basis set5 B1. As a result of the SCF computation, we first obtain

a set of Nocc occupied molecular orbitals

|φi〉 =

dim(B1)∑

µ=1

|χµ〉Cµi (i ∈ {1, . . . , Nocc}), (S1)

which are needed for representing the many-electron wave function |Φ〉. We furthermore

obtain a set of Nvir = dim(B1)−Nocc virtual molecular orbitals

|φa〉 =

dim(B1)∑

µ=1

|χµ〉Cµa (a ∈ {1, . . . , Nvir}), (S2)

which are not needed for representing |Φ〉, but rather describe the orthogonal complement

of the occupied subspace span{|φi〉} in the full one-particle space span(B1).

Now let us consider the hypothetical situation in which we were to compute (e.g. by

a separate SCF procedure) a second single determinant wave function |Φ̃〉 for the same

molecule in the same electronic state—but this time employing only the minimal basis set

of free-atom atomic orbitals, for now called B2, to expand its molecular orbitals. [Note that

B2 takes a more general meaning in the main text; also, in practice |Φ̃〉 is not computed

separately, but will be extracted from the original |Φ〉 (see Appx. S3.3)]. This calculation

would yield another set of occupied and virtual orbitals, expanded over the minimal basis

functions {|ζµ〉; ζµ ∈ B2}:

|φ̃i〉 =

dim(B2)∑

µ=1

|ζµ〉C̃µi (i ∈ {1, . . . , Nocc}), (S3)

|φ̃a〉 =

dim(B2)∑

µ=1

|ζµ〉C̃µa (a ∈ {1, . . . , Ñvir}). (S4)

5In Ref. 57, B1 denoted a raw basis consisting of a set of non-orthogonal functions. In the main text
we distinguish for clarity between this basis and the basis B1 resulting from orthonormalization of these
functions. In this note we assume for simplicity that no near-linear dependencies need to be removed so that
dim(B1) = dim(B1)
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The number of occupied molecular orbitals remains at Nocc as in Eq. (S1), because the

number of electrons did not change. The number of virtual orbitals {φ̃a} reduces to Ñvir =

dim(B2)−Nocc, because, as a minimal basis set, B2 only spans the core and valence orbitals of

the molecule—in particular, B2 lacks the polarization functions and diffuse functions which’s

span would normally make up the largest part of the virtual one-particle space.

If combined, {|φ̃i〉} and {|φ̃a〉} obviously allow representing the entirety of span(B2);

consequently, for any of the minimal-basis functions |ζµ〉 ∈ B2, the expression

|ζµ〉 =

(Nocc∑

i=1

|φ̃i〉〈φ̃i|+
Ñvir∑

a=1

|φ̃a〉〈φ̃a|
)

|ζµ〉 (S5)

describes a resolution of the identity (RI) over the approximate occupied space span{|φ̃i〉} ⊂

B2 and its orthogonal complement span{|φ̃a〉} ⊂ B2. Eq. (S5) can be rephrased as

|ζµ〉 =
( ˆ̃O + ˆ̃V

)
|ζµ〉, (S6)

where we defined the following projectors onto the occupied and virtual subspaces within

span(B2):

ˆ̃O :=
Nocc∑

i=1

|φ̃i〉〈φ̃i| ˆ̃V :=

Ñvir∑

a=1

|φ̃a〉〈φ̃a|. (S7)

Note that if applied to vectors inside the span of B2, the operators ˆ̃V and 1− ˆ̃O have identical

effects, because the {|φ̃a〉} form a basis of the orthogonal complement of span{|φ̃i〉} inside

span(B2); in particular, we have

ˆ̃V |ζµ〉 =
(
1− ˆ̃O

)
|ζµ〉 (S8)

for the |ζµ〉 of Eq. (S6), which will play a role later.

In the IAO construction, the idea is to retain the beneficial aspects of having a meaningful
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minimal basis of atomic orbitals {|ζµ〉}, but changing its basis functions {|ζµ〉} in such a way

that afterwards their occupied subspace spans exactly the occupied space of |Φ〉, and their

virtual subspace lies exactly inside its orthogonal complement. This is easily achieved by an

adjustment to Eq. (S5), which as written is a RI over the approximate occupied and virtual

subspaces making up span(B2). We first define the projectors onto the accurate occupied

and virtual subspaces obtained from |Φ〉:

Ô :=
Nocc∑

i=1

|φi〉〈φi| V̂ :=

Nvir∑

a=1

|φa〉〈φa|. (S9)

(with {|φi〉} from Eq. (S1) and {|φa〉} from Eq. (S2)). Next, we use these projectors to

separately project the approximate occupied and virtual subspaces of the RI in Eq. (S6)

onto their accurate counterparts:

|φ≀µ〉 =
(
Ô ˆ̃O + V̂ ˆ̃V

)
|ζµ〉. (S10)

Provided that resulting functions {|φ≀µ〉} are not linearly dependent (which, in particular,

implies the weaker condition that the (Nocc, Nocc)-shape overlap matrix with elements

[
So,õ

]

ij
:=

[

〈φi|φ̃j〉
]

ij
, (S11)

has no vanishing singular values), these {|φ≀µ〉} will exactly span the accurate occupied space

span{|φi〉}, as explained next. The quantities defined in Eq. (S10) are the proto-IAOs we

aim to construct. [The “proto”-prefix only indicates that the orbitals are not yet orthogonal,

and may be marked with a “≀” superscript on state vectors if necessary for disambiguation;

coefficient matrices of such non-orthogonal quantities will be written in lower case, as in the

main text].

To see that the proto-IAOs span the occupied space (i.e., that span{|φi〉} ⊂ span{|φ≀µ〉}),

consider the following argument: First, as a direct consequence of the definition of the IAOs
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{|φ≀µ〉} in Eq. (S10) combined with the fact that the mutually orthogonal {|φ̃i〉} and {|φ̃a〉}

together form a basis of span(B2), the space

span
{
|φ≀µ〉; µ ∈ {1, . . . , dim(B2)}

}
(S12)

can be exactly split into the two orthogonal subspaces

Ao := span
{
Ô|φ̃i〉; i ∈ {1, . . . , Nocc}

}
⊂ span(B1) (S13)

Av := span
{
V̂ |φ̃a〉; a ∈ {1, . . . , Ñvir}

}
⊂ span(B1) (S14)

(Ao and Av are orthogonal to each other because both the original {|φ̃i〉} and {|φ̃a〉} are

mutually orthogonal, and the occupied and virtual subspaces they are projected to by Ô

and V̂ are orthogonal, too; so they can be considered entirely independently of each other).

Of these, the subspace span{Ô|φ̃i〉} obviously lies entirely inside span{|φi〉}; additionally, the

vectors {Ô|φ̃i〉} are all linearly independent, and therefore both span{Ô|φ̃i〉} and span{|φi〉}

are vector spaces of the same dimension (Nocc). It is now elementary linear algebra to

recognize that if a vector space A is a subspace of another vectorspace B, and both A and

B have the same dimension, then A and B are in fact identical. Under the given premise of

So,õ (Eq. (S11)) not being singular, this is exactly the case here. Consequently, Ao, which is

a subspace of the span of IAOs, is identical to |Φ〉’s occupied space span{|φi〉}. This means

in particular that, if needed, all |φi〉 could be exactly represented as linear combinations of

the dim(B2) IAOs of Eq. (S10).

So why would we expect the premise of So,õ being non-singular to be the applicable? As

described above, the main difference between a free-atom minimal basis B2 and an accurate

computational basis B1 is the former’s lack of diffuse and polarization functions. However,

while important for quantitative accuracy, the diffuse and polarization functions which B2
lacks are generally not needed to represent the qualitative molecular electronic structure

of core or valence states; in fact, B2 does contain all functions required to model those
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qualitatively. For this reason, we would expect that apart from some exceptional cases (if

|Φ̃〉 and |Φ〉 describe qualitatively different states; e.g., if |Φ〉 describes a Rydberg state or

non-valence anion), the space spanned by the B2-basis occupied orbitals {|φ̃i〉} of Eq. (S3)

has a high overlap with, and closely resembles, the occupied space spanned by the accurate

large-basis molecular orbitals {|φi〉} of Eq. (S1). Similarly, span{|φ̃a〉}, should be entirely

sufficient to qualitatively represent all anti-bonding and unoccupied non-bonding orbitals

in the valence space of the molecule; the rationale for this is even stronger, because those

orbitals can with good reason be defined as a localized representation of the orthogonal

complement of the occupied space (≈ span{|φ̃i〉}) inside the valence space (≈ span(B2)).

Let us define the projectors onto the entire linear span of B1 and B2 as P̂1 and P̂2:

P̂1 =

dim(B1)∑

µ,ν=1

|χµ〉[S−111 ]µν〈χν |

P̂2 =

dim(B2)∑

µ,ν=1

|ζµ〉[S−122 ]µν〈ζν | (S15)

(if the functions of B1 already are orthonormal, as in the main text of this work, the inverse

overlap matrix is an identity matrix, and the projector can be accordingly simplified; how-

ever, for the current section we retain the general form to simplify comparison to previous

formulas). For the occupied and virtual space projectors of Eq. (S9), we then find

P̂1Ô = Ô P̂1V̂ = V̂ Ô + V̂ = P̂1 (S16)

because the {|φi〉} and {|φa〉} are expanded over B1 to begin with, and together form a basis
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of span(B1). Taken together with Eq. (S8), these expression allow rewriting Eq. (S10) as

|φ≀ρ〉 =
(

Ô ˆ̃O + V̂ ˆ̃V
)

|ζρ〉

=
(

P̂1Ô
ˆ̃O + P̂1

(
P̂1 − Ô

)(
1− ˆ̃O

))

|ζρ〉

= P̂1

(

Ô ˆ̃O +
(
1− Ô

)(
1− ˆ̃O

))

|ζρ〉. (S17)

This formula can be compared to Eq. (2) of Ref. 57, which in the current notation would

read as

|φ≀ρ〉 =
(

Ô ˆ̃O +
(
1− Ô

)(
1− ˆ̃O

))

P̂1|ζρ〉. (S18)

Eqs. (S17) and (S18) subtly differ in that Eq. (S17) applies P̂1 as the last step in the

construction (leftmost), rather than as first step (rightmost), as Eq. (S18) does. This and

other subtle aspects of choices in the IAO construction are discussed in detail in Appx. S3.6.

In the current case, it is easily established (Appx. S3.6) that Eqs. (S17) and (S18) are

mathematically equivalent if the {|φ̃i〉} are defined as in Ref. 57 (Eq. (S19) below), so this

apparent difference is spurious. Eq. (S17) is the more general form, and will therefore be

used in the following discussion.

S3.3 Construction of the depolarized occupied orbitals {|φ̃i〉} and

their subspace projector ˆ̃O =
∑

i |φ̃i〉〈φ̃i|

The IAO formula Eq. (S17) involves the projector ˆ̃O, for which we require the occupied

orbitals {|φ̃i〉} of Eq. (S3). Despite the outline in Appx. S3.2, neither the original IAO

method57 nor this work requires an actual independent computation in the minimal basis

B2 to obtain these {|φ̃i〉}. We only introduced this conceptual possibility because it affords

a cleaner outline of the core of the IAO construction in Eq. (S17) (which affords the span-

ning property), before introducing the essentially unrelated technical details of viable {|φ̃i〉}
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constructions used in practice.

Instead of computing the {|φ̃i〉} a priori, we obtain them from a simplification of the

full-basis occupied states {|φi〉}, which we already have computed—in the simplest case,

by just a projection onto span(B2), followed by a re-orthogonalization. [Apart from being

much simpler than performing an SCF to obtain a single determinant wave function, this

also ensures that the full-basis wave function |Φ〉 and the minimal-basis wave function |Φ̃〉

are automatically generated in a consistent fashion: if the wave function |Φ̃〉 were computed

with an actual SCF procedure, it could happen that both SCF procedures arrive at qualita-

tively inequivalent electronic states of the molecule (e.g., in molecules with multiple viable

electronic states).]

Concretely, two variants of constructing the |φ̃i〉 are used in practice. Both start by com-

puting what we here denote as “proto-depolarized occupied” (pdo) molecular orbitals; these

are obtained by “depolarizing” the large-basis occupied orbitals {|φi〉; i ∈ {1, . . . , Nocc}}.

The “proto”-prefix again indicates that the orbitals are not yet orthogonal, and indicated

with a “≀” superscript if necessary for disambiguation. The original 2013 IAO article sug-

gested computing the dpo as

|φ̃≀i〉 := P̂1P̂2|φi〉. (S19)

In a (slight) revision of the IAO method (which since 2014 was outlined and recommended

in GK’s reference implementation, but has never been formally published academically), the

dpo are instead computed as

|φ̃≀i〉 := P̂2|φi〉, (S20)

without the additional B1-span projection P̂1. As argued before,57 in practice P̂1 acts almost

as an identity operator if applied to functions in span(B2), because just about any realistic

computational basis can almost perfectly represent the minimal-basis functions; however,
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in most practical situations span(B2) ⊂ span(B1) is not exactly fulfilled, so Eqs. (S19) and

(S20) are not strictly equivalent, either. As the construction resulting from the choice of

Eq. (S19) has already been described in the original IAO article, we will here focus on

Eq. (S20); however, we will point out details regarding the formal and numerical differences

in Appx. S3.5 and S3.6.

The original molecular orbitals {|φi〉} are orthonormal, but the depolarization in Eq. (S20)

strips off all the polarization contributions to the |φi〉 (because these cannot be represented in

the span of the minimal basis B2), and therefore the |φ̃≀i〉 are generally not exactly orthogonal

as written. To obtain a set of {|φ̃i〉} which can serve as replacement of Eq. (S1), we therefore

orthogonalize the |φ̃≀i〉. To this end, we first compute the (Nocc, Nocc)-shape pdo-MO overlap

matrix

[
s̃pdo

]

ij
= 〈φ̃≀i|φ̃≀j〉 = 〈φi|P̂2P̂2|φj〉 = 〈φi|P̂2|φj〉. (S21)

In the second step, we used P̂ 2
2 = P̂2 (the idempotency property shared by all projection

operators). A set of orthogonalized {|φ̃i〉} can then be obtained as

|φ̃i〉 =
Nocc∑

j=1

|φ̃≀j〉
[
s̃
−1/2
pdo

]

ji
. (S22)

While this formally describes a symmetric orthogonalization, the IAO construction is invari-

ant to the type of orthogonalization used, and the final formulas need not actually involve

any explicit orthogonalization of the {|φ̃i〉} states at all. In fact, Eq. (S17) makes clear that

as far as the {|φ̃i〉} are concerned, only a representation of the projector ˆ̃O is needed for

the construction of the IAOs. And by inserting Eqs. (S21) and (S22), we can obtain one as

follows:

ˆ̃O =
Nocc∑

i=1

|φ̃i〉〈φ̃i|

10



=
Nocc∑

j,k=1

Nocc∑

i=1

|φ̃≀j〉
[
s̃
−1/2
pdo

]

ji

[
s̃
−1/2
pdo

]

ik
〈φ̃≀k|

=
Nocc∑

j,k=1

|φ̃≀j〉
(Nocc∑

i=1

[
s̃
−1/2
pdo

]

ji

[
s̃
−1/2
pdo

]

ik

)

〈φ̃≀k|

=
Nocc∑

j,k=1

|φ̃≀j〉
[
s̃−1pdo

]jk〈φ̃≀k|

=
Nocc∑

j,k=1

P̂2|φj〉
[
s̃−1pdo

]jk〈φk|P̂2. (S23)

S3.4 Formal simplifications of Eq. (S17)

Appx. S3.2 described the emergence of Eq. (S17)—this is the core formula of the IAO con-

struction. In principle, Eq. (S17) can be translated into an implementable matrix formulation

directly as is (and, indeed, that is exactly how the “Standard/2013” variant of the IAO con-

struction was described in Appendix C of Ref. 57). However, with the slight revision of

replacing Eq. (S19) by Eq. (S20), Eq. (S17) can be formally simplified before doing so. To

this end, first note that Eq. (S17) can be rearranged as follows:

|φ≀ρ〉 = P̂1

(

Ô ˆ̃O +
(
1− Ô

)(
1− ˆ̃O

))

|ζρ〉

= P̂1

(

Ô ˆ̃O + 1− Ô − ˆ̃O + Ô ˆ̃O
)

|ζρ〉

= P̂1

(

1− Ô − ˆ̃O + 2Ô ˆ̃O
)

|ζρ〉

= P̂1

(

1 + Ô − ˆ̃O + 2Ô ˆ̃O − 2Ô
)

|ζρ〉

= P̂1

(

1 + Ô − ˆ̃O + 2
(
Ô ˆ̃O − Ô

))

|ζρ〉

= P̂1

(

1 + Ô − ˆ̃O − 2Ô
(
1− ˆ̃O

))

|ζρ〉. (S24)
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We will next establish that the ˆ̃O of Eq. (S23) fulfills

Ô
(
1− ˆ̃O

)
|ζρ〉 = 0. (S25)

As a consequence, Eq. (S24) reduces to

|φ≀ρ〉 = P̂1

(
1 + Ô − ˆ̃O

)
|ζρ〉. (S26)

This is a significant formal simplification, and also affords a simpler and more efficient matrix

formulation than obtained by translating Eq. (S17) directly (see Appx. S3.5).

The relation Eq. (S25) can be established by direct calculation after inserting Eq. (S9)

for the occupied space projector Ô and Eq. (S23) for its depolarized counterpart ˆ̃O:

Ô
(
1− ˆ̃O

)
|ζρ〉

=
Nocc∑

i=1

|φi〉〈φi|
(

1−
Nocc∑

j,k=1

P̂2|φj〉
[
s̃−1pdo

]jk〈φk|P̂2

)

|ζρ〉

=
Nocc∑

i=1

|φi〉
(

〈φi| −
Nocc∑

j,k=1

〈φi|P̂2|φj〉
︸ ︷︷ ︸

=
[
s̃pdo

]

ij

[
s̃−1pdo

]jk〈φk|P̂2

)

|ζρ〉

=
Nocc∑

i=1

|φi〉
(

〈φi| −
Nocc∑

k=1

Nocc∑

j=1

[
s̃pdo

]

ij

[
s̃−1pdo

]jk〈φk|P̂2

)

|ζρ〉 (S27)

To arrive here, we inserted
[
s̃pdo

]

ij
from Eq. (S21). Note this yields a contraction of s̃pdo to

s̃−1pdo, which can be evaluated as

Nocc∑

j=1

[
s̃pdo

]

ij

[
s̃−1pdo

]jk
= δki . (S28)
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Substituting this back into Eq. (S27), we find

Ô
(
1− ˆ̃O

)
|ζρ〉 =

Nocc∑

i=1

|φi〉
(

〈φi| −
Nocc∑

k=1

δki 〈φk|P̂2

)

|ζρ〉

=
Nocc∑

i=1

|φi〉
(

〈φi| − 〈φi|P̂2

)

|ζρ〉

=
Nocc∑

i=1

|φi〉
(

〈φi|ζρ〉 − 〈φi|P̂2|ζρ〉
︸ ︷︷ ︸

=〈φi|ζρ〉

)

= 0 (S29)

In the last step we used

〈φi|P̂2|ζρ〉 = 〈φi|ζρ〉. (S30)

This holds because |ζρ〉 ∈ B2; that is, it already lies inside the subspace P̂2 projects to, so

P̂2 does not affect it.

Eq. (S26) was already put forward in Appendix C of Ref. 57, as a simpler alternative for-

mula for constructing IAOs capable of exactly spanning the occupied space. However, with

the definitions of Ref. 57, this was an approximation to Eq. (S18) (a very good approxima-

tion, but still an approximation), while the minor revision explained here (namely replacing

Eq. (S18) by (S17) and Eq. (S19) by (S20)), this simplification from Eq. (S17) to Eq. (S26)

is exact. A similar simplification was also discussed by Janowski;62 however, it was derived

under the formal prerequisite that span(B2) is an exact subspace of span(B1)—a condition

which in practice is often violated, and under which also the simplified formula in Appendix

C of Ref. 57 is exact. By confirming Eq. (S25), we show that with the present tweaks in

the definitions of intermediate quantities, it is not necessary that span(B2) ⊆ span(B1) to

achieve exact equivalence of Eq. (S17) and Eq. (S26).
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S3.5 Matrix formulation of the IAO construction

So far we described the algebraic reasoning behind the IAO construction using the abstract

state vector formalism. For the more practical minded, we here translate the equations into

a directly implementable matrix formulation. To this end, let C denote the (dim(B1), Nocc)-

shape occupied orbital coefficient matrix representing the {|φi〉; i ∈ {1, . . . , Nocc}} of Eq. (S1),

and let S11, S12, S21 (= S†12), and S22 denote the indicated overlap matrices between B1 and

B2, with elements defined as usual, e.g.,

[S12]µν := 〈χµ|ζν〉 (S31)

for µ ∈ {1, . . . , dim(B1)}, ν ∈ {1, . . . , dim(B2)}. [Note that in the the main text of this work,

B1 is represented by a full set of orthonormal molecular orbitals, so S11 is an identity matrix;

however, we retain the general form in this section].

Revised IAO construction: We will first describe a matrix formulation of Eq. (S26), which

in its abstract state vector form reads

|φ≀ρ〉 = P̂1

(
1 + Ô − ˆ̃O

)
|ζρ〉 (for |ζρ〉 ∈ B2)) (S32)

and provides the proto-versions (not yet orthogonalized) of the revised IAOs resulting from

Eq. (S17) combined with Eq. (S20). To express the |φ≀ρ〉 numerically, we will represent them

with the
(
dim(B1), dim(B2)

)
-shape coefficient matrix cIAO, which represents the expansion

|φ≀ρ〉 =

dim(B1)∑

µ=1

|χµ〉cIAO
µρ (ρ ∈ {1, . . . , dim(B2)}). (S33)

To derive the concrete form of cIAO, first note that Eq. (S32) can be reformulated as

|φ≀ρ〉 = P̂1|ζρ〉+ Ô|ζρ〉 − P̂1
ˆ̃O|ζρ〉 (S34)
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because P̂1Ô = Ô (Eq. (S16)). We now process the individual terms of Eq. (S34). Inserting

Eq. (S9) for Ô and Eq. (S1) for its {|φi〉}, we find:

Ô|ζρ〉 =

(Nocc∑

i=1

|φi〉〈φi|
)

|ζρ〉

=
Nocc∑

i=1

( dim(B1)∑

µ=1

|χµ〉Cµi

)( dim(B1)∑

ν=1

C∗νi〈χν |
)

|ζρ〉

=
Nocc∑

i=1

dim(B1)∑

µ=1

|χµ〉 Cµi
︸︷︷︸

[C]µi

dim(B1)∑

ν=1

C∗νi
︸︷︷︸

[C†]iν

〈χν |ζρ〉
︸ ︷︷ ︸

[S12]νρ

=

dim(B1)∑

µ=1

|χµ〉[CC†S12]µρ. (S35)

Next, by inserting P̂1 from Eq. (S15), we get for P̂1|ζρ〉:

P̂1|ζρ〉 =

( dim(B1)∑

µ,ν=1

|χµ〉[S−111 ]µν〈χν |
)

|ζρ〉

=

dim(B1)∑

µ=1

|χµ〉
( dim(B1)∑

ν=1

[S−111 ]µν 〈χν |ζρ〉
︸ ︷︷ ︸

[S12]νρ

)

=

dim(B1)∑

µ=1

|χµ〉[S−111 S12]µρ. (S36)

To process P̂1
ˆ̃O, we first need a matrix representation of s̃pdo of Eq. (S21); this is easily

15



obtained by again inserting Eq. (S1) for the {|φi〉} and Eq. (S15) for P̂2:

[
s̃pdo

]

ij
= 〈φi|P̂2|φj〉

= 〈φi|
( dim(B2)∑

µ,ν=1

|ζµ〉[S−122 ]µν〈ζν |
)

|φj〉

=

dim(B1)∑

λ=1

C∗λi〈χλ|
dim(B2)∑

µ,ν=1

|ζµ〉[S−122 ]µν〈ζν |
dim(B1)∑

κ=1

|χκ〉Cκj

=

dim(B1)∑

λ,κ=1

dim(B2)∑

µ,ν=1

C∗λi
︸︷︷︸

[C†]iλ

〈χλ|ζµ〉
︸ ︷︷ ︸

[S12]λµ

[S−122 ]µν 〈ζν |χκ〉
︸ ︷︷ ︸

[S21]νκ

Cκj

=
[
C†S12S

−1
22 S21C

]

ij
. (S37)

That is, we get

s̃pdo = C†S12S
−1
22 S21C. (S38)

Using this, we can now insert ˆ̃O from Eq. (S23) to obtain the final term of Eq. (S34):

P̂1
ˆ̃O|ζρ〉 = P̂1

Nocc∑

j,k=1

P̂2|φj〉
[
s̃−1pdo

]jk〈φk|P̂2|ζρ〉

=
Nocc∑

j,k=1

dim(B1)∑

µ,ν=1

|χµ〉[S−111 ]µν 〈χν |P̂2|φj〉
︸ ︷︷ ︸

[S12S
−1
22 S21C]νj

[
s̃−1pdo

]jk 〈φk|P̂2|ζρ〉
︸ ︷︷ ︸

[C†S12]kρ

=

dim(B1)∑

µ=1

|χµ〉[S−111 S12S
−1
22 S21C s̃−1pdoC

†S12]µρ (S39)

In this, we used P̂2|ζρ〉 = |ζρ〉 to simplify 〈φk|P̂2|ζρ〉.

Collecting the terms from Eqs. (S39), (S36), and (S35) for Eq. (S34), and comparing to

the formal expansion Eq. (S33), we find as expression for the proto-IAO expansion matrix

cIAO = S−111 S12 + CC†S12 − S−111 S12S
−1
22 S21C s̃−1pdoC

†S12. (S40)
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This expression can be directly computed from the occupied orbital matrix C and the indi-

cated overlap matrices. The formula can be evaluated more efficiently when introducing the

intermediate matrices

P12 := S−111 S12 t1 := S21C t2 := S−122 t1 (S41)

In terms of these, we may first rewrite Eq. (S40) into

s̃pdo = t†1t2, (S42)

and then introduce the intermediate

t3 = t2s̃
−1
pdo =

((
s̃†pdo

)−1
t†2

)†

(S43)

[We formulated t3 in terms of adjoints because linear algebra solvers are normally solve

AX = B (⇔ X = A−1B) rather than XA = B (⇔ X = BA−1) we would otherwise need].

Using these, we may then rewrite Eq. (S40) as

cIAO = S−111 S12 + Ct†1 − S−111 S12t2 s̃
−1
pdot

†
1,

= P12 + Ct†1 −P12t2 s̃
−1
pdot

†
1

= P12 +
(
C−P12t2 s̃

−1
pdo

)
t†1

= P12 + (C−P12t3) t
†
1 (S44)

The intermediates Eqs. (S41) to (S43) combined with the last line of Eq. (S44) provide

an efficient formulation of the construction of cIAO in terms of binary matrix operations

(see Fig. S1). It may be noted that in this factorization, the only operation in the entire

construction which scales as O(dim(B1)3) is calculating the Cholesky decomposition of S11,

which is needed to solve for P12 in Eq. (S43); however, this decomposition of S11 (which
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is the computational main basis overlap matrix), would very most likely be already present

in the host program because at least one of those is typically computed as part of the

SCF process (or alternatively a spectral decomposition of S11 or a S
−1/2
11 matrix, either of

which would also work for constructing P12). Note that the three formal matrix inverses in

Eq. (S41) and (S43) should never be calculated as actual inverses, but rather expressions like

“S−122 t1” should be read as “solve the equation system S22x = t1 for x using a suitable matrix

decomposition of S22”—in the current case, all formally inverted matrices are symmetric and

positive definite, so the systems are most efficiently solved using the (extremely efficient)

Cholesky decomposition of the overlap matrices combined with two triangular matrix solves

per equation (dpotrf/dtrsm in LAPACK/BLAS terminology).

P12 := solve (S11, S12)

t1 := S†12C

t2 := solve (S22, t1)

s̃pdo := t†1t2

t3 := solve
(
s̃†pdo, t

†
2

)†

cIAO := P12 + (C−P12t3) t
†
1

Figure S1: Recommended final numerical algorithm for revised construction of the IAOs, as
provided in Eqs. (S41) to (S44). This construction is based on Eqs. (S17) and (S20); see
Appx. S3.6 for a discussion of the differences to Ref. 57. Algorithm inputs are: the B1 to B2
overlap matrices S11, S12, and S22, and the occupied molecular orbital cofficient matrix C
of Eq. (S1) (with shape (dim(B1), Nocc)); output is the (dim(B1), dim(B2))-shape proto-IAO
coefficient matrix cIAO of Eq. (S33). The linear solves are most efficiently computed with
Cholesky decompositions (dpotrf/dtrsm).

Original 2013 IAO construction: To compare, we also provide the matrix formulation of

the original 2013 IAO construction. As mentioned, this is obtained from either Eq. (S17) or

Eq. (S18) when defining the proto-depolarized occupied orbitals {|φ̃i〉} via Eq. (S19) (i.e.,

as |φ̃≀i〉 := P̂1P̂2|φi〉) instead of Eq. (S20) (which omits the final P̂1 projection).

When we again denote the occupied orbital matrix as C and the internal and crossed
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B1/B2 overlap matrices as S11, S12, S21 (= S†12), and S22, then a direct translation of Eq. (S17)

for the proto-IAOs into its matrix form yields

P12 = S−111 S12 (S45)

C̃ = orth(S−111 S12S
−1
22 S21C, S11) (S46)

cIAO = CCTS11C̃C̃TS11P12+

(1−CCTS1)(1− C̃C̃TS11)P12 (S47)

In this, orthonormalization is defined as

orth(C, S) := C[CTSC]−1/2, (S48)

where X−1/2 denotes the matrix inverse square root (any other orthogonalization would also

work and produce identical results). These are equivalent to the formulas in Appendix C of

Ref. 57. As in the last subsection, the proto-IAOs described by cIAO are not yet orthogonal,

and still need to be orthogonalized if orthogonal IAOs are desired. Eq. (S47) can still be

factorized; however, both the formal complexity and the complexity of the numerical terms

will be higher than in Fig. S1, because as mentioned, the transition from Eq. (S17) to

Eq. (S26) is not exact in this case.

It should be mentioned, however, that either formulation of the IAOs will be trivial in

terms of computational cost when compared to a full SCF calculation—even with the most

efficient of non-hybrid DFT programs. Additionally, both versions produce numerically near

indistinguishable results in all cases we have investigated. The preference for the revised IAO

version is therefore mainly from a formal nature, but we expect that it is unlikely to play a

major role except for special applications like analytic gradients, where simpler formulas are

much preferable.
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S3.6 Discussion of possible choices in the formal IAO construction

There are multiple different sensible ways of defining the polarization-free occupied orbitals

{|φ̃i〉} introduced in Eq. (S3), which in turn determine the projector ˆ̃O of Eq. (S7). In the

original article57, Eq. (S19) was chosen, which is

|φ̃≀i〉 := P̂1P̂2|φi〉. (S49)

In contrast, here we presented derivations using Eq. (S20),

|φ̃≀i〉 := P̂2|φi〉, (S50)

as a more elegant alternative (which actually has been discussed in the IAO/IBO reference

implementation (ibo-ref.py) of the IAO method since 2014, but has not been published in

an academic context. The revision was prompted by an article of Janowski62, who employed

Eq. (S50) under the premise that B2 is exactly spanned by B1).

The differences between Eq. (S49) and Eq. (S50) are very subtle, because they involve

differences in handling the degree to which the minimal basis B2 cannot be expressed in terms

of the full basis B1. For the same reason, they have almost no bearing on the numerical results

obtained: as far as we are aware of, differences between results produced by both variants

are negligible for all practical purposes. Additionally, while the amount of numerical work

differs for the final formulas of both choices (Appx. S3.5), evaluating either of them is so

cheap compared to even the fastest non-hybrid DFT or other SCF methods, that it is hard

to imagine a usage case where the gain in computational efficiency afforded by Eq. (S50)

could actually matter.

Nevertheless, these choices do imply some formal differences, which can easily confuse.

Additionally, in some special applications (e.g., analytical gradient formulas) the minor for-

mal differences might have noticeable consequences on program complexity. We therefore
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point them out and discuss them inside this section, but mostly isolate it from the rest of

the text to reduce potential for distraction by details of ultimately very little importance.

One such subtle difference appears when comparing Eq. (S17) to Eq. (2) of Ref. 57, which

as already mentioned, would read as Eq. (S18) if translated into the current notation. While

formally different, for the concrete definition of the depolarized orbitals |φ̃i〉 used in Ref. 57

(given in Eq. (S49)), not only the |φi〉 lie inside the span of B1 (as here), but the |φ̃i〉 do so,

too. As a consequence, with that definition both Ô and ˆ̃O are projectors into subspaces of

span(B1); therefore, we have not only P̂1Ô = ÔP̂1 = Ô, but also

P̂1
ˆ̃O = ˆ̃OP̂1 = ˆ̃O (with {|φ̃i〉} from Eq. (S49))

(that is, the operator P̂1 acts as identity within the subspaces spanned by the {|φi〉} and

{|φ̃i〉}, because both of them already lie completely inside span(B1) from the outset). If we

expand (S18), we can therefore see that if Eq. (S19) is used to construct the {|φ̃i〉}, the only

term actually affected by P̂1 is the 11P̂1|ζρ〉 term originating from (1 − . . .)(1 − . . .)P̂1|ζρ〉

in the virtual part—and for this term it does not matter whether P̂1 stands to the left or

right, because the identity operator 1 commutes with everything. In summary, this means

that for the original 2013 definition of the |φ̃i〉 (Eq. (S19)), the choice of either Eq. (S17) or

Eq. (S18) does not matter, because both formulas provide mathematically exactly identical

results. This is no longer the case with the |φ̃i〉 resulting from Eq. (S20), though, because

with these orbitals ˆ̃O does not necessarily project into an exact subspace of B1 (unless B1
happens to span B2 exactly), and therefore no longer commutes with P̂1.

As also mentioned, with the definition Eq. (S49), the transition from Eq. (S17) to

Eq. (S26) is not exact anymore, and as outlined in Appx. S3.5, the numerical complexity is

higher.

So why was Eq. (S49) originally chosen in preference to using Eq. (S50) directly? After

all, the latter not only turns out to be formally and numerically favorable after a closer look,
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but actually also is in closer alignment with the spirit of the IAO construction described

in Appx. S3.2. The reason for this was, unfortunately, not particularly good: the method

appeared simpler to implement (particularly in the concrete Fortran framework used) if more

quantities were expressed in terms of the regular computational basis B1; and combined with

the fact that P̂1 would in practice be an almost-identity operator in any case, with little effect

regardless of where it is placed, GK made the unfortunate decision to just depolarize the

occupied orbitals via Eq. (S49) (because it obviously accomplishes the removal of polarization

constributions from the occupied orbitals and it produces an orbital matrix C̃ of compatible

format to C), but without thinking particularly deeply about it—and then never revisited

the matter before Ref. 57 was published because it seemed inconsequential. In retrospect, it

would have been preferable to either use Eq. (S50) directly; or, alternatively, if all quantities

should be expressed in terms of B1, to just project the reference free-atom orbitals onto B1
first (making them an exact subspace), rather than using either (S49) or (S50) directly. That

would also result in Eq. (S26) being exact, and could be obtained from the present derivation

by simply not treating the B2 functions as raw basis functions, but instead considering them

as basis expansions as already done with the B1 and B2 functions in the main text.
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