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Abstract

Localization of molecular orbitals finds its importance in the representation of chem-
ical bonding (and anti-bonding) and in the local correlation treatments beyond mean-
field approximation. In this paper, we generalize the intrinsic atomic and bonding
orbitals [G. Knizia, J. Chem. Theory Comput. 2013, 9, 11, 4834-4843] to relativistic
applications using complex and quaternion spinors, as well as to molecular fragments
instead of atomic fragments only. By performing a singular value decomposition, we
show how localized valence virtual orbitals can be expressed in this intrinsic mini-

mal basis. We demonstrate our method on systems of increasing complexity, starting



from simple cases such as benzene, acrylic-acid and ferrocene molecules, and then
demonstrating the use of molecular fragments and inclusion of relativistic effects for
complexes containing heavy elements such as tellurium, iridium and astatine. The
aforementioned scheme is implemented into a standalone program interfaced with sev-

eral different quantum chemistry packages.

1 Introduction

Although chemical bonding models are shrouded in mystery! and even the concept of or-

2 one cannot deny the usefulness of orbitals in a

bitals is sometimes met with scepticism
qualitative understanding of chemical concepts. While delocalized canonical molecular or-
bitals (MOs) resulting from a standard mean-field calculation such as Hartree-Fock (HF') are
useful to understand electronic excitations and spectroscopy, it is of interest to consider local-
ized molecular orbitals (LMOs) when relating first principles calculations to simple intuitive

models of chemical bonding. Several schemes have been developed to obtain such local-

ized orbitals using different concepts, such as Foster-Boys®, Edminston-Ruedenberg?, von

5 5

Niessen® and Pipek-Mezey (PM)® methods, among many others™2°. The various schemes
were recently reviewed by Hgyvik and Jorgensen?®. Often only the set of occupied MOs is
localized as this is sufficient to analyse the self-consistent field (SCF) wavefunction, i.e. the
single Slater determinant used in Hartree-Fock and Kohn-Sham?” Density Functional The-
ory (DFT). For a more complete understanding of interacting molecules in terms of frontier
orbitals it is, however, of interest to localize the virtual molecular orbitals as well. Virtual
LMOs can be determined using for instance the PM method?® but they are much more diffi-
cult to localize with standard schemes due to their more diffuse nature. Specific approaches
for virtuals have been proposed to solve this issue, like the protohard-virtual MOs?, the
least-change algorithm®° or the use of external quasi-atomic orbitals®'. The use of powers of

the second central moment and powers of the fourth central moment localizations might also

be a better alternative'® for basis sets augmented by diffuse functions. LMOs are not only



useful to have a better representation of chemical bonding and anti-bonding. They also have
a significant importance in local correlation treatments in post-HF methods like second or-

4052 "and multireference

der Mgller Plesset®273°, coupled cluster®?, embedding approaches
methods®* ¢,

In this work, a generalization of the intrinsic atomic and bonding orbitals introduced
by Knizia®" (so-called TAOs and IBOs, respectively) to molecular fragments and relativistic
spinors is discussed. The idea of using an intrinsic minimal basis able to exactly span
the occupied space is not new?”7 %! and IAOs have been shown to be related to other
intrinsic minimal basis sets like the quasi-atomic orbitals®>. We like to stress that other
works have generalized the PM localization to complex-valued orbitals®® and one-, two- or

6465 Our method differs mainly

four-component Kramers-restricted and unrestricted spinors
by performing our localization in a minimal reference basis of intrinsic fragment orbitals
(IFOs), where the term “fragment” denotes the ability to use either intrinsic molecular or
atomic orbitals. We also show how localized valence virtual orbitals can be obtained and
expressed in this intrinsic basis. The procedure described in this paper has been implemented
in a standalone program called Reduction Of Orbital Extent (ROSE) which can easily be
interfaced with several quantum chemistry packages. As expected from the use of an intrinsic
orbital basis, our intrinsic LMOs (ILMOs) are basis set insensitive, and the localization
procedure is cheaper and better behaved than PM localization®’.

The paper is organized as follows. After a brief review of the construction of IFOs
(Sec. 2.1) and the localization procedure (Sec. 2.2), we discuss how valence virtual orbitals
can be expressed in this new minimal basis (Sec. 2.3). We end this theory section by the
generalization to Kramers spinors (Sec. 2.5). Computational details about the code and its
interfaces are provided in Sec. 3. The attractiveness of the IFOs and the resulting ILMOs is
presented in Sec. 4, where we show well known results like the basis set insensitivity of the

partial charges, the chemically sound representation of orbital bonding and antibonding, as

well as applications to relativistic cases. Conclusions and perspectives are finally given in



Sec. 5.

2 Theory

In this section, we describe how the minimal set of IFOs is constructed and how the occupied
and valence virtual orbitals can be localized. The equations derived in this work follow

7 with as main difference that we express reference

closely the original scheme of Knizia
orbitals in terms of a fragment MO basis instead of directly in a Gaussian Type Orbital
(GTO) basis. This allows treatment of 4-component relativistic orbitals, which can not
be straightforwardly expressed in terms of a single GTO function, in a simple manner.

Furthermore, the difference between atomic and molecular fragments disappears, so that

both atomic and molecular fragments can be considered in the same manner.

2.1 Intrinsic fragment orbitals

Consider a molecule composed of Ny atoms and partitioned into Ng different molecular (or
atomic) fragments labelled by k (k= 1,..., Np). Each fragment k contains N¥ atoms such
that Ny = S.0F, NX.

Let us start with a basis B of orthonormal MOs {|¢,)} for the full molecule, obtained
from a linear combination of basis functions {|x,)} which form a (generally non-orthogonal)

basis By,

dim(B;)

|¢p> = Cup|Xu>v (1)

pn=

where dim(B;) > dim(B;). In the rest of the paper, the indexes p, g, ... denote any MO of

Bi. As the MOs are orthonormal, the overlap matrix of By, Si1, is the identity matrix and



the closure relation can be written as

dim(B1)

> el (2)

p=1

This relation holds for all functions lying in the space spanned by B;. We then introduce a

projector on the subspace spanned by the occupied MOs (indexed by i, 7,...) as

NOCC

0= Z |¢1><¢z‘ (3)

The complementary projector 1 — O spans the subspace of the virtual MOs in B; (indexed
by a,b,...).

Then, consider Ng other bases B¥ (one per fragment k) of orthonormal MOs {|¢f)},
obtained from a linear combination of (generally non-orthogonal) basis functions {|C*)}

forming the basis B*,

dim( Bk

i) = Z Colé), (4)

where dim(B*) > dim(B*). Note that the nature of the underlying basis functions {|¢*)}
can be different for each fragment. One could for instance choose a large GTO set for one
fragment and a Slater type orbital (STO) set for another. As the fragments represent only a
small part of the full molecule, obtaining the fragment orbitals B* from an SCF calculation
will typically be much cheaper than the calculation that yielded B;.

We select from these sets B* a minimal set of MOs for the next step in which the sets of
fragment MOs are combined to form basis By of reference fragment orbitals (RFOs, indexed
by t,u,...). In analogy with the original scheme®’, the RFOs constitute a minimal set
of depolarized fragment orbitals which are only polarized inside the fragments but not in
between different fragments. In most cases, the size of the minimal basis of each fragment

will simply be the sum of the minimal bases of each atom (i.e. its core and valence orbitals)



composing the given fragment. In that case, the total dimension of B, is

Np NX

dim(By) =Y ) " npin (5)

k=1 a=1

where np'"

is the number of occupied and valence virtual orbitals of atom a. One may,
however, also use more advanced schemes in which the fragment orbitals themselves are the
results of a previous localization procedure. This then allows selection of a smaller set of
frontier orbitals that are localized in a region of interest. In the same spirit, one can also
truncate the set of (occupied and virtual) canonical orbitals of the fragments, for instance
by setting a cut off based on energy criteria as done in DIRAC®®57, With these definitions
we may proceed to construct IFOs which form a minimal basis of polarized fragment orbitals
that exactly span the occupied space of the full molecule in basis B;.

Let us now describe the steps to construct the IFOs, using matrix notation. The first step
is the calculation of the overlap matrices between By and By. The overlap matrix Sq; in By is
identity by construction, while So5 in By is in general not diagonal due to non-orthogonality

between MOs belonging to different fragments. For a partitioning of the molecule in two

fragments k and k', Sgs is given by,

1 Skk’
S22 - ) (6)

which can of course be generalized to as many fragments as desired. The diagonal blocks

), where N¥

associated with each fragment are identity matrices with dimension (N¥ _+ N e

occ vir

k
and N,

are the number of occupied and valence virtual MOs of fragment k, respectively.
The off-diagonal blocks S** have a rectangular form of dimension (N _+4 NE ) x (N _+NE ),
and are in general filled by non-zero elements. The overlap matrix between By and B, is
denoted by Sy, = Sl

A new set of orthonormal depolarized occupied MOs {|¢;)} e is constructed by project-



ing the original occupied MOs of B; into By and back into B; as follows,
Cc= P1<—2P2<—107 (7)

where C is the coeflicient matrix of the occupied MOs in B;. In the above [Eq. (7)] we have
introduced the convention of indicating coefficient matrices corresponding to orthonormal
sets of MOs by an uppercase symbol, while otherwise using lowercase. As B; was defined
as the MO basis itself, this coefficient matrix is 0 everywhere except for the N,.. diagonal
elements which are equal to 1. Py, ; and Py, 5 are projector matrices between the original

MOs of By and the RFOs of B,y, and are implicitly defined by the following linear equations,

S2oPac 1 = Sai, (8)

SllP1<—2 = SlQ- (9)

Note that because Si; is the identity matrix, P, 5 is simply equal to Si5. In Eq. (7), the
depolarized occupied MOs are non-orthonormal because space By does not fully span B;.
Before constructing the minimal polarized IFO basis, we symmetrically orthonormalize these

depolarized MOs as follows,

¢ —cleie] . (10)
The coefficient matrix encoding the expression of the IFOs in basis B; then reads®”

clFO — [CCTCCT +(1-cch) (1 _ CCT) }PH,

(11)

where the first term in the right hand side of Eq. (11) acts on the occupied MO subspace and

the second term on the virtual subspace. The result is a number of IFOs corresponding to



dim(Bs). The final step is to also symmetrically orthonormalize these IFOs [see Eq. (10)] thus
leading to C™©. As a final note on the construction of the IFO basis, another formulation

is possible by replacing Eq. (7) by

which is then symmetrically orthogonalized in By as

~ —-1/2

C = ¢ [¢!Sxe] (13)
The two definitions are identical if the space By is completely spanned by B;, but will lead
to slightly different results if this is not the case. The second definition, may then lead to
somewhat simpler final equations as is discussed in detail in the supplementary material. In
our implementation either definition can be used, with the first one, originally proposed in

Ref. 57, serving as the default option.

2.2 Localized orbitals

The IFOs are interesting in their own right, but are in this work primarily used to define
localized MOs that provide an alternative but fully equivalent representation of a single
determinant wave function. The equivalence is guaranteed by defining the localization as
a sequence of unitary rotations among occupied orbitals that leave the density matrix and
therefore all observables unchanged. The localization procedure considered in this paper is
inspired by the PM scheme® where only orbital overlaps need to be computed. It consists of

2 by 2 rotations of the occupied MOs {|i) } until the following function is maximized,

L=t (14

k=1 ¢



where [i') = >, Uy|i) are the rotated occupied orbitals and nf = >, (¢|t) (/') is the
number of |i')’s electrons located on all the IFOs ¢ of (atomic or molecular) fragment k.
However, in contrast to PM° the exponent is equal to 4 which leads to effectively identical
results as the square exponent used in PM but avoids discrete localizations in aromatic
systems®’. Increasing the exponent in other localization procedures has also been shown to

1415 Also, the numerical advantage of Eq. (14) compared to

penalize delocalized orbitals
PM is that the 2 by 2 rotations are performed in the minimal and orthogonal IFO basis.
As a result, the ILMOs are insensitive to the choice of AO basis set in contrast to standard

PM orbitals. The localization procedure requires only few iterations, and is applied to the

occupied MOs as well as to the valence virtual MOs described in the next section.

2.3 Valence virtual orbitals

The IFOs are designed to exactly span the occupied space and only provide a minimal
description of the virtual space. While this space is too small to capture dynamic electron
correlation, these virtual orbitals are of interest for the purpose of analysis (e.g. in frontier
orbital theory), to connect to semi-empirical or tight-binding approaches, and to provide
starting orbitals for complete active space SCF procedures. We therefore consider localizing
this limited set of valence virtual orbitals (of dimension N2 = dim(B;) — Nyc) in addition
to the occupied ones. While valence virtual IBOs were previously defined in Ref. 68, neither
explicit formulas nor the relativistic or fragment-orbital generalizations discussed in this text
were provided.

In order to construct the valence-virtual IFOs, we first project all Ny, = dim(B;) — Noce

virtual orbitals to the IFOs. The resulting unnormalized orbital coefficient matrix C''* is

then subjected to a singular value decomposition (SVD)

C'r =UxVH (15)



In this expression C'* has dimension (dim(Bs) x Nyi;), U has dimension (dim(By) x dim(B,)),
3 has dimension (dim(B;) X Ny;;) and VT has dimension (Nyi; X Nyi). Because the IFOs
already span the space of the occupied orbitals, only N¥ singular values (diagonal elements
of ¥) will be nonzero. The eigenvectors U corresponding to these nonzero singular values
form a new set of valence virtuals which, together with the occupied, form the minimal set
of orthonormal MOs that can be expressed exactly in terms of IFOs. Those valence virtual
MOs can then be localized with the same procedure as for the occupied, described in the
previous section.

Note that many correlating, or “hard”, virtuals which cannot be expressed in terms of
IFOs are lost in this process. These hard virtuals are anyhow known to be more difficult to
localize compared to the valence virtual orbitals?’. The inclusion of additional hard virtuals
can be done by increasing the size of dim(Bs), i.e. by defining a lighter truncation in the
number of RFOs, or by adding additional correlation functions to the IFO basis on which
hard virtuals can be expressed on, for instance using quasi-atomic external orbitals®' or
protohard-virtuals®. As shown in the following, the standard valence virtual MOs nicely
depict o- and w-antibonding orbitals and are analogous to the split-localized orbitals3!%”.
Together with the occupied localized orbitals, the localized valence virtuals provide a very
good approximation to the weakly occupied correlating multiconfigurational SCF orbitals
in the full valence space®!, and are thus a very good effective configurational basis for the
treatment of valence-internal correlation®. Inclusion of localized hard virtuals for correlated

post-SCF calculations is out of scope for the present paper but an implementation of such a

scheme is planned for the near future.

2.4 Approximate energy ordering

The ILMOs are in general not eigenfunctions of the original Fock operator. This invali-
dates concepts such as the highest occupied molecular orbital (HOMO) or lowest unoccupied

molecular orbital (LUMO) that are based on energy ordering. Depending on the degree of
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localization one may devise an alternative ordering of orbitals by grouping together orbitals
that are primarily localized on one fragment, but also then it is useful to have a secondary,
approximately energy-based, ordering criterion. For this we compute the diagonal matrix
elements of the Fock operator expressed in the ILMO basis. This quantity is meaningful as
long as primarily MOs with similar energies are mixed upon the generation of the ILMOs.
In our experience this is often the case and this additional label is then useful for instance
in quickly separating the energetically lower lying sigma orbitals from the pi-orbitals in

aromatic systems.

2.5 Treatment of complex and quaternion orbitals

Up to this point we did not specify the algebra of the basis functions and MO-coefficients.
In this section we will discuss the generalizations needed to work with orbitals resulting from
relativistic calculations in which the coefficient and overlap matrices are in general complex.

We will start by the easier discussion of restricted versus unrestricted SCF calculations in
non-relativistic theory for which the spin and spatial part of the orbitals can be considered
separately. The simplest case (i) is found when both the calculation giving rise to B; as
well as the calculations for By are carried out with spin-restricted SCF. In this case the
coeflicient matrices for a- and [-spinorbitals are identical. It then suffices to work with
matrices that follow the dimension of the number of spatial orbitals, a reduction of a factor
of 2 as compared to the use of spinorbitals. These matrices are also typically restricted to
be real as there is little advantage in defining complex orbitals. The second case (ii) occurs
if an unrestricted SCF calculation is used for B;. While it is still possible to use restricted
SCF calculations for the fragments, it is then necessary to apply two separate localization
procedures for a- and (-spinorbitals. As overlap between these sets of orbitals is strictly
zero, both the original and localized sets consist of spinorbitals written as a product of a
spin and a spatial part. Also in this case, the algebra can be kept real.

For relativistic calculations, that include the effect of spin-orbit coupling (SOC) in the

11



generation of the MOs, the situation is different. The spin and spatial parts of the wave
function can not be factored in terms of a simple product, and overlap and coefficient ma-
trices are in general complex. The simplest treatment is to consider this as a generalization
(iii) of the unrestricted case in which the procedures described above are carried out for
complex hermitian matrices. This is what we anticipated in our notation in the previous
sections where we indicated hermitian conjugation for matrices rather than a simple trans-
pose as would be applicable for real algebra. No special implementations are needed for
this relativistic unrestricted case, as complex versions of matrix diagonalization, singular
value decompositions and linear equation solvers are readily available in standard linear al-
gebra libraries like LAPACK™ (zheevd, zgesvd, and zposv). While this approach is useful
for truly unrestricted calculations, the procedure leads to the undesirable loss of Kramers
symmetry for orbitals that were generated with a Kramers-restricted SCF algorithm ™. In
this generalized form of restricted SCF, orbitals can be made to adhere to a strict pairing
in which the coefficients of one orbital can be obtained by operating with the anti-unitary
Kramers operator on the coefficients of its “Kramers partner”. Such a pairing is automat-
ically guaranteed in quaternion algebra, in which the Fock matrix and MO coefficients are
block diagonalized by a quaternion matrix transformation. Like in the nonrelativistic re-
stricted case (i) it is possible to work with matrices that have the dimension of the number
of spatial orbitals, albeit now with matrix elements that are quaternion. Compared to the
non-relativistic (or scalar relativistic) case (i) we have 4 times more unique real numbers in
the overlap or coefficient matrices. Compared to the relativistic unrestricted case (iii) there
are, however, 2 times less unique real numbers (as this corresponds to complex matrices of
twice the dimension). Carrying out the projections and localizations in quaternion algebra
is furthermore advantageous as this guarantees keeping proper pairing of orbitals, as needs
to be safeguarded explicitly in complex algebra®. We will below discuss how the above-
mentioned linear algebra techniques were adapted for use with quaternion orbitals. For this

purpose we define the quaternion MO-coefficients as:
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C="°C+i'C+j2C+k3C, Cf=(@C"", (16)

where *C (z = 0,...,3) are real coefficient matrices, and 2 = 5’2 =k = Z}ZI = —1 are a
basis for quaternion algebra.
We note that, since we work in the MO basis, the overlap matrix Si; is the identity

matrix and therefore real.

2.5.1 Gauss—Seidel method to solve linear equation

One of the first steps in the IFO’s construction is the determination of the projection ma-
trices. To this end the linear equation in Eq. (8) has to be solved, for which we chose the
Gauss—Seidel algorithm. As S, is identity in the diagonal blocks and should have relatively
small values in the off-diagonal blocks, it is safe to say that Sos is close to diagonally dom-
inant, which is a sufficient but not necessary condition for convergence of the Gauss—Seidel
algorithm. In addition the Sy matrix is (except for ill-defined exactly overlapping frag-
ments) symmetric and positive definite which is another sufficient condition for convergence.
This algorithm is straightforward to implement with quaternion matrices as described in the

appendix (Algorithm 1).

2.5.2 Jacobi rotations for diagonalization and singular value decomposition

Symmetrical orthogonalization [Eq. (10)] and singular value decompositions can be carried
out with the aid of a diagonalization. For the latter purpose it us convenient to employ the
Jacobi eigenvalue algorithm as this can be adapted to the use of quaternion matrices. Our
implementation (Algorithm 2 in the appendix) follows closely the one in Ref. 72, except that
our Jacobi rotation matrices are not quaternion matrices but real matrices. This is possible

by rotating the matrix into the real plane by scaling the j-th basis vector by the phase P;;
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of the pivot M;; (where the pivot denotes the largest off-diagonal matrix element),
Bij = Mi; /|| M| (17)
such that (for all n =1,...,dim(M)),

Mnj — Mnj/Pija

Mjn, <— Py x Mjy,. (18)
Then, Jacobi rotations in the real plane can be applied straightforwardly as

M, cos(f) —sin(8)| |M;
— (19)
M; sin(f)  cos(6) M;

after scaling (dividing) the eigenvectors by the phase factor. The rotation matrices are

defined by cos(f) and sin(f) and are determined as follows,

M;; — M

w = i (20)
2| M|
—w+vVw?+1, ifw<0
tan(f) =
—w — Vw? + 1, otherwise
cos(f) = !
V/1+ tan(6)?’
sin(f) = tan(#d)cos(f). (21)

Turning to the SVD algorithm (Algorithm 3 in the appendix) used in Eq. (15), one
can again apply the above Jacobi eigenvalue algorithm on the quaternion Hermitian matrix
H = C'r (CV”)Jr if dim(Bs) < Nyj, or on H = (C"ir)T CY" otherwise. One can then relate
the eigenvalues and eigenvectors of H to the singular values (square roots of the eigenvalues)

and the unitary matrices U and V, as also discussed in Ref. 72.
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2.5.3 Jacobi rotations in the localization procedure

In order to maximise L in Eq. (14), one has to rotate each pair of occupied orbitals |i) and

|7) (4 < 7). In real algebra®” the angle 6 of the rotation

) = cos(0)]i) + sin(0)]5),

) = —sin(@)]i) + cos(O)). (22)

is defined as

0 = (1/4) atan2 (B;;, —A;;) (23)

where atan2(x,y) = arctan(z/y) with the resulting value being restricted to lie in the interval
[—m,7]. In this expression B;; is the actual gradient and A;; is (an approximation to) the
second derivative at & = 0. They both are functions of the charge matrix elements of

fragment £k,

L= Creeye, (24)

tek

as follows (in real algebra):

Ay = [ (1@0? + (@5)°) (@5)° - 3(0k - @) (@2 - @))]. e

F

By = [2((@0) - (@5)) @] (26)

When localizing valence virtual orbitals, C°“ needs to be replaced by the eigenvectors U
with non-zero singular values (see Sec. 2.3).

Let us now switch to cases of complex or quaternion algebra. To compute the rotation
angle 6 in Eq. (23), both A;; and B;; needs to be real. As the matrix Q¥ is Hermitian, Q¥

elements are always real, but the ij elements are not. For complex and quaternion algebra,
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the rotation matrix should actually be replaced by (see Appendix B for more details)

i) = e 7" cos(6)]i) + € sin(6)|5),

5") = —e " sin(0)[i) + €' cos(0)]), (27)

where 7 is an additional scalar rotation parameter. This choice leads to

DN | —

ae) = [ (@ @) Rt - @t - af) (1@ - @3 e

%ngwmwummwm (29)

We deal with this additional degree of freedom by choosing it to maximize the real part of

: - By .
Bii(1), i.e. €47 = B with
g

By = Y [2((Q5) - (@) Qf). (30)

where Qf; (and thus Bz-j) follows the algebra of the MO coefficients. These phase-adjusted
orbitals are used in the computation of the second derivative A;; and the rotation angle 6.
After the rotation, the phase of the orbitals is restored. More details on this procedure and
on the derivations of A;; and B;; are provided in Appendix B, and a pseudo-code can be
found in Algorithm 4 in Appendix A.4. The exact same procedure is applied to the valence
virtual MOs expressed in terms of IFOs in Eq. (15). In both cases the result is a set of
orbitals that correspond to half the space. The remaining orbitals can be generated via the

Kramers’ operator if needed.

3 Computational details

The IFOs and ILMOs are generated in a standalone program called Reduction of Orbital
Space Extent (ROSE)™. ROSE has been interfaced with DIRAC®S7 using quaternion
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spinors, Psi4™ and PySCF™ using real spinors, as well as the ADF program® which is
based on Slater type orbitals (STO). As complex spinors can also be used in ROSE, an
interface with the relativistic DFT code Respect” is currently under development. Note
that formatted checkpoint files are also read and generated in ROSE, thus allowing for an
interface with GAUSSIAN ™. For Gaussian Type Orbitals (GTO) codes, only the information
on the basis set and on the MO coefficients are required (for both the full molecule in basis
B, and fragments in basis B*). The overlap matrices are then computed within ROSE
by a standalone routine. For the STO basis of ADF, they are extracted from the ADF
data files with the Python Library for Automating Molecular Simulation (PLAMS)™ of the
Amsterdam Modeling Suite AMS®. Our current version only works with uncontracted basis
sets and only the non-relativistic, the exact two-component X2C with or without (i.e., scalar-
X2C) spin-orbit coupling, and the molecular mean-field X2C (X2Cmmf) Hamiltonians can
be used. Both restrictions are only of technical nature and we plan to lift these in the next
release of the ROSE software. The use of ROSE has been detailed in a manual accessible
online™ together with several examples including the interfaces with DIRAC, Psi4, PySCF
and ADF.

4 Results and discussions

In this section, we investigate the IFOs and ILMOs obtained by ROSE for different systems
of increasing complexity. First and in order to compare with existing results in the literature,
the benzene and the acrylic acid molecules with atomic fragments are considered. Then, our
generalizations to quaternion spinors and to molecular fragments are tested on the ferrocene
molecule, tellurazol oxide complexes (monomer and dimer), a linear chain of tellurium-
substituted poly-ethylene glycol oligomers (Te-PEG-4), an iridium complex, and finally a
system composed of an astatine anion surrounded by ten water molecules. To visualize

the complex-valued spinors, we will plot the orbital densities. When the inclusion of spin-
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orbit coupling does not affect the shape of the orbitals, we plot the scalar-X2C (real-valued)

orbitals to also display information on the phase.

4.1 Benzene and acrylic acid

As a first test case, we consider the benzene molecule using atomic fragments, for which
IBOs have been reported in Ref. 57. The cc-pVTZ and cc-pV5Z basis are used to construct
the MO basis B; and the RFO bases B*, respectively. To see the difference between a non-
relativistic and a relativistic calculation with spin-orbit coupling, we plot the IFOs (which
reduces to IAOs in this case) of one carbon atom. There are 5 of them, one for the 1s and the
2s and three for the p,, p, and p, atomic orbitals. As readily seen in the first row of Fig. 1,
the IFOs are polarized but remain atom-centered as expected. One can clearly distinguish
between the p,, p, and p, orbitals in the non-relativistic calculation, while in the relativistic
(second row in Fig. 1) IFOs of the carbon atom, one can recognize a spherical p;/, orbital as
well as two ps/o orbitals. All these orbitals are much more spherical than the non-relativistic
ones'. We then localize separately the sets of (canonical) occupied and valence virtual MOs
[constructed with the SVD in Eq. (15)] by maximising Eq. (14) in the IFO basis.

Turning to the shape of the resulting ILMOs in Figs. 2 and 3 for benzene and the acrylic
acid, respectively, one recognize the IBOs obtained in Ref. 57, as well as the g-antibonding
ones in Fig. 6 of Ref. 31. Interestingly, even while the IFOs were not the same between
the non-relativistic and the relativistic case (see Fig. 1), we do not see any difference for the
ILMOs. This is indicative of the quenching of the atomic spin-orbit coupling in the formation
of molecular bonds®'. Starting with benzene, we can attribute the following to the occupied
ILMOs of Fig. 2: a) C—C o-bonding orbital (6 times degenerate), b) C—H o-bonding orbital
(6 times degenerate), and c) delocalized (aromatic) m-bonds (3 times degenerate). Let us

now turn to the valence virtual ILMOs, which could be called intrinsic antibonding orbitals.

INote that also in the non-relativistic case, use of complex or quaternion coefficients can yield spherical
orbitals as this allows for recombination of the real orbitals to form complex spherical harmonics. This
can be observed in DIRAC by setting the speed of light to a very large value within the relativistic X2C
framework: the orbital densities are then spherical but this calculation is otherwise non-relativistic.
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Figure 1: First row: Non-relativistic IFOs of a carbon atom in the benzene molecule. Second
row: density of the IFOs from a X2C calculation.
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Figure 2: Scalar-X2C ILMOs of benzene (1s-type orbitals not shown). The full vertical line
separates occupied (left) from virtual (right) ILMOs.
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Indeed, as readily seen in the right part of Fig. 2, the virtual ILMOs are: d) delocalized
(aromatic) m-antibonding orbital (3 times degenerate), e) C—H o-antibonding orbital (6 times
degenerate), and f) C-C o-antibonding orbital (6 times degenerate). Only the m-system is
delocalized on more than two centers, i.e. four centers. The o-system shows bonds localized
on two centers only. For both the bonding and antibonding 7 and 7* orbitals, the square
of the orbital coefficients in terms of IFOs shows compositions of 50% on the central carbon
atom, 22.2% on the neighboring two carbon atoms and 5.6% on the carbon atom of the
opposite side.

The exact same analysis can be done on the acrylic acid shown in Fig. 3, i.e., all C-H, C-
C, O-C and O-H o-bonding orbitals are clearly identified, as well as the sp-hybrid orbitals,
oxygen lone pairs and the delocalized m-systems. The orbital’s labels in Fig. 3 therefore
corresponds to the following occupied ILMOs: a) O-C and C-C o-bonding orbitals, b) O-H
and C-H o-bonding orbitals, ¢) sp-hybrid orbitals of the oxygen atoms, d) lone pairs of the
oxygen atoms, and e€) O=C and C=C 7-bonding orbitals. Turning to the virtual ILMOs, we
have: f) O=C and C=C 7-antibonding orbitals, g) O-H and C-H o-antibonding orbitals,
and h) O=C and C=C ¢-antibonding orbitals. As for benzene, 24 of the 29 ILMOs are more

FEEAY
I e g o

Figure 3: Scalar-X2C ILMOs of the acrylic acid molecule (1s-type orbitals not shown). The
full vertical line separates occupied (left) from virtual (right) ILMOs.

f) 2 )

than 99% localized on two atomic fragments. The slightly more spread orbitals are the lone

pairs of the oxygen atom of the C=0, the C=C 7w-bonding orbital, the O=C m-antibonding
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orbital, and the C-O and C-C o-antibonding orbitals.

The localization procedure for benzene converged in 16 and 24 iterations for the occupied
and the valence virtual space, respectively, when no spin-orbit coupling is considered (i.e.
for both the non-relativistic case as well as the scalar-X2C one). However, adding spin-orbit
coupling increased the number of iterations to 24 for the occupied space. Importantly, we
observed that the quartic exponent in Eq. (14) is necessary to achieve convergence for this
aromatic system, as a quadratic exponent would lead to a continuum of maximal local-
izations, as discussed in Ref. 57. For the acrylic acid, only 11 and 13 iterations achieved
convergence without spin-orbit coupling, against only a small increase to 12 for X2C in the

occupied space.

4.2 Ferrocene with molecular fragments

Let us now look at the ILMOs of the ferrocene molecule, where molecular fragments are
composed of each cyclopentadienyl ring CsH; and the isolated Fe?* cation. The cc-pVDZ
and the cc-pVTZ basis were used to construct the MO basis B; and the RFO bases B,
respectively. Compared to the TAOs which are centred on the atoms, the IFOs based on
molecular fragments are now centred on the different fragments and can be delocalized
on several atoms belonging to a given fragment. This example is a perfect illustration of
the usefulness of using molecular fragments instead of atomic ones. We furthermore note
that the localization procedure (using Jacobi rotations) is extremely hard to converge when
atomic fragments are considered. For instance, in the X2C case convergence is reached in
the occupied space after 336 iterations, while the localization in the virtual space reaches
a plateau with a final gradient of 107® (instead of 107!° like for the other systems studied
in this paper). For cases like this, in which simple Jacobi optimization is problematic, it is
possible to consider more robust optimizations based on an exponential parametrization of
the unitary transformation, where the gradient and Hessian of the localization function with

respect to orbital rotations are estimated %2164,
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In contrast, if the above molecular fragments are considered instead of atomic ones to
build the IFOs, then convergence is reached in less than 12 iterations for both occupied
and virtual orbitals. As their are too many ILMOs to display, we selected a few illustrative

ones in Fig. 4. Before localization, all orbitals not fully localized on the Fe atom were

bl E
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Figure 4: Density of the ILMOs of ferrocene from a X2C calculation. First row: occupied
orbitals, second row: virtual orbitals.

equally distributed on both cyclopentadienyl rings due to the symmetry of the system. After
localization they are localized on a single cyclopentadienyl ring (first three orbitals) with
sometimes some donation onto the Fe ion visible (fourth orbital), or on the metal (fifth
orbital). Of the total of 48 occupied ILMOs, 39 are more than 99.7% localized on a single
fragment (9 on the Fe atom and 15 on each cyclopentadienyl ring), while 6 are localized on
two fragments: one cyclopentadienyl ring and the Fe atom (two and four of them more than
85.3% and 90.1% localized on a cyclopentadienyl ring, respectively, and the rest on the Fe
atom). The last three occupied ILMOs come from the d orbitals of the Fe atom. They are
more than 93.2% localized on the atom, with a small delocalization equally spread on the
two cyclopentadienyl rings. A similar analysis holds for the virtual ILMOs: 24 out of 27
are largely localized on a single cyclopentadienyl ring (more than 99.8% for 18 of them, and

more than 96.5% for the 6 others) with sometimes a small contribution on the Fe atom. The
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three remaining virtual ILMOs are 72.2%, 80.9% and 81.3% localized on the Fe atom, the

rest being equally spread on the cyclopentadienyl rings.

4.3 Tellurazol oxide complexes

To probe the influence of spin-orbit coupling on localization requires inclusion of elements of
the fourth or lower rows of the periodic table. For this purpose we selected the Te-substituted
polyethylene glycol oligomers that comprise a suitable benchmark system for relativistic
algorithms®. In this section, we consider two different calculations. First, we consider one
tellurazol oxide complex for which atomic fragments are used. Second, we consider a dimer of
tellurazol oxide complexes, each monomer defining one molecular fragment used to construct
the IFOs. The uncontracted dyall.2zp® basis was used to construct B; and B*. Geometries

are extracted from Ref 82.

4.3.1 Atomic fragments

Starting with atomic fragments, we first take a look at the difference in the IFOs with and
without spin-orbit coupling. As readily seen in Fig 5, the IFOs (which reduces to TAOs
here) are very close to the well-known d (first row), s and p (second row) orbitals in the
scalar-relativistic case (left panel). However, adding spin-orbit coupling (X2C, right panel)
leads to a mixture of the above orbitals, like seen in Fig. 1 for benzene. For the d-orbitals we
now have two degenerate 4ds/, orbitals and three degenerate 4ds/, orbitals with all a rather
spherical density.

Somewhat surprisingly we do not see the increased effect of spin-orbit coupling in the
shape of the ILMOs that look very similar in the non-relativistic, scalar relativistic and full
relativistic calculations. The scalar-X2C spinors are plotted in Fig. 6. Again, the occupied
ILMOs (first row of Fig. 6) give a very good representation of chemical bonding. One can
easily recognize the Te—-C o-bonding orbital (H-5 in Fig. 6) more than 99% localized on two

atomic centers, the m-bonding orbitals more than 95% localized on two atomic centers (H-4
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Figure 5: IFOs of the Tellurium atom in the tellurazol oxide complex. Left panel: scalar-
X2C, right panel: X2C.

and H-2), as well as the lone pairs of the oxygen (H-1 and H-3) and the tellurium (H) atoms.
Turning to the valence virtual ILMOs (second row of Fig. 6), they also efficiently represent
Te-N and Te-C o-antibonding orbitals (L and L+3, respectively), m-antibonding orbitals
(L+1 and L+2) and C-H o-antibonding orbitals (L+4 and L+75).

MESAS AL
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Figure 6: Scalar-X2C ILMOs of the tellurazol oxide complex.

One of the advantages of the intrinsic orbitals is that they are not particularly tied to the
basis set compared to PM orbitals®"6%%*  leading to almost basis set independent charges.
This is illustrated in Table 1. This table features Mulliken and IFO charges of fragments k,

the latter given by
aw=2x=) ) CxoCye, (31)
i tek
where Zj, is the fragment’s nuclear charge (i.e. the sum of the nuclear charge of all atoms
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constituting the molecular fragment minus the charge of the fragment) and C°° is the
coefficient matrix of dimension (dim(Bs) X Ny ) representing the canonical occupied orbitals

(labelled 7) expressed in terms of the IFOs (labelled ).

Table 1: X2C partial charges of the tellurazol oxide complex as a function of the GTO basis
set used to form both B; and B¥. First four rows: IFO charges; last four rows: Mulliken
charges.

Meth. basis Te O N Cl CQ Cg H1 Hg H3
IFO v2z  0.63 -0.62 0.03 -0.38 -0.15 -0.02 0.17 0.16 0.19
IFO av2z 0.64 -0.63 003 -0.39 -0.15 -0.02 0.17 0.16 0.18
IFO v3z 0.64 -0.63 0.03 -0.39 -0.15 -0.02 0.17 0.16 0.18
IFO avdz 0.64 -0.63 003 -0.39 -0.15 -0.02 0.17 0.16 0.18
Mu. v2z  0.53 -0.47 -0.19 -0.31 -0.06 0.20 0.14 0.07 0.10
Mu. av2z 083 -0.68 023 -0.32 035 -040 -0.07 -0.01 0.07
Mu. v3z  0.42 -0.55 0.01 -0.15 -0.10 0.12 0.07 0.07 0.11
Mu. avdz 061 -0.81 0.05 -0.18 0.26 0.30 -0.11 -0.10 -0.02

4.3.2 Molecular fragments

Let us now look at the dimer of tellurazol oxide complexes, where each monomer is used as a
molecular fragment to construct the I[FO basis. Six ILMOs around the HOMO and LUMO
are plotted in Fig. 7. As expected from the localization procedure, all orbitals are indeed
very localized on a given monomer but not on a particular atom inside this fragment. This
is well-suited for embedding approaches in which the density of one or more fragments is

to be kept frozen in an electron correlation calculation. After localization, all orbitals are

H-2 H-1 H L L+1 L+2

Figure 7: Scalar-X2C ILMOs of the tellurazol oxide complex dimer.
localized by more than 89% on a single monomer. 100 out of 110 ILMOs are localized by
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more than 99% and 8 by more than 97%.

4.4 Te-PEG-4

We then investigated a simpler (without double bonds) but larger system, i.e. a linear chain
of tellurium-substituted poly-ethylene glycol oligomers (Te-PEG-4)®2. The uncontracted
dyall.2zp®® basis were used for both B; and B*, together with atomic fragments. While the
original canonical MOs can be delocalized over all the atoms of the molecule, the ILMOs,
both occupied and virtual, are localized on at most two atomic-centers. In Fig. 8 we show
some of the highest occupied and lowest virtual ILMOs. Just like in the other systems,
one can easily identify the bonding nature of the orbitals, that is a) a Te-H o-antibonding
orbital, b) a Te-C c-antibonding orbital, c¢) lone pair orbital of the Tellurium atom, d)
Te-C o-bonding orbital and e) Te-H o-bonding orbital. Note that due to the symmetry of
the system, a), b), d) and e) are exactly two times degenerate, but also very close in energy
to other related orbitals (for instance, orbital in a) with other Te-H o-antibonding orbitals
involving the other Tellurium atoms). We remind that the term ‘energy’ should be regarded
following the discussion in Sec. 2.4. Lower in energy, we find C—H and C-C o-bonding orbitals
followed by the one-center-localized 4s and 5d orbitals of the Tellurium atoms, etc. Higher
in energy, the remaining valence virtual MOs are C-H and C-C cg-antibonding orbitals. All

ILMOs are more than 99% localized on maximally two atomic centers.

4.5 The fac-Irppys; complex

To demonstrate the ADF interface we choose a well-known complex of iridium with three
phenylpyridinate (ppy) ligands. This complex is one of the first phosphors used to emit
light from triplet excitons in organic light emitting diode (OLED) devices®* and similar
compounds with different heavy metals and different ligands are being investigated to further
enhance OLED performance®®. For analysis of the anisotropy of the emission and coupling

of the phosphor to the host material it is convenient to work in a local picture. This is easily

26



Figure 8: Virtual (a-b) and occupied (c-e) scalar-X2C ILMOs of Te-PEG-4.
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possible using ILMOs. The uncontracted DZP Slater type basis®® that is supplied with
the ADF program were used for both B; and B*. We consider here two possible ways to
obtain such localized orbitals. The simplest procedure is to define atomic fragments and this
approach does largely remove the ligand delocalization of the canonical 5d orbitals (HOMO-2
to HOMO) and produces almost pure 5d orbitals (11% delocalization over the ppy fragments
for HOMO-2 and HOMO-1 and 5% for HOMO, compared to 48% and 36% for canonical
orbitals, respectively). One also obtains a total of 84 virtual orbitals that are mostly localized
on the ppy fragments. A more compact description of the valence virtual space is possible by
defining the ppy units as molecular fragments and keeping just the lowest canonical virtuals
of each ppy unit in the IFO basis. Such a reduction of the basis set by removing virtual
orbital from fragments is already an option when ADF is started in fragment mode, but this
procedure does also affect the resulting occupied orbital space and SCF energy as effects of
polarization and charge-transfer are only accounted for in an approximate way. This problem
does obviously not occur in post-SCF localization. We chose to limit basis By to include just
the lowest 2 virtuals of each ppy fragment and kept the valence space of the Ir identical to the
atomic fragment run. In the occupied space we then obtain three almost atomic 5d orbitals
(99% for HOMO, 93 % for HOMO-1 and HOMO-2) and in the valence virtual space we have
9 orbitals consisting of three sets of three-fold degenerate orbitals. The lowest three orbitals
are displayed in Fig. 9 and are 95 % localized on a single ppy ligand with 5% admixture of
Ir orbitals. The fact that considering molecular fragments led to an even better localization
of the occupied 5d orbitals than was obtained with atomic fragments is an indirect effect
of the truncation of basis By for the former. Keeping all the 27 valence virtual orbitals of
each ppy fragment does lead to a localization of 91% for HOMO-2, and 85% for HOMO-1
and HOMO (not shown). We believe that the compact and transparent description of the
valence space offered by the use of molecular fragments will prove useful for analysis. The
possibilities for truncation can be beneficial in post-SCF applications as a smaller and more

localized virtual space can reduce the computational cost of the algorithms significantly.
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Figure 9: Scalar-ZORA orbitals of the Irppys complex.




4.6 A microsolvated astatine anion

The last system studied in this paper is the hydrated astatine anion. The radioactive element
astatine is the next-to-last member of the halogens in the periodic table of elements (it was
the last until the synthesis of Tennessine). It is much studied by theoreticians interested
by the effects of spin-orbit coupling on chemical bonding. Another motivation to study this
clement is the potential use of ?!°At and 2''At in radiotherapy®’. For this purpose, the
behavior of its anion in water is of relevance, spurring interest in embedding techniques for
an efficient treatment of its electronic structure. One possibility is to a priori partition the
electron density in terms of astatine and surrounding water molecules. We will here consider
whether this goal can also be achieved by a posteriori localization of the supermolecular
orbitals. We chose an environment of ten water molecules, where the geometry is extracted
from Ref. 88. The uncontracted dyall.2zp® basis was used to construct both B; and B*.
Molecular fragments comprise the individual water molecules and the isolated astatine anion.

ILMOs are plotted in Fig. 10. In contrast to the canonical MOs which are delocalized on
H-23 H-14 H-11 H-1 H

Figure 10: Density of the ILMOs of the astatine anion surrounded by ten water molecules.
The last three framed orbitals are non-relativistic spinors (thus the possibility to show
phases).

several water molecules, most of the ILMOs are 90% to more than 99% localized on a single
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fragment (see for instance H-11 and H-1 in Fig. 10). H-11 corresponds to a bonding orbital
between the oxygen and the two hydrogens of the water molecule, while H-1 features the
lone pair of the oxygen. The ILMOs with a strong contribution from the valence p orbitals
of the astatine anion (see H-23, H-14 and H in Fig. 10) are for more than 80% localized on
the astatine atom with the remainder spread on the surrounding water molecules.

In this case the ILMOs do not look like the p-type orbitals of the astatine anion, as
shown in the non relativistic case (see H-9, H-1 and H in the frame of Fig 10), as the
atomic spin-orbit coupling is not quenched in the molecular environment. This is the first
system studied here for which there is a clear difference in the ILMOs upon adding spin-orbit
coupling. This a posterior: localization lends support to embedding approaches in which the
density is partitioned a priori, the p-orbitals of the astatine anion can be considered fully
occupied and are not delocalized much over the water molecules. Thus, those ILMOs are
practically the IFOs for which the presence of spin-orbit coupling leads to rather spherical
p orbital densities. Finally, all our twenty virtual LMOs are anti-bonding orbitals between
the oxygen and each of the hydrogen of each water molecules. Some of them are oriented
towards the astatine anion and thus partially delocalized (see L+9 in Fig. 10), while others
are fully localized on the water fragments (see L in Fig. 10). Again, as the orbitals of the
astatine anion are all filled, there is no virtual orbital left in the minimal basis By for the

astatine. Thus, no virtual IFO and ILMO are found for the astatine anion.

5 Conclusions

A generalization of the intrinsic atomic (and bonding) orbitals of Knizia®" to complex and
quaternion spinors, as well as an extension to molecular fragments instead of atomic ones
are described in this paper. The calculations are performed with the Reduction of Orbital
Space Extent (ROSE). ROSE is a flexible standalone code which can be interfaced with

several quantum chemistry codes. For now, interfaces with DIRAC%%%7, Psi4™ PySCF™ and
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ADF 7 have been implemented. As expected, our orbitals have the same advantages of the
original ones, i.e. they are not tied to the basis set and they are a very good representation
of chemical bonding. As the IFOs form a minimal polarized basis, only a limited set of
virtual orbitals can be localized in this basis. By performing a singular value decomposition,
we first express a reduced set of valence virtual orbitals in terms of IFOs. The latter are
then as easy to localize as the occupied ones and provide a good representation of anti-
bonding orbitals. In order to test our method, different systems with increasing complexity
are investigated. We started with simple molecules such as benzene and the acrylic acid
with atomic fragments. Then, we showed how considering molecular fragments instead
of atomic ones can improve the convergence of the localization procedure, as seen for the
ferrocene, or provide a more compact representation of the ligand virtual space for Irppys.
Systems with significant relativistic effects such as tellurazol oxide complexes, a linear chain
of tellurium-substituted poly-ethylene glycol oligomers Te-PEG-4, and the astatine anion
surrounded by water molecules were studied, and orbitals were successfully localized. We
think this implementation will be useful for embedding techniques, like in the context of the
automated valence active space?®, density matrix embedding theory*® or the localized active
space self-consistent field method®!, to cite a few. The investigation of our localized occupied
and virtual orbitals in the context of local correlated methods is left for future work, but we
expect that they can provide a very good approximation to the weakly occupied correlating
multiconfigurational SCF orbitals in the full valence space®!, and are thus a very good

effective configurational basis for the treatment of valence-internal correlation®’.
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A Pseudo-codes

A.1 Gauss—Seidel algorithm

The pseudocode to solve Eq. (8) with the Gauss—Seidel method applied on quaternion spinors
is given in Algorithm 1. This algorithm is easily applied in a complex or quaternion form.
The only non-standard operations are the quaternion multiplication in the calculation of X;

and the definition of an Euclidean norm for quaternion algebra in the “do until” loop.
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Algorithm 1 Gauss—Seidel algorithm. Solve linear equation AX = B where A is a
diagonally-dominant or symmetric and positive matrix (sufficient but not necessary con-
dition).

1: Inputs: A = Soy, B =S,;. Outputs: X = Py

2: Initialization: X = Sq;
3: for i =1 to dim(Bs) (columns)
4:  do until || X? — X"|| < 1071

5: X? =X
6: for j =1 to dim(B;) (rows)
dim(By)
Bj; — Z Aj X X
8: end
9: X =X,
10:  end
11: end
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A.2 Diagonalization algorithm

Algorithm 2 Jacobi eigenvalue algorithm of a Hermitian square matrix M with dimension
n, such that EEME = D

1: Input: M. Outputs: E, D

2: Initialization: ||p|| =1 (pivot norm), E =1
3: do until ||p|| < 1071

4:  Find the pivot p (maximal off-diagonal element of the upper triangular matrix M)
5. p=M;

6:  Compute the phase P = p/||p||

7. fork=1ton

8: Eyj = Eyj/P

9: if k = j then cycle

10: My; = My /P ; My, = Mj, x P

11:  end

12 w= (M~ My)/||2l]

13:  if w < 0 then

14: tan(f) = —w + vw? + 1

15:  else

16: tan(f) = —w — Vw2 + 1

17 end

18:  cos(f) = - ; sin(6) = _ tan(®)
tan(f)? + 1 tan(6)? + 1

19: My = M;; — tan(0)||p|| ; Mj; = M;; + tan(0)||p||
20: Mij - sz’ - 0
21: fork=1ton

p (B < [ s ]
23 if (k =1i) or (k = j) then cycle

] = o) i e
250 My = M, 5 My, = M,

26: end

24

g

27: end
28: D=M
29: Sort E and D by ascending order 46




The pseudocode of the Jacobi eigenvalue algorithm for quaternion spinors is given in Algo-
rithm 2. The crucial step is to rotate the matrix into the real plane by scaling the j-th basis
vector by the phase factor, before performing the rotation in the real plane. Similarly, the

eigenvectors are also to be rotated only after scaling them with the phase factor.

A.3 SVD algorithm

The pseudocode of the Jacobi singular value decomposition algorithm for quaternion spinors

is given in Algorithm 3.
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Algorithm 3 Jacobi singular value decomposition algorithm, solve A = UXV'. A and 2
are rectangular matrices of dimension m x n, U and V are unitary matrices of dimension
m X m and n X n, respectively.

1: Input: A. Outputs: U, {Zii}i=17~~-,nva17 VvV

2: Initialization: [ = min(m,n)

3: if l = m then

4 M= AAT

5. call Algorithm 2(input: M, output: E, D)
6:  Sort E and D by descending order

77 U=E;Y;=D;i=1,...,1

8 fori=1tol
9

for j=1ton
10: Vii = (ATU)ji /i
11: end
122 end
13: else
14: M=ATA

15:  call Algorithm 2(input: M, output: E, D)
16:  Sort E and D by descending order

1 V=E;Y;=Dy,i=1,...,1

18 fori=1tol

19: for j=1tom

20: Uji = (AV)ﬁ. /X
21: end

22: end

23: end

Note that we do not get the whole U or V matrix depending on the value of min(m,n).
This is not an issue as only N¥ will have non-zero eigenvalues and only the corresponding
eigenvectors are of interest to us. Furthermore, one has to be careful when dividing by a

singular value close or equal to 0. But again, for the purpose of this paper, we did need not

consider such singular values and their associated vectors.
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A.4 Localization procedure

The pseudocode to maximise Eq. (14) by performing 2 x 2 Jacobi rotations on quaternion

spinors is given in Algorithm 4. Just as in Sec. 2.5.3, we omit the superscript k of ij

[Eq. (24)] for ease of notation.

Algorithm 4 Jacobi 2 x 2 rotations to maximize Eq. (14).

1:
2:
3:
4:
o:

10:

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

Input & Output: C = Cygg
Initialization: Grad = 1
do until Grad < 107%
for i =2 to Ny
for j=1toi—1
for kK = 1 to Ng (number of fragments)
Compute Qii, Qjj, Qij
By = By +4Q4(Q} — Q%)
end
Compute ||Byll, Py = Byy/|| Byl

for kK =1 to Ng (number of fragments)

Aij = Ay — Qh = Q +6(Q% + Q) R(Quy x P5)” +Q1Qy + Q@
end
Compute § = (1/4) atan2 (|| By;||, —Ay;)
for t = 1 to dim(By)
Cli = cos(0)Cyi +sin(0)(Cyy x Pfy)
Ci; = —sin(0)(Cy x Pij) + cos(0)Cy;
Cyi = Cy; and Cy; = Cy;
end
Compute Grad = Grad + || Bj;||?
end
end
Grad = m/(NOCC(NOCC —1)/2)
end

Just as in the diagonalization procedure described in Algorithm 2, the crucial step of the
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algorithm is to multiply the i-th vector by the phase P;; and the j-th vector by the phase
F;;. Once this is done, real rotation matrices can be applied to the quaternion spinors until

Eq. (14) is maximized.

B Orbital localization: Technical details

B.1 Formal goal and notation

For a given set of orbitals {¢;; i € {1,..., N, }} (typically either the set of occupied molecular
orbitals, valence-virtual orbitals, or some subset of either), one can define a multitude of
scalar functionals L({¢;}) which characterize the degree of locality of the orbital set. Here

we concentrate on a class of generalized PM-like® functionals,

L({¢:}) = Zozh<nF(¢z))a (32)

where h(n) is a scalar function mapping the real interval [0, 1] to R (we will consider h(n) = n?

and h(n) = n* as special cases), and np(¢;) is a function which quantifies which fraction
of orbital ¢; is attributed to system fragment F. We consider ng(¢;) which fulfill VF' :
np(¢;) > 0 and > .np(¢;) =1 (at least approximately) and which are concretely given by

an expression

np(di) = (6| Prlos) (33)

for some definition of fragment-dependent operators { Py }.2
Let {¢;; i € {1,...,N,}} denote the set of input orbitals. The goal of the localization

procedure is to find an unitary transformation U within span{¢;} for which the transformed

2The operators Pp can be most naturally defined if the system fragments F' originate from a partitioning
the full-system Hilbert space; alternatively, they can be defined by one of several atomic partitionings of the
electron charge distribution. %23,
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orbitals {U ¢;} maximize the localization functional Eq. (32):

U = arg maXL({UqS,}) (34)

unitary U

B.2 Localization by incremental 2x2-updates in C?

In Eq. (22) of the main text and appendix A.4 we describe a simple, but generally well-
working, algorithm for orbital localization in the sense of Eq. (34). The algorithm is a
revision of the method described by PM®, and, like PM’s, works by incrementally applying

2 x 2 Jacobi rotations

U9|¢i> := cos(0)|¢s) + sin(0)|p;)

Us| ;) = —sin(0)|¢;) + cos(8)|¢;), (35)

to all unique pairs of orbitals 7,5 € {1,...,N,} (with ¢ # 7) in the localization set (we
also formally define Uy to act as identity operator outside span{¢;, ¢;}). In this, each such
2 x 2 rotation individually either exactly or approximately solves the localization problem
described by Eq. (34) in the one-dimensional subspace of rotations (parameterized by the
rotation angle #). In this section, we explain the construction of the 2 x 2 update formula in
Egs. (22) and (23). The real version of the angle parameterization in Eq. (23) (which differs
from PM’s®) and the concrete formulas for A;; and B;; were already provided in Ref. 57,
but no technical details of their derivation.

In the complex case, Eq. (35) is not the most general 2 x 2 unitary transformation which
covers all degrees of freedom which physically could potentially become relevant. Rather, as

explained in Sec. B.4, formally it should be replaced by

Utoryl6i) 1= €77 cos(0)| ;) + €7 sin(6)[ ),

Utory| ;) == —e ™ sin(0)[ ;) + €7 cos(6)|6;), (36)
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where 6,7 € R are the two scalar rotation parameters.

B.3 Solution to the 2 x 2 localization problem

To proceed, let ¢ and j denote two fixed orbital indices, and consider the maximization
of localization functional L Eq. (32) with respect to only the unitary transformation U{QT}
between ¢; and ¢; described by Eq. (36). Eq. (32) makes clear that U{(;T} cannot affect any
term of L’s orbital sum except the two involving ¢; or ¢;; therefore, maximizing the full L
of Eq. (32) with respect to U{QT} is equivalent to maximizing the simpler two-term target

function

L,7) = Z [h<nF (U{QT}@)) + h(”F (U{ev}ﬁbj))] : (37)

F

To proceed, we first evaluate np (0{97}@) and np <U{97}¢j>. Defining the hermitian-matrix
elements (cf. Eq. (33))

Qfy = (| Pr| ) (38)

and abbreviating ¢ := cos(f) (€ R), s :=sin(f) (€ R), 2 :=¢€" (€ C, |z] = 1), ¢ = z¢, and

5:=zs, we get

nr (U{QT}¢1> = <U{GT}¢1|PF‘U{BT}¢Z>
= (C"¢; + §¢j\pF’5*¢i + 5¢5)

— |&*? (63| Pr|di) + |37 (0| Pr|d;) + 8(¢s| Prlo;) + 5 (d;| Pr| i)

J/

-~

205?]?(z2<¢i\f3F|¢j>>

= QL + & 5—1—203%(22 . (39)

ij
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In the last step, we used ¢, s € R. Proceeding in the same way for ng of U{QT}|¢j>, we find

ng (ff{eT}cbj) = (Utory 51 Pr|Utory 5)
— (=5 i + ¢0;| Pr| — 5 ¢; + &)

_ 2AF | 2AF _=~AF _ sx=xAF
=s5Q; +c jj—chij—cs i

-~

72cs§R(z2Qle)

= Q5 + QL — 2es R(Z*QL). (40)
Inserting these back into the functional, we get

L(H,z):Zh(c2 5+s2 fj+2cs§R(z2 Z))—FZh(s? 5—1—02 ﬁ—?cs@?(f f;)) (41)
F F

For some functions h(n), this expression can be evaluated into a simple closed-form result,
which allows immediately reading off the resulting conditions for stationarity. For example,

for the special case h(n) = n?, Eq. (41) yields

Ly(0,2) = Z E sin(46) (4(Qf; — QL)R(2°QL)) + 3008(49) (( L —QN)? —AR(2? 5)2>

+

A

(3(QE)? +2Q5Q% + 4R(=QL)* + 3( ;3)2)}, (42)

and the exact maximum of this expression upon variation of 6 can be straightforwardly

written down (see below).

However, not all h can be treated just like that (e.g., h(n) = n* cannot, which was the
original default for the IBO construction®”). For the general case, we therefore first construct
an approximation to L(0, z), and then use it to determine an approximate extremum of L.

To this end, we substitute 6 = i arctan(z) into L of Eq. (41), and then expand L in a power
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series around z = 0:

Nl (1 arctan(z), 2)
L(}1 arctan(x Z T [ e
k=0

} . (43)
=0
Retaining only terms up to second order, this yields
1
L(6(z), 2) = 544(2) 2® 4 Bij(2) & + Cyj + O(?). (44)

where A;;(2), B;;j(#) and C;; denote the 2nd, 1st, and Oth order coefficients, respectively.
For a general smooth function A(n) : [0,1] — R with first derivative A’ and second derivative

h"”, these coefficients can evaluated as

Agle) = 32 | R0 (04(Q) + (@) — 5 (2F - @5) (¥(Q5) ~ (@)
Bl = 3 |gR(-"05) ((eh) ~ (@)
Cy = (M@i) +n(@5))- (45)

Concrete expressions for the special cases of h(n) = n? and h(n) = n', yielding the two
formulas presented with the original IBO method, are provided in Tab. 2. However, a large
variety of other convex functions h(n) yield stable localization algorithms; the properties of
more general h(n) will be considered elsewhere.

For L(0, ) to be extremal with respect to variations in 6, 0L /060 must vanish. Translated
to L’s second order approximation Eq. (44), this yields the stationarity condition

OL(z,2)

o4



Table 2:

Coefficients  A;;(2),

B;j(z), and Cj; of the expansion L(0(z),z) =

S p h(ne (Un 61)) + 2 p h(ne (Ugery65)) = 34i5(2) 2 + Byj(2) # + Cyj + O(a%) [Eq. (44))],

where §(z) = 1 arctan(z), obtained for various functions viable as h(n) in L [Eq. (32)].
Aol =X TREAQE 00(Q) +1(Q5)) - Q- ) (1(Qf) - (@)
General h(n)  By(z) = ZF: B R(22QE) (W (QF) — 1 (QF)) }
Gy = 3 [n(@) +1(@})
A4 = 3 [R5 - j(@f - @)
i =nt - Bylz) = 32| (Qf - @) R(*Qh)]
Gy = X[@0)+ (@)
Aq(e) = 23 (05" + (@5)") m(2a5) - (% - 05 (@) - (@5)')]
A =nt - Byl®) = 2 [2((@0)° - (@7)") R(=a))
Cs=2[@)"+ (@)
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for z, and therefore as approximate extremum of L(6, z) any rotation angle

o % (arctan(—%) 4 m) (n€2) (47)

However, not all of those solutions are minima, and some lead to spurious rotations by 180°
(i.e., swaps of the output orbitals U{QT}¢i and U{QT}¢j, which are mathematically admissible
but physically meaningless).

In order to establish the correct choice of solutions in Eq. (47), and also rationalize
our original choice of the parametrization 6 = %Larctan(x), we consider the special case of
h(n) = n?. For this special case h(n) = n?, one can show by direct calculation that L(6, z)
can be ezactly expressed in terms of cos(46) and sin(40) and the series coefficients A;;(z),

B;j(z), and Cj; defined in Eq. (45):
Ly(0, 2) = (Cij + Aij(2)) + Bij(z) sin(460) — Ay;(2) cos(49). (48)

For h(n) = n?, this coincides with L, from Eq. (42). The stationary condition 0L (6, z) /00 =

0 then becomes
Bij(z) cos(46) = —A;j(z) sin(40), (49)
which has the solution set

0 {1 (2mn + arctan2(B;;(z), —A;;(2))); n € Z}U

{5(2mn + arctan2(—By(2), Ai;(2))); n € Z}. (50)

The set described by Eq. (50) is equivalent to the one described by Eq. (47), but here

rewritten in terms of the two-argument arctan2(y, x) function®. So which of those 6 should

3The two-argument arctan(y,z) function is available in many programming languages. For x > 0, it
evaluates to arctan(y,z) = arctan(y/x), and otherwise takes account of the signs of both the z and the y
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we choose as rotation parameter? To clarify that, we evaluate L}(6, z) := 0*Lo(0, z) /96* for
the stationary points. After simplifying and abbreviating A;; := A;;(2) and B;; := B;;(2),

one finds

Ly (% + § arctan2(—B;j, A;j),7) = +16, A%+ B3

Lg(% + i arctan2(B;;, —A;;), 7') = —164 /A?j + BZZJ (51)

This implies that the upper set of solutions characterizes the minima of Ly (positive second
derivative at stationary points), while the lower set characterizes the maxima. Since our
localization functionals are meant to be maximized, we need to select a solution from the
lower set. Additionally, we can just use the n = 0 solution without loss of generality:
while the solutions for all n € Z are technically admissible, choosing a n # 0 will change
0 — 0 +n-90°, and therefore only cause physically inconsequential swaps and/or sign-flips
the output orbitals in Eq. (36). Therefore, for § we can indiscriminately employ the update

formula described in the main text:

6= %larctan2(Bij(z), —A;i(2)). (52)

B.4 Determining the relative phase factor 7

A general (2,2)-shape complex unitary transformation? U can have four real scalar degrees
of freedom. However, in our application, there are two redundant degrees of freedom as the
resulting two new orbitals can be multiplied with arbitrary phase factors without influencing
the value of the functional n (and L). The only relevant additional degree of freedom,

compared to the case of real orbitals, is therefore a larger freedom to change their relative

arguments to yield a unique arc angle to point (z,y) in the full range [—m, 7]; note that arctan(y/x) itself
cannot distinguish the cases of (z,y) and (—z, —y), and therefore is only uniquely defined for a half-circle
arc.

4In linear algebra, the C™ unitary group is called U(n); while the group name would simplify notation
here, we have many other U symbols, and using it may cause ambiguities. We therefore describe U(n) as
“(n,n)-shape unitary matrices”.

57



phase 22 = €27, as this phase may take a complex value rather than just reducing to a sign.

The gradient B;;(7) depends on this value as we have

Zb o2 F (53)
= ZbF [cos(27) R(QF;) — sin(27) (QF)]

= cos(27) %(BU) — sin(27) %(Bw)

where bf; are real coefficients that depend on the definition of h(n) and B =3, bLQL i
the (complex) gradient before we apply the phase transformation. In principle, one could
consider evaluating the functional Eq. (44) at its extremum z = —B;;(7)/A;;(7) (Eq. (46))

as a function of 7,

1B,(r)?

LmaX<T) :Cij 2 A ( )

(54)

and determining which phase factor would make this stationary. Unfortunately, this is
not straight-forward due to the R(e*7Q/7)* term in A;;(7), which offers no obvious way of
deferring the real component extraction in the computation of the sum over the fragments F'.
Instead, we choose the value of 7 such that B;; is maximized, so that we locate an extremum
of B;; with respect to a variation in 7. Since Cj; is real and independent of 7, and since close
to a solution x ~ 0 the B;; v term will also dominate the %Ai]‘ 2% term in the second order

expansion L(x) in Eq. (44), this procedure should be able to reach a stationary point of L

with respect to both # and 7 at convergence. This choice of phase factor may be viewed as
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writing the unitary transformation of Eq. (35) as

U(6.7) = e cos(f) €7 sin(f) (55)
—e ' Tsin(f) €' cos(6)

cos(f) sin(@)| [e™ 0
—sin(f) cos(0) 0 €

comprising a phase transformation of the two orbitals to make the gradient real, followed by
rotation in the real plane. After the rotation, one may transform back to the original plane

by choosing
cos(f) eA7 sin(6)
—e 7sin(f)  cos()

e 0 cos(f) sin(f)| [e7™ 0

Y

0 e ™| [—sin(d) cos(f) 0 €

We implemented the latter transformation by first accumulating Bij as a complex number

to obtain e27 = ;—J‘ Multiplying orbital j with this phase factor yields:
ij

o s BByl -
Bj; = Bijj—=— = —— = | Byj| (57)
|Bij| Byl

so that the gradient is maximized, as desired. The phase-adjusted orbitals are used in the
computation of the second derivative A;; and the rotation angle 6 as discussed in section

B.2. After the rotation, the phase of the orbitals is restored.
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Supporting Information (SI) for:

Generalization of intrinsic orbitals to Kramers-paired
quaternion spinors, molecular fragments, and valence

virtual spinors

Bruno Senjean, Souloke Sen, Michal Repisky, Gerald Knizia, Lucas Visscher

S3 Review of the intrinsic atomic orbital construction

The main text provides a new generalization of intrinsic atomic orbitals to intrinsic frag-
ment orbitals and four-component relativistic orbitals. In order to provide some background
information, and make this work self-contained, in this appendix we review and clarify math-
ematical aspects of the IAO construction in the original non-relativistic AO context. Apart
from providing background information on the current work, this also provides a complete
derivation of the previously rather terse theoretical details of the TAO method in Ref. 57,

and discusses a slight revision with improves formal properties. Concretely:

e The argument of why the IAOs span the occupied space is explicitly formulated in
terms of equations (instead of text as in the original article), and full derivations of all

involved equations are given.

e The TAO definition is slightly revised; the revised IAOs are simpler to construct, and

provide near-indistinguishable results to the original IAOs.

1



e The matrix formulation of the IAO construction is derived, and an optimal set of

working equations is given.

S3.1 Computational, free-atom AQO, and intrinsic AO bases

The original IAO method aims to construct a set of one-particle states—the IAOs—which
have the same dimension and conceptual meaning as a minimal basis, but at the same time
is capable of exactly spanning the occupied orbitals of a previously computed SCF (Hartree-
Fock or Kohn-Sham) wave function |®) (and thereby is also capable of exactly representing
the corresponding many-electron SCF determinant itself).

In the previous version of the method,®” this is achieved by applying a combination of
subspace projections (described next) to an input set of tabulated free-atom atomic orbitals;
these tabulated functions are expected to closely represent the “chemical” AOs of free atoms,
and by placing them on the positions of the atoms in a molecule they can be used as a
minimal molecular AO basis. This minimal basis then could be used for interpretative
purposes, because each of its AO basis functions uniquely corresponds to an actual atomic
orbital in the chemical sense. However, due the complete lack of polarization functions in the
basis, which are required to model the shifts in electronic structure of atoms as they come
in contact with each other in a molecule, in general a minimal basis of free-atom AOs—no
matter how accurate these represent the actual free atoms—does not have the capability of
representing molecular wave functions with any degree of quantitative accuracy. The TAO
method aims to rectify this by retaining a minimal basis, but changing the original free-atom
AOs it contained into molecule-intrinsic AOs by incorporating information obtained from an

already computed molecular wave function.

S3.2 Rationalization of the IAO subspace projection formula

In order to rationalize the construction achieving this, imagine the following scenario. As-

sume we have been given a molecule and computed for it an accurate SCF wave function |®)



in a large computational basis set® B;. As a result of the SCF computation, we first obtain

a set of Ny occupied molecular orbitals

dim(B1)

|¢z> = Z |Xu>0m’ (Z S {17 .- -aNocc})v (Sl)

pn=1
which are needed for representing the many-electron wave function |®). We furthermore
obtain a set of Ny, = dim(B;) — Nyee virtual molecular orbitals

dim(B1)

)= 3 WG (a€{L....Nu)), (52)

p=1

which are not needed for representing |®), but rather describe the orthogonal complement
of the occupied subspace span{|¢;)} in the full one-particle space span(B).

Now let us consider the hypothetical situation in which we were to compute (e.g. by
a separate SCF procedure) a second single determinant wave function |®) for the same
molecule in the same electronic state—but this time employing only the minimal basis set
of free-atom atomic orbitals, for now called By, to expand its molecular orbitals. [Note that
By takes a more general meaning in the main text; also, in practice |<i>> is not computed
separately, but will be extracted from the original |®) (see Appx. S3.3)]. This calculation
would yield another set of occupied and virtual orbitals, expanded over the minimal basis
functions {|¢,); ¢, € Ba}:

dim(Bz2)

|¢;z> = Z |Cu>ém (1 € {L s vNocc})v (83)
6= 3 160G (ae{l....Nu)). (34)

p=1

°In Ref. 57, By denoted a raw basis consisting of a set of non-orthogonal functions. In the main text
we distinguish for clarity between this basis and the basis B; resulting from orthonormalization of these
functions. In this note we assume for simplicity that no near-linear dependencies need to be removed so that



The number of occupied molecular orbitals remains at Ny as in Eq. (S1), because the
number of electrons did not change. The number of virtual orbitals {<Z~5a} reduces to Nvir =
dim(Bs) — Ny, because, as a minimal basis set, By only spans the core and valence orbitals of
the molecule—in particular, By lacks the polarization functions and diffuse functions which’s
span would normally make up the largest part of the virtual one-particle space.

If combined, {|¢;)} and {|¢,)} obviously allow representing the entirety of span(Bs);

consequently, for any of the minimal-basis functions |(,) € Bs, the expression

60 = (L 1@ + Z b6l I (55)

i=1

describes a resolution of the identity (RI) over the approximate occupied space span{|@;)} C

B, and its orthogonal complement span{|@,)} C B,. Eq. (S5) can be rephrased as

A A

6u) = (O +V)IG). (S6)

where we defined the following projectors onto the occupied and virtual subspaces within

span(Bs):

NOCC N

0= Z|¢ Gl V=S 16l (S7)

a=1

Note that if applied to vectors inside the span of Bs, the operators V and 1 — O have identical
effects, because the {|¢,)} form a basis of the orthogonal complement of span{|¢;)} inside

span(Bs); in particular, we have

VI¢) = (1-0)[¢,) (38)

for the |(,) of Eq. (S6), which will play a role later.

In the TAO construction, the idea is to retain the beneficial aspects of having a meaningful



minimal basis of atomic orbitals {|(,)}, but changing its basis functions {|¢,)} in such a way
that afterwards their occupied subspace spans ezactly the occupied space of |®), and their
virtual subspace lies exactly inside its orthogonal complement. This is easily achieved by an
adjustment to Eq. (S5), which as written is a RI over the approximate occupied and virtual
subspaces making up span(By). We first define the projectors onto the accurate occupied

and virtual subspaces obtained from |®):

Noce Nyir
O:=> )&l V= |¢a){dal- (S9)
i=1 a=1

(with {|¢;)} from Eq. (S1) and {|¢,)} from Eq. (S2)). Next, we use these projectors to
separately project the approximate occupied and virtual subspaces of the RI in Eq. (S6)

onto their accurate counterparts:

A
A~

+VV)|C). (S10)

Ql>

6, = (O

Provided that resulting functions {[¢},)} are not linearly dependent (which, in particular,

implies the weaker condition that the (Nyce, Noec)-shape overlap matrix with elements

[SOI)L‘J' = |:<¢Z|(5J>i| (S11)

)
ij

has no vanishing singular values), these {|¢,)} will ezactly span the accurate occupied space
span{|p;)}, as explained next. The quantities defined in Eq. (S10) are the proto-IAOs we
aim to construct. [The “proto”-prefix only indicates that the orbitals are not yet orthogonal,
and may be marked with a “0” superscript on state vectors if necessary for disambiguation;
coefficient matrices of such non-orthogonal quantities will be written in lower case, as in the
main text.

To see that the proto-IAOs span the occupied space (i.e., that span{|¢;)} C span{|¢})}),

consider the following argument: First, as a direct consequence of the definition of the TAOs



{l¢L,)} in Eq. (S10) combined with the fact that the mutually orthogonal {16:)} and {|,)}

together form a basis of span(B,), the space

span{|¢!); p € {1,...,dim(B,)}} (S12)
can be exactly split into the two orthogonal subspaces

A, = span{OA|<5i>; i€{l,...,Nocc} } C span(By) (S13)

A, = span{f/|gz~5a>; a€{l,...,Ny}} C span(B) (S14)

(A, and A, are orthogonal to each other because both the original {|¢;)} and {|¢,)} are
mutually orthogonal, and the occupied and virtual subspaces they are projected to by O
and V are orthogonal, too; so they can be considered entirely independently of each other).
Of these, the subspace span{O|;)} obviously lies entirely inside span{|¢;)}; additionally, the
vectors {O|¢;)} are all linearly independent, and therefore both span{O|¢;)} and span{|¢;)}
are vector spaces of the same dimension (Ny). It is now elementary linear algebra to
recognize that if a vector space A is a subspace of another vectorspace B, and both A and
B have the same dimension, then A and B are in fact identical. Under the given premise of
S°S (Eq. (S11)) not being singular, this is exactly the case here. Consequently, A,, which is
a subspace of the span of IAOs, is identical to |®)’s occupied space span{|¢;)}. This means
in particular that, if needed, all |¢;) could be ezactly represented as linear combinations of
the dim(By) IAOs of Eq. (S10).

So why would we expect the premise of S°° being non-singular to be the applicable? As
described above, the main difference between a free-atom minimal basis B, and an accurate
computational basis B; is the former’s lack of diffuse and polarization functions. However,
while important for quantitative accuracy, the diffuse and polarization functions which B,
lacks are generally not needed to represent the qualitative molecular electronic structure

of core or valence states; in fact, By does contain all functions required to model those



qualitatively. For this reason, we would expect that apart from some exceptional cases (if
|®) and |®) describe qualitatively different states; e.g., if |®) describes a Rydberg state or
non-valence anion), the space spanned by the Bs-basis occupied orbitals {|q~51>} of Eq. (S3)
has a high overlap with, and closely resembles, the occupied space spanned by the accurate
large-basis molecular orbitals {|¢;)} of Eq. (S1). Similarly, span{|¢,)}, should be entirely
sufficient to qualitatively represent all anti-bonding and unoccupied non-bonding orbitals
in the valence space of the molecule; the rationale for this is even stronger, because those
orbitals can with good reason be defined as a localized representation of the orthogonal
complement of the occupied space (= span{|$;)}) inside the valence space (= span(B;)).

Let us define the projectors onto the entire linear span of B; and By as P, and P

dim(B1)
Pi= Y hISi ol
=1
dim(Bz2)
Pr= > G851 (S15)
p,v=1

(if the functions of B; already are orthonormal, as in the main text of this work, the inverse
overlap matrix is an identity matrix, and the projector can be accordingly simplified; how-
ever, for the current section we retain the general form to simplify comparison to previous

formulas). For the occupied and virtual space projectors of Eq. (S9), we then find

~ A

PO=0 PV=V O0+V=p (S16)

because the {|¢;)} and {|¢,)} are expanded over By to begin with, and together form a basis



of span(B;). Taken together with Eq. (S8), these expression allow rewriting Eq. (S10) as

6h) = (Oé + f/f/) 1C,)
= (ﬁ’léé + A1(P1 - O) (1 - 5)) [e3)
=2 (00+(1-0)(1-0)) 1), (517)

This formula can be compared to Eq. (2) of Ref. 57, which in the current notation would

read as
6,) = (00 + (1-0)(1-0)) P1I¢,). (S18)

Eqgs. (S17) and (S18) subtly differ in that Eq. (S17) applies P, as the last step in the
construction (leftmost), rather than as first step (rightmost), as Eq. (S18) does. This and
other subtle aspects of choices in the IAO construction are discussed in detail in Appx. S3.6.
In the current case, it is easily established (Appx. S3.6) that Egs. (S17) and (S18) are
mathematically equivalent if the {|¢;)} are defined as in Ref. 57 (Eq. (S19) below), so this
apparent difference is spurious. Eq. (S17) is the more general form, and will therefore be

used in the following discussion.

S3.3 Construction of the depolarized occupied orbitals {|¢;)} and
their subspace projector 0= S i) (il

The TAO formula Eq. (S17) involves the projector 5, for which we require the occupied
orbitals {|¢;)} of Eq. (S3). Despite the outline in Appx. S3.2, neither the original IAQ
method®” nor this work requires an actual independent computation in the minimal basis
B, to obtain these {|¢;)}. We only introduced this conceptual possibility because it affords
a cleaner outline of the core of the IAO construction in Eq. (S17) (which affords the span-

ning property), before introducing the essentially unrelated technical details of viable {|¢;)}



constructions used in practice.

Instead of computing the {|@;)} a priori, we obtain them from a simplification of the
full-basis occupied states {|¢;)}, which we already have computed—in the simplest case,
by just a projection onto span(Bz), followed by a re-orthogonalization. [Apart from being
much simpler than performing an SCF to obtain a single determinant wave function, this
also ensures that the full-basis wave function |®) and the minimal-basis wave function |®)
are automatically generated in a consistent fashion: if the wave function |®) were computed
with an actual SCF procedure, it could happen that both SCF procedures arrive at qualita-
tively inequivalent electronic states of the molecule (e.g., in molecules with multiple viable
electronic states).]

Concretely, two variants of constructing the |qz~5,> are used in practice. Both start by com-
puting what we here denote as “proto-depolarized occupied” (pdo) molecular orbitals; these
are obtained by “depolarizing” the large-basis occupied orbitals {|¢;); ¢ € {1,..., Nocc}}-
The “proto”-prefix again indicates that the orbitals are not yet orthogonal, and indicated

46277

with a superscript if necessary for disambiguation. The original 2013 TAO article sug-

gested computing the dpo as

|65) = PLPa|gn). (S19)

In a (slight) revision of the IAO method (which since 2014 was outlined and recommended
in GK’s reference implementation, but has never been formally published academically), the

dpo are instead computed as

|€Z~52> = ]52‘@'% (520)

without the additional Bi-span projection P, As argued before,”” in practice Py acts almost
as an identity operator if applied to functions in span(Bs), because just about any realistic

computational basis can almost perfectly represent the minimal-basis functions; however,



in most practical situations span(By) C span(B;) is not ezactly fulfilled, so Egs. (S19) and
(S20) are not strictly equivalent, either. As the construction resulting from the choice of
Eq. (S19) has already been described in the original IAO article, we will here focus on
Eq. (S20); however, we will point out details regarding the formal and numerical differences
in Appx. S3.5 and S3.6.

The original molecular orbitals {|¢;)} are orthonormal, but the depolarization in Eq. (S20)
strips off all the polarization contributions to the |¢;) (because these cannot be represented in
the span of the minimal basis By), and therefore the ]&i) are generally not exactly orthogonal
as written. To obtain a set of {|¢;)} which can serve as replacement of Eq. (S1), we therefore
orthogonalize the ]ggi) To this end, we first compute the (Nocc, Noce)-shape pdo-MO overlap

matrix
[8pa0],; = (GH105) = (Bil PaBalosy) = (il Palby). (521)

In the second step, we used ]522 =D (the idempotency property shared by all projection

operators). A set of orthogonalized {|¢;)} can then be obtained as

NOCC

@) = > 164 [8pa’]i (S22)

J=1

While this formally describes a symmetric orthogonalization, the IAO construction is invari-
ant to the type of orthogonalization used, and the final formulas need not actually involve
any explicit orthogonalization of the {|¢;)} states at all. In fact, Eq. (S17) makes clear that
as far as the {|gz~5,>} are concerned, only a representation of the projector 5 is needed for
the construction of the IAOs. And by inserting Eqs. (S21) and (S22), we can obtain one as

follows:

NOCC

10



NOCC NOCC

= 3" 3100 Boa ] [Bpa ] (4

7,k=1 1=1

NOCC NOCC

=S (Z Ewip r;;m) (@
7,k=1
NOCC

- Z ‘¢2 pdo ‘

7,k=1
NOCC

- Z P2|¢] pdo <¢k‘P2 <S23)

7,k=1

S3.4 Formal simplifications of Eq. (S17)

Appx. S3.2 described the emergence of Eq. (S17)—this is the core formula of the TAO con-
struction. In principle, Eq. (S17) can be translated into an implementable matrix formulation
directly as is (and, indeed, that is exactly how the “Standard/2013” variant of the IAO con-
struction was described in Appendix C of Ref. 57). However, with the slight revision of
replacing Eq. (S19) by Eq. (S20), Eq. (S17) can be formally simplified before doing so. To

this end, first note that Eq. (S17) can be rearranged as follows:

|¢;> :Pl

1+O—O—2O(1—5)) €Y. (S24)

11



We will next establish that the O of Eq. (523) fulfills

O(1-0)[¢,) =0. (325)

As a consequence, Eq. (524) reduces to

6y = Pi(1+0-0)c,). (S26)

This is a significant formal simplification, and also affords a simpler and more efficient matrix
formulation than obtained by translating Eq. (S17) directly (see Appx. S3.5).
The relation Eq. (S25) can be established by direct calculation after inserting Eq. (S9)

for the occupied space projector O and Eq. (S23) for its depolarized counterpart O:

O(1-0)l;,)
Noce Noce
—Z@@Q—Z%mp®wmﬁm

k=1
;yﬂw;;@%@ﬁjm@@
Noce Noce Noce !
= Z ’¢z>( oil — Z Z pdo ” pdo <¢k|P2) 1Cp) (S27)
i=1 i

To arrive here, we inserted [épdo] y from Eq. (S21). Note this yields a contraction of 8,4, to

§pdo, which can be evaluated as

NOCC

Z [gpdo} ij [gg;o]jk = 4. (S28)

j=1
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Substituting this back into Eq. (S27), we find

Noce Noce
O)I¢,) = > 1o (<¢,-| - Zaf<¢k|ﬁ2)|gp>
Nocc =
=3 1o ( ¢@\P2)|<p>

Nocc

= 16 ( BilG,) <¢iu%\<p>) 0 (529)
—_——
:<¢2|Cp>
In the last step we used
(@il P2} = (6il¢,). (S30)

This holds because |(,) € By; that is, it already lies inside the subspace Py projects to, so
P, does not affect it.

Eq. (S26) was already put forward in Appendix C of Ref. 57, as a simpler alternative for-
mula for constructing TAOs capable of exactly spanning the occupied space. However, with
the definitions of Ref. 57, this was an approzimation to Eq. (S18) (a very good approxima-
tion, but still an approximation), while the minor revision explained here (namely replacing
Eq. (S18) by (S17) and Eq. (S19) by (S20)), this simplification from Eq. (S17) to Eq. (S26)
is exact. A similar simplification was also discussed by Janowski;%® however, it was derived
under the formal prerequisite that span(Bs) is an exact subspace of span(B;)—a condition
which in practice is often violated, and under which also the simplified formula in Appendix
C of Ref. 57 is exact. By confirming Eq. (S25), we show that with the present tweaks in
the definitions of intermediate quantities, it is not necessary that span(Bs) C span(B;) to

achieve exact equivalence of Eq. (S17) and Eq. (S26).

13



S3.5 Matrix formulation of the IAO construction

So far we described the algebraic reasoning behind the IAO construction using the abstract
state vector formalism. For the more practical minded, we here translate the equations into
a directly implementable matrix formulation. To this end, let C denote the (dim(B;), Nocc)-
shape occupied orbital coefficient matrix representing the {|¢;); i € {1,..., Noec}} of Eq. (S1),
and let Sq1, S12, So1 (= SJ{Q), and Soo denote the indicated overlap matrices between B; and

Bs, with elements defined as usual, e.g.,

[SIQ]uV = <XM|CV> (S31)

for p e {1,...,dim(By)}, v € {1,...,dim(Bs)}. [Note that in the the main text of this work,
By is represented by a full set of orthonormal molecular orbitals, so Si; is an identity matrix;
however, we retain the general form in this section].

Revised IAO construction: We will first describe a matrix formulation of Eq. (S26), which

in its abstract state vector form reads

) = PL(L+0—0)I¢,) (for |¢,) € B2)) ($32)

and provides the proto-versions (not yet orthogonalized) of the revised IAOs resulting from
Eq. (S17) combined with Eq. (S20). To express the |¢!) numerically, we will represent them

with the (dim(Bl), dim([)’g))—shape coefficient matrix ¢'©, which represents the expansion
dim(B1)
) = D I’ (pefl,... dim(By)}). (S33)

p=1

To derive the concrete form of ¢! first note that Eq. (S32) can be reformulated as

6) = P1|¢,) + O1¢,) — BiO|G,) (334)
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because PLO = O (Eq. (S16)). We now process the individual terms of Eq. (S34). Inserting
Eq. (S9) for O and Eq. (S1) for its {|¢;)}, we find:

Noce
0l¢,) = (Zm @)Kp
Noce , dim(By) dim(B1)
_Z< Z Xu)C >< Z )|Cp

Noee dim 81 dim(B1)

_Z Z X)) Cm Z XV|<p

==t o o e
dim(B1)

= Z |Xu>[CCTSIQ]up- (S35)

Next, by inserting P; from Eq. (S15), we get for ]51|Cp>:

dim(B1)

ﬁa|<p>=( S ) SH (x |>\<p>
=1
dim?l’jﬁ) dim(By)
_ |xu>( [s-lJW<xV|cp>)
dim(B1)
= Z ‘Xu>[sf11512]up' (536)
p=1

To process Plé, we first need a matrix representation of 8,4, of Eq. (S21); this is easily
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obtained by again inserting Eq. (S1) for the {|¢;)} and Eq. (S15) for P;:

[gpdo} ij = <¢z|p2|¢]>

dim(B2)
_ <¢i|( S \<u>[82;1””<<u|) 6,)
v=1
dim(B1) : dim(B2) dim(B1)
= 3 Glbol 2 IISEGl S ke

p,v=1 k=1
d1m(Bl dim(Bz)

- Z Z C)\l X)\’CM 22]/“/ <<V‘XN> Kj

ANe=1  p,v=1

[CTLA [512} [521]w
= [C781,55,'85C] " (S37)
That is, we get
Spdo = C'S1,8,,'S,. C. (S38)

Using this, we can now insert 5 from Eq. (S23) to obtain the final term of Eq. (S34):

NOCC
POIG) =P Y Balog) [8pa.)" (0] P2lC)
7,k=1

Noce dim(B1)

=3 3T WISH (wlPales) [5od)” (0l P2lC,)

Ph=L =L [S12855'821Cl,; [CTS12]kp
dim(B1)
= T
= u A
Z X0} [S11' 81285 S21C 8,4, C'S12] (S39)
pn=1

In this, we used P|¢,) = |¢,) to simplify (¢|Pa|C,).
Collecting the terms from Egs. (S39), (S36), and (S35) for Eq. (S34), and comparing to

the formal expansion Eq. (S33), we find as expression for the proto-IAO expansion matrix
O = 87S1, + CCTS15 — 811812857 S21C 5|, CiS 1. (S40)
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This expression can be directly computed from the occupied orbital matrix C and the indi-
cated overlap matrices. The formula can be evaluated more efficiently when introducing the

intermediate matrices
P, =SS, t; ;== S5,C ty == Syt (541)
In terms of these, we may first rewrite Eq. (S40) into
Spdo = tits, (S42)
and then introduce the intermediate
ts = to8 4, = <(§;r)do)_1 t£>T (543)

[We formulated t3 in terms of adjoints because linear algebra solvers are normally solve
AX =B (& X = A7'B) rather than XA = B (& X = BA™!) we would otherwise need].
Using these, we may then rewrite Eq. (S40) as

0 = 871'S 1, + Ct! — S7'Syot, gl;}oti,

=P+ Ct] — Ppoty 5 4t

=P+ (C—Pata§ g ) t]

=Py + (C— Ppoty) t! (S44)

The intermediates Eqgs. (S41) to (S43) combined with the last line of Eq. (S44) provide
an efficient formulation of the construction of ¢™© in terms of binary matrix operations
(see Fig. S1). It may be noted that in this factorization, the only operation in the entire
construction which scales as O(dim(8;)?) is calculating the Cholesky decomposition of Sy,

which is needed to solve for P15 in Eq. (S43); however, this decomposition of S;; (which
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is the computational main basis overlap matrix), would very most likely be already present
in the host program because at least one of those is typically computed as part of the
SCF process (or alternatively a spectral decomposition of S;; or a Sl_ll/ 2 matrix, either of
which would also work for constructing P13). Note that the three formal matrix inverses in
Eq. (S41) and (S43) should never be calculated as actual inverses, but rather expressions like
“S2_21t1” should be read as “solve the equation system Sgox = t; for x using a suitable matrix
decomposition of Soo”—in the current case, all formally inverted matrices are symmetric and
positive definite, so the systems are most efficiently solved using the (extremely efficient)
Cholesky decomposition of the overlap matrices combined with two triangular matrix solves

per equation (dpotrf/dtrsm in LAPACK/BLAS terminology).

P15 :=solve (Sy1, Si2)
t, .= Si,C
ty 1= solve (Say, t1)
Spdo = t1ts
ts = solve(éldo, t;)T

CIAO = P12 + (C — P12t3) tJ{

Figure S1: Recommended final numerical algorithm for revised construction of the IAOs, as
provided in Eqgs. (S41) to (S44). This construction is based on Egs. (S17) and (S20); see
Appx. S3.6 for a discussion of the differences to Ref. 57. Algorithm inputs are: the B; to Bs
overlap matrices Si1, S12, and Sas, and the occupied molecular orbital cofficient matrix C
of Eq. (S1) (with shape (dim(By), Nocc)); output is the (dim(B;), dim(Bs))-shape proto-IAO
coefficient matrix ¢! of Eq. (533). The linear solves are most efficiently computed with
Cholesky decompositions (dpotrf/dtrsm).

Original 2013 IAO construction: To compare, we also provide the matrix formulation of
the original 2013 TAO construction. As mentioned, this is obtained from either Eq. (S17) or
Eq. (S18) when defining the proto-depolarized occupied orbitals {|@;)} via Eq. (S19) (i.e.,
as |@!) := PiPy|¢;)) instead of Eq. (S20) (which omits the final P projection).

When we again denote the occupied orbital matrix as C and the internal and crossed
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31/ Bs overlap matrices as Si11, Sia, So1 (= SIQ), and Sy, then a direct translation of Eq. (S17)

for the proto-IAOs into its matrix form yields

Py = S1{'S1; (S45)
C = orth(S7;'S1255,'82:C, S11) (S46)
c0 = cC’s,,CCTSy Pyy+

(1—-CC”Sy)(1 — CCTSy)Pyy (S47)

In this, orthonormalization is defined as

orth(C, 8) := C[CTSC]~Y/2, (S48)

where X1/ denotes the matrix inverse square root (any other orthogonalization would also
work and produce identical results). These are equivalent to the formulas in Appendix C of
Ref. 57. As in the last subsection, the proto-IAOs described by ¢"© are not yet orthogonal,
and still need to be orthogonalized if orthogonal IAOs are desired. Eq. (S47) can still be
factorized; however, both the formal complexity and the complexity of the numerical terms
will be higher than in Fig. S1, because as mentioned, the transition from Eq. (S17) to
Eq. (S26) is not exact in this case.

It should be mentioned, however, that either formulation of the IAOs will be trivial in
terms of computational cost when compared to a full SCF calculation—even with the most
efficient of non-hybrid DFT programs. Additionally, both versions produce numerically near
indistinguishable results in all cases we have investigated. The preference for the revised IAO
version is therefore mainly from a formal nature, but we expect that it is unlikely to play a
major role except for special applications like analytic gradients, where simpler formulas are

much preferable.
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S3.6 Discussion of possible choices in the formal IAO construction

There are multiple different sensible ways of defining the polarization-free occupied orbitals
{|¢:)} introduced in Eq. (S3), which in turn determine the projector O of Eq. (S7). In the

original article®”, Eq. (S19) was chosen, which is
|0) = PPy|). (549)
In contrast, here we presented derivations using Eq. (520),

|<Ei> = p2|¢i>a (S50)

as a more elegant alternative (which actually has been discussed in the IAO/IBO reference
implementation (ibo-ref.py) of the IAO method since 2014, but has not been published in
an academic context. The revision was prompted by an article of Janowski®, who employed
Eq. (S50) under the premise that B, is exactly spanned by B;).

The differences between Eq. (S49) and Eq. (S50) are very subtle, because they involve
differences in handling the degree to which the minimal basis By cannot be expressed in terms
of the full basis B;. For the same reason, they have almost no bearing on the numerical results
obtained: as far as we are aware of, differences between results produced by both variants
are negligible for all practical purposes. Additionally, while the amount of numerical work
differs for the final formulas of both choices (Appx. S3.5), evaluating either of them is so
cheap compared to even the fastest non-hybrid DFT or other SCF methods, that it is hard
to imagine a usage case where the gain in computational efficiency afforded by Eq. (S50)
could actually matter.

Nevertheless, these choices do imply some formal differences, which can easily confuse.
Additionally, in some special applications (e.g., analytical gradient formulas) the minor for-

mal differences might have noticeable consequences on program complexity. We therefore

20



point them out and discuss them inside this section, but mostly isolate it from the rest of
the text to reduce potential for distraction by details of ultimately very little importance.
One such subtle difference appears when comparing Eq. (S17) to Eq. (2) of Ref. 57, which
as already mentioned, would read as Eq. (S18) if translated into the current notation. While
formally different, for the concrete definition of the depolarized orbitals |¢;) used in Ref. 57
(given in Eq. (S49)), not only the |¢;) lie inside the span of By (as here), but the |¢;) do so,
too. As a consequence, with that definition both O and (3 are projectors into subspaces of

span(B;); therefore, we have not only PO =0P, = O, but also
PO=0P, =0  (with {|$,)} from Eq. (S49))

(that is, the operator Py acts as identity within the subspaces spanned by the {|#:)} and
{|¢:)}, because both of them already lie completely inside span(B;) from the outset). If we
expand (S18), we can therefore see that if Eq. (S19) is used to construct the {|¢;)}, the only
term actually affected by P is the 11]51]§p> term originating from (1 —...)(1 — .‘.)]51\{,))
in the virtual part—and for this term it does not matter whether Py stands to the left or
right, because the identity operator 1 commutes with everything. In summary, this means
that for the original 2013 definition of the |¢;) (Eq. (S19)), the choice of either Eq. (S17) or
Eq. (S18) does not matter, because both formulas provide mathematically ezactly identical
results. This is no longer the case with the |<51> resulting from Eq. (520), though, because
with these orbitals 5 does not necessarily project into an exact subspace of B; (unless B
happens to span By ezactly), and therefore no longer commutes with P

As also mentioned, with the definition Eq. (S49), the transition from Eq. (S17) to
Eq. (526) is not exact anymore, and as outlined in Appx. S3.5, the numerical complexity is
higher.

So why was Eq. (S49) originally chosen in preference to using Eq. (S50) directly? After

all, the latter not only turns out to be formally and numerically favorable after a closer look,
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but actually also is in closer alignment with the spirit of the IAO construction described
in Appx. S3.2. The reason for this was, unfortunately, not particularly good: the method
appeared simpler to implement (particularly in the concrete Fortran framework used) if more
quantities were expressed in terms of the regular computational basis By; and combined with
the fact that P, would in practice be an almost-identity operator in any case, with little effect
regardless of where it is placed, GK made the unfortunate decision to just depolarize the
occupied orbitals via Eq. (S49) (because it obviously accomplishes the removal of polarization
constributions from the occupied orbitals and it produces an orbital matrix C of compatible
format to C), but without thinking particularly deeply about it—and then never revisited
the matter before Ref. 57 was published because it seemed inconsequential. In retrospect, it
would have been preferable to either use Eq. (S50) directly; or, alternatively, if all quantities
should be expressed in terms of By, to just project the reference free-atom orbitals onto By
first (making them an exact subspace), rather than using either (S49) or (S50) directly. That
would also result in Eq. (S26) being exact, and could be obtained from the present derivation
by simply not treating the By functions as raw basis functions, but instead considering them

as basis expansions as already done with the B; and B, functions in the main text.
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